EP2694691B1 - Method for operating at least one supersonic nozzle in a metallurgical vessel, method for determining a pressure loss and system for determining operating parameters of at least one supersonic nozzle - Google Patents

Method for operating at least one supersonic nozzle in a metallurgical vessel, method for determining a pressure loss and system for determining operating parameters of at least one supersonic nozzle Download PDF

Info

Publication number
EP2694691B1
EP2694691B1 EP12715030.8A EP12715030A EP2694691B1 EP 2694691 B1 EP2694691 B1 EP 2694691B1 EP 12715030 A EP12715030 A EP 12715030A EP 2694691 B1 EP2694691 B1 EP 2694691B1
Authority
EP
European Patent Office
Prior art keywords
pressure
gas
measuring device
supersonic nozzle
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12715030.8A
Other languages
German (de)
French (fr)
Other versions
EP2694691A1 (en
Inventor
Pavlo GRYGOROV
Hans-Jürgen ODENTHAL
Jochen SCHLÜTER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Siemag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Siemag AG filed Critical SMS Siemag AG
Publication of EP2694691A1 publication Critical patent/EP2694691A1/en
Application granted granted Critical
Publication of EP2694691B1 publication Critical patent/EP2694691B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4606Lances or injectors
    • C21C5/4613Refractory coated lances; Immersion lances
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/32Blowing from above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge

Definitions

  • the present invention relates to a method for operating at least one supersonic nozzle in a metallurgical vessel, to a method for determining a pressure drop between a gas supply station and at least one supersonic nozzle arranged in a metallurgical vessel, and to a system for determining operating parameters of at least one supersonic nozzle arranged in a metallurgical vessel ,
  • a molten metal contained in a metallurgical vessel with a gas, in particular with oxygen (O 2 ) or nitrogen (N 2 ), to flow.
  • a lance is typically retracted from above into the metallurgical vessel, from which the gas is applied to the molten metal.
  • an electric arc furnace gas can be blown onto the melt. Blowing of gas is usually used in at least the following metallurgical units: BOF converters, AOD converters, burners and injector nozzles, for an electric arc furnace (EAF), burners and injector nozzles for a reduction furnace (SAF) and nozzles for vacuum treatment equipment such as VOD or RH plants.
  • the oxygen is blown onto the metal bath with the help of the lance.
  • the lance head is typically 1.4 to 3 m away from the melt surface.
  • a lance head there are usually a plurality of convergent-divergent nozzles arranged at predetermined angles which accelerate the gas to supersonic speed.
  • the convergent-divergent nozzles are also referred to as supersonic nozzles or Laval nozzles.
  • the gas typically exits at about twice the speed of sound and with a high momentum and then strikes the molten metal.
  • an oscillating Blemmulde is generated and the inflated gas ensures an intensive decarburization reaction.
  • a foamed slag is formed on the molten metal.
  • JP4066613 discloses a method of operating at least one nozzle in a metallurgical vessel, comprising measuring the inlet pressure (P) of a gas in the at least one nozzle (18); and simultaneously measuring the supply pressure of the gas at a gas supply station spaced from the at least one nozzle, thus controlling the blowing process.
  • P inlet pressure
  • the lance head is cast or forged from copper and then cooled intensively by water during operation.
  • the gas cools in the divergent nozzle part of the supersonic nozzle by the expansion of the gas to about -100 ° C, so that the nozzle or the lance head is also cooled on the gas side by the expanded gas. Accordingly, both the Blas lanzenkopf, and the individual nozzles are well cooled in this way, as long as the expanded gas jet fixed to the corresponding nozzle wall is applied and the cooling water supply is maintained. The wear of the nozzles is then low, typical lifetimes of Blas lanzenköpfen are about 150 to 400 converter melts.
  • the geometry of a Laval nozzle or a supersonic nozzle can according to the isentropic Stromfadentheorie only for a single value - namely its ideal operating point or its design point - with respect to the inlet pressure p 0 and the inlet temperature T 0 within the Laval Nozzle, as well as the static back pressure p E be designed in the metallurgical unit.
  • the inlet pressure p 0 is also referred to as design pressure
  • the inlet temperature T 0 is also referred to as design temperature. Only when the supersonic nozzle is operated at its ideal operating point, the expanded gas flow is firmly against the nozzle wall until it leaves the nozzle and acceleration of the gas to supersonic velocity is achieved.
  • the supersonic nozzle In order to reduce or avoid this nozzle wear, the supersonic nozzle must be operated accordingly at its operating point.
  • the inlet pressure p 0 and the inlet temperature T 0 are a priori unknown process variables directly at the entrance to the supersonic nozzle inside the lance head.
  • the Laval nozzle works only in the ideal Operating point and thus optimal and wear-optimized, if these two process variables are also observed in converter operation.
  • the upstream pressure p VS and the volumetric flow of the gas V ⁇ are measured at a valve station upstream of the lance. These sizes are usually used to operate the lance or the supersonic nozzle near its design point.
  • the exact pressure drop .DELTA.P Verl however theoretically difficult to detect, so necessary for the nozzle design process variables p 0, T 0 and p E in practice have so far actually only be regarded as approximate. Accordingly, the supersonic nozzle is often operated only near its operating point, but not necessarily exactly at its operating point.
  • the object is to provide a method and a system for operating a supersonic nozzle, by means of which the maintenance of the operating parameters for the supersonic nozzle is improved.
  • the method for operating at least one supersonic nozzle in a metallurgical vessel comprises the steps of measuring the inlet pressure of a gas into the at least one supersonic nozzle, simultaneously measuring the supply pressure of the gas at a gas supply station spaced from the at least one supersonic nozzle, determining a calibration curve for the inlet pressure from the measured inlet pressure and the measured supply pressure, and operating the at least one supersonic nozzle in the metallurgical vessel at a predetermined Entry pressure by regulating the supply pressure based on the determined calibration curve.
  • a method for determining a pressure loss between a gas supply station and at least one operated in a metallurgical vessel supersonic nozzle comprising the steps of: measuring the inlet pressure of a gas in the at least one supersonic nozzle, simultaneously measuring the supply pressure of the gas at one of the at least one supersonic nozzle spaced gas supply station, and determining the pressure loss between the gas supply station and the at least one supersonic nozzle from the measured pressures.
  • inventive method and system of claims 1 and 10 allow in this way, via the determination of the calibration curve on the determination of the pressure loss, the inlet pressure p 0 at the supersonic nozzle reliably by regulating the pressure p VS at the valve station.
  • a self-sufficient measuring device is inserted into a lance head supporting at least one supersonic nozzle, then the inlet pressure in the lance head is measured by means of the self-sufficient measuring device, then the autarkic measuring device removed from the Blas lanzenkopf, and then operated the Blas lanzenkopf without the self-sufficient measuring device.
  • the measurement of the inlet pressure and the measurement of the supply pressure over a predetermined period of time is carried out, preferably over the life of a self-sufficient measuring device for measuring the inlet pressure away, and the measurements are evaluated after the period has expired.
  • the inlet temperature T 0 of the gas in the supersonic nozzle is preferably measured in order to be able to determine with certainty all the parameters which are essential for the design of the at least one supersonic nozzle.
  • the additionally measured variables are preferably used when determining the calibration curve or a separate calibration curve.
  • the measurements of the inlet pressure and / or the inlet temperature are preferably carried out with a frequency of 0.1 Hz to 10 Hz.
  • a self-sufficient measuring device is here understood to mean a measuring device which, without external feeds or supply lines, carries out a measurement, in particular a pressure measurement and / or a temperature measurement, over the time and stores the corresponding measured values.
  • a self-sufficient measuring device is for example also referred to as a "data logger".
  • the self-contained measuring device is inserted at a suitable location in the lance head or in the lance immediately before the lance head, then measures the pressure (and / or the temperature) over its (battery) lifetime over time and stores this data, that after removal the self-sufficient measuring device can be read from the Blaslanzenkopf.
  • the autarkic measuring device is removed from the Blaslanzenkopf and read the data and set in relation to the also recorded over time measurement data at the Gaszu 1500station of the gas, ie in particular a valve station of the gas.
  • the calibration curve and / or the pressure loss is then determined from the measured data read out from the self-sufficient measuring device, as well as the measured data recorded at the gas supply station of the gas.
  • the supersonic nozzles or the blowing lances with the supersonic nozzles are operated on the basis of the determined calibration curve and / or the determined pressure loss.
  • the pressure at the Gaszu meltstation of the gas is adjusted so that the desired inlet pressure in the supersonic nozzle under the respective conditions, in particular the respective static back pressure and the gas temperature is achieved.
  • the present invention relates to a system for determining operating parameters of at least one supersonic nozzle arranged in a metallurgical vessel, comprising a lance head supporting at least one supersonic nozzle, a self-sufficient measuring device for measuring the inlet pressure in the lance head, a measuring device for measuring the pressure at a distance from the supersonic nozzle Gas supply station for supplying a gas to Blas lanzenkopf, a determination device for determining a calibration curve for the inlet pressure based on the measurements carried out by the self-sufficient measuring device and the measuring device at the Gaszu slaughterstation, and a control device for controlling the gas supply to the gas supply station.
  • the system comprises a removable holder for holding the self-sufficient measuring device in the lance head.
  • the self-sufficient measuring device is preferably a data logger.
  • the self-sufficient measuring device can also be designed for measuring the inlet temperature and / or the measuring device can also be designed for measuring the pressure at the gas supply station for measuring the feed temperature and / or the volume flow.
  • the temperature of the gas in the lance head is also measured, that is, the temperature T 0 .
  • FIG. 1 shows a schematic representation of the oxygen blowing process in a converter.
  • a converter 3 is provided in which the molten metal bath 5 is accommodated. Inserted from above into the converter is a lance 2, which at its lower end comprises a lance head 4 which carries supersonic nozzles.
  • the gas in particular the oxygen or nitrogen, which is inflated by the lance 2 to the metal bath 5, the blowgun 2 from a gas supply station 1, in particular in the form of a valve station 1, via pipes 10 and tubes 12 is supplied.
  • Blas lanzenkopf 4 more supersonic nozzles 40 are used, as can be seen for example from the schematic FIG. 2 lets recognize.
  • a plurality of supersonic nozzles 40 are arranged at a certain angle, which allow the gas to escape at approximately twice the speed of sound.
  • a cavity 42 is provided before the gas enters the respective supersonic nozzles 40, through which the gas is supplied.
  • a self-sufficient measuring device 6 is preferably used, which serves to the pressure p 0 (t) of the gas before the entry into the respective supersonic nozzles 40 and to record the pressure profile over time.
  • the self-sufficient measuring device 6 can also log the temperature T 0 (t) of the gas over time.
  • the self-sufficient measuring device 6 is, as in FIG. 2 shown, preferably aerodynamically shaped such that an impairment of the gas flowing through the lance and the lance head gas is reduced as well as possible.
  • the self-sufficient measuring device 6 is designed such that the energy for the measurement as well as for the recording is provided by an internal energy source, for example a battery.
  • the self-sufficient measuring device 6 has correspondingly no connection to the outside, in particular, no data cable or power cable are put to the outside.
  • the self-sufficient measuring device 6 is fixed in position via a clamping holder 60.
  • the clamp holder 60 and the self-sufficient measuring device 6 can be used in the Blas lanzenkopf 4 and removed from this again without residue.
  • the supersonic nozzles 40 which are also referred to as Laval nozzles, according to the isentropic Stromfadentheorie only for a single value with respect to the inlet pressure p 0 and the inlet temperature T 0 , and the static back pressure p E can be designed.
  • the inlet pressure p 0 and the inlet temperature T 0 of the gas are therefore of interest in the region of the cavity 42 directly before the gas enters the respective supersonic nozzles 40 and must be regulated so that the supersonic nozzle 40 operates at its optimum operating point. It should be noted in particular that an operation of the supersonic nozzle 40 outside of the optimum operating point can cause the cooling of the blow head 4 no longer takes place by the gas expanded in the supersonic nozzle 40 and cooled to approximately -100 ° C when the flow of the gas is no longer directly applied to the wall of the respective supersonic nozzle 40. As soon as the pressure inside the cavity 42 moves out of the predetermined operating point just before the gas enters the respective supersonic nozzles 40, such a stall can occur on the wall of the supersonic nozzle 40.
  • the pressure in the cavity 42 ie directly before the gas enters the supersonic nozzles 40, by means of a control device 8 at the Gaszu slaughterstation 1 (see FIG. 1 ), wherein the pressure loss ⁇ P Verl was estimated on the way of the gas from the gas supply station 1 to the lance head 4 or up to the supersonic nozzle 40.
  • the pressure loss takes place here in the gas tubes 10, gas hoses 12 and the lance 2 and the beginning of the blowing head 4 instead.
  • the self-sufficient measuring device 6 By means of the self-sufficient measuring device 6, it is now possible to determine the exact pressure loss ⁇ P Verl experimentally.
  • the pressure curve p 0 (t) is measured over time in a first step by means of the self-sufficient measuring device 6.
  • the pressure curve at the gas supply station 1, thus in particular the valve station 1 also measured over time, so that p VS (t) can be determined.
  • the autarkic measuring device 6 is then removed from the lance head 4 again and the pressure profile data is read out.
  • the pressure applied to the supersonic nozzles 40 inlet pressure p 0 can be controlled much more accurately by the control of the voltage applied to the valve station or gas supply station 1 pressure p VS , so that the supersonic nozzle 40 can be reliably operated at its operating point.
  • This has the fundamental advantage that the process conditions with regard to the metallurgical processes are reproducible and stable. In this way, a theoretical estimation of the pressure loss between the gas supply station 1 and the lance head 4 can be dispensed with.
  • the same method can also be carried out for the inlet temperature T 0 , that is to say the temperature profile over time is measured in particular by means of the self-sufficient measuring device 6, and this temperature profile is correlated over time with a temperature profile of the gas supplied to the gas supply station 1 and accordingly a calibration curve can be provided.
  • a calibration curve for the inlet temperature T 0 as a function of the gas supply station 1 at the gas supply and preferably also continue to be indicated as a function of the pressure applied to the Gaszu slaughterstation 1 gas pressure.
  • the process variables p 0 , T 0 necessary for the design of the supersonic nozzle 40 can be obtained via these calibration curves.
  • T 0 for the actual operation is not necessary, but it is needed as a theoretical design variable in the nozzle design using the isentropic streamline theory.
  • the static pressure p E in the metallurgical vessel 3 can not be determined.
  • the static pressure p E plays only a minor role, since this pressure differs only slightly from the ambient pressure of 1.013 bar.
  • a system for determining the operating parameters of a supersonic nozzle 40 in a converter 3 comprises, in addition to the self-sufficient measuring device 6 and the measuring device 7 on the feeding device 1, also an evaluation device, by means of which the data is read from the self-sufficient measuring device 6 and in relation to those at the gas supply station 1 measured data can be set.
  • This evaluation device is typically provided in the form of a computer.
  • the self-sufficient measuring device 6, which can be used in the head 4 of the lance 2, is preferably fixed by means of a residue-free removable holder 60. It preferably absorbs pressure and temperature over time.
  • a datalogger has a pressure and a temperature sensor and is powered by an internal battery. The Time-dependent process variables are recorded at a frequency between 0.1 Hz and 10 Hz and recorded accordingly.
  • the holder 60 for the self-sufficient measuring device 6 can be made, for example, annular, so that it can be integrated into a conventional Blas lanzenkopf 4.
  • the self-sufficient measuring device 6 in the form of the data logger is preferably made aerodynamically favorable so that the gas flow into the supersonic nozzles 40 is disturbed as little as possible.
  • the data logger 6 is installed in accordance with a Blas lanzenkopf 4 and removed at the end of battery life again. The measured process variables are then transmitted in an evaluation device in the form of a PC.
  • the pressure p VS (t) and the volume flow V ⁇ (t) at the gas supply station or valve station 1 are measured.
  • the calibration curve is then determined from the corresponding data and is used in practical operation to control the gas volume flow or the gas pressure at Blas lanzenkopf 4 or before the gas enters the respective supersonic nozzles 40.
  • the supersonic nozzles can accordingly be operated at their design parameters.
  • the inlet pressure p 0 , the inlet temperature T 0 directly at the supersonic nozzle can be determined in this way.
  • the static back pressure p E in the metallurgical vessel plays only a minor role for the correct design, since it usually fluctuates only moderately around the ambient pressure, approximately 1.01 bar ⁇ 0.2 bar.
  • the pressure loss ⁇ P Verl between the Gaszuzhoustation of the gas and the entry of the gas into the Blas lanzenkopf can be correctly determined for the first time.
  • the measurement of the process variables p 0 and T 0 must be done only once and the data logger or the self-sufficient measuring device can then be removed from the Blas lanzenkopf.
  • the annular support of the datalogger allows easy mounting of the datalogger in conventional lance heads, without requiring any modification of Blas lanzenkée would be made. Accordingly, the costs for carrying out the process are low, the practical handling in steelworks operation is correspondingly simple.
  • the method can be applied to all supersonic nozzles for metallurgical plants, such as BOF, AOD, EAF, SAF, etc. and used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

