EP2669027A1 - Method and press tool for fabricating a plate heat exchanger - Google Patents

Method and press tool for fabricating a plate heat exchanger Download PDF

Info

Publication number
EP2669027A1
EP2669027A1 EP20120170500 EP12170500A EP2669027A1 EP 2669027 A1 EP2669027 A1 EP 2669027A1 EP 20120170500 EP20120170500 EP 20120170500 EP 12170500 A EP12170500 A EP 12170500A EP 2669027 A1 EP2669027 A1 EP 2669027A1
Authority
EP
European Patent Office
Prior art keywords
plate
plates
flow
cross
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20120170500
Other languages
German (de)
French (fr)
Other versions
EP2669027B8 (en
EP2669027B1 (en
Inventor
Gerd Abker
Alfred Ernst
Bernd Müller
Klaus Mönig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kelvion PHE GmbH
Original Assignee
GEA Ecoflex GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEA Ecoflex GmbH filed Critical GEA Ecoflex GmbH
Priority to EP12170500.8A priority Critical patent/EP2669027B8/en
Priority to US13/726,124 priority patent/US20130319069A1/en
Priority to RU2012155994A priority patent/RU2607130C2/en
Priority to KR1020130057988A priority patent/KR102029096B1/en
Publication of EP2669027A1 publication Critical patent/EP2669027A1/en
Application granted granted Critical
Publication of EP2669027B1 publication Critical patent/EP2669027B1/en
Publication of EP2669027B8 publication Critical patent/EP2669027B8/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D35/00Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/04Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of sheet metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/02Die constructions enabling assembly of the die parts in different ways
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/04Movable or exchangeable mountings for tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples

Definitions

  • the invention relates to a method for producing a plate heat exchanger having flowed through by a first and a second medium flow channels, which are formed for the first medium between each pair of plates connected to individual plates and for the second medium between assembled to a plate stack plate pairs, wherein the individual plates and the plate pairs are connected to one another in each case parallel to the main flow direction extending edges and / or contact surfaces, each single plate in the main flow direction of the first medium corresponding inlet and Abströmquerroughe for the first medium and in the main flow direction of the second medium corresponding inlet and Abströmquerroughe for the second medium ,
  • the plate heat exchangers can be designed as a DC / counter-plate heat exchanger or as a cross-flow heat exchanger.
  • inflow and outflow cross sections of countercurrent plates and crossflow plates are different. This affects both their position on the respective single plate, as well as their size. Since the first and the second medium flow in the same or opposite direction in the case of countercurrent plates, it is necessary for space reasons only to be the inflow or outflow cross section to provide half plate width. For cross-flow plates, however, this problem does not occur because the inflow or outflow cross sections of the two sides of the plate are offset by 90 ° to each other. Thus, there is no transferability of the known from countercurrent plates manufacturing principles on the production of cross-flow plates in this point.
  • the individual plates are each made from a non-pressed plate blank, wherein first a tool with interchangeable press fittings for the production of either cross-flow plates or countercurrent plates is assembled, and then the plate blank by means of the prefabricated tool to form corresponding edges and / or Contact surfaces and inflow and outflow sections is pressed either to a cross-flow plate or a countercurrent plate.
  • Core idea is, for example, for the production of countercurrent plates designed to use the same equipment with the least possible conversion effort for the production of cross-flow plates.
  • the pressing tools used for the production of countercurrent plates are converted by simple and particularly inexpensive modifications so that they are also suitable for the production of cross-flow plates.
  • the basic design of the heat exchanger plates remains unchanged, so that plate blanks can be used for the production of countercurrent plates for the production of cross-flow plates.
  • the tool used can be equipped according to a modular principle with replaceable press fittings, so that only the appropriate press fitting for the production of countercurrent plates or cross-flow plates must be attached to the tool.
  • the invention further provides that the individual plates are cross-flow plates, wherein the cross-current plates are positioned at such a distance from each other that on give substantially equal heat transfer coefficients to both sides of a crossflow plate with respect to the first and second media.
  • Cross-flow plates are less effective in exploitation than counterflow plates, so a special measure must be taken to increase the efficiency of using a cross-flow plate whose plate blank bears the dimensions of a countercurrent plate.
  • the variation of the distance between adjacent cross-flow plates is suitable for setting the heat transfer coefficient on both sides of the plate base substantially equal. This compensates for the disadvantage that the cross-current plates according to the invention can not be produced with any desired width, since they must continue to be able to be integrated into a production plant for the production of countercurrent plates. This lacks a degree of freedom in order to carry out an optimized embodiment of the plate blanks previously used only for the production of countercurrent plates with regard to the use as crossflow plates.
  • the flow cross section is adjusted, which results as a distance between two adjacent individual plates.
  • the plate spacing is reduced, which leads to an increased flow rate as a result.
  • a cross-plate heat exchanger which has differently configured through-flow cross sections with regard to the media carried out.
  • the distance between adjacent individual plates to each other by the length on one or both individual plates arranged knobs is determined.
  • Manufacturing technology is thus a particularly simple way to adjust the plate spacing created.
  • the nubs serve as spacers between two adjacent individual plates, so that the distance can be variably adjusted by simply impressing deeper or less deep nubs.
  • the dimpling depth production technology is to implement in a simple manner, since it is important to use the tool side corresponding Noppenstempel. Furthermore, this is not an additional step to be introduced since the nubs are already applied to the individual plates as flow-distributing devices.
  • the setting of different plate distances on opposite sides of the single plate has the advantage that the flow cross-section for an enriched with foreign or dirt particles heat medium, which may be, for example, flue gas from a waste incineration plant, designed to be correspondingly large which reduces the risk of contamination by adhesion.
  • the lack of freedom in terms of plate width is completely offset by the fact that simplifies the production and beyond there is another advantage given by the free adjustability of the plate distances.
  • the invention further provides that one or more separation embossments are applied to the single plate, which run parallel to the main flow direction of the medium. Due to the diverging flow channels between adjacent cross-flow plates in contrast to countercurrent plates, a division of the plates by separation embossings can be made. This results from the fact that the media in each case over the entire plate width of the cross-flow plate to flow, while the counterflow heat exchanger, the media are each introduced only over a plate half.
  • the formation of Trenn Weggonne is optional. It can also be provided plates without Trenn Weggisme.
  • the separation embossings can also be used to change the flow character of the flow guided by a single plate.
  • the flow can be conditioned so that they are in an unmoved state goes through the plate.
  • a particularly close guidance of the medium between the separation embossments must be realized. If several separation impressions are used in the shortest possible distances, it is therefore possible to successfully maintain an unstirred flow.
  • both a loop-like return operation can be achieved, as well as the maintenance of an unstirred flow.
  • both parameters can be combined with each other to take advantage of both variants and thereby improve the heat transfer performance of the heat exchanger or to equalize the heat transfer coefficients on both sides of the plate.
  • the separation of individual areas of the plate from each other is achieved by a simple impression, which can be achieved particularly easily on the tool side.
  • the tool may have a continuous pressure bar made of metal instead of Noppenstempeln, whereby a tool is provided without much effort, which also forms a corresponding embossing for the Trenn Weggoder next to the Noppenaus ceremonies.
  • the invention further proposes a pressing tool for pressing individual plates for plate heat exchangers, characterized by a plurality of exchangeable press fittings, which comprise both press fittings for the production of cross-flow plates and press fittings for the production of countercurrent plates.
  • a box-like constructed pressing tool which can accommodate different compression fittings, which include both press fittings for the production of cross-flow plates and press fittings for the production of countercurrent plates. Therefore, a slight change in production from the production of countercurrent plates to crossflow plates is possible.
  • the invention proposes a system for the production of single plates for plate heat exchangers with a plurality of plate blanks of predetermined width suitable for the production of both countercurrent plates and crossflow plates, and a press tool with a plurality of replaceable press molds, which both press fittings for the production of countercurrent plates and press fittings for the production of cross flow plates include, before.
  • this system can be in a simple and cost-effective manner from plate blanks, which are actually intended only for the production of countercurrent plates, cross-flow plates for Prepare cross-flow plate heat exchanger.
  • FIG. 1 schematically illustrated embodiment of a plate heat exchanger from counter current plates shows in perspective a plate stack S of a plurality of embossed individual plates 1, which are each connected to a pair of plates P.
  • Each individual plate 1 has a base 11, edges 12, contact surfaces 13 and transverse edges 14a, 14b.
  • the contact surfaces 13 are offset from the edges 12 in height.
  • the offset between the abutment surface 13 and the associated edge 12 is twice as large as the offset between the edges 12 and the bottom 11 of the single plate 1.
  • the bottom 11 is therefore located in the middle in height between the plane of the edges 12 and the plane of the contact surfaces 13.
  • transversely to the edges 12 of the single plate 1 extending transverse edges 14a, 14b are in the embodiment about halfway in the plane of the edges 12 and in the plane of the contact surface 13. Die Fig. 1 indicates that in this case the transverse edges 14a, 14b face each other diagonally.
  • FIG. 1 Two of each in Fig. 1 As a top part illustrated individual plates 1 are shown in the lower illustration in Fig. 1 connected to plate pairs P. In Fig. 1 five complete plate pairs P are shown, wherein on the uppermost plate pair still a single plate 1 is arranged, which is also connected to the spaced top single plate 1 to a pair of plates P.
  • the transverse edges 14a, 14b of the individual plates 1 running in the plane of the abutment surfaces 13 form the inflow cross sections Z2 and the outflow cross sections A2 for the other medium, which flows between the individual plates 1 of each plate pair P either in the same or in the opposite direction to the first medium.
  • the Fig. 1 which shows a countercurrent heat exchanger, can be seen that due to the diagonal arrangement of the inlet and outlet openings, the inflow Z1 or Z 2 for the one medium next to the outflow sections A2 and A1 for the other medium, in each case by half the height of a plate pair P is offset.
  • Fig. 2 shows a single plate 1, the Zuströmquerites Z1 extends over half the width of the single plate 1, from the longitudinal center to the edge 12.
  • the single plate 1 has over its entire width up to the contact surfaces 13 a turbulence generating profiling 31, 32.
  • This profiling 31, 32 consists of a large variety in the single plate 1 embossed knobs 31, 32nd
  • a cross-flow plate heat exchanger which consists of juxtaposed individual plates 1 (cross-flow plates).
  • Each crossflow plate 1 has two corresponding inflow and outflow cross sections Z1, A1 (in FIG Fig. 3 not shown further), as well as two offset by 90 °, corresponding inflow and outflow sections Z2, A2 on the opposite side of the plate single plate 1.
  • the opposite side of the single plate 1 is located in the plane behind the illustrated cross-current plate.
  • nubs 31, 32 are further attached, which serve the distribution of the medium over the entire extent of the single plate 1.
  • there is a separation stamp 2 which divides the plate 1 into two preferably symmetrical halves.
  • the cross-flow plate heat exchanger is designed as a whole so that the first medium in the space between the illustrated plate stack P of individual plates 1 and the example in leaf level front single plate 1 flows, while the second medium flows through the plate 1 shown individually on the front.
  • the first medium flows in the image plane from top to bottom, while the second medium passes through the plate 1 from left to right, there undergoes a 180 ° turn and then the plate 1 again flows through from right to left.
  • the inventive method for producing a plate heat exchanger from individual plates 1 according to the invention is such that, for example, the operator of a production plant for countercurrent plates varies the pressing tool used by him so that the tool is provided with interchangeable, suitable for the production of cross-flow plates press fittings. Then, the plate blanks usually provided for the production of counterflow plates are pressed by means of the varied tool, whereby the inflow and outflow cross sections Z1, Z2, A1, A2 are pressed at the points where they are required for the formation of a cross-flow plate. Furthermore, the single plate 1 is provided by means of a corresponding pressing tool with nubs 31, 32, which are distributed substantially over the entire plate 1.
  • nubs 31, 32 are also dimensioned in their length so that they serve as spacers between two adjacent individual plates 1. Over the length of the nubs 31, 32, the distance is regulated so that a suitable flow cross-section between adjacent individual plates 1 is formed, which is adapted to adjust the heat transfer coefficient of the two heat media on opposite sides of the sheet substantially equal.
  • the tool can be provided with a press molding for forming a separation embossing 2, by means of which can be on the single plate 1, one or more separation embossings 2 press.
  • separation embossings 2 are used to divide the single plate 1 in several parallel to the flow direction of the medium extending segments, which on the one hand prevent a turbulent mixing of the heat medium and thus allow an unstirred flow and / or on the other to create multiple segments on the single plate 1, in which the heat medium can be reciprocated in opposite directions, passing through one or more 180 ° turns.
  • the performance of the plate heat exchanger can be significantly increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

