EP2667132B1 - Kiln assembly and method for operating the kiln assembly - Google Patents

Kiln assembly and method for operating the kiln assembly Download PDF

Info

Publication number
EP2667132B1
EP2667132B1 EP13167263.6A EP13167263A EP2667132B1 EP 2667132 B1 EP2667132 B1 EP 2667132B1 EP 13167263 A EP13167263 A EP 13167263A EP 2667132 B1 EP2667132 B1 EP 2667132B1
Authority
EP
European Patent Office
Prior art keywords
light metal
furnace system
metal components
furnace
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13167263.6A
Other languages
German (de)
French (fr)
Other versions
EP2667132A2 (en
EP2667132A3 (en
Inventor
Jochem Grewe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benteler Automobiltechnik GmbH
Original Assignee
Benteler Automobiltechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benteler Automobiltechnik GmbH filed Critical Benteler Automobiltechnik GmbH
Publication of EP2667132A2 publication Critical patent/EP2667132A2/en
Publication of EP2667132A3 publication Critical patent/EP2667132A3/en
Application granted granted Critical
Publication of EP2667132B1 publication Critical patent/EP2667132B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0006Details, accessories not peculiar to any of the following furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/20Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
    • F27B9/24Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace being carried by a conveyor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/3005Details, accessories, or equipment peculiar to furnaces of these types arrangements for circulating gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/007Partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0073Seals