Technisches GebietTechnical area

Die vorliegende Erfindung betrifft ein Verfahren zum Betrieb mindestens einer Überschalldüse in einem metallurgischen Gefäß, ein Verfahren zur Ermittlung eines Druckverlustes zwischen einer Gaszuführstation und mindestens einer in einem metallurgischen Gefäß angeordneten Überschalldüse, sowie ein System zum Ermitteln von Betriebsparametern mindestens einer in einem metallurgischen Gefäß angeordneten Überschalldüse.The present invention relates to a method for operating at least one supersonic nozzle in a metallurgical vessel, to a method for determining a pressure drop between a gas supply station and at least one supersonic nozzle arranged in a metallurgical vessel, and to a system for determining operating parameters of at least one supersonic nozzle arranged in a metallurgical vessel ,

Technischer HintergrundTechnical background

Bei der Stahlerzeugung ist es in bestimmten Verfahren, beispielsweise beim Basic Oxygen Furnace-Verfahren (BOF) oder beim Argon Oxygen Decarburization-Verfahren (AOD) üblich, eine sich in einem metallurgischen Gefäß befindliche Metallschmelze mit einem Gas, insbesondere mit Sauerstoff (O2) oder Stickstoff (N2), zu beströmen. Hierzu wird typischerweise eine Blaslanze von oben in das metallurgische Gefäß eingefahren, aus welcher das Gas auf die Metallschmelze aufgebracht wird.In steelmaking, it is common in certain processes, for example in the Basic Oxygen Furnace process (BOF) or the Argon Oxygen Decarburization process (AOD), a molten metal contained in a metallurgical vessel with a gas, in particular with oxygen (O 2 ) or nitrogen (N 2 ), to flow. For this purpose, a lance is typically retracted from above into the metallurgical vessel, from which the gas is applied to the molten metal.

Auch im Bereich des Aufschmelzens von Schrott in einem Lichtbogenofen, also einem Electric Arc Furnace (EAF), kann Gas auf die Schmelze aufgeblasen werden. Ein Aufblasen von Gas wird üblicherweise zumindest in den folgenden metallurgischen Aggregaten verwendet: BOF-Konverter, AOD-Konverter, Brenner und Injektordüsen, für einen Elektrolichtbogenofen (EAF), Brenner und Injektordüsen für einen Reduktionsofen (SAF) sowie Düsen für Vakuumbehandlungsanlagen wie beispielsweise VOD- oder RH-Anlagen.Also in the field of melting scrap in an electric arc furnace, ie an electric arc furnace (EAF), gas can be blown onto the melt. Blowing of gas is usually used in at least the following metallurgical units: BOF converters, AOD converters, burners and injector nozzles, for an electric arc furnace (EAF), burners and injector nozzles for a reduction furnace (SAF) and nozzles for vacuum treatment equipment such as VOD or RH plants.