The method involves producing individual plates (1) from a non-pressed plate blank by converting a tool with exchangeable mold elements to a converted tool that produces cross flow plates or countercurrent flow plates. The plate blank is pressed with the converted tool into the cross flow plate or countercurrent flow plate. Corresponding edges (12) and/or contact surfaces (13) and inflow cross-sections (Z1, Z2) and outflow cross-sections (A1, A2) are formed in main flow directions of two respective mediums. Distance between adjacent individual plates is determined. Independent claims are also included for the following: (1) a pressing tool for pressing individual plates for plate heat exchangers (2) a system for manufacturing individual plates for plate heat exchangers.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Plattenwärmetauschers mit von einem ersten und einem zweiten Medium durchströmten Strömungskanälen, die für das erste Medium zwischen jeweils zu einem Plattenpaar verbundenen Einzelplatten und für das zweite Medium zwischen zu einem Plattenstapel zusammengefügten Plattenpaaren gebildet sind, wobei die Einzelplatten und die Plattenpaare an jeweils parallel zur Hauptströmungsrichtung verlaufenden Rändern und/oder Anlageflächen miteinander verbunden sind, wobei jede Einzelplatte in Hauptströmungsrichtung des ersten Mediums korrespondierende Zu- und Abströmquerschnitte für das erste Medium und in Hauptströmungsrichtung des zweiten Mediums korrespondierende Zu- und Abströmquerschnitte für das zweite Medium aufweist.The invention relates to a method for producing a plate heat exchanger having flowed through by a first and a second medium flow channels, which are formed for the first medium between each pair of plates connected to individual plates and for the second medium between assembled to a plate stack plate pairs, wherein the individual plates and the plate pairs are connected to one another in each case parallel to the main flow direction extending edges and / or contact surfaces, each single plate in the main flow direction of the first medium corresponding inlet and Abströmquerschnitte for the first medium and in the main flow direction of the second medium corresponding inlet and Abströmquerschnitte for the second medium ,

Im Stand der Technik sind Verfahren zur Herstellung von Plattenwärmetauschern hinreichend bekannt. Dabei können die Plattenwärmetauscher als Gleich-/Gegenstromplattenwärmetauscher oder als Kreuzstromwärmetauscher ausgebildet sein.In the prior art, processes for the production of plate heat exchangers are well known. The plate heat exchangers can be designed as a DC / counter-plate heat exchanger or as a cross-flow heat exchanger.

Dabei ist es jeweils so, dass mit einer Fertigungsstrecke, welche für die Herstellung von Gegenstromplatten ausgelegt ist, nicht ohne weiteres auch Kreuzstromplatten hergestellt werden können und umgekehrt. Dies liegt an dem unterschiedlichen konstruktiven Aufbau von Gegenstromplatten beziehungsweise Kreuzstromplatten. Insbesondere unterscheiden sich die Position und Größe der Zu- und Abströmquerschnitte, über welche die Medien zwischen die benachbarten Wärmetauscherplatten strömen. Ebenso unterscheiden sich Gegenstromplatten und Kreuzstromplatten auch durch ihre Abmessungen. Die Wärmeübertragungsleistung der Gegenstromplatten wird beispielsweise im Wesentlichen über die Längen der Platten eingestellt. Im Sinne des Begriffes Gegenstromplatten sind hier jeweils sowohl Gegenstromplatten als auch Gleichstromplatten gemeint. Im Gegensatz zu Gegenstromplatten ist bei der Auslegung von Kreuzstromplatten mitzuberücksichtigen, dass das erste Medium über die Länge der Platte strömt, während das zweite Medium über die Breite der Platte strömt. Daher ist es besonders bei der Auslegung von Kreuzstromplatten wichtig, die Breite der Platte auf deren Länge abzustimmen beziehungsweise umgekehrt. Idealerweise nehmen Kreuzstromplatten eine nahezu quadratische Form an.It is in each case the case that with a production line, which is designed for the production of countercurrent plates, cross flow plates can not readily be produced and vice versa. This is due to the different structural design of countercurrent plates or cross-flow plates. In particular, the position and size of the inflow and outflow cross sections over which the media flow between the adjacent heat exchanger plates differ. Likewise, countercurrent plates and cross-flow plates also differ in their dimensions. The heat transfer performance of the countercurrent plates, for example, substantially adjusted over the lengths of the plates. In the sense of the term countercurrent plates, here both countercurrent plates and direct current plates are meant. Unlike countercurrent plates, cross-flow plate design must take into account that the first medium flows along the length of the plate while the second medium flows across the width of the plate. Therefore, it is particularly important in the design of cross-flow plates to tune the width of the plate on the length or vice versa. Ideally, cross-flow plates take on a nearly square shape.