Definitions

  • the present invention relates to a furnace for the thermal treatment of light metal components according to the features in the preamble of claim 1.
  • the present invention further relates to a method for the thermal treatment of light metal components according to the features in the preamble of claim 9.
  • the hot forming and Press-hardening technology gives the steel high-strength or even very high-strength properties, which has made it possible to reduce the specific weight of the components while at the same time increasing the strength values.
  • Another approach is the use of light metal components to reduce the specific weight of the vehicle body and thus the entire motor vehicle.
  • light metal components made of aluminum alloys are used.
  • furnace systems can only be operated inefficiently, which further increases the production costs of the already more expensive light metal material compared to steel.
  • Such furnaces are for example from the EP-A 1 475 446 , the WO-A 2007 055 650 , the US-A 1 865 954 as well as the US-A2 872 175 known.
  • Object of the present invention is therefore, starting from the prior art, to provide a furnace for the thermal treatment of light metal components and a method for operating the furnace, with the efficient mass production of light metal components can be carried out and which is inexpensive to operate.
  • the furnace installation according to the invention for the thermal treatment of light metal components wherein the light metal components are continuously conveyed through the furnace and the furnace has a heat source is in the furnace system, an air flow is recirculated and therefore only the energy occurring to the board or the component and as leakage currents must, wherein the light metal components are heated convectively in the furnace by the air flow and each entering the furnace system light metal component and each exiting from the furnace system Light metal component as a sealing bulkhead to prevent the air flow from escaping from the furnace.
  • sealing elements are arranged as exchangeable mold apertures (9), the mold apertures (9) having an opening (11) which is substantially transverse to the conveying direction (4) transverse surface of the components ( 2).
  • a light metal component may be an already completely formed component, but also a component in an intermediate molding stage or even a printed circuit board, which is formed after the thermal treatment.
  • Light metal components made of an aluminum alloy, in particular of an aluminum wrought alloy, are preferably treated with the furnace installation according to the invention.
  • the respective components are placed on a temporally clocked or continuously running conveyor, and then occur one behind the other at a uniform distance and preferably at regular intervals by additional bulkheads separated into the furnace system.
  • the furnace installation is formed in an inlet such that a light metal component entering the furnace system as well as an outlet of a light metal component exiting from the furnace system acts as a sealing bulkhead, so that the air flow circulated within the furnace system does not escape from the furnace system.
  • a delivery of the components to be heated is possible in such a way that the delivery is carried out continuously, so that no Interruption occurs.
  • components are placed on the conveyor belt continuously at the entrance of the furnace, transported through the furnace and removed at the exit of the furnace from the transporters again.
  • the continuous promotion is still to be understood in such a way that it operates in the cycle of production with upstream and downstream production equipment.
  • the conveyor belt can be stopped briefly each for placing a new component and then optionally for simultaneous removal at the outlet of the furnace system of the heated component and then start again, until the next component.
  • one or more heat sources are arranged which generate at least one predetermined temperature.
  • the temperature is preferably a temperature between 100 ° C. and 600 ° C., which then generates a flow of air through a circulating device, in particular through an air circulation device arranged inside the furnace in conjunction with a channel system formed in the furnace system Furnace transported light metal components flows.
  • the heated air flow then exchanges heat due to the forced convection with the surface of the light metal components, so that there is a heat transfer from air flow to light metal component.
  • the furnace system according to the invention uses the high thermal conductivity of aluminum in conjunction with the relatively large surface relative to the mass of the light metal component, so that within a very short time a thermal treatment, in particular a heating of the light metal component is feasible.
  • an exit region is again formed such that the air flow is prevented from escaping from the furnace by the emerging from the furnace light metal components.
  • the air stream may be any type of gas stream, for example also the stream of a reaction gas.
  • the furnace installation according to the invention has the advantage that the entire installation does not first have to be heated when it starts up at the start of production, but only the air circulated in the furnace installation has to be appropriately tempered.
  • the furnace system according to the invention can thus work with an effective efficiency, at significantly lower energy costs in relation to a heating system that operates on the heat radiation or even the induction principle.
  • it is possible in connection with a thermal encapsulation of the furnace reheat the once heated air flow through the heat source when circulating again and again only slightly, whereby the energy costs when operating the furnace system according to the invention is very low are.
  • the heat source is designed as an electric heater and / or as a fuel heater.
  • the heat source is installed inside the furnace after and / or in front of the circulation system.
  • the thus heated air flow or gas flow is particularly preferably passed directly to the light metal components, so that no flow losses between heated directly from the heat source air flow and a long flow channel system. After passing through the air flow of the light metal components, this meets a channel system and in turn is supplied to the circulation device, wherein it is reheated shortly before or after the circulation then again by a heat source arranged there to the desired temperature.
  • the choice of the heat source as electric heating or as a fuel heater is in particular of the energy availability, energy costs and the size of the furnace system according to the invention depends. For smaller quantities, it makes sense to use an electric heater. In the context of the invention, however, both types of heating can be combined, so that the furnace system can be used modularly for various purposes.
  • the circulating means are arranged as circulating air blowers within the furnace.
  • the circulating air blowers may for example also be arranged in the duct system or after passing through the air flow of the light metal components, so that the initially sometimes up to 600 ° C hot air flow or gas flow has cooled to the light metal components, before he the circulating air blower happens.
  • the circulating air fans are thus not exposed to the maximum temperatures of more than 400 ° C or even more than 500 ° C, but can be operated in a warm air flow at about 100 ° C to 400 ° C.
  • the circulating air blower can then be used in different blower stages, so that the air or gas flow velocity with which the air flow flows over the light metal components is adjustable.
  • This allows in conjunction with a temperature control two adjustment parameters, so that the heating of the light metal components by the flow velocity and / or the temperature of the air flow can be adjusted.
  • the furnace system is thermally encapsulated, wherein at the inlet and the outlet of the furnace sealing elements are arranged, wherein the sealing elements are designed as replaceable mold apertures.
  • the thermal encapsulation is, for example, a jacket insulation of the furnace, so that residual heat does not escape after passing through the light metal components or when passing the channel system from the furnace.
  • the inlet and the outlet are each designed so that successive light metal components that continuously enter the furnace system or emerge from this, the inlet and the outlet seal such that too small an amount of air circulating within the furnace air flow escapes. Unavoidable hot air / gas flow passing through gaps at the inlet and outlet can be collected by means of overlapping hoods and returned to the circulation, whereby the efficiency can be further increased.
  • the sealing elements are formed at the inlet and / or at the outlet, wherein the sealing elements are formed as a mold aperture.
  • the mold apertures that each map the cross-sectional area or orthogonal to the conveying direction spanning transverse surface of the light metal components through the mold apertures such that only a small gap occurs at a peripheral edge region .
  • the furnace system according to the invention is thus optionally available for light metal components with different geometric dimensions.
  • At least two temperature zones are preferably formed in the furnace installation, wherein the light metal components can be used as a sealing bulkhead between the zones, in particular interchangeable mold panels are arranged at a transition between the zones.
  • a first temperature zone and a second temperature zone is thus formed in an oven with two different temperature zones such that each passing from one zone to the other zone light metal component as a sealing bulkhead of a crossing, analogous to the principle at the entrance or on Exit the furnace system acts.
  • interchangeable mold panels are arranged so that in light metal components with different geometric dimensions from each other high air tightness is also formed between the zones.
  • the respective temperature zones can then in turn by selecting the air flow velocity and / or the air temperature from each other Various thermal heat treatment done.
  • two circulating air fans can then also be arranged, for example, which generate different flow velocities in the respective zone.
  • two heat sources may be arranged to produce different temperatures within the furnace.
  • the furnace installation can also have 3, 4, 5 or more zones, wherein it is again possible to assign a circulating-air blower and a heat source corresponding to each zone.
  • a temperature zone may also be formed as a cooling zone, so that here flows around in relation to the heat treatment zone cold air flow of, for example, only 50 ° C or even only 10 ° C, the light metal components.
  • the mold apertures have an opening which essentially corresponds to a transverse cutting surface of the light metal components arranged orthogonally to the conveying direction. This ensures that even with a slightly inclined light metal plate only small gaps in the passage of the board through the mold aperture are given, so that a loss of air flow is avoided.
  • the furnace installation has a drying zone in the region of its inlet and / or a cooling zone in the region of its outlet. This makes it possible to first dry in the drying zone located on the light metal components lubricant or other coating or to remove it from the light metal components. Subsequently, the light metal components are thermally treated in the at least one temperature zone and optionally then cooled again in a cooling zone located at the outlet of the furnace.
  • the cooling can be carried out at a component temperature of 100 ° C or even 50 ° C or even at room temperature.
  • a thermal treatment, solution annealing, aging, annealing controlled to be completed.
  • the circulated air flow within the furnace system when passing the light metal components is guided over this area, so that the air flow flows over the light metal components areally.
  • heat exchange of the heated / cold air or of the warm gas takes place on the lighter or warmer light metal component in relation thereto.
  • the respectively set in the light metal component temperature can then be adjusted in turn by selecting mutually different air temperatures or else from different flow rates. It is possible to adjust the parameters of temperature and flow rate in only one temperature zone, so that different components on the same furnace system are thermally treated. In the case of two or more temperature zones, it is also possible to individually adjust the flow rate and the temperature in each individual zone.
  • the light metal components are preferably transported on a conveyor belt, in particular on a chain conveyor, through the furnace system.
  • the conveyor belt in particular the chain conveyor, recordings with fixations, in which the light metal components, in particular in the form of boards are substantially vertically oriented storable.
  • the system becomes more compact. so that the air flow flows over the components substantially in the vertical orientation from bottom to top or from top to bottom.
  • the transport direction is then substantially in the horizontal direction, so that the vertically oriented components between the zones and at the inlet and at the outlet take over the respective Strömungsleit- and sealing function.
  • Components can be arranged at an angle.
  • the light metal components themselves are heatable to a temperature between 200 ° and 450 ° C within the furnace.
  • metallurgical processes of the respectively used aluminum alloy, in particular aluminum wrought alloy take place, which subsequently have a good formability or else a produced corresponding homogeneous microstructure with the desired strength properties.
  • the method according to the invention it is possible, in particular light alloy components arranged one behind the other, very particularly preferably to provide light metal blanks on a conveyor belt and to guide them continuously through a furnace installation.
  • a warm air or gas stream is then generated by means of a heat source and circulated by a circulating air blower so that the warm air or gas stream overflows the light metal components.
  • the light metal component itself then heats up due to the on the surface of the light metal component, in particular on an upper side and also a lower side of the Light metal components forced convection, whereby the light metal component, especially when using an aluminum alloy due to the good thermal conductivity in a very short time of sometimes only a few seconds can be heated.
  • the respective inlet opening or outlet opening is sealed by the respectively passing light metal component at an inlet and also at an outlet of the furnace system, so that the air or gas flow generated within the furnace system hardly escapes to the air surrounding the furnace.
  • two or three light metal components passing successively through the inlet opening can then assume a sealing function, as it were. The same applies to the outlet opening.
  • the furnace itself it is possible to adjust the heating of the light metal component by selecting the flow rate of the air or gas stream and / or the air or gas temperature of the air or gas stream. Also, two, three or more temperature zones may be subdivided within the furnace system, wherein in each zone then different heating effects are carried out on the light metal component by the parameters flow velocity of the air flow or else the temperature of the air flow.
  • thermally treated light metal components can be supplied in the context of the invention, in particular in a cycle time of less than 15 seconds per component to another processing method.
  • the kiln plant has a drying zone and a cooling zone, wherein in the drying zone the light metal components passing through the drying zone are dried, in particular a lubricant present on the light metal components is dried off. Furthermore, in a cooling zone, the light metal component can be cooled to a cold aging temperature.
  • a cooling zone is particularly preferably arranged at the end of the furnace, but it can also be between the individual Temperature zones one or more cooling zones are arranged so that a heated component is cooled and then reheated.
  • the mold apertures arranged in the furnace installation are preferably exchanged depending on the light metal components to be treated.
  • the mold apertures are selected in particular such that a transverse cutting surface, which is arranged orthogonally to the transport direction, seals in the best possible manner in conjunction with the light metal component passing through the mold aperture or even with two or three passing light metal components, so that the air flow can not escape.
  • FIGS. 6 to 10 show a furnace, which does not belong to the subject invention.
  • FIG. 1 shows an inventive furnace system 1 for the thermal treatment of light metal components 2 in the form of boards.
  • a conveyor belt 3 is equipped with the light metal components 2 and transports the light metal components 2 in the transport direction 4 in the furnace 1 into it.
  • the furnace 1 has an inlet E, through which the light metal components 2 enter the furnace 1.
  • the outlet A here the furnace 1 has an outlet A on.
  • the light metal component 2 then strikes a drying zone T, in which the light metal component 2 is dried by a possible lubricant.
  • a drying zone T circulates an air flow L, which flows around both a front side 5 and a rear side 6 of the light metal component 2.
  • the light metal component 2 passes into a first temperature zone Z1, in which an air flow L1 flows around the front side 5 and the rear side 6 of the light metal component 2.
  • the air flow L1 in the first temperature zone Z1 has a flow velocity v1 and a temperature T1, with which the light metal component 2 flows around and thus experiences a predetermined component temperature within the temperature zone Z1.
  • the light metal component 2 enters a second temperature zone Z2, in which it in turn with an air flow L2 on a front side 5 and a back 6 is overflowed, wherein the air flow L2 of the second temperature zone Z2 has a second flow velocity v2 and a second temperature T2.
  • a component temperature of the light metal component 2 is set when passing through the second temperature zone T2.
  • the light metal component 2 passes into a cooling zone Z3, the light metal component 2 in the cooling zone Z3 in turn being overflowed with an air flow L3 on the front 5 and back 6, which has a third flow velocity v3 and a third temperature T3 in particular, the temperature T3 is lower than the temperature T1 and T2 and the flow velocity v3 is higher than the flow velocities v1 and v2.
  • the component is cooled in the variant shown here in the cooling zone Z3 to a cooling temperature. Thereafter, the component occurs at an outlet A from the furnace 1 and is removed and thus supplied as a thermally treated component 7 of a further processing, not shown.
  • the individual air streams L can be generated from a circulating air fan not shown in detail, and then the flow speed v1, v2, v3 of the respective zone can be adjusted by means of variation of a cross section or a valve.
  • each zone its own circulating air blower. The same applies to the temperature. This can be heated by a heat source or else from different heat sources, for example, each temperature zone Z1, Z2 is assigned a separate heat source.
  • the light metal components 2 are arranged in the form of boards between plug-in devices 8, so that they are transported through the furnace installation 1 oriented substantially vertically in the transport direction 4.
  • FIG. 2 shown it is also possible, as in FIG. 2 shown to convey the boards substantially at an angle ⁇ through the furnace 1.
  • mold apertures 9 are shown in more detail in FIG FIG. 3 ,
  • FIG. 3 shows a mold panel 9 according to the invention in a plan view.
  • the light metal component 2 passes in the transport direction 4, so based on the image plane in this, the mold aperture 9, wherein between the outer edge 10 of the light metal component 2 and the opening 11, a gap 12 remains to minimize it, so that as little as possible Air flow L can escape via the gap 12 from the temperature zones Z1, Z2 or from the inlet E or outlet A of the furnace 1.
  • the light metal component 2 according to FIG. 3 has an asymmetric configuration, but it is also possible to lead large and small square boards by replacing the mold aperture 9 through the furnace 1.
  • FIG. 4 represented, in which a small light metal component 2 is detected by the mold panel 9, and indicated by the dashed line, by replacing the mold panel 9 also in the geometrical dimensions larger light metal component 2 is conveyed through the furnace 1, wherein each between the light metal component 2 and the mold plate 9 a small gap 12 remains.
  • FIG. 5 a cross-sectional view through the furnace installation 1 according to the invention, wherein the light metal component 2 is conveyed through the furnace installation 1 in the transport direction 4 and in the cross-sectional view is a plan view of a mold panel 9 is shown. It is for example shown a cross section through the temperature zone Z1.
  • a circulating air fan 13 that generates the air circulation within the temperature zone Z1.
  • the air flow L circulated by the circulating air blower 13 passes through a heating register 14 where it is heated and subsequently flows via the light metal component 2.
  • the air flow L is collected and in turn fed to the circulating air blower 13.
  • Shown here are also additional heating units 15, with which it is possible to heat the air flow L in addition to or also to heat exclusively, so that the heat source upstream of the circulating air blower 13 and not like the heating coil 14 is connected downstream.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Tunnel Furnaces (AREA)
  • Furnace Details (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