Bei der Stahlerzeugung im BOF-Konverter wird der Sauerstoff mit Hilfe der Blaslanze auf das Metallbad aufgeblasen. Der Blaslanzenkopf ist dabei typischer Weise 1,4 bis 3 m von der Schmelzenoberfläche entfernt.During steelmaking in the BOF converter, the oxygen is blown onto the metal bath with the help of the lance. The lance head is typically 1.4 to 3 m away from the melt surface.

In einem solchen Blaslanzenkopf befinden sich üblicher Weise mehrere unter vorbestimmten Winkeln angeordnete konvergent-divergente Düsen welche das Gas auf Überschallgeschwindigkeit beschleunigen. Die konvergent-divergenten Düsen werden auch als Überschalldüsen oder Laval-Düsen bezeichnet. Aus diesen Überschalldüsen tritt das Gas typischerweise mit etwa zweifacher Schallgeschwindigkeit und mit einem hohen Impuls aus und trifft dann auf die Metallschmelze. In der Metallschmelze wird eine oszillierende Blasmulde erzeugt und das aufgeblasene Gas sorgt für eine intensive Entkohlungsreaktion. Dabei entsteht durch die aufsteigenden gasförmigen Reaktionsprodukte eine Schaumschlacke auf der Metallschmelze.In such a lance head there are usually a plurality of convergent-divergent nozzles arranged at predetermined angles which accelerate the gas to supersonic speed. The convergent-divergent nozzles are also referred to as supersonic nozzles or Laval nozzles. From these supersonic nozzles, the gas typically exits at about twice the speed of sound and with a high momentum and then strikes the molten metal. In the molten metal an oscillating Blemmulde is generated and the inflated gas ensures an intensive decarburization reaction. As a result of the ascending gaseous reaction products, a foamed slag is formed on the molten metal.

JP4066613 offenbart ein Verfahren zum Betrieb mindestens einer Düse in einem metallurgischen Gefäß, umfassend das Messen des Eintrittsdruckes (P) eines Gases in der mindestens eine Düse (18); und gleichzeitiges Messen des Zuführdruckes des Gases an einer beabstandet von der mindestens einen Düse angeordneten Gaszuführstation, somit wird das Blasverfahren kontrolliert. Im allgemeinen, um den hohen Temperaturen zu widerstehen, wird der Blaslanzenkopf aus Kupfer gegossen oder geschmiedet und dann im Betrieb intensiv durch Wasser gekühlt. JP4066613 discloses a method of operating at least one nozzle in a metallurgical vessel, comprising measuring the inlet pressure (P) of a gas in the at least one nozzle (18); and simultaneously measuring the supply pressure of the gas at a gas supply station spaced from the at least one nozzle, thus controlling the blowing process. In general, to withstand the high temperatures, the lance head is cast or forged from copper and then cooled intensively by water during operation.

Weiterhin kühlt sich das Gas im divergenten Düsenteil der Überschalldüse durch die Expansion des Gases bis auf ca. -100°C ab, so dass die Düse bzw. der Blaslanzenkopf auch gasseitig durch das expandierte Gas gekühlt wird. Entsprechend werden auch auf diese Weise sowohl der Blaslanzenkopf, als auch die einzelnen Düsen gut gekühlt, solange der expandierte Gasstrahl fest an der entsprechenden Düsenwand anliegt und die Kühlwasserzuführung aufrecht erhalten wird. Der Verschleiß der Düsen ist dann gering, wobei typische Standzeiten von Blaslanzenköpfen bei ca. 150 bis 400 Konverterschmelzen liegen.Furthermore, the gas cools in the divergent nozzle part of the supersonic nozzle by the expansion of the gas to about -100 ° C, so that the nozzle or the lance head is also cooled on the gas side by the expanded gas. Accordingly, both the Blas lanzenkopf, and the individual nozzles are well cooled in this way, as long as the expanded gas jet fixed to the corresponding nozzle wall is applied and the cooling water supply is maintained. The wear of the nozzles is then low, typical lifetimes of Blas lanzenköpfen are about 150 to 400 converter melts.

Die Geometrie einer Laval-Düse bzw. einer Überschalldüse kann gemäß der isentropen Stromfadentheorie nur für jeweils einen einzigen Wert - nämlich ihrem idealen Betriebspunkt bzw. ihrem Auslegungspunkt (design-point) - hinsichtlich des Eintrittsdruckes p0 und der Eintrittstemperatur T0 innerhalb der Laval-Düse, sowie des statischen Gegendruckes pE im metallurgischen Aggregat ausgelegt werden. Der Eintrittsdruck p0 wird auch als Auslegungsdruck, die Eintrittstemperatur T0 wird auch als Auslegungstemperatur bezeichnet. Nur wenn die Überschalldüse in ihrem idealen Betriebspunkt betrieben wird, liegt die expandierte Gasströmung fest an der Düsenwand bis zum Verlassen der Düse an und eine Beschleunigung des Gases auf Überschallgeschwindigkeit wird erreicht. Sobald die reale Düsenströmung jedoch vom idealen Auslegungszustand bzw. vom idealen Betriebspunkt abweicht, ergeben sich innerhalb und außerhalb der Düse komplexe Störungsmuster (diamond pattern) in Form von Expansionswellen oder Verdichtungsstößen, welche zum Verschleiß der Düsenkante führen und welche zu einer frühzeitigen Ablösung des Strahls von der Düsenwand führen. Bei einer Ablösung des kalten Gasstrahles von der Düsenwand entsteht ein Rezirkulationsgebiet an dem Düsenaustritt, über welches heißes Konvertergas an die Düsenwand gelangt, wodurch dann der Düsenverschleiß einsetzt.The geometry of a Laval nozzle or a supersonic nozzle can according to the isentropic Stromfadentheorie only for a single value - namely its ideal operating point or its design point - with respect to the inlet pressure p 0 and the inlet temperature T 0 within the Laval Nozzle, as well as the static back pressure p E be designed in the metallurgical unit. The inlet pressure p 0 is also referred to as design pressure, the inlet temperature T 0 is also referred to as design temperature. Only when the supersonic nozzle is operated at its ideal operating point, the expanded gas flow is firmly against the nozzle wall until it leaves the nozzle and acceleration of the gas to supersonic velocity is achieved. However, as soon as the actual nozzle flow deviates from the ideal design state or from the ideal operating point, complex patterns (diamond patterns) in the form of expansion waves or compression impacts result, which lead to wear of the nozzle edge and which lead to premature detachment of the jet from lead the nozzle wall. With a detachment of the cold gas jet from the nozzle wall, a recirculation area is formed at the nozzle exit, via which hot converter gas passes to the nozzle wall, whereby the nozzle wear then begins.

Um diesen Düsenverschleiß zu verringern oder zu vermeiden, muss die Überschalldüse entsprechend in ihrem Betriebspunkt betrieben werden.In order to reduce or avoid this nozzle wear, the supersonic nozzle must be operated accordingly at its operating point.

Da eine Blaslanze typischerweise eine Länge von ca. 20 m aufweist, handelt es sich bei dem Eintrittsdruck p0 und der Eintrittstemperatur T0 um a priori unbekannte Prozessgrößen direkt am Eintritt in die Überschalldüse im Inneren des Blaslanzenkopfes. Andererseits arbeitet die Laval-Düse nur dann im idealen Betriebspunkt und damit optimal und verschleißoptimiert, wenn diese beiden Prozessgrößen im Konverterbetrieb auch eingehalten werden.Since a lance typically has a length of about 20 m, the inlet pressure p 0 and the inlet temperature T 0 are a priori unknown process variables directly at the entrance to the supersonic nozzle inside the lance head. On the other hand, the Laval nozzle works only in the ideal Operating point and thus optimal and wear-optimized, if these two process variables are also observed in converter operation.

Im herkömmlichen Betrieb wird der Vordruck pVS sowie der Volumenstrom des Gases an einer der Blaslanze vorgelagerten Ventilstation gemessen. Diese Größen dienen in der Regel zum Betrieb der Blaslanze bzw. der Überschalldüse nahe ihrem Auslegungspunkt. Zusätzlich wird der Druckverlust ΔpVerl von der Ventilstation über die Rohrleitungen und Druckschläuche sowie über die gesamte Blaslanze abgeschätzt, um den unbekannten, am Ende der Blaslanze befindlichen Eintrittsdruck p0 anhand der Gleichung p0=pVS-ΔPVerl abzuschätzen. Der genaue Druckverlust ΔPVerl ist jedoch theoretisch schwierig zu ermitteln, so dass die für die Düsenauslegung notwendigen Prozessgrößen p0, T0 und pE in der Praxis bislang tatsächlich nur als Näherungswerte anzusehen sind. Entsprechend wird die Überschalldüse häufig nur nahe ihrem Betriebspunkt betrieben, nicht aber zwangsläufig genau in ihrem Betriebspunkt.In conventional operation, the upstream pressure p VS and the volumetric flow of the gas V̇ are measured at a valve station upstream of the lance. These sizes are usually used to operate the lance or the supersonic nozzle near its design point. In addition, the pressure loss Δp Verl from the valve station via the pipes and pressure hoses and over the entire lance is estimated to estimate the unknown, located at the end of the lance inlet pressure p 0 using the equation p 0 = p VS -ΔP Verl . The exact pressure drop .DELTA.P Verl however theoretically difficult to detect, so necessary for the nozzle design process variables p 0, T 0 and p E in practice have so far actually only be regarded as approximate. Accordingly, the supersonic nozzle is often operated only near its operating point, but not necessarily exactly at its operating point.

Beschreibungdescription

Hieraus ergibt sich die Aufgabe, ein Verfahren und ein System zum Betrieb einer Überschalldüse anzugeben, mittels welchem die Einhaltung der Betriebsparameter für die Überschalldüse verbessert wird.Hence, the object is to provide a method and a system for operating a supersonic nozzle, by means of which the maintenance of the operating parameters for the supersonic nozzle is improved.