Insgesamt ergeben sich bei der Herstellung von Kreuzstromplatten beziehungsweise Gleichstromplatten widerstreitende Anforderungen, welche auf die notwendigen konstruktiven Besonderheiten der jeweiligen Einzelplatte zurückzuführen sind. Bei Gegenstromplatten ist es aus fertigungstechnischen Gründen insbesondere erwünscht, dass diese eine feste Plattenbreite aufweisen. Dadurch können diese einfach in die Fertigungsabläufe eingebunden werden. Die notwendige Auslegung für eine bestimmte Wärmeübertragungsleistung erfolgt dabei über die Plattenlänge. Mit einer vorgegebenen Breite lassen sich somit je nach den Anforderungen an die Wärmeübertragungsleistung unterschiedlich lange Platten fertigen. Bei Kreuzstromplatten sind hingegen andere Parameter vorrangig. Da die Kreuzstromplatten auf Ihrer Vorder- beziehungsweise Rückseite von den Wärmemedien aus unterschiedlichen Richtungen durchströmt werden, ist es notwendig, die Einzelplatte so zu konfektionieren, dass Maßnahmen ergriffen werden, die den Wärmeübergangskoeffizienten auf beiden Seiten der Plattengrundfläche im wesentlichen angleichen. Im Stand der Technik werden bei Kreuzstromplatten gleiche Wärmeübergangskoeffizienten dadurch sichergestellt, dass Plattenbreite und Plattenlänge aufeinander abgestimmt werden. Dies ist erforderlich, da das eine Medium die Platte entlang der Plattenlänge durchströmt, während das zweite Medium über die Breite der Platte fließt. Diese widerstreitenden Anforderungen sind dafür verantwortlich, dass die Herstellungsparameter und Verfahren zur Herstellung von Gegenstromplatten nicht auf Kreuzstromplatten übertragen werden können und umgekehrt.Overall arise in the production of cross-flow plates or DC plates conflicting requirements, which are due to the necessary structural features of the respective single plate. In countercurrent plates, it is particularly desirable for manufacturing reasons that they have a fixed plate width. As a result, they can be easily integrated into the production processes. The necessary design for a given heat transfer performance takes place over the plate length. With a predetermined width can thus be made of different lengths depending on the requirements of the heat transfer performance. For cross-flow plates, however, other parameters are given priority. Since the crossflow plates on their front and rear sides are flowed through by the heat media from different directions, it is necessary to assemble the single plate so that measures are taken which substantially equalize the heat transfer coefficient on both sides of the plate base. In the prior art cross-flow plates same heat transfer coefficients are ensured by the fact that plate width and plate length are matched. This is necessary because one medium flows through the plate along the length of the plate while the second medium flows across the width of the plate. These conflicting requirements are responsible for the fact that the manufacturing parameters and methods for the production of countercurrent plates can not be transferred to cross-flow plates and vice versa.

Ebenfalls sind auch die Zu- und Abströmquerschnitte bei Gegenstromplatten und Kreuzstromplatten anders ausgebildet. Dies betrifft sowohl deren Position auf der jeweiligen Einzelplatte, als auch ihre Größe. Da bei Gegenstromplatten das erste und das zweite Medium in dieselbe beziehungsweise entgegensetzte Richtung strömen, ist es aus Platzgründen erforderlich als Zu- beziehungsweise Abströmquerschnitt jeweils nur die halbe Plattenbreite vorzusehen. Bei Kreuzstromplatten hingegen tritt dieses Problem nicht auf, da die Zu- beziehungsweise Abströmquerschnitte der beiden Plattenseiten um 90° zueinander versetzt sind. Somit ergibt sich auch in diesem Punkt keine Übertragbarkeit der von Gegenstromplatten bekannten Fertigungsprinzipien auf die Herstellung von Kreuzstromplatten. Weiterhin entsteht ein konstruktiv anderer Aufbau bei Gegenstromplatten beziehungsweise Kreuzstromplatten dadurch, dass durch die unterschiedliche Position der Zu- und Abströmquerschnitte auch die Position der Ränder und Anlageflächen eine unterschiedliche ist. Da bei Kreuzstromplatten jeder der vier Plattenränder entweder auf der Vorder- oder auf der Rückseite der Einzelplatte mit Zubeziehungsweise Abströmquerschnitten versehen wird, kann auch das Prinzip der Verbindung von zwei Einzelplatten zu einem Plattenpaar beziehungsweise der Verbindung von mehreren Plattenpaaren zu einem Plattenstapel nicht von der Gegenstromplatte auf die Kreuzstromplatte übertragen werden.Likewise, the inflow and outflow cross sections of countercurrent plates and crossflow plates are different. This affects both their position on the respective single plate, as well as their size. Since the first and the second medium flow in the same or opposite direction in the case of countercurrent plates, it is necessary for space reasons only to be the inflow or outflow cross section to provide half plate width. For cross-flow plates, however, this problem does not occur because the inflow or outflow cross sections of the two sides of the plate are offset by 90 ° to each other. Thus, there is no transferability of the known from countercurrent plates manufacturing principles on the production of cross-flow plates in this point. Furthermore, a structurally different structure arises in countercurrent plates or cross-flow plates in that the position of the edges and contact surfaces is a different due to the different position of the inflow and outflow. Since in cross-flow plates each of the four plate edges is provided either on the front or on the back of the single plate with Zubeurchungsweise Abströmquerschnitten, also the principle of the connection of two single plates to a pair of plates or the connection of several pairs of plates to a plate stack not from the counterflow plate on the cross-flow plate are transferred.

Insgesamt ergeben sich durch all diese konstruktiven Unterschiede sowohl unterschiedliche Dimensionen der Einzelplatten sowie andere Positionen und Dimensionen der Zu- /Abströmquerschnitten als auch in jedem Einzelfall eine völlig unterschiedliche Auslegung für die Erreichung eines gewünschten Wärmeübergangskoeffizienten beziehungsweise eines auf beiden Seiten der Plattengrundfläche gleichen Wärmeübergangskoeffizienten.Overall, all these different constructive differences, both different dimensions of the individual plates and other positions and dimensions of inflow / outflow and in each case a completely different interpretation for the achievement of a desired heat transfer coefficient or on both sides of the plate base same heat transfer coefficient.

Daher ist es Aufgabe der vorliegenden Erfindung, ein Verfahren zur Herstellung eines Plattenwärmetauschers zu schaffen, welches sowohl die Herstellung von Gegenstromplattenwärmetauschern als auch von Kreuzstromplattenwärmetauschern ermöglicht.Therefore, it is an object of the present invention to provide a method of producing a plate heat exchanger which enables both the production of countercurrent plate heat exchangers and cross-flow plate heat exchangers.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Einzelplatten jeweils aus einem ungepressten Plattenrohling hergestellt werden, wobei zuerst ein Werkzeug mit austauschbaren Pressformstücken zur Herstellung von entweder Kreuzstromplatten oder Gegenstromplatten konfektioniert wird, und anschließend der Plattenrohling mittels des konfektionierten Werkzeugs unter Ausbildung entsprechender Ränder und/oder Anlageflächen sowie Zu- und Abströmquerschnitten entweder zu einer Kreuzstromplatte oder einer Gegenstromplatte gepresst wird.This object is achieved in that the individual plates are each made from a non-pressed plate blank, wherein first a tool with interchangeable press fittings for the production of either cross-flow plates or countercurrent plates is assembled, and then the plate blank by means of the prefabricated tool to form corresponding edges and / or Contact surfaces and inflow and outflow sections is pressed either to a cross-flow plate or a countercurrent plate.

Kerngedanke ist dabei, die beispielsweise für die Herstellung von Gegenstromplatten ausgelegten Fertigungsanlagen ebenso mit möglichst geringem Umbauaufwand zur Herstellung von Kreuzstromplatten nutzen zu können. Insbesondere werden die zur Herstellung von Gegenstromplatten verwendeten Presswerkzeuge durch einfache und insbesondere preisgünstige Modifikationen so umgerüstet, dass diese auch zur Herstellung von Kreuzstromplatten geeignet sind. Die grundsätzliche Ausgestaltung der Wärmetauscherplatten bleibt dabei unverändert, so dass zur Herstellung von Kreuzstromplatten auch Plattenrohlinge zur Herstellung von Gegenstromplatten verwendet werden können. Das verwendete Werkzeug ist dabei nach einem Baukastenprinzip mit austauschbaren Pressformstücken ausrüstbar, so dass lediglich das geeignete Pressformstück zur Herstellung von Gegenstromplatten oder Kreuzstromplatten auf das Werkzeug aufgesteckt werden muss. Das verwendete Pressformstück dient zur Pressung der Plattenrohlinge an den Rändern und Anlageflächen beziehungsweise den Zu- und Abströmquerschnitten. Sofern in derselben Fertigungsanlage nach der Herstellung von Gegenstromplatten nun auf Kreuzstromplatten gewechselt werden soll, wird lediglich das für Kreuzstromplatten geeignete Pressformstück auf das Werkzeug aufgesetzt, welches die Zu- und Abströmquerschnitte an der für Kreuzstromplatten geeigneten Position ausbildet. Die Plattenrohlinge bleiben darüber hinaus die gleichen, egal ob Wärmetauscherplatten für Kreuzstromplattenwärmetauscher oder Gegenstromplattenwärmetauscher hergestellt werden sollen. Das bedeutet insbesondere auch, dass die Dimensionen der Plattenrohlinge gleichbleiben können. Andernfalls ergäbe sich das Problem, dass die für Kreuzstromplatten verwendeten Plattenrohlinge nicht in eine Fertigungsanlage für Gegenstromplatten integrierbar wären. Die weiteren Merkmale der Wärmetauscherplatten sind unabhängig davon, ob die Platte später als Kreuzstromplatte oder Gegenstromplatte verwendet werden soll. Dies betrifft insbesondere eine eingebrachte Noppenstruktur, wechselseitige Plattenabstützungen für die Abstützung der nebeneinander angeordneten Wärmetauscherplatten oder die Plattendicke.Core idea is, for example, for the production of countercurrent plates designed to use the same equipment with the least possible conversion effort for the production of cross-flow plates. In particular, the pressing tools used for the production of countercurrent plates are converted by simple and particularly inexpensive modifications so that they are also suitable for the production of cross-flow plates. The basic design of the heat exchanger plates remains unchanged, so that plate blanks can be used for the production of countercurrent plates for the production of cross-flow plates. The tool used can be equipped according to a modular principle with replaceable press fittings, so that only the appropriate press fitting for the production of countercurrent plates or cross-flow plates must be attached to the tool. The press fitting used for pressing the plate blanks at the edges and contact surfaces or the inflow and outflow cross sections. If now in the same production plant after the production of countercurrent plates is to be changed to cross-flow plates, only suitable for cross-flow plates press fitting is placed on the tool, which forms the inflow and outflow at the suitable position for cross-flow plates position. Moreover, the plate blanks remain the same regardless of whether heat exchanger plates for cross-flow plate heat exchangers or countercurrent plate heat exchangers are to be produced. This means in particular that the dimensions of the plate blanks can remain the same. Otherwise, there would be the problem that the plate blanks used for crossflow plates would not be integrable into a countercurrent plate making machine. The other features of the heat exchanger plates are independent of whether the plate is to be used later as cross-flow plate or countercurrent plate. This concerns in particular an introduced nub structure, mutual plate supports for the support of the juxtaposed heat exchanger plates or the plate thickness.