Die vorliegende Erfindung betrifft eine Ofenanlage zum thermischen Behandeln von Leichtmetallbauteilen gemäß den Merkmalen im Oberbegriff von Patentanspruch 1. Die vorliegende Erfindung betrifft weiterhin ein Verfahren zum thermischen Behandeln von Leichtmetallbauteilen gemäß den Merkmalen im Oberbegriff von Patentanspruch 9.The present invention relates to a furnace for the thermal treatment of light metal components according to the features in the preamble of claim 1. The present invention further relates to a method for the thermal treatment of light metal components according to the features in the preamble of claim 9.

Zur Herstellung von Kraftfahrzeugbauteilen ist bereits seit vielen Jahrzehnten der Einsatz von Blechbauteilen bekannt. Die Blechbauteile werden zunächst umgeformt und dann zu einzelnen Baugruppen bzw. zu einer gesamten Karosserie zusammengefügt. Kraftfahrzeugkarosserien sind heutzutage überwiegend als selbsttragende Karosserien ausgebildet, weshalb die Blechbauteile nicht nur ästhetische oder formgebende Aufgaben übernehmen, sondern auch Steifigkeitseigenschaften besitzen müssen, um der Kraftfahrzeugkarosserie im Betrieb eine hinreichende Steifigkeit zu verleihen. Ebenfalls werden an die Kraftfahrzeugstrukturbauteile Anforderungen an das Crashverhalten gestellt. So müssen sie durch gezielte Formung in einem Aufprallfall Aufprallenergie in Umformenergie dissipieren.For the manufacture of motor vehicle components, the use of sheet metal components has been known for many decades. The sheet metal components are first formed and then assembled into individual modules or to an entire body. Motor vehicle bodies are nowadays predominantly designed as self-supporting bodies, which is why the sheet metal components not only have to assume aesthetic or shaping tasks, but also have to possess rigidity properties in order to give the motor vehicle body sufficient rigidity during operation. Demands on the crash behavior are also made to the motor vehicle structural components. So they have to dissipate impact energy in forming energy by targeted shaping in an impact case.

Als bevorzugter Werkstoff hat sich Stahl aufgrund seiner günstigen Herstellbarkeit bei gleichzeitig hoher Steifigkeit herausgestellt. Insbesondere die Warmumform- und Presshärtetechnologie verleiht dem Stahl hochfeste oder gar höchstfeste Eigenschaften, weshalb es weiterhin möglich war, das spezifische Eigengewicht der Bauteile zu senken, und gleichzeitig die Festigkeitswerte zu erhöhen.As a preferred material steel has been found due to its low producibility at the same time high rigidity. In particular, the hot forming and Press-hardening technology gives the steel high-strength or even very high-strength properties, which has made it possible to reduce the specific weight of the components while at the same time increasing the strength values.

Heutzutage werden jedoch an Kraftfahrzeuge nicht nur ästhetische und sicherheitsrelevante Erwartungen gestellt, es werden vielmehr auch ökologische und wirtschaftliche Aspekte zum Betreiben des Kraftfahrzeugs in den Vordergrund gestellt. So ist es insbesondere wichtig, dass das Kraftfahrzeug einen geringen Kraftstoffverbrauch bei gleichzeitig ebenfalls geringem CO2-Ausstoß besitzt. Hierzu gibt es verschiedenste Ansätze, beispielsweise die Verwendung neuer Antriebsmethoden wie dem Hybridantrieb oder aber eine besondere Formgebung, sodass das Kraftfahrzeug einen geringen Luftwiderstand besitzt.Today, however, not only are aesthetic and safety-related expectations placed on motor vehicles, but also ecological and economic aspects for operating the motor vehicle are given priority. So it is particularly important that the motor vehicle has a low fuel consumption while also low CO2 emissions. For this purpose, there are various approaches, such as the use of new drive methods such as the hybrid drive or a special shape, so that the motor vehicle has a low air resistance.

Ein weiterer Ansatz ist die Verwendung von Leichtmetallbauteilen zur Senkung des spezifischen Eigengewichts der Kraftfahrzeugkarosserie und somit des gesamten Kraftfahrzeugs. Hierbei werden insbesondere Leichtmetallbauteile aus Aluminiumlegierungen eingesetzt.Another approach is the use of light metal components to reduce the specific weight of the vehicle body and thus the entire motor vehicle. In this case, in particular light metal components made of aluminum alloys are used.

Für bestimmte Anwendungen, beispielsweise bei hohen Umformgraden oder bei der Einstellung gezielter Festigkeitswerte in Aluminiumbauteilen ist es notwendig, die Platinen vor der Umformung und/oder in Zwischenstufen während der Umformung und/oder Formteile nach der Umformung thermisch zu beeinflussen.For certain applications, for example at high degrees of deformation or when setting specific strength values in aluminum components, it is necessary to thermally influence the boards before forming and / or in intermediate stages during forming and / or molded parts after forming.

Aus dem Stand der Technik sind Durchlauföfen bekannt, beispielsweise aus der DE 10 2010 019 215 A1 . Solche Durchlauföfen weisen ein Transportsystem auf, auf dem Blechbauteile oder aber Blechplatinen kontinuierlich durch eine Ofenanlage befördert werden und innerhalb der Ofenanlage erwärmt werden. Hierbei gibt es zahlreiche Ansätze, beispielsweise die Infraroterwärmung oder aber auch eine induktive Erwärmung des Bauteils oder aber der Platine innerhalb der Ofenanlage.From the state of the art continuous furnaces are known, for example from the DE 10 2010 019 215 A1 , Such furnaces have a transport system on which sheet metal components or sheet metal blanks are conveyed continuously through a furnace and are heated within the furnace. There are numerous approaches, for example, the infrared heating or even an inductive heating of the component or the board within the furnace.

Werden solche Ofenanlagen jedoch für Leichtmetalllegierungen verwendet, sind einige Verfahren ineffizient, da das Aluminium z.B. die Wärmestrahlung reflektiert oder technisch unpraktikabel, da sich z.B. Formplatinen oder -teile nur ungleichmäßig erwärmen lassen und sich stark verziehen häufig aber vor allem stark verlustbehaftet, da ein großer Teil der eingebrachten Energie nicht genutzt wird. Ein weiterer Nachteil ist der hohe Platzbedarf der meisten Anlagen.However, if such furnace systems are used for light metal alloys, some methods are inefficient, since the aluminum, for example, reflects the heat radiation or technically impractical, since, for example, molded blanks or parts can heat only unevenly and warp but often strong especially strong lossy, since a large part of the introduced energy is not used. Another disadvantage is the high space requirements of most systems.

Die Ofenanlagen können mithin nur uneffektiv betrieben werden, was die Produktionskosten des ohnehin gegenüber Stahl teureren Leichtmetallwerkstoffs weiter steigert.Consequently, the furnace systems can only be operated inefficiently, which further increases the production costs of the already more expensive light metal material compared to steel.

Solche Ofenanlagen sind beispielsweise aus der EP-A 1 475 446 , der WO-A 2007 055 650 , der US-A 1 865 954 sowie der US-A2 872 175 bekannt.Such furnaces are for example from the EP-A 1 475 446 , the WO-A 2007 055 650 , the US-A 1 865 954 as well as the US-A2 872 175 known.

Aufgabe der vorliegenden Erfindung ist es daher, ausgehend vom Stand der Technik, eine Ofenanlage zum thermischen Behandeln von Leichtmetallbauteilen sowie ein Verfahren zum Betreiben der Ofenanlage bereitzustellen, mit dem eine effiziente Massenfertigung von Leichtmetallbauteilen durchführbar ist und die kostengünstig betreibbar ist.Object of the present invention is therefore, starting from the prior art, to provide a furnace for the thermal treatment of light metal components and a method for operating the furnace, with the efficient mass production of light metal components can be carried out and which is inexpensive to operate.