Entsprechend umfasst das Verfahren zum Betrieb mindestens einer Überschalldüse in einem metallurgischen Gefäß die Schritte: Messen des Eintrittsdruckes eines Gases in die mindestens eine Überschalldüse, gleichzeitiges Messen des Zuführdruckes des Gases an einer beabstandet von der mindestens einen Überschalldüse angeordneten Gaszuführstation, Ermitteln einer Kalibrierkurve für den Eintrittsdruck aus dem gemessenen Eintrittsdruck und dem gemessenen Zuführdruck, und Betreiben der mindestens einen Überschalldüse in dem metallurgischen Gefäß bei einem vorgegebenen Eintrittsdruck durch Regeln des Zuführdruckes auf Grundlage der ermittelten Kalibrierkurve.Accordingly, the method for operating at least one supersonic nozzle in a metallurgical vessel comprises the steps of measuring the inlet pressure of a gas into the at least one supersonic nozzle, simultaneously measuring the supply pressure of the gas at a gas supply station spaced from the at least one supersonic nozzle, determining a calibration curve for the inlet pressure from the measured inlet pressure and the measured supply pressure, and operating the at least one supersonic nozzle in the metallurgical vessel at a predetermined Entry pressure by regulating the supply pressure based on the determined calibration curve.

Weiterhin wird ein Verfahren zur Ermittlung eines Druckverlustes zwischen einer Gaszuführstation und mindestens einer in einem metallurgischen Gefäß betriebenen Überschalldüse vorgeschlagen, umfassend die Schritte: Messen des Eintrittsdruckes eines Gases in die mindestens eine Überschalldüse, gleichzeitiges Messen des Zuführdruckes des Gases an einer von der mindestens einen Überschalldüse beabstandeten Gaszuführstation, und Ermitteln des Druckverlustes zwischen der Gaszuführstation und der mindestens einen Überschalldüse aus den gemessenen Drücken.Furthermore, a method for determining a pressure loss between a gas supply station and at least one operated in a metallurgical vessel supersonic nozzle is proposed, comprising the steps of: measuring the inlet pressure of a gas in the at least one supersonic nozzle, simultaneously measuring the supply pressure of the gas at one of the at least one supersonic nozzle spaced gas supply station, and determining the pressure loss between the gas supply station and the at least one supersonic nozzle from the measured pressures.

Das erfindungsgemäße Verfahren und System der Ansprüche 1 und 10 ermöglichen auf diese Weise, über das Bestimmen der Kalibrierkurve über das Bestimmen des Druckverlustes den Eintrittsdruck p0 an der Überschalldüse durch die Regelung des Druckes pVS an der Ventilstation zuverlässig zu regeln.The inventive method and system of claims 1 and 10 allow in this way, via the determination of the calibration curve on the determination of the pressure loss, the inlet pressure p 0 at the supersonic nozzle reliably by regulating the pressure p VS at the valve station.

Da die Betriebsbedingungen im Blaslanzenkopf einer Blaslanze bei der Stahlerzeugung sehr extrem sind, kann durch einfache Regelung des Druckes pVS des zugeführten Gases an der Ventilstation bzw. an der Gaszuführstation auf diese Weise erreicht werden, dass die Überschalldüse in ihrem Betriebspunkt betrieben werden kann. Diese Gaszuführstation ist typischerweise deutlich von dem Blaslanzenkopf beabstandet, nämlich über diverse Leitungen, Schläuche, sowie die Blaslanze selbst. Weiterhin muss eine Messung des jeweiligen Eintrittsdruckes am Blaslanzenkopf während des regulären Betriebs nicht durchgeführt werden, was auch aufgrund der genannten extremen Bedingungen im regulären Betrieb nur schwer möglich wäre.Since the operating conditions in the lance head of a lance in the steelmaking process are very extreme, it is possible by simple regulation of the pressure p VS of the supplied gas at the valve station or at the gas supply station in such a way that the supersonic nozzle can be operated at its operating point. This Gaszuführstation is typically well spaced from the Blas lanzenkopf, namely on various lines, hoses, and the lance itself. Furthermore, a measurement of the respective inlet pressure at the lance head during normal operation must not be performed, which also due to the above extreme conditions in normal operation only would be difficult.

Bevorzugt wird eine autarke Messvorrichtung in einen mindestens eine Überschalldüse tragenden Blaslanzenkopf eingesetzt, dann wird der Eintrittsdruck im Blaslanzenkopf mittels der autarken Messvorrichtung gemessen, darauf hin die autarke Messvorrichtung aus dem Blaslanzenkopf entfernt, und dann der Blaslanzenkopf ohne die autarke Messvorrichtung betrieben.Preferably, a self-sufficient measuring device is inserted into a lance head supporting at least one supersonic nozzle, then the inlet pressure in the lance head is measured by means of the self-sufficient measuring device, then the autarkic measuring device removed from the Blas lanzenkopf, and then operated the Blas lanzenkopf without the self-sufficient measuring device.

Um eine möglichst aussagekräftige Messung zu erhalten, wird bevorzugt die Messung des Eintrittsdruckes und die Messung des Zuführdruckes über einen vorbestimmten Zeitraum hinweg durchgeführt, bevorzugt über die Lebensdauer einer autarken Messvorrichtung zur Messung des Eintrittsdruckes hinweg, und die Messungen werden nach Ablauf des Zeitraumes ausgewertet.In order to obtain as meaningful a measurement as possible, the measurement of the inlet pressure and the measurement of the supply pressure over a predetermined period of time is carried out, preferably over the life of a self-sufficient measuring device for measuring the inlet pressure away, and the measurements are evaluated after the period has expired.

Bevorzugt wird neben dem Eintrittsdruck auch die Eintrittstemperatur T0 des Gases in die Überschalldüse gemessen, um sämtliche Parameter, die wesentlich für die Auslegung der mindestens einen Überschalldüse sind, sicher bestimmen zu können. Gleiches gilt für die Messung der Zuführtemperatur TVS des in der Gaszuführstation zugeführten Gases und/oder des Volumenstroms des an der Gaszuführstation zugeführten Gases. Die zusätzlich gemessenen Größen werden bei der Ermittlung der Kalibrierkurve, oder einer separaten Kalibrierkurve bevorzugt herangezogen.In addition to the inlet pressure, the inlet temperature T 0 of the gas in the supersonic nozzle is preferably measured in order to be able to determine with certainty all the parameters which are essential for the design of the at least one supersonic nozzle. The same applies to the measurement of the feed temperature T VS of the gas supplied in the gas feed station and / or the volume flow of the gas supplied to the gas feed station . The additionally measured variables are preferably used when determining the calibration curve or a separate calibration curve.

Um eine gute Zeitauflösung zu erhalten, werden die Messungen des Eintrittsdruckes und/oder der Eintrittstemperatur bevorzugt mit einer Frequenz von 0.1 Hz bis 10Hz durchgeführt.In order to obtain a good time resolution, the measurements of the inlet pressure and / or the inlet temperature are preferably carried out with a frequency of 0.1 Hz to 10 Hz.

Unter einer autarken Messvorrichtung wird hier eine Messvorichtung verstanden, welche ohne äußere Zuführungen oder Zuleitungen eine Messung, insbesondere eine Druckmessung und/oder eine Temperaturmessung, über die Zeit aufgelöst vornimmt, sowie die entsprechenden Messwerte speichert. Eine solche autarke Messvorrichtung wird beispielsweise auch als "Datenlogger" bezeichnet. Die autarke Messvorrichtung wird an einer geeigneten Stelle in den Blaslanzenkopf oder in der Blaslanze unmittelbar vor dem Blaslanzenkopf eingesetzt, misst dann über ihre (Batterie)-Lebensdauer hinweg den Druck (und/oder die Temperatur) über die Zeit hinweg und speichert diese Daten derart, dass sie nach Entnahme der autarken Messvorrichtung aus dem Blaslanzenkopf ausgelesen werden können.A self-sufficient measuring device is here understood to mean a measuring device which, without external feeds or supply lines, carries out a measurement, in particular a pressure measurement and / or a temperature measurement, over the time and stores the corresponding measured values. Such a self-sufficient measuring device is for example also referred to as a "data logger". The self-contained measuring device is inserted at a suitable location in the lance head or in the lance immediately before the lance head, then measures the pressure (and / or the temperature) over its (battery) lifetime over time and stores this data, that after removal the self-sufficient measuring device can be read from the Blaslanzenkopf.

Anschließend wird die autarke Messvorrichtung aus dem Blaslanzenkopf entfernt und die Daten ausgelesen und mit den ebenfalls über die Zeit hinweg aufgenommenen Messdaten an der Gaszuführstation des Gases, also insbesondere einer Ventilstation des Gases, in Beziehung gesetzt. Die Kalibrierkurve und/oder der Druckverlust wird dann aus den aus der autarken Messvorrichtung ausgelesenen Messdaten, sowie den an der Gaszuführstation des Gases aufgenommenen Messdaten ermittelt.Subsequently, the autarkic measuring device is removed from the Blaslanzenkopf and read the data and set in relation to the also recorded over time measurement data at the Gaszuführstation of the gas, ie in particular a valve station of the gas. The calibration curve and / or the pressure loss is then determined from the measured data read out from the self-sufficient measuring device, as well as the measured data recorded at the gas supply station of the gas.

Anschließend wird nach Entfernen der autarken Messvorrichtung die Überschalldüsen bzw. die Blaslanzen mit der Überschalldüsen anhand der ermittelten Kalibrierkurve und/oder des ermittelten Druckverlustes betrieben. Insbesondere wird der Druck an der Gaszuführstation des Gases so eingestellt, dass der gewünschte Eintrittsdruck in die Überschalldüse unter den jeweiligen Bedingungen, insbesondere dem jeweiligen statischen Gegendruckes sowie der Gastemperatur, erreicht wird.Subsequently, after removing the self-sufficient measuring device, the supersonic nozzles or the blowing lances with the supersonic nozzles are operated on the basis of the determined calibration curve and / or the determined pressure loss. In particular, the pressure at the Gaszuführstation of the gas is adjusted so that the desired inlet pressure in the supersonic nozzle under the respective conditions, in particular the respective static back pressure and the gas temperature is achieved.