Insgesamt ergibt sich damit durch die Erfindung ein vereinfachtes Verfahren zur Herstellung von sowohl Kreuzstromplattenwärmetauschern als auch Gegenstromplattenwärmetauschern, welches nicht zwei separate Fertigungsanlagen für Kreuzstromplatten beziehungsweise Gegenstromplatten erfordert, sondern eine einzige Fertigungsanlage zur Herstellung beider Arten verwendet.Overall, this results in a simplified process for the production of both cross-flow plate heat exchangers and counterflow plate heat exchangers, which does not require two separate production plants for cross-flow plates or counter current plates, but uses a single production plant for producing both types.

Die Erfindung sieht weiterhin vor, dass die Einzelplatten Kreuzstromplatten sind, wobei die Kreuzstromplatten in solchem Abstand zueinander positioniert werden, dass sich auf beiden Seiten einer Kreuzstromplatte im Wesentlichen gleiche Wärmeübergangskoeffizienten in Bezug auf das erste und das zweite Medium ergeben.The invention further provides that the individual plates are cross-flow plates, wherein the cross-current plates are positioned at such a distance from each other that on give substantially equal heat transfer coefficients to both sides of a crossflow plate with respect to the first and second media.

Kreuzstromplatten sind weniger effektiv in der Ausbeutung als Gegenstromplatten, daher muss für den Einsatz einer Kreuzstromplatte, deren Plattenrohling die Dimensionen einer Gegenstromplatte trägt, eine besondere Maßnahme ergriffen werden, um die Effizienz zu erhöhen. Die Variation des Abstandes zwischen benachbarten Kreuzstromplatten ist dabei geeignet, den Wärmeübergangskoeffizienten auf beiden Seiten der Plattengrundfläche im Wesentlichen gleich einzustellen. Dadurch wird der Nachteil ausgeglichen, dass sich die Kreuzstromplatten gemäß der Erfindung nicht mit beliebiger Breite herstellen lassen, da diese weiterhin in eine Fertigungsanlage zur Herstellung von Gegenstromplatten integrierbar sein müssen. Damit fehlt ein Freiheitsgrad, um eine optimierte Ausgestaltung der bislang nur zur Herstellung von Gegenstromplatten genutzten Plattenrohlinge hinsichtlich der Verwendung als Kreuzstromplatten vorzunehmen. Um diesen Nachteil zu kompensieren, wird der Strömungsquerschnitt angepasst, der sich als Abstand zwischen zwei benachbarten Einzelplatten ergibt. Dabei wird der Plattenabstand verringert, was im Ergebnis zu einer erhöhten Durchflussgeschwindigkeit führt. Auf diese Weise entsteht ein Kreuzplattenwärmetauscher, der hinsichtlich der durchgeführten Medien unterschiedlich ausgestaltete Durchströmungsquerschnitte aufweist.Cross-flow plates are less effective in exploitation than counterflow plates, so a special measure must be taken to increase the efficiency of using a cross-flow plate whose plate blank bears the dimensions of a countercurrent plate. The variation of the distance between adjacent cross-flow plates is suitable for setting the heat transfer coefficient on both sides of the plate base substantially equal. This compensates for the disadvantage that the cross-current plates according to the invention can not be produced with any desired width, since they must continue to be able to be integrated into a production plant for the production of countercurrent plates. This lacks a degree of freedom in order to carry out an optimized embodiment of the plate blanks previously used only for the production of countercurrent plates with regard to the use as crossflow plates. To compensate for this disadvantage, the flow cross section is adjusted, which results as a distance between two adjacent individual plates. In this case, the plate spacing is reduced, which leads to an increased flow rate as a result. In this way, a cross-plate heat exchanger, which has differently configured through-flow cross sections with regard to the media carried out.

Dabei empfiehlt es sich insbesondere, dass der Abstand benachbarter Einzelplatten zueinander durch die Länge auf einer oder beiden Einzelplatten angeordneter Noppen bestimmt wird. Fertigungstechnisch wird damit eine besonders einfache Weise zur Einstellung der Plattenabstände geschaffen. Die Noppen dienen dabei als Abstandshalter zwischen zwei benachbarten Einzelplatten, so dass durch einfache Einprägung tieferer beziehungsweise weniger tiefer Noppen der Abstand variabel einstellbar ist. Dabei ist die Noppentiefe fertigungstechnisch in einfacher Weise umzusetzen, da es nur darauf ankommt, werkzeugseitig entsprechende Noppenstempel einzusetzen. Weiterhin handelt es sich dabei nicht um einen zusätzlich einzuführenden Arbeitsschritt, da die Noppen ohnehin als strömungsverteilende Einrichtungen auf die Einzelplatten aufgebracht werden.It is particularly recommended that the distance between adjacent individual plates to each other by the length on one or both individual plates arranged knobs is determined. Manufacturing technology is thus a particularly simple way to adjust the plate spacing created. The nubs serve as spacers between two adjacent individual plates, so that the distance can be variably adjusted by simply impressing deeper or less deep nubs. In this case, the dimpling depth production technology is to implement in a simple manner, since it is important to use the tool side corresponding Noppenstempel. Furthermore, this is not an additional step to be introduced since the nubs are already applied to the individual plates as flow-distributing devices.

Weiterhin hat die Einstellung unterschiedlicher Plattenabstände auf gegenüberliegenden Seiten der Einzelplatte den Vorteil, dass der Durchströmungsquerschnitt für ein mit Fremd- oder Schmutzpartikeln angereichertes Wärmemedium, welches beispielsweise Rauchgas aus einer Müllverbrennungsanlage sein kann, entsprechend groß ausgebildet werden kann, womit die Gefahr von Verschmutzungen durch Anhaftung reduziert wird. Insofern wird der mangelnde Grad an Freiheit bezüglich der Plattenbreite vollständig dadurch ausgeglichen, dass sich die Produktion vereinfacht und sich darüber hinaus ein weiterer durch die freie Einstellbarkeit der Plattenabstände gegebener Vorteil ergibt.Furthermore, the setting of different plate distances on opposite sides of the single plate has the advantage that the flow cross-section for an enriched with foreign or dirt particles heat medium, which may be, for example, flue gas from a waste incineration plant, designed to be correspondingly large which reduces the risk of contamination by adhesion. In this respect, the lack of freedom in terms of plate width is completely offset by the fact that simplifies the production and beyond there is another advantage given by the free adjustability of the plate distances.

Die Erfindung sieht weiterhin vor, dass auf die Einzelplatte eine oder mehrere Trennprägungen aufgebracht werden, welche parallel zur Hauptströmungsrichtung des Mediums verlaufen. Aufgrund der abweichend verlaufenden Strömungskanäle zwischen benachbarten Kreuzstromplatten im Unterschied zu Gegenstromplatten kann eine Unterteilung der Platten durch Trennprägungen vorgenommen werden. Dies ergibt sich daraus, dass die Medien jeweils über die gesamte Plattenbreite der Kreuzstromplatte einströmen, während beim Gegenstromwärmetauscher die Medien jeweils nur über eine Plattenhälfte eingeführt werden. Die Ausbildung von Trennprägungen ist optional. Es können auch Platten ohne Trennprägungen vorgesehen sein.The invention further provides that one or more separation embossments are applied to the single plate, which run parallel to the main flow direction of the medium. Due to the diverging flow channels between adjacent cross-flow plates in contrast to countercurrent plates, a division of the plates by separation embossings can be made. This results from the fact that the media in each case over the entire plate width of the cross-flow plate to flow, while the counterflow heat exchanger, the media are each introduced only over a plate half. The formation of Trennprägungen is optional. It can also be provided plates without Trennprägungen.