Die zuvor genannte Aufgabe wird erfindungsgemäß mit einer Ofenanlage zum thermischen Behandeln von Leichtmetallbauteilen gemäß den Merkmalen im Patentanspruch 1 gelöst.The aforementioned object is achieved with a furnace for the thermal treatment of light metal components according to the features in claim 1.

Der verfahrenstechnische Teil der Aufgabe wird weiterhin mit einem Verfahren zum thermischen Behandeln von Leichtmetallbauteilen gemäß den Merkmalen im Patentanspruch 9 gelöst.The procedural part of the object is further achieved by a method for the thermal treatment of light metal components according to the features in claim 9.

Vorteilhafte Ausführungsvarianten der vorliegenden Erfindung sind Bestandteil der abhängigen Patentansprüche.Advantageous embodiments of the present invention are part of the dependent claims.

Die erfindungsgemäße Ofenanlage zum thermischen Behandeln von Leichtmetallbauteilen, wobei die Leichtmetallbauteile kontinuierlich durch die Ofenanlage beförderbar sind und die Ofenanlage eine Wärmequelle aufweist ist wobei in der Ofenanlage ein Luftstrom umwälzbar ist und mithin nur die an die Platine oder das Bauteil sowie als Verlustströme auftretende Energie nachgesetzt werden muss, wobei die Leichtmetallbauteile in der Ofenanlage konvektiv durch den Luftstrom erwärmbar sind und ein jeweils in die Ofenanlage eintretendes Leichtmetallbauteil und ein jeweils aus der Ofenanlage austretendes Leichtmetallbauteil als Dichtschott den Luftstrom an einem Entweichen aus der Ofenanlage hindern. An dem Eintritt (E) und dem Austritt (A) sind Dichtelemente als austauschbare Formblenden (9) angeordnet, wobei die Formblenden (9) eine Öffnung (11) aufweisen, die im Wesentlichen einer orthogonal zur Förderrichtung (4) angeordneten Querspantfläche der Bauteile (2) entsprechen.The furnace installation according to the invention for the thermal treatment of light metal components, wherein the light metal components are continuously conveyed through the furnace and the furnace has a heat source is in the furnace system, an air flow is recirculated and therefore only the energy occurring to the board or the component and as leakage currents must, wherein the light metal components are heated convectively in the furnace by the air flow and each entering the furnace system light metal component and each exiting from the furnace system Light metal component as a sealing bulkhead to prevent the air flow from escaping from the furnace. At the inlet (E) and the outlet (A), sealing elements are arranged as exchangeable mold apertures (9), the mold apertures (9) having an opening (11) which is substantially transverse to the conveying direction (4) transverse surface of the components ( 2).

Die erfindungsgemäße Ofenanlage nutzt zum thermischen Behandeln, insbesondere zum Erwärmen der Leichtmetallbauteile das Konvektionsprinzip. Bei einem Leichtmetallbauteil kann es sich im Rahmen der Erfindung um ein bereits fertig umgeformtes Bauteil handeln, aber auch um ein Bauteil in einem Zwischenformstadium oder gar um eine Platine, die im Anschluss an die thermische Behandlung umgeformt wird.The furnace installation according to the invention uses the convection principle for thermal treatment, in particular for heating the light metal components. In the context of the invention, a light metal component may be an already completely formed component, but also a component in an intermediate molding stage or even a printed circuit board, which is formed after the thermal treatment.

Bevorzugt werden mit der erfindungsgemäßen Ofenanlage Leichtmetallbauteile aus einer Aluminiumlegierung, insbesondere aus einer Aluminiumknetlegierung behandelt. Die jeweiligen Bauteile werden auf einem zeitlich getaktet oder kontinuierlich laufenden Förderer gestellt, und treten dann einzeln hintereinander in gleichmäßigem Abstand und bevorzugt in regelmäßigen Abständen durch zusätzliche Schottblenden separiert in die Ofenanlage ein. Die Ofenanlage ist dabei in einem Eintritt derart ausgebildet, dass ein jeweils in die Ofenanlage eintretendes Leichtmetallbauteil sowie an einem Austritt eines jeweils aus der Ofenanlage austretendes Leichtmetallbauteil als Dichtschott fungiert, so dass der innerhalb der Ofenanlage umgewälzte Luftstrom nicht aus der Ofenanlage entweicht. Jeweils bei einem Übergang von einem Bauteil im Eintrittsbereich zu dem nächsten in den Eintrittsbereich eintretenden Bauteil, und bei analogem Prinzip am Austritt der Ofenanlage kommt es zu Verlusten aufgrund des Abstands der einzelnen Bauteile untereinander. Darüber hinaus treten Überströmverluste auch an einem Spalt zwischen Bauteil oder Schott und den angrenzenden Abschlüssen auf. Aufgrund der Möglichkeit, eine Anzahl von Bauteilen auf einer kurzen Strecke getaktet oder kontinuierlich durch die Ofenanlage zu fördern, können besonders kurze Taktzeiten von wenigen Sekunden realisiert werden, so dass mit der Ofenanlage effektiv große Mengen von thermisch zu behandelnden Leichtmetallbauteilen gehandhabt werden können.Light metal components made of an aluminum alloy, in particular of an aluminum wrought alloy, are preferably treated with the furnace installation according to the invention. The respective components are placed on a temporally clocked or continuously running conveyor, and then occur one behind the other at a uniform distance and preferably at regular intervals by additional bulkheads separated into the furnace system. In this case, the furnace installation is formed in an inlet such that a light metal component entering the furnace system as well as an outlet of a light metal component exiting from the furnace system acts as a sealing bulkhead, so that the air flow circulated within the furnace system does not escape from the furnace system. In each case at a transition from a component in the inlet region to the next entering into the inlet region component, and with an analogous principle at the outlet of the furnace system, there are losses due to the distance of the individual components with each other. In addition, overflow losses also occur at a gap between the component or bulkhead and the adjacent terminations. Due to the ability to clocked or continuously promote a number of components over a short distance through the furnace, particularly short cycle times of a few seconds can be realized so that the furnace system can effectively handle large quantities of thermally treated light metal components.

Im Rahmen der Erfindung ist bei dieser und allen nachfolgend beschriebenen Ausführungsvarianten der Ofenanlage eine Förderung der zu erwärmenden Bauteile derart möglich, dass die Förderung kontinuierlich durchgeführt wird, so dass keine Unterbrechung erfolgt. Somit werden kontinuierlich Bauteile am Eintritt der Ofenanlage auf das Förderband aufgesetzt, durch die Ofenanalage transportiert und am Austritt der Ofenanlage von den Transportern wieder entnommen.In the context of the invention, in this embodiment and all variants of the furnace installation described below, a delivery of the components to be heated is possible in such a way that the delivery is carried out continuously, so that no Interruption occurs. Thus, components are placed on the conveyor belt continuously at the entrance of the furnace, transported through the furnace and removed at the exit of the furnace from the transporters again.

Im Rahmen der Erfindung ist die kontinuierliche Förderung dennoch auch derart zu verstehen, dass sie im Takt der Produktion mit vorgeschalteten und nachgeschalteten Produktionsanlagen arbeitet. Beispielsweise kann das Förderband jeweils zum Aufsetzen eines neuen Bauteils und dann auch gegebenenfalls zur gleichzeitigen Entnahme am Austritt der Ofenanlage des erwärmten Bauteils kurz angehalten werden und so dann wieder anfahren, bis zum nächsten Bauteil.In the context of the invention, the continuous promotion is still to be understood in such a way that it operates in the cycle of production with upstream and downstream production equipment. For example, the conveyor belt can be stopped briefly each for placing a new component and then optionally for simultaneous removal at the outlet of the furnace system of the heated component and then start again, until the next component.

Im Rahmen der Erfindung ist es auch möglich, die Fördergeschwindigkeit der Bauteile durch die Ofenanlage nicht nur in Abhängigkeit der Verweildauer der Bauteile innerhalb der Ofenanlage selbst zu wählen, sondern auch derart an den Produktionsprozess anzupassen, dass immer in einer ausreichenden Menge wärmebehandelte Bauteile zur Weiterverarbeitung bereitgestellt werden.In the context of the invention, it is also possible to choose the conveying speed of the components through the furnace not only depending on the residence time of the components within the furnace itself, but also adapt to the production process so that always provided in a sufficient amount of heat-treated components for further processing become.