Weiterhin betrifft die vorliegende Erfindung ein System zum Ermitteln von Betriebsparametern mindestens einer in einem metallurgischen Gefäß angeordneten Überschalldüse, umfassend einen mindestens eine Überschalldüse tragenden Blaslanzenkopf, eine autarke Messvorrichtung zum Messen des Eintrittsdruckes im Blaslanzenkopf, eine Messvorrichtung zum Messen des Druckes an einer von der Überschalldüse beabstandeten Gaszuführstation zum Zuführen eines Gases zum Blaslanzenkopf, eine Ermittlungsvorrichtung zum Ermitteln einer Kalibrierkurve für den Eintrittsdruck auf Grundlage der mittels der autarken Messvorrichtung und der Messvorrichtung an der Gaszuführstation durchgeführten Messungen, sowie eine Regelvorrichtung zum Regeln der Gaszufuhr an der Gaszuführstation.Furthermore, the present invention relates to a system for determining operating parameters of at least one supersonic nozzle arranged in a metallurgical vessel, comprising a lance head supporting at least one supersonic nozzle, a self-sufficient measuring device for measuring the inlet pressure in the lance head, a measuring device for measuring the pressure at a distance from the supersonic nozzle Gas supply station for supplying a gas to Blas lanzenkopf, a determination device for determining a calibration curve for the inlet pressure based on the measurements carried out by the self-sufficient measuring device and the measuring device at the Gaszuführstation, and a control device for controlling the gas supply to the gas supply station.

Bevorzugt umfasst das System eine entfernbare Halterung zum Halten der autarken Messvorrichtung im Blaslanzenkopf. Weiterhin ist die autarke Messvorrichtung bevorzugt ein Datenlogger. Die autarke Messvorrichtung kann auch zur Messung der Eintrittstemperatur ausgebildet sein und/oder die Messvorrichtung kann zum Messen des Druckes an der Gaszuführstation auch zur Messung der Zuführtemperatur und/oder des Volumenstromes ausgebildet sein.Preferably, the system comprises a removable holder for holding the self-sufficient measuring device in the lance head. Furthermore, the self-sufficient measuring device is preferably a data logger. The self-sufficient measuring device can also be designed for measuring the inlet temperature and / or the measuring device can also be designed for measuring the pressure at the gas supply station for measuring the feed temperature and / or the volume flow.

In einer weiteren bevorzugten Ausführungsform wird weiterhin neben dem Druck im Blaslanzenkopf auch die Temperatur des Gases im Blaslanzenkopf gemessen, also die Temperatur T0.In a further preferred embodiment, in addition to the pressure in the lance head, the temperature of the gas in the lance head is also measured, that is, the temperature T 0 .

Kurze Beschreibung der FigurenBrief description of the figures

Figur 1FIG. 1
zeigt schematisch einen Konverter, in welchem ein Sauerstoffblasverfahren durchgeführt wird,shows schematically a converter in which an oxygen blowing process is carried out,
Figur 2FIG. 2
zeigt schematisch die Anordnung einer autarken Messvorrichtung in einem Blaslanzenkopf, undshows schematically the arrangement of a self-sufficient measuring device in a Blas lanzenkopf, and
Figur 3FIG. 3
zeigt schematisch eine Kalibrierkurve.schematically shows a calibration curve.
Ausführliche Beschreibung der FigurenDetailed description of the figures

Im Folgenden wird die vorliegende Offenbarung auf Grundlage der Zeichnungen der Figuren noch ausführlicher beschrieben. Hierbei werden gleiche Elemente in den Figuren mit gleichen Bezugszeichen versehen und teilweise wird auf die wiederholte Beschreibung der jeweiligen Elemente verzichtet.Hereinafter, the present disclosure will be described in more detail based on the drawings of the figures. In this case, the same elements in the figures are given the same reference numerals, and partly dispenses with the repeated description of the respective elements.

Figur 1 zeigt eine schematische Darstellung des Sauerstoffblasverfahrens in einem Konverter. FIG. 1 shows a schematic representation of the oxygen blowing process in a converter.

Entsprechend ist ein Konverter 3 vorgesehen, in welchem das aufgeschmolzene Metallbad 5 aufgenommen ist. Von oben in den Konverter eingeführt wird eine Blaslanze 2, welche an ihrem unteren Ende einen Blaslanzenkopf 4 umfasst, welcher Überschalldüsen trägt.Accordingly, a converter 3 is provided in which the molten metal bath 5 is accommodated. Inserted from above into the converter is a lance 2, which at its lower end comprises a lance head 4 which carries supersonic nozzles.

Das Gas, insbesondere der Sauerstoff oder der Stickstoff, welcher durch die Blaslanze 2 auf das Metallbad 5 aufgeblasen wird, wird der Blaslanze 2 von einer Gaszuführstation 1 aus, insbesondere in Form einer Ventilstation 1, über Rohrleitungen 10 und Schläuche 12 zugeführt.The gas, in particular the oxygen or nitrogen, which is inflated by the lance 2 to the metal bath 5, the blowgun 2 from a gas supply station 1, in particular in the form of a valve station 1, via pipes 10 and tubes 12 is supplied.

Durch das Aufblasen des Gases mittels der Blaslanze 2 durch den Blaslanzenkopf 4 hindurch, entsteht in dem Metallbad 5 eine oszillierende Blasmulde 50, mittels welcher sichergestellt wird, dass ein großer Teil der Metalloberfläche in Kontakt mit dem Gas tritt. Auf diese Weise wird für eine intensive Entkohlungsreaktion der Metallschmelze gesorgt und es entsteht eine schaumförmige Schlacke auf dem Metallbad 5.By the blowing of the gas by means of the blowing lance 2 through the lance head 4, an oscillating blowing trough 50 is created in the metal bath 5, by means of which it is ensured that a large part of the metal surface comes into contact with the gas. In this way, an intensive decarburization reaction of the molten metal is ensured and a foam-like slag is formed on the metal bath 5.

Im Blaslanzenkopf 4 sind mehrere Überschalldüsen 40 eingesetzt, wie sich beispielsweise aus der schematischen Figur 2 erkennen lässt. In dem gezeigten Blaslanzenkopf 4 sind mehrere Überschalldüsen 40 unter einem bestimmten Winkel angeordnet, welche einen Austritt des Gases mit ungefähr doppelter Schallgeschwindigkeit ermöglichen.In Blas lanzenkopf 4 more supersonic nozzles 40 are used, as can be seen for example from the schematic FIG. 2 lets recognize. In the lance head 4 shown, a plurality of supersonic nozzles 40 are arranged at a certain angle, which allow the gas to escape at approximately twice the speed of sound.

In dem Blaslanzenkopf 4 ist vor dem Eintritt des Gases in die jeweiligen Überschalldüsen 40 ein Hohlraum 42 vorgesehen, über welchen das Gas zugeführt wird. In diesem Hohlraum 42 wird bevorzugt eine autarke Messvorrichtung 6 eingesetzt, welche dazu dient, den Druck p0(t) des Gases vor dem Eintritt in die jeweiligen Überschalldüsen 40 zu messen und den Druckverlauf über die Zeit hinweg zu protokollieren. Die autarke Messvorrichtung 6 kann darüber hinaus auch die Temperatur T0(t) des Gases über die Zeit hinweg protokollieren.In the blowing lance head 4, a cavity 42 is provided before the gas enters the respective supersonic nozzles 40, through which the gas is supplied. In this cavity 42, a self-sufficient measuring device 6 is preferably used, which serves to the pressure p 0 (t) of the gas before the entry into the respective supersonic nozzles 40 and to record the pressure profile over time. The self-sufficient measuring device 6 can also log the temperature T 0 (t) of the gas over time.

Die autarke Messvorrichtung 6 ist, wie in Figur 2 gezeigt, bevorzugt strömungsgünstig derart geformt, dass eine Beeinträchtigung des durch die Blaslanze und den Blaslanzenkopf hindurch strömenden Gases so gut wie möglich reduziert wird.The self-sufficient measuring device 6 is, as in FIG. 2 shown, preferably aerodynamically shaped such that an impairment of the gas flowing through the lance and the lance head gas is reduced as well as possible.

Die autarke Messvorrichtung 6 ist dabei so ausgebildet, dass durch eine interne Energiequelle, beispielsweise eine Batterie, die Energie für die Messung sowie für die Aufzeichnung bereitgestellt wird. Die autarke Messvorrichtung 6 hat entsprechend keinerlei Verbindung nach außen, insbesondere werden keine Datenkabel oder Energiekabel nach außen gelegt.The self-sufficient measuring device 6 is designed such that the energy for the measurement as well as for the recording is provided by an internal energy source, for example a battery. The self-sufficient measuring device 6 has correspondingly no connection to the outside, in particular, no data cable or power cable are put to the outside.

Die autarke Messvorrichtung 6 ist über eine Klemmhalterung 60 in ihrer Position fixiert. Die Klemmhalterung 60 sowie die autarke Messvorrichtung 6 können in den Blaslanzenkopf 4 eingesetzt werden und aus diesem wieder rückstandsfrei entfernt werden.The self-sufficient measuring device 6 is fixed in position via a clamping holder 60. The clamp holder 60 and the self-sufficient measuring device 6 can be used in the Blas lanzenkopf 4 and removed from this again without residue.

Ein Auslesen der autarken Messvorrichtung 6, welche auch als "Datenlogger" bezeichnet werden kann, findet erst nach dem vollständigen Ausbau der autarken Messvorrichtung 6 aus dem Blaslanzenkopf 4 statt.A readout of the self-sufficient measuring device 6, which can also be referred to as a "data logger", takes place only after the complete removal of the self-sufficient measuring device 6 from the blasting lance head 4.

Es ist bekannt, dass die Überschalldüsen 40, die auch als Laval-Düsen bezeichnet werden, gemäß der isentropen Stromfadentheorie nur für einen einzigen Wert hinsichtlich des Eintrittsdruckes p0 und der Eintrittstemperatur T0, sowie des statischen Gegendruckes pE ausgelegt werden können.It is known that the supersonic nozzles 40, which are also referred to as Laval nozzles, according to the isentropic Stromfadentheorie only for a single value with respect to the inlet pressure p 0 and the inlet temperature T 0 , and the static back pressure p E can be designed.