Die Unterteilung durch Trennprägungen kann indes aus zweierlei Gründen erfolgen:

  • Zum einen kann durch die Unterteilung der Einzelplatte mittels einer oder mehreren Trennprägungen ein schlaufenartiger Rückführbetrieb vorgesehen sein, bei welchem das einströmende Medium die Wärmetauscherplatte lediglich auf einer Seite der Trennprägung überströmt, dann bei Erreichen des gegenüberliegenden Plattenrandes einen Richtungswechsel um 180° erfährt und sodann die Plattenbreite ein weiteres Mal, diesmal auf der anderen Seite der Trennprägung durchläuft, so dass dieses in Gegenrichtung strömt. Bei einer einzigen Trennprägung pro Plattenseite wird damit ein zweimaliges Durchströmen der Platte durch das Medium erreicht. Ebenso können jedoch auch mehrere Trennprägungen auf einer Plattenseite vorgesehen sein, so dass das Medium die Plattenbreite mehrfach durchläuft. Dadurch ergibt sich ein mäanderförmiger Durchfluss des Mediums innerhalb der Einzelplatte. Über die Anzahl der eingesetzten Trennprägungen kann somit nicht zuletzt der Wärmeübertragungskoeffizient für eine Einzelplatte eingestellt werden.
The division by separation embossing, however, can be done for two reasons:
  • On the one hand can be provided by the subdivision of the single plate by means of one or more Trennprägungen a loop-like return operation in which the inflowing medium flows over the heat exchanger plate only on one side of the separation, then on reaching the opposite edge of the plate undergoes a change of direction by 180 ° and then the plate width once again, this time on the other side of the segregation passes through, so that it flows in the opposite direction. With a single separation embossing per plate side so that a two-time flow through the plate is achieved by the medium. Likewise, however, a plurality of separation embossings may also be provided on one side of the plate, so that the medium passes through the plate width several times. This results in a meandering flow of the medium within the single plate. On the number of used Trennprägungen thus not least the heat transfer coefficient can be set for a single plate.

Zum anderen können die Trennprägungen jedoch auch eingesetzt werden, um den Strömungscharakter der durch eine Einzelplatte geführten Strömung zu verändern. Je nachdem, wie viele Trennprägungen und in welchem Abstand zueinander diese eingesetzt werden, kann die Strömung so konditioniert werden, dass diese in ungerührtem Zustand die Platte durchläuft. Um dies zu erreichen, muss eine besonders enge Führung des Mediums zwischen den Trennprägungen verwirklicht sein. Sofern mehrere Trennprägungen in möglichst geringen Abständen verwendet werden, lässt sich daher erfolgreich eine ungerührte Strömung beibehalten.On the other hand, however, the separation embossings can also be used to change the flow character of the flow guided by a single plate. Depending on how many separation impressions and at which distance from each other they are used, the flow can be conditioned so that they are in an unmoved state goes through the plate. In order to achieve this, a particularly close guidance of the medium between the separation embossments must be realized. If several separation impressions are used in the shortest possible distances, it is therefore possible to successfully maintain an unstirred flow.

Bei der Ausbildung der Trennprägungen ist es weiterhin möglich, dass sowohl ein schlaufenartiger Rückführbetrieb erreicht werden kann, als auch gleichzeitig die Beibehaltung einer ungerührten Strömung. Somit können beide Parameter miteinander kombiniert werden, um die Vorteile beider Varianten zu nutzen und dadurch die Wärmeübertragungsleistung des Wärmetauschers zu verbessern beziehungsweise die Wärmeübergangskoeffizienten auf beiden Seiten der Platte anzugleichen. In beiden Fällen wird die Separierung einzelner Bereiche der Platte voneinander durch eine einfache Einprägung erreicht, was werkzeugseitig besonders einfach erzielt werden kann. So kann das Werkzeug anstelle von Noppenstempeln eine durchgehende Pressleiste aus Metall aufweisen, wodurch ohne hohen Aufwand ein Werkzeug bereitgestellt wird, das neben der Noppenausprägung auch eine entsprechende Prägung für die Trennprägungen ausbildet.In the formation of the separation embossings, it is also possible that both a loop-like return operation can be achieved, as well as the maintenance of an unstirred flow. Thus, both parameters can be combined with each other to take advantage of both variants and thereby improve the heat transfer performance of the heat exchanger or to equalize the heat transfer coefficients on both sides of the plate. In both cases, the separation of individual areas of the plate from each other is achieved by a simple impression, which can be achieved particularly easily on the tool side. Thus, the tool may have a continuous pressure bar made of metal instead of Noppenstempeln, whereby a tool is provided without much effort, which also forms a corresponding embossing for the Trennprägungen next to the Noppenausprägung.

Mit der Erfindung wird weiterhin ein Presswerkzeug zum Pressen von Einzelplatten für Plattenwärmetauscher vorgeschlagen, gekennzeichnet durch mehrere austauschbare Pressformstücke, welche sowohl Pressformstücke zur Herstellung von Kreuzstromplatten als auch Pressformstücke zur Herstellung von Gegenstromplatten umfassen. Somit ergibt sich ein baukastenartig aufgebautes Presswerkzeug, welches unterschiedliche Pressformstücke aufnehmen kann, unter denen sich sowohl Pressformstücke zur Herstellung von Kreuzstromplatten als auch Pressformstücke zur Herstellung von Gegenstromplatten befinden. Daher ist ein leichter Wechsel der Produktion von der Herstellung von Gegenstromplatten auf Kreuzstromplatten möglich.The invention further proposes a pressing tool for pressing individual plates for plate heat exchangers, characterized by a plurality of exchangeable press fittings, which comprise both press fittings for the production of cross-flow plates and press fittings for the production of countercurrent plates. This results in a box-like constructed pressing tool, which can accommodate different compression fittings, which include both press fittings for the production of cross-flow plates and press fittings for the production of countercurrent plates. Therefore, a slight change in production from the production of countercurrent plates to crossflow plates is possible.

Weiterhin schlägt die Erfindung ein System zur Herstellung von Einzelplatten für Plattenwärmetauscher mit mehreren zur Herstellung von sowohl Gegenstromplatten als auch Kreuzstromplatten geeigneten Plattenrohlingen vorgegebener Breite, und mit einem Presswerkzeug mit mehreren austauschbaren Pressformstücken, welche sowohl Pressformstücke zur Herstellung von Gegenstromplatten als auch Pressformstücke zur Herstellung von Kreuzstromplatten umfassen, vor. Mit diesem System lassen sich auf einfache und kostengünstige Art und Weise aus Plattenrohlingen, welche eigentlich nur für die Herstellung von Gegenstromplatten gedacht sind, Kreuzstromplatten für Kreuzstromplattenwärmetauscher herstellen.Furthermore, the invention proposes a system for the production of single plates for plate heat exchangers with a plurality of plate blanks of predetermined width suitable for the production of both countercurrent plates and crossflow plates, and a press tool with a plurality of replaceable press molds, which both press fittings for the production of countercurrent plates and press fittings for the production of cross flow plates include, before. With this system can be in a simple and cost-effective manner from plate blanks, which are actually intended only for the production of countercurrent plates, cross-flow plates for Prepare cross-flow plate heat exchanger.

Weitere Vorteile der Erfindung werden im Folgenden anhand der Figuren näher erläutert. Es zeigen:

Fig. 1
eine perspektivische Ansicht eines aus mehreren Einzelplatten gebildeten Plattenstapels;
Fig. 2
eine Draufsicht auf eine erfindungsgemäße Einzelplatte;
Fig. 3
eine schematische Ansicht eines Plattenwärmetauschers mit Kreuzstromplatten.
Further advantages of the invention will be explained in more detail below with reference to FIGS. Show it:
Fig. 1
a perspective view of a plate stack formed of a plurality of individual plates;
Fig. 2
a plan view of a single plate according to the invention;
Fig. 3
a schematic view of a plate heat exchanger with cross-flow plates.