Innerhalb der erfindungsgemäßen Ofenanlage sind eine oder mehrere Wärmequellen angeordnet, die mindestens eine vorbestimmte Temperatur erzeugen. Bei der Temperatur handelt es sich bevorzugt um eine Temperatur zwischen 100° C und 600° C, die dann durch eine Umwälzeinrichtung, insbesondere durch eine innerhalb der Ofenanlage angeordneten Luftumwälzeinrichtung in Verbindung mit einem in der Ofenanlage ausgebildeten Kanalsystem eine Luftströmung erzeugt, die über durch die Ofenanlage beförderten Leichtmetallbauteile strömt. Der erwärmte Luftstrom tauscht dann aufgrund der erzwungen Konvektion mit der Oberfläche der Leichtmetallbauteile Wärme aus, so dass es zu einem Wärmeübergang von Luftstrom zu Leichtmetallbauteil kommt. Hierbei nutzt die erfindungsgemäße Ofenanlage die hohe Wärmeleitfähigkeit von Aluminium in Verbindung mit der relativ zur Masse des Leichtmetallbauteils selber großen Oberfläche, so dass innerhalb kürzester Zeit eine thermische Behandlung, insbesondere eine Erwärmung des Leichtmetallbauteils durchführbar ist.Within the furnace installation according to the invention, one or more heat sources are arranged which generate at least one predetermined temperature. The temperature is preferably a temperature between 100 ° C. and 600 ° C., which then generates a flow of air through a circulating device, in particular through an air circulation device arranged inside the furnace in conjunction with a channel system formed in the furnace system Furnace transported light metal components flows. The heated air flow then exchanges heat due to the forced convection with the surface of the light metal components, so that there is a heat transfer from air flow to light metal component. In this case, the furnace system according to the invention uses the high thermal conductivity of aluminum in conjunction with the relatively large surface relative to the mass of the light metal component, so that within a very short time a thermal treatment, in particular a heating of the light metal component is feasible.

Am Austritt der Ofenanlage ist dann wieder ein Austrittsbereich derart ausgebildet, dass der Luftstrom an einem Entweichen aus der Ofenanlage durch die aus der Ofenanlage austretenden Leichtmetallbauteile gehindert wird.At the outlet of the furnace then an exit region is again formed such that the air flow is prevented from escaping from the furnace by the emerging from the furnace light metal components.

Für die Konvektionsbeheizung können sowohl fremderwärmte Luft als auch heiße Abgasströme genutzt werden. Der Luftstrom kann im Rahmen der Erfindung jede Art von Gasstrom sein, beispielsweise auch der Strom eines Reaktionsgases.For the convection heating, both foreign-heated air and hot exhaust gas streams can be used. Within the scope of the invention, the air stream may be any type of gas stream, for example also the stream of a reaction gas.

Insgesamt bietet die erfindungsgemäße Ofenanlage den Vorteil, dass nicht die gesamte Anlage gerade bei einem Anfahren zu Produktionsbeginn zunächst aufgeheizt werden muss, sondern lediglich die in der Ofenanlage umgewälzte Luft muss entsprechend temperiert werden. Die erfindungsgemäße Ofenanlage kann somit mit einem effektiven Wirkungsgrad arbeiten, bei deutlich geringeren Energiekosten in Relation zu einer Erwärmungsanlage, die nach dem Wärmestrahlungs- oder aber auch dem Induktionsprinzip arbeitet. Gerade durch das Umwälzen des Luftstroms und das Verhindern des Entweichen des Luftstroms ist es in Verbindung mit einer thermischen Kapselung der Ofenanlage möglich, den einmal erwärmten Luftstrom durch die Wärmequelle beim Umwälzen immer wieder nur gering nachzuerwärmen, wodurch die Energiekosten beim Betreiben der erfindungsgemäßen Ofenanlage sehr gering sind.Overall, the furnace installation according to the invention has the advantage that the entire installation does not first have to be heated when it starts up at the start of production, but only the air circulated in the furnace installation has to be appropriately tempered. The furnace system according to the invention can thus work with an effective efficiency, at significantly lower energy costs in relation to a heating system that operates on the heat radiation or even the induction principle. Especially by the circulation of the air flow and preventing the escape of the air flow, it is possible in connection with a thermal encapsulation of the furnace, reheat the once heated air flow through the heat source when circulating again and again only slightly, whereby the energy costs when operating the furnace system according to the invention is very low are.

Insbesondere ist die Wärmequelle als Elektroheizung ausgebildet und/oder als Brennstoffheizung. Die Wärmequelle ist innerhalb der Ofenanlage nach und/oder vor der Umwälzanlage eingerichtet. Der so erwärmte Luftstrom oder Gasstrom wird besonders bevorzugt direkt an die Leichtmetallbauteile weitergegeben, so dass keine Strömungsverluste zwischen direkt von der Wärmequelle erwärmtem Luftstrom und einem langen Strömungskanalsystem entstehen. Nach Passieren des Luftstroms der Leichtmetallbauteile trifft dieser auf ein Kanalsystem und wird wiederum der Umwälzeinrichtung zugeführt, wobei er kurz vor oder nach der Umwälzeinrichtung dann wiederum durch eine dort angeordnete Wärmquelle auf die gewünschte Temperatur nacherwärmt wird.In particular, the heat source is designed as an electric heater and / or as a fuel heater. The heat source is installed inside the furnace after and / or in front of the circulation system. The thus heated air flow or gas flow is particularly preferably passed directly to the light metal components, so that no flow losses between heated directly from the heat source air flow and a long flow channel system. After passing through the air flow of the light metal components, this meets a channel system and in turn is supplied to the circulation device, wherein it is reheated shortly before or after the circulation then again by a heat source arranged there to the desired temperature.

Die Wahl der Wärmequelle als Elektroheizung oder aber als Brennstoffheizung ist insbesondere von der Energieverfügbarkeit, den Energiekosten sowie der Größe der erfindungsgemäßen Ofenanlage abhängig. Bei kleineren Stückzahlen ist es sinnvoll, eine Elektroheizung zu verwenden. Im Rahmen der Erfindung können jedoch auch beide Heizungsarten kombiniert werden, so dass die Ofenanlage modular für verschiedene Einsatzzwecke nutzbar ist.The choice of the heat source as electric heating or as a fuel heater is in particular of the energy availability, energy costs and the size of the furnace system according to the invention depends. For smaller quantities, it makes sense to use an electric heater. In the context of the invention, however, both types of heating can be combined, so that the furnace system can be used modularly for various purposes.

Weiterhin bevorzugt sind die Umwälzeinrichtungen als Umluftgebläse innerhalb der Ofenanlage angeordnet. Je nach zu erzeugender Temperatur können die Umluftgebläse beispielsweise auch erst in dem Kanalsystem oder aber nach Passieren des Luftstroms der Leichtmetallbauteile angeordnet sein, so dass der zunächst mitunter bis zu 600° C heiße Luftstrom oder Gasstrom sich an den Leichtmetallbauteilen abgekühlt hat, bevor er die Umluftgebläse passiert. Die Umluftgebläse sind somit nicht den Temperaturmaxima von mehr als 400° C oder gar mehr als 500° C ausgesetzt, sondern können in einem warmen Luftstrom bei circa 100° C bis 400° C betrieben werden.Further preferably, the circulating means are arranged as circulating air blowers within the furnace. Depending on the temperature to be generated, the circulating air blowers may for example also be arranged in the duct system or after passing through the air flow of the light metal components, so that the initially sometimes up to 600 ° C hot air flow or gas flow has cooled to the light metal components, before he the circulating air blower happens. The circulating air fans are thus not exposed to the maximum temperatures of more than 400 ° C or even more than 500 ° C, but can be operated in a warm air flow at about 100 ° C to 400 ° C.

Im Rahmen der Erfindung sind die Umluftgebläse dann in verschiedenen Gebläsestufen nutzbar, so dass die Luft- oder Gasstromgeschwindigkeit, mit der der Luftstrom über die Leichtmetallbauteile strömt, einstellbar ist. Dieser erlaubt in Verbindung mit einer Temperaturregelung zwei Einstellparameter, so dass die Erwärmung der Leichtmetallbauteile durch die Strömungsgeschwindigkeit und/oder die Temperatur des Luftstroms einstellbar sind.In the context of the invention, the circulating air blower can then be used in different blower stages, so that the air or gas flow velocity with which the air flow flows over the light metal components is adjustable. This allows in conjunction with a temperature control two adjustment parameters, so that the heating of the light metal components by the flow velocity and / or the temperature of the air flow can be adjusted.