Der Eintrittsdruck p0 sowie die Eintrittstemperatur T0 des Gases sind also im Bereich des Hohlraums 42 direkt vor dem Eintritt des Gases in die jeweiligen Überschalldüsen 40 interessant und müssen hier so geregelt werden, dass die Überschalldüse 40 in ihrem optimalen Betriebspunkt arbeitet. Hier ist insbesondere auch zu beachten, dass ein Betrieb der Überschalldüse 40 außerhalb des optimalen Betriebspunkts dazu führen kann, dass die Kühlung des Blaskopfes 4 durch das in der Überschalldüse 40 expandierte und auf ungefähr-100°C abgekühlte Gas nicht mehr stattfindet, wenn die Strömung des Gases nicht mehr direkt an der Wand der jeweiligen Überschalldüse 40 anliegt. Sobald sich der Druck innerhalb des Hohlraumes 42 direkt vor dem Eintritt des Gases in die jeweiligen Überschalldüsen 40 aus dem vorgegebenen Betriebspunkt herausbewegt, kann es aber zu einem solchen Strömungsabriss an der Wand der Überschalldüse 40 kommen.The inlet pressure p 0 and the inlet temperature T 0 of the gas are therefore of interest in the region of the cavity 42 directly before the gas enters the respective supersonic nozzles 40 and must be regulated so that the supersonic nozzle 40 operates at its optimum operating point. It should be noted in particular that an operation of the supersonic nozzle 40 outside of the optimum operating point can cause the cooling of the blow head 4 no longer takes place by the gas expanded in the supersonic nozzle 40 and cooled to approximately -100 ° C when the flow of the gas is no longer directly applied to the wall of the respective supersonic nozzle 40. As soon as the pressure inside the cavity 42 moves out of the predetermined operating point just before the gas enters the respective supersonic nozzles 40, such a stall can occur on the wall of the supersonic nozzle 40.

Bislang wurde, wie bereits erläutert, der Druck im Hohlraum 42, also direkt vor dem Eintritt des Gases in die Überschalldüsen 40, mittels einer Regelungsvorrichtung 8 an der Gaszuführstation 1 (siehe Figur 1) geregelt, wobei der Druckverlust ΔPVerl auf dem Weg des Gases von der Gaszuführstation 1 bis hin zum Blaslanzenkopf 4 bzw. bis hin zur Überschalldüse 40 abgeschätzt wurde. Der Druckverlust findet hier in den Gasröhren 10, Gasschläuchen 12 sowie der Blaslanze 2 und den Anfangsbereichen des Blaskopfes 4 statt.So far, as already explained, the pressure in the cavity 42, ie directly before the gas enters the supersonic nozzles 40, by means of a control device 8 at the Gaszuführstation 1 (see FIG. 1 ), wherein the pressure loss ΔP Verl was estimated on the way of the gas from the gas supply station 1 to the lance head 4 or up to the supersonic nozzle 40. The pressure loss takes place here in the gas tubes 10, gas hoses 12 and the lance 2 and the beginning of the blowing head 4 instead.

Der Druckverlust ΔPVerl wurde hier bislang theoretisch grob abgeschätzt, um dann den im Hohlraum 42 anliegenden Druck p0 durch die Gleichung p0=pVS-ΔPVerl abzuschätzen. Da jedoch der Druckverlust ΔpVerl theoretisch zu ermitteln ist, wurde bislang nur ein grober Anhaltswert für den Eintrittsdruck p0 erreicht.So far, the pressure loss ΔP Verl has been roughly estimated theoretically in order to then estimate the pressure p 0 in the cavity 42 by the equation p 0 = p VS -ΔP Verl . However, since the pressure loss Δp Verl is to be determined theoretically, so far only a rough reference value for the inlet pressure p 0 has been achieved.

Mittels der autarken Messvorrichtung 6 wird es nun möglich, den exakten Druckverlust ΔPVerl experimentell zu ermitteln. Insbesondere wird mittels der autarken Messvorrichtung 6 in einem ersten Schritt der Druckverlauf p0(t) über die Zeit hinweg gemessen. Gleichzeitig wird in diesem ersten Schritt der Druckverlauf an der Gaszuführstation 1, also insbesondere der Ventilstation 1, ebenfalls über die Zeit hinweg gemessen, so dass pVS(t) bestimmt werden kann. Nach dieser experimentellen Phase im ersten Schritt wird dann die autarke Messvorrichtung 6 aus dem Blaslanzenkopf 4 wiederum entfernt und die Druckverlaufsdaten ausgelesen. Diese aus der autarken Messvorrichtung 6 ausgelesenen Daten des Druckverlaufs über die Zeit werden nun in Relation gesetzt zu dem Druckverlauf über die Zeit an der Gaszuführstation 1.By means of the self-sufficient measuring device 6, it is now possible to determine the exact pressure loss ΔP Verl experimentally. In particular, the pressure curve p 0 (t) is measured over time in a first step by means of the self-sufficient measuring device 6. At the same time in this first step, the pressure curve at the gas supply station 1, thus in particular the valve station 1, also measured over time, so that p VS (t) can be determined. After this experimental phase in the first step, the autarkic measuring device 6 is then removed from the lance head 4 again and the pressure profile data is read out. These data of the pressure curve over time, read from the self-sufficient measuring device 6, are now related to the pressure curve over time at the gas supply station 1.

Figur 3 zeigt eine entsprechende Kalibrierkurve des Eintrittsdruckes p0(t)=f(pVS(t)), also den Eintrittsdruck p0 am Blaslanzenkopf 4, bzw. im Hohlraum 42 des Blaskopfes 4 als Funktion des an der Ventilstation bzw. Gaszuführstation 1 anliegenden Druckes. Auf diese Weise kann der an den Überschalldüsen 40 anliegende Eintrittsdruck p0 deutlich genauer durch die Regelung des an der Ventilstation bzw. Gaszuführstation 1 anliegenden Druckes pVS geregelt werden, so dass die Überschalldüse 40 zuverlässig in ihrem Betriebspunkt betrieben werden kann. Dies hat den grundlegenden Vorteil, dass die Prozessbedingungen hinsichtlich der metallurgischen Abläufe reproduzierbar und stabil sind. Auf diese Weise kann weiterhin auf eine theoretische Abschätzung des Druckverlustes zwischen der Gaszuführstation 1 und dem Blaslanzenkopf 4 verzichtet werden. FIG. 3 shows a corresponding calibration curve of the inlet pressure p 0 (t) = f (p VS (t)), ie the inlet pressure p 0 on Blas lanzenkopf 4, or in the cavity 42 of the blow head 4 as a function of the voltage applied to the valve or gas supply station 1 pressure , In this way, the pressure applied to the supersonic nozzles 40 inlet pressure p 0 can be controlled much more accurately by the control of the voltage applied to the valve station or gas supply station 1 pressure p VS , so that the supersonic nozzle 40 can be reliably operated at its operating point. This has the fundamental advantage that the process conditions with regard to the metallurgical processes are reproducible and stable. In this way, a theoretical estimation of the pressure loss between the gas supply station 1 and the lance head 4 can be dispensed with.

Das gleiche Verfahren kann auch für die Eintrittstemperatur T0 durchgeführt werden, also insbesondere mittels der autarken Messvorrichtung 6 der Temperaturverlauf über die Zeit gemessen werden, und dieser Temperaturverlauf über die Zeit mit einem Temperaturverlauf des an der Gaszuführstation 1 zugeführten Gases in Beziehung gesetzt werden und entsprechend eine Kalibrierkurve bereitgestellt werden. Insbesondere kann auf diese Weise eine Kalibrierkurve für die Eintrittstemperatur T0 als Funktion der an der Gaszuführstation 1 anliegenden Gastemperatur, sowie bevorzugt ebenfalls weiterhin als Funktion des an der Gaszuführstation 1 anliegenden Gasdruckes angegeben werden.The same method can also be carried out for the inlet temperature T 0 , that is to say the temperature profile over time is measured in particular by means of the self-sufficient measuring device 6, and this temperature profile is correlated over time with a temperature profile of the gas supplied to the gas supply station 1 and accordingly a calibration curve can be provided. In particular, a calibration curve for the inlet temperature T 0 as a function of the gas supply station 1 at the gas supply, and preferably also continue to be indicated as a function of the pressure applied to the Gaszuführstation 1 gas pressure.

Entsprechend sind die für die Auslegung der Überschalldüse 40 notwendigen Prozessgrößen p0, T0 über diese Kalibrierkurven zu erhalten.Accordingly, the process variables p 0 , T 0 necessary for the design of the supersonic nozzle 40 can be obtained via these calibration curves.

Mit anderen Worten werden die von der autarken Messvorrichtung 6 gemessenen zeitabhängigen Daten p0(t) in Verbindung mit den ebenfalls gemessenen zeitabhängigen Daten pVS(t) an der Gaszuführstation bzw. Ventilstation 1 gebracht, so dass anhand einer in Figur 3 gezeigten einfachen Kalibrierkurve eine Zuordnung in Form von p0(t)=f(pVS(t)) erfolgen kann.In other words, the time-dependent data p 0 (t) measured by the self-sufficient measuring device 6 are brought to the gas supply station or valve station 1 in conjunction with the likewise measured time-dependent data p VS (t), so that a time-dependent data p 0 (t) is determined FIG. 3 shown simple calibration curve can be made an assignment in the form of p 0 (t) = f (p VS (t)).

Hierbei ist ebenfalls zu beachten, dass die Größe T0 für den eigentlichen Betrieb nicht notwendig ist, sie jedoch als theoretische Auslegungsgröße bei der Düsenauslegung mittels der isentropen Stromfadentheorie benötigt wird.It should also be noted that the size T 0 for the actual operation is not necessary, but it is needed as a theoretical design variable in the nozzle design using the isentropic streamline theory.