Das in Fig. 1 schematisch dargestellte Ausführungsbeispiel eines Plattenwärmetauschers aus Gegenstromplatten zeigt perspektivisch einen Plattenstapel S aus einer Mehrzahl geprägter Einzelplatten 1, die jeweils miteinander zu einem Plattenpaar P verbunden sind. Jede Einzelplatte 1 verfügt über eine Boden 11, Ränder 12, Anlageflächen 13 und Querränder 14a, 14b. Die Anlageflächen 13 sind gegenüber den Rändern 12 in der Höhe versetzt. Der Versatz zwischen der Anlagefläche 13 und dem zugehörigen Rand 12 ist doppelt so groß wie der Versatz zwischen den Rändern 12 und dem Boden 11 der Einzelplatte 1. Der Boden 11 liegt demzufolge höhenmäßig in der Mitte zwischen der Ebene der Ränder 12 und der Ebene der Anlageflächen 13. Die quer zu den Rändern 12 der Einzelplatte 1 verlaufenden Querränder 14a, 14b liegen beim Ausführungsbeispiel etwa zur Hälfte in der Ebene der Ränder 12 beziehungsweise in der Ebene der Anlagefläche 13. Die Fig. 1 lässt erkennen, dass hierbei die Querränder 14a, 14b einander diagonal gegenüberliegen.This in Fig. 1 schematically illustrated embodiment of a plate heat exchanger from counter current plates shows in perspective a plate stack S of a plurality of embossed individual plates 1, which are each connected to a pair of plates P. Each individual plate 1 has a base 11, edges 12, contact surfaces 13 and transverse edges 14a, 14b. The contact surfaces 13 are offset from the edges 12 in height. The offset between the abutment surface 13 and the associated edge 12 is twice as large as the offset between the edges 12 and the bottom 11 of the single plate 1. The bottom 11 is therefore located in the middle in height between the plane of the edges 12 and the plane of the contact surfaces 13. The transversely to the edges 12 of the single plate 1 extending transverse edges 14a, 14b are in the embodiment about halfway in the plane of the edges 12 and in the plane of the contact surface 13. Die Fig. 1 indicates that in this case the transverse edges 14a, 14b face each other diagonally.

Jeweils zwei der in Fig. 1 als oberstes Teil dargestellten Einzelplatten 1 werden gemäß der unteren Darstellung in Fig. 1 zu Plattenpaaren P verbunden. In Fig. 1 sind fünf komplette Plattenpaare P dargestellt, wobei auf dem obersten Plattenpaar noch eine Einzelplatte 1 angeordnet ist, die mit der im Abstand dargestellten obersten Einzelplatte 1 ebenfalls zu einem Plattenpaar P verbunden wird.Two of each in Fig. 1 As a top part illustrated individual plates 1 are shown in the lower illustration in Fig. 1 connected to plate pairs P. In Fig. 1 five complete plate pairs P are shown, wherein on the uppermost plate pair still a single plate 1 is arranged, which is also connected to the spaced top single plate 1 to a pair of plates P.

Durch das Verbinden der Plattenpaare P im Bereich der Anlageflächen 13 zum Plattenstapel S ergeben sich übereinander liegende Kanäle für die beiden am Wärmeaustausch teilnehmenden Medien. Während das eine Medium in den Strömungskanälen strömt, die jeweils durch die Plattenpaare P gebildet werden, strömt das andere Medium in den Strömungskanälen, die sich durch das Zusammenfügen der Plattenpaare P zum Plattenstapel S ergeben. Die in der Ebene der Ränder 12 liegenden Querränder 14a, 14b der Einzelplatten 1 bilden hierbei den Zuströmquerschnitt Z1 beziehungsweise den Abströmquerschnitt A1 der Strömungskanäle für das zwischen den Plattenpaaren P strömende Medium. Die in der Ebene der Anlageflächen 13 verlaufenden Querränder 14a, 14b der Einzelplatten 1 bilden die Zuströmquerschnitte Z2 beziehungsweise die Abströmquerschnitte A2 für das andere Medium, das zwischen den Einzelplatten 1 jedes Plattenpaares P entweder in derselben oder in Gegenrichtung zum ersten Medium strömt. Die Fig. 1, die einen Gegenstromwärmetauscher zeigt, lässt erkennen, dass aufgrund der diagonalen Anordnung der Eintritts- und Austrittsöffnungen die Zuströmquerschnitte Z1 beziehungsweise Z 2 für das eine Medium neben den Abströmquerschnitten A2 beziehungsweise A1 für das andere Medium liegen, und zwar jeweils um eine halbe Höhe eines Plattenpaares P versetzt.By connecting the pairs of plates P in the region of the contact surfaces 13 to the plate stack S arise superimposed channels for the two am Heat exchange participating media. While one medium flows in the flow channels formed respectively by the plate pairs P, the other medium flows in the flow channels resulting from the joining of the plate pairs P to the plate stack S. The lying in the plane of the edges 12 transverse edges 14a, 14b of the individual plates 1 in this case form the inflow Z1 and Abströmquerschnitt the A1 flow channels for the flowing between the plate pairs P medium. The transverse edges 14a, 14b of the individual plates 1 running in the plane of the abutment surfaces 13 form the inflow cross sections Z2 and the outflow cross sections A2 for the other medium, which flows between the individual plates 1 of each plate pair P either in the same or in the opposite direction to the first medium. The Fig. 1 , which shows a countercurrent heat exchanger, can be seen that due to the diagonal arrangement of the inlet and outlet openings, the inflow Z1 or Z 2 for the one medium next to the outflow sections A2 and A1 for the other medium, in each case by half the height of a plate pair P is offset.

Fig. 2 zeigt eine Einzelplatte 1, deren Zuströmquerschnitt Z1 sich über die halbe Breite der Einzelplatte 1, von der Längsmitte bis zum Rand 12 erstreckt. Die Einzelplatte 1 weist über Ihre gesamte Breite bis zu den Anlageflächen 13 eine Turbulenzen erzeugende Profilierung 31, 32 auf. Diese Profilierung 31, 32 besteht aus einer großen Vielzahl in die Einzelplatte 1 eingeprägter Noppen 31, 32. Fig. 2 shows a single plate 1, the Zuströmquerschnitt Z1 extends over half the width of the single plate 1, from the longitudinal center to the edge 12. The single plate 1 has over its entire width up to the contact surfaces 13 a turbulence generating profiling 31, 32. This profiling 31, 32 consists of a large variety in the single plate 1 embossed knobs 31, 32nd

In Fig. 3 ist ein Kreuzstromplattenwärmetauscher dargestellt, welcher aus nebeneinander angeordneten Einzelplatten 1 (Kreuzstromplatten) besteht. Jede Kreuzstromplatte 1 verfügt über zwei korrespondierende Zu- und Abströmquerschnitte Z1, A1 (in Fig. 3 nicht weiter dargestellt), sowie zwei dazu um 90° versetzt angeordnete, korrespondierende Zu-und Abströmquerschnitte Z2, A2 an der gegenüberliegenden Plattenseite der Einzelplatte 1. Die gegenüberliegende Seite der Einzelplatte 1 befindet sich dabei in der Zeichenebene hinter der dargestellten Kreuzstromplatte. Auf der Einzelplatte 1 sind weiterhin Noppen 31, 32 angebracht, welche der Verteilung des Mediums über die gesamte Erstreckung der Einzelplatte 1 dienen. Auf der in Bildebene zu vorderst dargestellten Einzelplatte 1 befindet sich darüber hinaus eine Trennprägung 2, welche die Platte 1 in zwei vorzugsweise symmetrische Hälften teilt. Der Kreuzstromplattenwärmetauscher ist dabei insgesamt so ausgebildet, dass das erste Medium in den Zwischenraum zwischen dem dargestellten Plattenstapel P aus Einzelplatten 1 und der exemplarisch in Blattebene nach vorne gestellten Einzelplatte 1 einströmt, während das zweite Medium die einzeln dargestellte Platte 1 auf der Vorderseite durchströmt. Dabei fließt das erste Medium in Bildebene von oben nach unten, während das zweite Medium die Platte 1 von links nach rechts durchläuft, dort eine 180°-Wendung erfährt und anschließend die Platte 1 noch einmal von rechts nach links durchströmt.In Fig. 3 a cross-flow plate heat exchanger is shown, which consists of juxtaposed individual plates 1 (cross-flow plates). Each crossflow plate 1 has two corresponding inflow and outflow cross sections Z1, A1 (in FIG Fig. 3 not shown further), as well as two offset by 90 °, corresponding inflow and outflow sections Z2, A2 on the opposite side of the plate single plate 1. The opposite side of the single plate 1 is located in the plane behind the illustrated cross-current plate. On the single plate 1 nubs 31, 32 are further attached, which serve the distribution of the medium over the entire extent of the single plate 1. In addition, on the single plate 1 shown in the image plane foremost, there is a separation stamp 2 which divides the plate 1 into two preferably symmetrical halves. The cross-flow plate heat exchanger is designed as a whole so that the first medium in the space between the illustrated plate stack P of individual plates 1 and the example in leaf level front single plate 1 flows, while the second medium flows through the plate 1 shown individually on the front. In this case, the first medium flows in the image plane from top to bottom, while the second medium passes through the plate 1 from left to right, there undergoes a 180 ° turn and then the plate 1 again flows through from right to left.