Weiterhin bevorzugt ist die Ofenanlage thermisch gekapselt, wobei an dem Eintritt und dem Austritt der Ofenanlage Dichtelemente angeordnet sind, wobei die Dichtelemente als austauschbare Formblenden ausgebildet sind. Die thermische Kapselung ist beispielsweise eine Mantelisolierung der Ofenanlage, so dass Restwärme nicht nach Passieren der Leichtmetallbauteile oder aber bei Passieren des Kanalsystems aus der Ofenanlage entweicht.Further preferably, the furnace system is thermally encapsulated, wherein at the inlet and the outlet of the furnace sealing elements are arranged, wherein the sealing elements are designed as replaceable mold apertures. The thermal encapsulation is, for example, a jacket insulation of the furnace, so that residual heat does not escape after passing through the light metal components or when passing the channel system from the furnace.

Weiterhin ist gerade bei der getakteten oder kontinuierlichen Massenförderung von Leichtmetallbauteilen in die Ofenanlage hinein und aus der Ofenanlage heraus der Eingangs- und der Ausgangsbereich, mithin der Eintritt und der Austritt, kritisch, da hier Wärme, aber auch aufgrund des Konvektionsprinzip der erfindungsgemäßen Ofenanlage der Luftstrom entweichen kann. Hierzu sind der Eintritt und der Austritt jeweils so ausgebildet, dass aufeinander folgende Leichtmetallbauteile, die kontinuierlich in die Ofenanlage eintreten bzw. aus dieser austreten, den Eintritt und den Austritt derart abdichten, dass eine zu geringe Luftmenge des innerhalb der Ofenanlage zirkulierenden Luftstroms entweicht. Unvermeidbar durch Spalte an Ein- und Austritt nach außen übertretender heißer Luft-/Gasstrom kann durch übergreifende Hauben aufgefangen und der Umwälzung wieder zugeführt werden, wodurch sich der Wirkungsgrad weiter steigern lässt.Furthermore, especially in the clocked or continuous mass production of light metal components in the furnace system and out of the furnace out of the input and the output area, thus the inlet and the outlet, critical, since heat, but also due to the convection principle of the present invention Furnace system which can escape air flow. For this purpose, the inlet and the outlet are each designed so that successive light metal components that continuously enter the furnace system or emerge from this, the inlet and the outlet seal such that too small an amount of air circulating within the furnace air flow escapes. Unavoidable hot air / gas flow passing through gaps at the inlet and outlet can be collected by means of overlapping hoods and returned to the circulation, whereby the efficiency can be further increased.

Bei Nutzung der Bauteilgeometrie zur Abdichtung zur Erhöhung der Dichtigkeit sind Dichtelemente an dem Eintritt und/oder an dem Austritt ausgebildet, wobei die Dichtelemente als Formblende ausgebildet sind. Bei Verwendung verschiedener Leichtmetallbauteile, insbesondere bei verschieden großen Platinen ist es somit durch Austausch der Formblenden möglich, dass jeweils die Querschnittsfläche bzw. die orthogonal zur Förderrichtung sich aufspannende Querspantfläche der Leichtmetallbauteile derart durch die Formblenden abzubilden, dass an einem umlaufenden Randbereich nur ein geringes Spaltmaß entsteht. Die erfindungsgemäße Ofenanlage ist somit optional für Leichtmetallbauteile mit verschiedenen geometrischen Abmessungen nutzbar.When using the component geometry for sealing to increase the tightness sealing elements are formed at the inlet and / or at the outlet, wherein the sealing elements are formed as a mold aperture. When using different light metal components, in particular with different sized boards, it is thus possible by replacing the mold apertures that each map the cross-sectional area or orthogonal to the conveying direction spanning transverse surface of the light metal components through the mold apertures such that only a small gap occurs at a peripheral edge region , The furnace system according to the invention is thus optionally available for light metal components with different geometric dimensions.

Weiterhin bevorzugt sind in der Ofenanlage mindestens zwei Temperaturzonen ausgebildet, wobei die Leichtmetallbauteile als Dichtschott zwischen den Zonen nutzbar sind, insbesondere sind an einem Übertritt zwischen den Zonen austauschbare Formblenden angeordnet. Im Rahmen der Erfindung ist somit bei einer Ofenanlage mit zwei voneinander verschiedenen Temperaturzonen eine erste Temperaturzone und eine zweite Temperaturzone derart ausgebildet, dass das jeweils von der einen Zone in die andere Zone übertretende Leichtmetallbauteil als Dichtschott eines Übertritts, analog dem Prinzip am Eintritt oder aber am Austritt der Ofenanlage fungiert. Auch hier sind austauschbare Formblenden angeordnet, so dass bei Leichtmetallbauteilen mit voneinander verschiedenen geometrischen Abmessungen eine hohe Luftdichtigkeit auch zwischen den Zonen ausgebildet ist.Furthermore, at least two temperature zones are preferably formed in the furnace installation, wherein the light metal components can be used as a sealing bulkhead between the zones, in particular interchangeable mold panels are arranged at a transition between the zones. In the context of the invention, a first temperature zone and a second temperature zone is thus formed in an oven with two different temperature zones such that each passing from one zone to the other zone light metal component as a sealing bulkhead of a crossing, analogous to the principle at the entrance or on Exit the furnace system acts. Again, interchangeable mold panels are arranged so that in light metal components with different geometric dimensions from each other high air tightness is also formed between the zones.

In den jeweiligen Temperaturzonen kann dann wiederum durch Wahl der Luftströmungsgeschwindigkeit und/oder der Lufttemperatur eine voneinander verschiedene thermische Wärmebehandlung erfolgen. Im Rahmen der Erfindung können dann beispielsweise auch zwei Umluftgebläse angeordnet sein, die in der jeweiligen Zone voneinander verschiedene Strömungsgeschwindigkeiten erzeugen. Ebenfalls können zwei Wärmequellen zur Erzeugung verschiedener Temperaturen innerhalb der Ofenanlage angeordnet sein. Im Rahmen der Erfindung kann die Ofenanlage auch 3, 4, 5 oder mehr Zonen aufweisen, wobei es wiederum möglich ist, entsprechend einer jeden Zone ein Umluftgebläse und eine Wärmequelle zuzuordnen. Im Rahmen der Erfindung ist es ebenfalls möglich, über veränderliche Querschnittsdüsen an den Zonen zugeordneten Luftdüsen die Strömungsgeschwindigkeit innerhalb einer jeweiligen Zone individuell einzustellen, so dass nur ein Umluftgebläse verwendet wird. Im Rahmen der Erfindung kann eine Temperaturzone auch als eine Abkühlzone ausgebildet sein, so dass hier ein in Relation zu der Wärmebehandlungszone kalter Luftstrom von beispielsweise nur 50° C oder aber auch von nur 10° C die Leichtmetallbauteile umströmt.In the respective temperature zones can then in turn by selecting the air flow velocity and / or the air temperature from each other Various thermal heat treatment done. In the context of the invention, two circulating air fans can then also be arranged, for example, which generate different flow velocities in the respective zone. Also, two heat sources may be arranged to produce different temperatures within the furnace. In the context of the invention, the furnace installation can also have 3, 4, 5 or more zones, wherein it is again possible to assign a circulating-air blower and a heat source corresponding to each zone. In the context of the invention, it is likewise possible to adjust the flow velocity within a respective zone individually by way of variable cross-sectional nozzles at the zones associated with the zones, so that only one circulating-air blower is used. In the context of the invention, a temperature zone may also be formed as a cooling zone, so that here flows around in relation to the heat treatment zone cold air flow of, for example, only 50 ° C or even only 10 ° C, the light metal components.

Die Formblenden weisen eine Öffnung auf, die im Wesentlichen einer orthogonal zu der Förderrichtung angeordneten Querspantfläche der Leichtmetallbauteile entsprechen. Hiermit wird sichergestellt, dass auch bei einer leicht schräg gestellten Leichtmetallplatine nur geringe Spaltmaße beim Durchtritt der Platine durch die Formblende gegeben sind, so dass eine Verlustströmung der Luft vermieden wird.The mold apertures have an opening which essentially corresponds to a transverse cutting surface of the light metal components arranged orthogonally to the conveying direction. This ensures that even with a slightly inclined light metal plate only small gaps in the passage of the board through the mold aperture are given, so that a loss of air flow is avoided.