Mittels des genannten Verfahrens kann der statische Druck pE im metallurgischen Gefäß 3 nicht ermittelt werden. Für die eigentliche Düsenauslegung spielt aber auch der statische Druck pE nur eine untergeordnete Rolle, da sich dieser Druck im Allgemeinen nur wenig vom Umgebungsdruck von 1,013 bar unterscheidet.By means of said method, the static pressure p E in the metallurgical vessel 3 can not be determined. For the actual nozzle design but also the static pressure p E plays only a minor role, since this pressure differs only slightly from the ambient pressure of 1.013 bar.

Ein System zur Bestimmung der Betriebsparameter einer Überschalldüse 40 in einem Konverter 3 umfasst neben der autarken Messvorrichtung 6 und der Messvorrichtung 7 an der Zuführvorrichtung 1 weiterhin noch eine Auswertungsvorrichtung, mittels welcher die Daten aus der autarken Messvorrichtung 6 ausgelesen und in Beziehung zu den an der Gaszuführstation 1 gemessenen Daten gesetzt werden können. Diese Auswertungsvorrichtung ist typischerweise in Form eines Computers vorgesehen.A system for determining the operating parameters of a supersonic nozzle 40 in a converter 3 comprises, in addition to the self-sufficient measuring device 6 and the measuring device 7 on the feeding device 1, also an evaluation device, by means of which the data is read from the self-sufficient measuring device 6 and in relation to those at the gas supply station 1 measured data can be set. This evaluation device is typically provided in the form of a computer.

Die autarke Messvorrichtung 6, welche im Kopf 4 der Blaslanze 2 eingesetzt werden kann, wird bevorzugt mittels einer rückstandslos entfernbaren Halterung 60 befestigt. Sie nimmt bevorzugt den Druck sowie die Temperatur über die Zeit hinweg auf. Ein solcher Datenlogger besitzt einen Druck- und einen Temperatursensor und wird mit einer internen Batterie mit Energie versorgt. Die zeitabhängigen Prozessgrößen werden dabei mit einer Frequenz zwischen 0,1 Hz und 10 Hz erfasst und entsprechend aufgenommen.The self-sufficient measuring device 6, which can be used in the head 4 of the lance 2, is preferably fixed by means of a residue-free removable holder 60. It preferably absorbs pressure and temperature over time. Such a datalogger has a pressure and a temperature sensor and is powered by an internal battery. The Time-dependent process variables are recorded at a frequency between 0.1 Hz and 10 Hz and recorded accordingly.

Die Halterung 60 für die autarke Messvorrichtung 6 kann beispielsweise ringförmig gefertigt sein, damit sie in einen herkömmlichen Blaslanzenkopf 4 integrierbar ist. Die autarke Messvorrichtung 6 in Form des Datenloggers wird bevorzugt strömungsgünstig gefertigt, so dass der Gasfluss in die Überschalldüsen 40 hinein so wenig wie möglich gestört wird. Der Datenlogger 6 wird entsprechend in einen Blaslanzenkopf 4 eingebaut und am Ende der Batterielebenszeit wieder ausgebaut. Die gemessenen Prozessgrößen werden dann in einer Auswertungsvorrichtung in Form eines PC übertragen.The holder 60 for the self-sufficient measuring device 6 can be made, for example, annular, so that it can be integrated into a conventional Blas lanzenkopf 4. The self-sufficient measuring device 6 in the form of the data logger is preferably made aerodynamically favorable so that the gas flow into the supersonic nozzles 40 is disturbed as little as possible. The data logger 6 is installed in accordance with a Blas lanzenkopf 4 and removed at the end of battery life again. The measured process variables are then transmitted in an evaluation device in the form of a PC.

Zeitgleich zur Messung der Prozessgrößen p0(t) und T0(t) werden der Druck pVS(t) sowie der Volumenstrom (t) an der Gaszuführstation bzw. Ventilstation 1 gemessen. Die Kalibrierkurve wird dann aus den entsprechenden Daten ermittelt und dient im praktischen Betrieb zur Regelung des Gasvolumenstromes bzw. des Gasdruckes am Blaslanzenkopf 4 bzw. vor dem Eintritt des Gases in die jeweiligen Überschalldüsen 40. Mittels der Kalibrierkurve kann gewährleistet werden, dass die Überschalldüsen 40 der Blaslanze stets in ihrem Auslegungspunkt, also ihrem optimalen Betriebspunkt, betrieben werden.At the same time as the measurement of the process variables p 0 (t) and T 0 (t), the pressure p VS (t) and the volume flow (t) at the gas supply station or valve station 1 are measured. The calibration curve is then determined from the corresponding data and is used in practical operation to control the gas volume flow or the gas pressure at Blas lanzenkopf 4 or before the gas enters the respective supersonic nozzles 40. By means of the calibration curve can be ensured that the supersonic nozzles 40 of Blow lance always in their design point, so their optimal operating point to be operated.

Durch das angegebene Verfahren und das System zur Ermittlung der Betriebsparameter einer Überschalldüse 40 in einem metallurgischen Gefäß können entsprechend die Überschalldüsen bei ihren Auslegungsparametern betrieben werden. Der Eintrittsdruck p0, die Eintrittstemperatur T0 direkt an der Überschalldüse können auf diese Weise bestimmt werden. Der statische Gegendruck pE im metallurgischen Gefäß spielt für die korrekte Auslegung nur eine untergeordnete Rolle, da er in der Regel nur mäßig um den Umgebungsdruck herum schwankt, ungefähr 1,01 bar ±0,2 bar.By the specified method and the system for determining the operating parameters of a supersonic nozzle 40 in a metallurgical vessel, the supersonic nozzles can accordingly be operated at their design parameters. The inlet pressure p 0 , the inlet temperature T 0 directly at the supersonic nozzle can be determined in this way. The static back pressure p E in the metallurgical vessel plays only a minor role for the correct design, since it usually fluctuates only moderately around the ambient pressure, approximately 1.01 bar ± 0.2 bar.

Entsprechend kann auch der Druckverlust ΔPVerl zwischen der Gaszuführstation des Gases und dem Eintritt des Gases in den Blaslanzenkopf erstmals korrekt bestimmt werden.Accordingly, the pressure loss ΔP Verl between the Gaszuführstation of the gas and the entry of the gas into the Blas lanzenkopf can be correctly determined for the first time.

Durch die zeitliche Zuordnung des Ventildruckes pVS(t) zum Eintrittsdruck p0(t) in der Überschalldüse lässt sich eine eindeutige Kalibrierkurve der Form p0(t)=f(pVS(t)) ermitteln. Wird diese Kalibrierkurve dann nach dem Ausbau des Datenloggers aus dem jeweiligen Blaslanzenkopf zur Regelung verwendet, dann arbeiten die Überschalldüsen stets im korrekten Prozesszustand, also im Auslegungszustand der jeweiligen Überschalldüsen. Damit ergeben sich stabile Prozessbedingungen für das Blasen des Gases und damit eine deutlich höhere Lebensdauer des Lanzenkopfes, da insbesondere auch die Kühlung der jeweiligen Überschalldüsen gewährleistet sein kann, da ein Strömungsabriss an den jeweiligen Wänden der Überschalldüse nicht stattfindet.Due to the temporal assignment of the valve pressure p VS (t) to the inlet pressure p 0 (t) in the supersonic nozzle, a unique calibration curve of the form p 0 (t) = f (p VS (t)) can be determined. If this calibration curve is then used after the removal of the data logger from the respective Blaslanzenkopf for control, then the supersonic nozzles always work in the correct process state, ie in the design state of the respective supersonic nozzles. This results in stable process conditions for the blowing of the gas and thus a significantly longer life of the lance head, since in particular the cooling of the respective supersonic nozzles can be ensured because a stall does not take place on the respective walls of the supersonic nozzle.

Weiterhin muss die Messung der Prozessgrößen p0 und T0 nur einmal erfolgen und der Datenlogger bzw. die autarke Messvorrichtung kann danach aus dem Blaslanzenkopf ausgebaut werden. Dabei ermöglicht die ringförmige Halterung des Datenloggers eine einfache Montage des Datenloggers in konventionelle Blaslanzenköpfe, ohne dass hierfür irgendeine Modifikation der Blaslanzenköpfe vorgenommen werden müsste. Entsprechend sind auch die Kosten für die Durchführung des Verfahrens gering, die praktische Handhabung im Stahlwerksbetrieb ist entsprechend denkbar einfach.Furthermore, the measurement of the process variables p 0 and T 0 must be done only once and the data logger or the self-sufficient measuring device can then be removed from the Blas lanzenkopf. In this case, the annular support of the datalogger allows easy mounting of the datalogger in conventional lance heads, without requiring any modification of Blas lanzenköpfe would be made. Accordingly, the costs for carrying out the process are low, the practical handling in steelworks operation is correspondingly simple.