Das erfindungsgemäße Verfahren zur Herstellung eines Plattenwärmetauschers aus Einzelplatten 1 gemäß der Erfindung erfolgt so, dass beispielsweise der Betreiber einer Fertigungsanlage für Gegenstromplatten das von ihm eingesetzte Presswerkzeug so variiert, dass das Werkzeug mit austauschbaren, zur Herstellung von Kreuzstromplatten geeigneten Pressformstücken versehen ist. Sodann werden die üblicherweise zur Herstellung von Gegenstromplatten vorgesehenen Plattenrohlinge mittels des variierten Werkzeuges gepresst, wodurch die Zu- und Abströmquerschnitte Z1, Z2, A1, A2 an den Stellen gepresst werden, wo sie zur Ausbildung einer Kreuzstromplatte erforderlich sind. Weiterhin wird die Einzelplatte 1 mittels eines dementsprechenden Presswerkzeuges mit Noppen 31, 32 versehen, welche im Wesentlichen über die gesamte Platte 1 verteilt sind. Diese Noppen 31, 32 werden zudem in ihrer Länge so bemessen, dass sie als Abstandshalter zwischen zwei benachbarten Einzelplatten 1 dienen. Über die Länge der Noppen 31, 32 wird der Abstand so reguliert, dass ein geeigneter Durchströmquerschnitt zwischen benachbarten Einzelplatten 1 entsteht, welcher geeignet ist, den Wärmeübergangskoeffizienten der beiden Wärmemedien auf gegenüberliegenden Plattenseiten im Wesentlichen gleichgroß einzustellen.The inventive method for producing a plate heat exchanger from individual plates 1 according to the invention is such that, for example, the operator of a production plant for countercurrent plates varies the pressing tool used by him so that the tool is provided with interchangeable, suitable for the production of cross-flow plates press fittings. Then, the plate blanks usually provided for the production of counterflow plates are pressed by means of the varied tool, whereby the inflow and outflow cross sections Z1, Z2, A1, A2 are pressed at the points where they are required for the formation of a cross-flow plate. Furthermore, the single plate 1 is provided by means of a corresponding pressing tool with nubs 31, 32, which are distributed substantially over the entire plate 1. These nubs 31, 32 are also dimensioned in their length so that they serve as spacers between two adjacent individual plates 1. Over the length of the nubs 31, 32, the distance is regulated so that a suitable flow cross-section between adjacent individual plates 1 is formed, which is adapted to adjust the heat transfer coefficient of the two heat media on opposite sides of the sheet substantially equal.

Weiterhin kann das Werkzeug mit einem Pressformstück zur Ausbildung einer Trennprägung 2 versehen sein, mittels welchem sich auf der Einzelplatte 1 eine oder mehrere Trennprägungen 2 einpressen lassen. Diese Trennprägungen 2 dienen zur Unterteilung der Einzelplatte 1 in mehrere parallel zur Strömungsrichtung des Mediums verlaufende Segmente, welche zum einen ein turbulentes Durchmischen des Wärmemediums verhindern und somit eine ungerührte Strömung ermöglichen und/oder zum anderen zur Schaffung mehrerer Segmente auf der Einzelplatte 1, in welchen das Wärmemedium in gegenläufigen Richtungen hin- und hergeführt werden kann, wobei es eine oder mehrere 180°-Wendungen durchläuft. Hierdurch lässt sich die Leistung des Plattenwärmetauschers deutlich steigern.Furthermore, the tool can be provided with a press molding for forming a separation embossing 2, by means of which can be on the single plate 1, one or more separation embossings 2 press. These separation embossings 2 are used to divide the single plate 1 in several parallel to the flow direction of the medium extending segments, which on the one hand prevent a turbulent mixing of the heat medium and thus allow an unstirred flow and / or on the other to create multiple segments on the single plate 1, in which the heat medium can be reciprocated in opposite directions, passing through one or more 180 ° turns. As a result, the performance of the plate heat exchanger can be significantly increased.

Bezugszeichenreference numeral

A1A1
Abströmquerschnittoutflow cross
A2A2
Abströmquerschnittoutflow cross
PP
Plattenpaarpair of plates
SS
Plattenstapelplate stack
Z1Z1
Zuströmquerschnittinflow cross
Z2Z2
Zuströmquerschnittinflow cross
11
EinzelplatteSingle plate
22
Trennprägungseparation imprint
1111
Bodenground
1212
Randedge
1313
Anlageflächecontact surface
14a14a
Querrandcross-border
14b14b
Querrandcross-border
3131
Noppeburl
3232
Noppeburl

Claims (6)

Verfahren zur Herstellung eines Plattenwärmetauschers mit von einem ersten und einem zweiten Medium durchströmten Strömungskanälen, die für das erste Medium zwischen jeweils zu einem Plattenpaar (P) verbundenen Einzelplatten (1) und für das zweite Medium zwischen zu einem Plattenstapel (S) zusammengefügten Plattenpaaren (P) gebildet sind, wobei die Einzelplatten (1) und die Plattenpaare (P) an jeweils parallel zur Hauptströmungsrichtung verlaufenden Rändern (12) und/oder Anlageflächen (13) miteinander verbunden sind, wobei jede Einzelplatte (1) in Hauptströmungsrichtung des ersten Mediums korrespondierende Zu- und Abströmquerschnitte (Z1, A1) für das erste Medium und in Hauptströmungsrichtung des zweiten Mediums korrespondierende Zu- und Abströmquerschnitte (Z2, A2) für das zweite Medium aufweist,
dadurch gekennzeichnet,
dass die Einzelplatten (1) jeweils aus einem ungepressten Plattenrohling hergestellt werden, wobei zuerst ein Werkzeug mit austauschbaren Pressformstücken zur Herstellung von entweder Kreuzstromplatten oder Gegenstromplatten konfektioniert wird, und anschließend der Plattenrohling mittels des konfektionierten Werkzeugs unter Ausbildung entsprechender Ränder (12) und/oder Anlageflächen (13) sowie Zu- und Abströmquerschnitten (Z1, Z2, A1, A2) entweder zu einer Kreuzstromplatte oder einer Gegenstromplatte gepresst wird.
Method for producing a plate heat exchanger with flow channels through which a first and a second medium flow, for the first medium between individual plates (1) connected to a plate pair (P) and between the plate pairs (P) joined to a plate stack (S) (P ), wherein the individual plates (1) and the plate pairs (P) at each parallel to the main flow direction extending edges (12) and / or abutment surfaces (13) are interconnected, each individual plate (1) in the main flow direction of the first medium corresponding to - and Abströmquerschnitte (Z1, A1) for the first medium and in the main flow direction of the second medium corresponding inlet and Abströmquerschnitte (Z2, A2) for the second medium,
characterized,
in that the individual plates (1) are each made from a non-pressed plate blank, first assembling a tool with exchangeable moldings for producing either cross flow plates or countercurrent plates, and then the plate blank by means of the prefabricated tool to form corresponding edges (12) and / or abutment surfaces (13) and inflow and outflow sections (Z1, Z2, A1, A2) is pressed either to a cross-flow plate or a countercurrent plate.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Einzelplatten (1) Kreuzstromplatten sind, wobei die Kreuzstromplatten in solchem Abstand zueinander positioniert werden, dass sich auf beiden Seiten einer Kreuzstromplatte im Wesentlichen gleiche Wärmeübergangskoeffizienten in Bezug auf das erste Medium und das zweite Medium ergeben.A method according to claim 1, characterized in that the individual plates (1) are cross-flow plates, wherein the cross-flow plates are positioned at such a distance from each other that arise on both sides of a cross-flow plate substantially the same heat transfer coefficients with respect to the first medium and the second medium. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Abstand benachbarter Einzelplatten (1) zueinander durch die Länge auf einer oder beiden Einzelplatten (1) angeordneter Noppen (31, 32) bestimmt wird.A method according to claim 2, characterized in that the distance between adjacent individual plates (1) to each other by the length on one or both individual plates (1) arranged nubs (31, 32) is determined. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass auf die Einzelplatte (1) eine oder mehrere Trennprägungen (7) aufgebracht werden, welche parallel zur Hauptströmungsrichtung des Mediums verlaufen.Method according to one of the preceding claims, characterized in that on the single plate (1) one or more separation embossings (7) are applied, which run parallel to the main flow direction of the medium. Presswerkzeug zum Pressen von Einzelplatten (1) für Plattenwärmetauscher, gekennzeichnet durch mehrere austauschbare Pressformstücke, welche sowohl Pressformstücke zur Herstellung von Kreuzstromplatten als auch Pressformstücke zur Herstellung von Gegenstromplatten umfassen.Pressing tool for pressing single plates (1) for plate heat exchangers, characterized by a plurality of exchangeable press fittings, which comprise both press fittings for the production of cross-flow plates and press fittings for the production of countercurrent plates. System zur Herstellung von Einzelplatten (1) für Plattenwärmetauscher mit mehreren zur Herstellung von sowohl Gegenstromplatten als auch Kreuzstromplatten geeigneten Plattenrohlingen vorgegebener Breite, und mit einem Presswerkzeug mit mehreren austauschbaren Pressformstücken, welche sowohl Pressformstücke zur Herstellung von Gegenstromplatten als auch Pressformstücke zur Herstellung von Kreuzstromplatten umfassen.A system for producing single plates (1) for plate heat exchangers with a plurality of plate blanks of predetermined width suitable for the production of both countercurrent plates and crossflow plates, and a press tool having a plurality of replaceable press fittings comprising both counter mold and countercurrent plate press molds.
EP12170500.8A 2012-06-01 2012-06-01 Method and press tool for fabricating a plate heat exchanger Not-in-force EP2669027B8 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12170500.8A EP2669027B8 (en) 2012-06-01 2012-06-01 Method and press tool for fabricating a plate heat exchanger
US13/726,124 US20130319069A1 (en) 2012-06-01 2012-12-23 Heat exchanger system
RU2012155994A RU2607130C2 (en) 2012-06-01 2012-12-24 Method of making plate heat exchanger, press tool and system of making individual plates for plate heat exchanger
KR1020130057988A KR102029096B1 (en) 2012-06-01 2013-05-22 Heat exchanger system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12170500.8A EP2669027B8 (en) 2012-06-01 2012-06-01 Method and press tool for fabricating a plate heat exchanger