Weiterhin weist die Ofenanlage im Bereich ihres Eintritts eine Trocknungszone auf und/oder im Bereich ihres Austritts eine Abkühlzone. Hierdurch ist es möglich, in der Trocknungszone zunächst ein auf den Leichtmetallbauteilen befindliches Schmiermittel oder eine sonstige Beschichtung zu trocknen oder aber von den Leichtmetallbauteilen zu entfernen. Anschließend werden die Leichtmetallbauteile in der mindestens einen Temperaturzone thermisch behandelt und optional dann in einer am Austritt der Ofenanlage befindlichen Abkühlzone wiederum abgekühlt. Die Abkühlung kann dabei auf eine Bauteiltemperatur von 100° C oder gar 50° C oder auch auf Raumtemperatur erfolgen. Hierdurch kann z.B. eine thermische Behandlung, Lösungsglühung, Auslagerung, Rückglühung, kontrolliert abgeschlossen werden.Furthermore, the furnace installation has a drying zone in the region of its inlet and / or a cooling zone in the region of its outlet. This makes it possible to first dry in the drying zone located on the light metal components lubricant or other coating or to remove it from the light metal components. Subsequently, the light metal components are thermally treated in the at least one temperature zone and optionally then cooled again in a cooling zone located at the outlet of the furnace. The cooling can be carried out at a component temperature of 100 ° C or even 50 ° C or even at room temperature. As a result, for example, a thermal treatment, solution annealing, aging, annealing, controlled to be completed.

Weiterhin bevorzugt wird der umgewälzte Luftstrom innerhalb der Ofenanlage beim Passieren der Leichtmetallbauteile flächig über diese geleitet, so dass der Luftstrom die Leichtmetallbauteile flächig überströmt. Während des Überströmens findet dabei ein Wärmeaustausch der erwärmten/kalten Luft oder des warmen Gases auf das in Relation hierzu kältere oder wärmere Leichtmetallbauteil statt. Im Rahmen der Erfindung wird insbesondere die Vorderseite, aber auch aufgrund des kontinuierlichen Passierens des Leichtmetallbauteils dessen Rückseite von dem Luftstrom überströmt, so dass eine gleichmäßige Erwärmung von beiden Seiten stattfindet. Die jeweils in dem Leichtmetallbauteil eingestellte Temperatur kann dann wiederum durch Wahl von voneinander verschiedenen Lufttemperaturen oder aber auch von voneinander verschiedenen Strömungsgeschwindigkeiten eingestellt werden. Dabei ist es möglich, bei nur einer Temperaturzone die Parameter Temperatur und Strömungsgeschwindigkeit zu verstellen, so dass verschiedene Bauteile auf der gleichen Ofenanlage thermisch behandelbar sind. Im Falle von zwei oder mehr Temperaturzonen ist es auch möglich, die Strömungsgeschwindigkeit sowie die Temperatur in jeder einzelnen Zone individuell einzustellen.Further preferably, the circulated air flow within the furnace system when passing the light metal components is guided over this area, so that the air flow flows over the light metal components areally. During the overflow, heat exchange of the heated / cold air or of the warm gas takes place on the lighter or warmer light metal component in relation thereto. In the context of the invention, in particular the front side, but also due to the continuous passing of the light metal component whose rear surface is overflowed by the air flow, so that a uniform heating takes place from both sides. The respectively set in the light metal component temperature can then be adjusted in turn by selecting mutually different air temperatures or else from different flow rates. It is possible to adjust the parameters of temperature and flow rate in only one temperature zone, so that different components on the same furnace system are thermally treated. In the case of two or more temperature zones, it is also possible to individually adjust the flow rate and the temperature in each individual zone.

Weiterhin bevorzugt werden die Leichtmetallbauteile auf einem Transportband, insbesondere auf einem Kettenförderer, durch die Ofenanlage transportiert. Im Rahmen der Erfindung weist das Transportband, insbesondere der Kettenförderer, Aufnahmen mit Fixierungen auf, in die die Leichtmetallbauteile, insbesondere in Form von Platinen im Wesentlichen vertikal orientiert lagerbar sind. Darüber hinaus wird die Anlage hierdurch kompakter. so dass die Luftströmung die Bauteile im Wesentlichen in die vertikale Orientierung von unten nach oben oder aber von oben nach unten überströmt. Die Transportrichtung erfolgt dann im Wesentlichen in horizontaler Richtung, so dass die vertikal orientierten Bauteile zwischen den Zonen und am Eintritt und am Austritt die jeweilige Strömungsleit- und Dichtfunktion übernehmen. Bauteile in einem Winkel anordnenbar.Furthermore, the light metal components are preferably transported on a conveyor belt, in particular on a chain conveyor, through the furnace system. In the context of the invention, the conveyor belt, in particular the chain conveyor, recordings with fixations, in which the light metal components, in particular in the form of boards are substantially vertically oriented storable. In addition, the system becomes more compact. so that the air flow flows over the components substantially in the vertical orientation from bottom to top or from top to bottom. The transport direction is then substantially in the horizontal direction, so that the vertically oriented components between the zones and at the inlet and at the outlet take over the respective Strömungsleit- and sealing function. Components can be arranged at an angle.

Bevorzugt sind die Leichtmetallbauteile selber auf eine Temperatur zwischen 200° und 450° C innerhalb der Ofenanlage erwärmbar. Hierbei finden dann metallurgische Prozesse der jeweils verwendeten Aluminiumlegierung, insbesondere Aluminiumknetlegierung statt, die später eine gute Umformbarkeit oder aber ein entsprechendes homogenes Gefüge mit den gewünschten Festigkeitseigenschaften erzeugt.Preferably, the light metal components themselves are heatable to a temperature between 200 ° and 450 ° C within the furnace. In this case, metallurgical processes of the respectively used aluminum alloy, in particular aluminum wrought alloy, take place, which subsequently have a good formability or else a produced corresponding homogeneous microstructure with the desired strength properties.

Die vorliegende Erfindung betrifft weiterhin ein Verfahren zum thermischen Behandeln von Leichtmetallbauteilen in einer Ofenanlage gemäß Anspruch 1, wobei die Ofenanlage mindestens eines der zuvor genannten Merkmale aufweist und das Verfahren folgende Verfahrensschritte umfasst:

  • Bestücken eines Transportbandes mit einer Vielzahl von hintereinander gereihten Leichtmetallbauteilen, insbesondere Leichtmetallplatinen
  • Befördern der Leichtmetallbauteile durch die Ofenanlage, wobei an einem Eintritt der Ofenanlage die Eintrittsöffnung durch das jeweils die Eintrittsöffnung passierende Leichtmetallbauteil abgedichtet wird,
  • Erzeugen eines kontinuierlich umgewälzten warmen Luftstromes und Überströmen der Leichtmetallbauteile in mindestens einer Temperaturzone innerhalb der Ofenanlage, während das Leichtmetallbauteil getaktet oder kontinuierlich weiter durch die Ofenanlage transportiert wird, wobei die Leichtmetallbauteile in der Ofenanlage konvektiv durch den Luftstrom erwärmt werden,
  • Austreten der thermisch behandelten Leichtmetallbauteile aus der Ofenanlage, wobei an einem Austrittsbereich der Ofenanlage eine Austrittsöffnung durch das jeweils die Austrittsöffnung passierende Leichtmetallbauteil abgedichtet wird.
The present invention further relates to a method for the thermal treatment of light metal components in a furnace installation according to claim 1, wherein the furnace installation has at least one of the aforementioned features and the method comprises the following method steps:
  • Equipping a conveyor belt with a plurality of successively lined light metal components, in particular light metal blanks
  • Conveying the light metal components through the furnace installation, the inlet opening being sealed by the light metal component passing through the inlet opening at each inlet of the furnace installation,
  • Generating a continuously circulated warm air flow and overflow of the light metal components in at least one temperature zone within the furnace plant, while the light metal component is clocked or continuously transported through the furnace, wherein the light metal components are heated convectively in the furnace by the air flow,
  • Exiting the thermally treated light metal components from the furnace, wherein at an outlet region of the furnace system, an outlet opening is sealed by the respectively passing the outlet opening light metal component.

Mit dem erfindungsgemäßen Verfahren ist es möglich, insbesondere hintereinander gereihte Leichtmetallbauteile, ganz besonders bevorzugt Leichtmetallplatinen auf einem Transportband bereitzustellen und kontinuierlich durch eine Ofenanlage zu führen. Innerhalb der Ofenanlage wird dann ein warmer Luft- oder Gasstrom mit Hilfe einer Wärmequelle erzeugt und durch ein Umluftgebläse in Zirkulation versetzt, so dass der warme Luft- oder Gasstrom die Leichtmetallbauteile überströmt. Das Leichtmetallbauteil selber erwärmt sich dann aufgrund der an der Oberfläche des Leichtmetallbauteils, insbesondere an einer Oberseite und auch einer Unterseite des Leichtmetallbauteils erzwungenen Konvektion, wodurch sich das Leichtmetallbauteil, insbesondere bei Verwendung einer Aluminiumlegierung aufgrund der guten Wärmeleitfähigkeit in besonders kurzer Zeit von mitunter nur wenigen Sekunden erwärmen lässt.With the method according to the invention, it is possible, in particular light alloy components arranged one behind the other, very particularly preferably to provide light metal blanks on a conveyor belt and to guide them continuously through a furnace installation. Within the furnace, a warm air or gas stream is then generated by means of a heat source and circulated by a circulating air blower so that the warm air or gas stream overflows the light metal components. The light metal component itself then heats up due to the on the surface of the light metal component, in particular on an upper side and also a lower side of the Light metal components forced convection, whereby the light metal component, especially when using an aluminum alloy due to the good thermal conductivity in a very short time of sometimes only a few seconds can be heated.