Das Verfahren kann auf alle Überschalldüsen für metallurgische Anlagen, beispielsweise BOF, AOD, EAF, SAF etc. übertragen und verwendet werden.The method can be applied to all supersonic nozzles for metallurgical plants, such as BOF, AOD, EAF, SAF, etc. and used.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Ventilstation / GaszuführstationValve station / gas supply station
1010
Rohrleitungpipeline
1212
Schlauchtube
22
Blaslanzelance
33
metallurgisches Gefäßmetallurgical vessel
44
BlaslanzenkopfBlaslanzenkopf
4040
Überschalldüsesupersonic
4242
Hohlraum im BlaslanzenkopfCavity in the lance head
55
Metallschmelzemolten metal
5050
Oszillierende BlasmuldeOscillating Blister
66
autarke Messvorrichtungself-sufficient measuring device
6060
Halterung für autarke MessvorrichtungHolder for self-sufficient measuring device
77
Messvorrichtung an VentilstationMeasuring device at valve station
88th
Regelvorrichtungcontrol device

Claims (12)

  1. Method of operating at least one supersonic nozzle (40) in a metallurgical vessel (3), comprising the steps:
    - inserting an autonomous measuring device (6) into a blowing lance head (4) carrying at least one supersonic nozzle (40);
    - measuring the entry pressure (p0(t)) of a gas into the at least one supersonic nozzle (40) in the blowing lance head by means of the autonomous measuring device (6);
    - simultaneous measuring of the feed pressure (pVS(t)) of the gas at a gas feed station (1) arranged at a spacing from the at least one supersonic nozzle (40);
    - removing the autonomous measuring device (6) from the blowing lance head (4);
    - determining a calibration plot (p0(t) = f(pVS(t))) for the entry pressure (p0) from the measured entry pressure (p0(t)) and the measured feed pressure (pVS(t)); and
    - operating the at least one ultrasonic nozzle (40) in the metallurgical vessel at a predetermined entry pressure (p0) by regulating the feed pressure (pVS) on the basis of the determined calibration plot without the autonomous measuring device.
  2. Method of determining a pressure loss (DpVerl) between a gas feed station (1) and at least one ultrasonic nozzle (40) operated in a metallurgical vessel, comprising the steps:
    - inserting an autonomous measuring device (6) into a blowing lance head (4) carrying at least one supersonic nozzle (40);
    - measuring the entry pressure (p0(t)) of a gas into the at least one supersonic nozzle (40) in the blowing lance head by means of the autonomous measuring device (6);
    - simultaneous measuring of the feed pressure (pVS(t)) of the gas at a gas feed station (1) arranged at a spacing from the at least one supersonic nozzle (40);
    - removing the autonomous measuring device (6) from the blowing lance head (4); and
    - determining the pressure loss (DpVerl) between the gas feed station (1) and the at least one ultrasonic nozzle (40) from the measured pressures without the autonomous measuring device.
  3. Method according to any one of the preceding claims, wherein the measurement of the entry pressure (p0(t)) and the measurement of the feed pressure (pVS(t) is carried over a predetermined time period, preferably over the life of an autonomous measuring device (6) for measuring the entry pressure (p0(t)), and the measurements are evaluated after expiry of the time period.
  4. Method according to any one of the preceding claims, wherein apart from the entry pressure (p0(t)) also the entry temperature (T0(t)) of the gas in the at least one supersonic nozzle (40) is measured.
  5. Method according to any one of the preceding claims, wherein apart from the feed pressure (pVS(t)) also the feed temperature (TVS(t)) of the gas fed to the gas feed station (1) and/or the volume flow (V̇(t)) of the gas fed to the gas feed station (1) is or are measured.
  6. Method according to claim 4 and/or 5, wherein the additionally measured variables (T0(t), TVS(t), (t)) are utilised in the determination of the calibration plot (p0(t) = f(pVS(t))).
  7. Method according to claim 4 and/or 5, wherein the additionally measured variables (T0(t), TVS(t), (t)) are utilised in the determination of a separate calibration plot (T0(t) = f(TVS(t), (t)) for the entry temperature (T0).
  8. Method according to any one of the preceding claims, wherein the measurements of the entry temperature and/or the entry pressure are carried out at a frequency of 0.1 Hz to 10 Hz.
  9. Method according to any one of the preceding claims, wherein the at least one supersonic nozzle (40) is operated at the design point (p0, T0, PE) thereof by regulation of the feed pressure (pVS), the feed temperature (TVS) and/or the volume flow () at the gas feed station (1) on the basis of the determined calibration plot.
  10. System for determining operating parameters of at least one supersonic nozzle (40) arranged in a metallurgical vessel (3), comprising
    - a blowing lance head (4) carrying at least one supersonic nozzle (40);
    - an autonomous measuring device (6) for measuring the entry pressure (p0(t)) into the blowing lance head (4);
    - a measuring device for measuring a pressure at a gas feed station (1), which is spaced from the supersonic nozzle (40), for feeding a gas to the blowing lance head (4);
    - a determining device for determining a calibration plot (p0(t) = f(pVS(t))) for the entry pressure on the basis of the measurements carried out by means of the autonomous measuring device (6) and the measuring device (7) at the gas feed station (1); and
    - a regulating device (8) for regulating the gas feed at the gas feed station (1),
    wherein the autonomous measuring device (6) is a data logger.
  11. System according to claim 10, further comprising a removable mount (60) for mounting the autonomous measuring device (6) in the blowing lance head (4).
  12. System according to one of claims 10 and 11, wherein the autonomous measuring device (6) is also constructed for measuring the entry temperature (T0(t)) and/or the measuring device (7) is also constructed for measuring the feed temperature (TVS(t)) and/or the volume flow ((t)) at the gas feed station (1).
EP12715030.8A 2011-04-06 2012-04-04 Method for operating at least one supersonic nozzle in a metallurgical vessel, method for determining a pressure loss and system for determining operating parameters of at least one supersonic nozzle Active EP2694691B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201110006876 DE102011006876A1 (en) 2011-04-06 2011-04-06 Method for operating at least one supersonic nozzle in a metallurgical vessel, method for determining a pressure loss, and system for determining operating parameters of at least one supersonic nozzle
PCT/EP2012/056150 WO2012136698A1 (en) 2011-04-06 2012-04-04 Method for operating at least one supersonic nozzle in a metallurgical vessel, method for determining a pressure loss and system for determining operating parameters of at least one supersonic nozzle

Publications (2)

Publication Number Publication Date
EP2694691A1 EP2694691A1 (en) 2014-02-12
EP2694691B1 true EP2694691B1 (en) 2015-02-18

Family

ID=45976335

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12715030.8A Active EP2694691B1 (en) 2011-04-06 2012-04-04 Method for operating at least one supersonic nozzle in a metallurgical vessel, method for determining a pressure loss and system for determining operating parameters of at least one supersonic nozzle

Country Status (3)

Country Link
EP (1) EP2694691B1 (en)
DE (1) DE102011006876A1 (en)
WO (1) WO2012136698A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150086363A (en) * 2012-11-21 2015-07-27 프리메탈스 테크놀로지스 오스트리아 게엠베하 Blowing method and device for producing steel using jets of hot air
UA113614C2 (en) 2013-02-14 2017-02-27 METHOD OF OPERATION OF OXYGEN PRODUCTION COMPANY IN METALLURGICAL CAPACITY AND MEASUREMENT SYSTEM FOR DETERMINATION OF USED DURING SIGNIFICANCE
CN110129515A (en) * 2019-07-02 2019-08-16 马鞍山钢铁股份有限公司 A kind of oxygen rifle system stagnation pressure measuring device and method
CN116042953B (en) * 2022-12-05 2023-12-29 北京科技大学 Continuous monitoring and evaluating method for throat structure of supersonic speed spray gun for metallurgy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2928600B2 (en) * 1990-07-06 1999-08-03 日本スピング株式会社 Oxygen blowing apparatus and method
AUPR817201A0 (en) * 2001-10-09 2001-11-01 Technological Resources Pty Limited Supplying solid feed materials for a direct smelting process

Also Published As

Publication number Publication date
EP2694691A1 (en) 2014-02-12
WO2012136698A1 (en) 2012-10-11
DE102011006876A1 (en) 2012-10-11

Similar Documents

Publication Publication Date Title
EP2694691B1 (en) Method for operating at least one supersonic nozzle in a metallurgical vessel, method for determining a pressure loss and system for determining operating parameters of at least one supersonic nozzle
EP2287581B1 (en) Method and device for contactless determination of a temperature T of molten metal
EP2767598B1 (en) Method for operating an oxygen blowing lance in a metallurgical vessel and measuring system for determining measuring signals used for the same
EP2553126B1 (en) Device for injecting gas into a metallurgical vessel
EP1966573B1 (en) Converter with a container for receiving molten metal and with a measurement device for the optical temperature determination of the molten metal, and method for the temperature determination in such a converter
DE2615022C2 (en) Method of coating a surface by means of a jet of heated gas and molten material
DE60226261T2 (en) DEVICE AND METHOD FOR DISCRETING AND CONTINUOUS MEASUREMENT OF THE TEMPERATURE OF MELTED METAL IN AN OVEN OR CONTAINER FOR ITS MANUFACTURE OR TREATMENT
EP2366086A1 (en) Oxygen blowing lance cooled by protective gas
EP2255905A1 (en) Apparatus for conducting operations inside a metallurgical vessel
WO2011095377A1 (en) Device for recording at least one measured value on a furnace, and furnace
WO2008110330A1 (en) Device for thickness measurement and method therefor
KR102315597B1 (en) Manufacturing method of slab and continuous casting equipment
EP2780482B1 (en) Blowing lance for a bof converter
EP2985116B1 (en) Purification device and method of cleaning transport rollers in a roller cooling oven of a facility for producing float glass
US4411534A (en) Method of continuously measuring the temperature of the surface of a continuously cast strand over its length
DE19948187C2 (en) Process for the metallurgical treatment of a molten steel in a converter with oxygen blown onto the molten steel and oxygen blowing lance
DE102009012904A1 (en) Measuring device for tangential measuring of surface temperature of roller, particularly of working roller, has sensor body which is supported at movably supported extension
DE102011075855B4 (en) Device and method for controlling a metallurgical plant
EP0227596B1 (en) Process and device for controlling the cooling rate of a continuous billet
WO2008031745A1 (en) Method and device for producing castings from lightweight metal
EP3597321A1 (en) Copper product and method for descaling a copper output material for producing a copper product
CN111531143A (en) Continuous casting machine system
DE2107789A1 (en) Continuous casting spray nozzle check - carried out in situ by load cells
EP1410010B1 (en) Method and device for controlling the proportion of two-component-media
DD210621A1 (en) RINGDUESE FOR STRIPPING THE COOL WATER FROM THE ROLL

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131106

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140924

INTG Intention to grant announced

Effective date: 20141003

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 710700

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012002295

Country of ref document: DE

Effective date: 20150402

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150218

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SMS GROUP GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150518

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012002295

Country of ref document: DE

Representative=s name: HEMMERICH & KOLLEGEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012002295

Country of ref document: DE

Owner name: SMS GROUP GMBH, DE

Free format text: FORMER OWNER: SMS SIEMAG AG, 40237 DUESSELDORF, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150519

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150618

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012002295

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150404

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20151119

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120404

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150618

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230426

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230420

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230419

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 13