Publications (3)

Publication Number Publication Date
EP2669027A1 true EP2669027A1 (en) 2013-12-04
EP2669027B1 EP2669027B1 (en) 2016-02-10
EP2669027B8 EP2669027B8 (en) 2016-03-16

Family

ID=46318884

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12170500.8A Not-in-force EP2669027B8 (en) 2012-06-01 2012-06-01 Method and press tool for fabricating a plate heat exchanger

Country Status (4)

Country Link
US (1) US20130319069A1 (en)
EP (1) EP2669027B8 (en)
KR (1) KR102029096B1 (en)
RU (1) RU2607130C2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104084490A (en) * 2014-07-09 2014-10-08 贵州贵航汽车零部件股份有限公司 Improved structure of radiator pipe gate drawing die
FR3086742A1 (en) * 2018-10-01 2020-04-03 Heurtey Petrochem S.A. PLATE FOR A PLATE HEAT EXCHANGER
US12038243B2 (en) 2018-10-01 2024-07-16 Axens Plate for a plate heat exchanger

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3141860A1 (en) * 2015-09-14 2017-03-15 Bosal Emission Control Systems NV Plate heat exchanger and method for producing same
CN109405604A (en) * 2018-12-07 2019-03-01 山东北辰机电设备股份有限公司 A kind of multi-functional full welded plate piece
CN109443055A (en) * 2018-12-07 2019-03-08 山东北辰机电设备股份有限公司 A kind of desulfurization slurry heat exchanger
CN112683090A (en) * 2021-01-08 2021-04-20 广州赛唯热工设备有限公司 Plate type heat exchange unit and heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5785117A (en) * 1997-02-10 1998-07-28 Nutech Energy Systems Inc. Air-to-air heat exchanger core
DE19921176A1 (en) * 1999-05-07 2000-11-09 Stade Umformtechnik Gmbh Press for making irregularly curved sheets, contains height adjustable cables as die and stamp
EP1266705A2 (en) * 2001-06-15 2002-12-18 Xenesys Inc. Heat transfer member and method for manufacturing same
WO2011081387A2 (en) * 2009-12-28 2011-07-07 부산대학교 산학협력단 Sheet-material forming device and method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU369364A1 (en) * 1966-07-22 1973-02-08 HEAT EXCHANGER SECTION
US4592414A (en) * 1985-03-06 1986-06-03 Mccord Heat Transfer Corporation Heat exchanger core construction utilizing a plate member adaptable for producing either a single or double pass flow arrangement
US4800954A (en) * 1986-12-18 1989-01-31 Diesel Kiki Co., Ltd. Laminated heat exchanger
GB9012618D0 (en) * 1990-06-06 1990-07-25 Rolls Royce Plc Heat exchangers
CA2030577C (en) * 1990-11-23 1994-10-11 Mircea Dinulescu Plate type heat exchanger
DE4142177C2 (en) * 1991-12-20 1994-04-28 Balcke Duerr Ag Plate heat exchanger
US6145588A (en) * 1998-08-03 2000-11-14 Xetex, Inc. Air-to-air heat and moisture exchanger incorporating a composite material for separating moisture from air technical field
DE10034343C2 (en) * 2000-07-14 2003-04-24 Balcke Duerr Energietech Gmbh Plate heat exchanger
KR100822564B1 (en) * 2001-10-05 2008-04-16 한라공조주식회사 One piece type heat exchanger and air conditioner for vehicle therewith
JP2003275824A (en) * 2002-03-18 2003-09-30 Xenesys Inc Press device
EP1447899A1 (en) * 2003-02-13 2004-08-18 Loher GmbH Dynamoelectric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5785117A (en) * 1997-02-10 1998-07-28 Nutech Energy Systems Inc. Air-to-air heat exchanger core
DE19921176A1 (en) * 1999-05-07 2000-11-09 Stade Umformtechnik Gmbh Press for making irregularly curved sheets, contains height adjustable cables as die and stamp
EP1266705A2 (en) * 2001-06-15 2002-12-18 Xenesys Inc. Heat transfer member and method for manufacturing same
WO2011081387A2 (en) * 2009-12-28 2011-07-07 부산대학교 산학협력단 Sheet-material forming device and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104084490A (en) * 2014-07-09 2014-10-08 贵州贵航汽车零部件股份有限公司 Improved structure of radiator pipe gate drawing die
CN104084490B (en) * 2014-07-09 2015-10-14 贵州贵航汽车零部件股份有限公司 Radiator tube grid Drawing Die modified node method
FR3086742A1 (en) * 2018-10-01 2020-04-03 Heurtey Petrochem S.A. PLATE FOR A PLATE HEAT EXCHANGER
WO2020069880A1 (en) * 2018-10-01 2020-04-09 Axens Plate for a plate heat exchanger
US20210389060A1 (en) * 2018-10-01 2021-12-16 Axens Plate for a plate heat exchanger
US12038243B2 (en) 2018-10-01 2024-07-16 Axens Plate for a plate heat exchanger

Also Published As

Publication number Publication date
KR20130135748A (en) 2013-12-11
EP2669027B8 (en) 2016-03-16
US20130319069A1 (en) 2013-12-05
KR102029096B1 (en) 2019-10-07
EP2669027B1 (en) 2016-02-10
RU2607130C2 (en) 2017-01-10
RU2012155994A (en) 2014-06-27

Similar Documents

Publication Publication Date Title
EP2669027B1 (en) Method and press tool for fabricating a plate heat exchanger
EP1571407B1 (en) Plate heat exchanger
DE102007047314B4 (en) Pressing tool for hot forming or / and press hardening of workpieces made of sheet metal
DE69003241T2 (en) PLATE HEAT EXCHANGER AND METHOD FOR PRODUCING THE SAME.
EP2322891A2 (en) Heat exchanger grid
EP2643133B1 (en) Mold for producing molded concrete blocks
DE2525087A1 (en) PRESS PLATE WITH HEATING DEVICES FOR SINGLE OR MULTIPLE STAGE PRESSES FOR THE MANUFACTURE OF FIBER BOARDS, CHIPBOARDS, LAYERED BOARDS, ETC.
DE112014001360T5 (en) Heat exchanger with articulated frame
DE60209281T2 (en) Heat exchange element and method for its production
EP1770345A2 (en) Heat exchange network and heat exchanger using same
DE2440184A1 (en) Steel plate component for central heating radiators - steel plate halves are bent up to two separate flanges to form additional heating faces
DE102016105645B4 (en) Manufacturing process for a heat exchanger with fins on pipes and heat exchangers
EP3077755B1 (en) Bank for a heating element, and a heating element comprising such a bank
EP0159685A2 (en) Method of making the plates of a plate heat exchanger, and heat exchanger made with these plates
DE19528168A1 (en) Heat-exchanger esp for vehicle cooling system - has hollow chamber arrangement with network of recesses woven or arranged in all spatial directions in grid structure
DE1601151A1 (en) Plate heat exchanger
EP1731863A2 (en) Plate for plate-like heat exchanger and process for manufacturing same
DE689056C (en) Heat exchanger flowed through in parallel using plates
DE20301292U1 (en) Laminated chipboard press panel is fabricated from upper and lower sections with pre-cut heating channels brought together and sealed
EP2331273B1 (en) Bending tool for a sheet bending press and method for the production thereof
DE102007035817B4 (en) tubular radiator
DE102007029753A1 (en) Plate heat exchanger has channels flowed through in direct current or counter current of mediums, and sum of light gap of two mediums corresponds to distance between two disk pairs
DE854116C (en) Punching device
DE4306561C2 (en) Cross flow heat exchanger
EP4400231A1 (en) Method of manufacturing a plate heat exchanger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140122

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20140225

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151001

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 774396

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KELVION PHE GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012005955

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160210

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160510

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160610

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160613

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012005955

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

26N No opposition filed

Effective date: 20161111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160510

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012005955

Country of ref document: DE

Representative=s name: BRINKMANN & PARTNER PATENTANWAELTE PARTNERSCHA, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012005955

Country of ref document: DE

Representative=s name: RAUSCH WANISCHECK-BERGMANN BRINKMANN PARTNERSC, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120601

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180620

Year of fee payment: 7

Ref country code: AT

Payment date: 20180621

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20180620

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180627

Year of fee payment: 7

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190602

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 774396

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200828

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012005955

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220101