Erfindungsgemäß ist vorgesehen, dass an einem Eintritt und auch an einem Austritt der Ofenanlage die jeweilige Eintrittsöffnung bzw. Austrittsöffnung durch das jeweilig passierende Leichtmetallbauteil abgedichtet wird, so dass der innerhalb der Ofenanlage erzeugte Luft- oder Gasstrom kaum an die die Ofenanlage umgebende Luft entweicht. Im Rahmen der Erfindung können dann auch jeweils zwei oder drei die Eintrittsöffnung nacheinander passierende Leichtmetallbauteile gleichsam eine Dichtfunktion übernehmen. Gleiches gilt für die Austrittsöffnung.According to the invention, the respective inlet opening or outlet opening is sealed by the respectively passing light metal component at an inlet and also at an outlet of the furnace system, so that the air or gas flow generated within the furnace system hardly escapes to the air surrounding the furnace. In the context of the invention, two or three light metal components passing successively through the inlet opening can then assume a sealing function, as it were. The same applies to the outlet opening.

Innerhalb der Ofenanlage selber ist es möglich, durch Wahl der Strömungsgeschwindigkeit des Luft- oder Gasstroms und/oder der Luft- oder Gastemperatur des Luft- oder Gasstroms die Erwärmung des Leichtmetallbauteils einzustellen. Auch können zwei, drei oder mehr Temperaturzonen innerhalb der Ofenanlage unterteilt sein, wobei in jeder Zone dann durch die Parameter Strömungsgeschwindigkeit des Luftstroms oder aber auch Temperatur des Luftstroms unterschiedliche Erwärmungseffekte an dem Leichtmetallbauteil ausgeführt werden.Within the furnace itself, it is possible to adjust the heating of the light metal component by selecting the flow rate of the air or gas stream and / or the air or gas temperature of the air or gas stream. Also, two, three or more temperature zones may be subdivided within the furnace system, wherein in each zone then different heating effects are carried out on the light metal component by the parameters flow velocity of the air flow or else the temperature of the air flow.

Die thermisch behandelten Leichtmetallbauteile können im Rahmen der Erfindung insbesondere in einer Taktzeit von weniger als 15 Sekunden pro Bauteil einem weiteren Verarbeitungsverfahren zugeführt werden.The thermally treated light metal components can be supplied in the context of the invention, in particular in a cycle time of less than 15 seconds per component to another processing method.

Weiterhin bevorzugt weist die Ofenanlage eine Trocknungszone sowie eine Abkühlzone auf, wobei in der Trocknungszone die die Trocknungszone passierenden Leichtmetallbauteile getrocknet werden, insbesondere wird ein auf den Leichtmetallbauteilen vorhandenes Schmiermittel abgetrocknet. Ferner kann in einer Abkühlzone das Leichtmetallbauteil auf eine Kaltauslagerungstemperatur abgekühlt werden. Im Rahmen der Erfindung ist besonders bevorzugt eine Abkühlzone am Ende der Ofenanlage angeordnet, es können jedoch auch zwischen den einzelnen Temperaturzonen eine oder mehrere Abkühlzonen angeordnet werden, so dass ein erwärmtes Bauteil abgekühlt wird und anschließend wieder erwärmt wird.Further preferably, the kiln plant has a drying zone and a cooling zone, wherein in the drying zone the light metal components passing through the drying zone are dried, in particular a lubricant present on the light metal components is dried off. Furthermore, in a cooling zone, the light metal component can be cooled to a cold aging temperature. In the context of the invention, a cooling zone is particularly preferably arranged at the end of the furnace, but it can also be between the individual Temperature zones one or more cooling zones are arranged so that a heated component is cooled and then reheated.

Weiterhin bevorzugt werden bei dem erfindungsgemäßen Verfahren die in der Ofenanlage, insbesondere im Eintritt und im Austritt, aber auch an einem Übertritt zwischen den Zonen im Falle einer Mehrzonenofenanlage angeordneten Formblenden in Abhängigkeit der zu behandelnden Leichtmetallbauteile ausgetauscht. Die Formblenden werden insbesondere derart gewählt, dass eine Querspantfläche, welche orthogonal zur Transportrichtung angeordnet ist, in Verbindung mit dem jeweils die Formblende passierenden Leichtmetallbauteil oder aber auch mit zwei oder drei passierenden Leichtmetallbauteilen bestmöglich abdichtet, so dass der Luftstrom nicht entweichen kann.Furthermore, in the method according to the invention, the mold apertures arranged in the furnace installation, in particular in the inlet and outlet, but also at a transition between the zones in the case of a multi-zone furnace installation, are preferably exchanged depending on the light metal components to be treated. The mold apertures are selected in particular such that a transverse cutting surface, which is arranged orthogonally to the transport direction, seals in the best possible manner in conjunction with the light metal component passing through the mold aperture or even with two or three passing light metal components, so that the air flow can not escape.

Die zuvor genannten Merkmale sind im Rahmen der Erfindung beliebig untereinander kombinierbar mit den damit einhergehenden Merkmalen, ohne deren Rahmen zu verlassen. Ebenfalls sind die zuvor beschriebenen Parameter auf die nachfolgend beschriebenen Ausführungsformen uneingeschränkt anwendbar.The aforementioned features can be combined with each other in the context of the invention with the associated features without departing from their scope. Also, the parameters described above are fully applicable to the embodiments described below.

Weitere Vorteile, Merkmale, Eigenschaften und Aspekte der vorliegenden Erfindung sind Bestandteil der nachfolgenden Beschreibung. Bevorzugte Ausführungsvarianten werden in den schematischen Figuren dargestellt. Diese dienen dem einfachen Verständnis der Erfindung. Es zeigen:

Figur 1
die erfindungsgemäße Ofenanlage in einer Seitenansicht;
Figur 2
eine erfindungsgemäße Formblende in einer Draufsicht;
Figur 3
eine Stirnansicht auf den Eintrittsbereich einer Ofenanlage;
Figur 4
eine Stirnansicht bei verschieden großen Platinen und
Figur 5
eine Querschnittsansicht durch die Ofenanlage mit Kettenförderer und Wärmequelle.
Further advantages, features, characteristics and aspects of the present invention are part of the following description. Preferred embodiments are shown in the schematic figures. These are for easy understanding of the invention. Show it:
FIG. 1
the furnace installation according to the invention in a side view;
FIG. 2
a form of the invention in a plan view;
FIG. 3
an end view of the inlet region of a furnace system;
FIG. 4
an end view of different sized boards and
FIG. 5
a cross-sectional view through the furnace system with chain conveyor and heat source.

Figuren 6 bis 10 zeigen eine Ofenanlage, die nicht zum Gegenstand der Erfindung gehört. FIGS. 6 to 10 show a furnace, which does not belong to the subject invention.

In den Figuren werden für gleiche oder ähnliche Bauteile dieselben Bezugszeichen verwendet, auch wenn eine wiederholte Beschreibung aus Vereinfachungsgründen entfällt.In the figures, the same reference numerals are used for the same or similar components, even if a repeated description is omitted for reasons of simplicity.

Figur 1 zeigt eine erfindungsgemäße Ofenanlage 1 zum thermischen Behandeln von Leichtmetallbauteilen 2 in Form von Platinen. Ein Transportband 3 wird mit den Leichtmetallbauteilen 2 bestückt und transportiert die Leichtmetallbauteile 2 in Transportrichtung 4 in die Ofenanlage 1 hinein. Hierzu weist die Ofenanlage 1 einen Eintritt E auf, durch den die Leichtmetallbauteile 2 in die Ofenanlage 1 eintreten. Gleiches gilt für den Austritt A, hier weist die Ofenanlage 1 einen Austritt A auf. FIG. 1 shows an inventive furnace system 1 for the thermal treatment of light metal components 2 in the form of boards. A conveyor belt 3 is equipped with the light metal components 2 and transports the light metal components 2 in the transport direction 4 in the furnace 1 into it. For this purpose, the furnace 1 has an inlet E, through which the light metal components 2 enter the furnace 1. The same applies to the outlet A, here the furnace 1 has an outlet A on.

Innerhalb der Ofenanlage 1 trifft das Leichtmetallbauteil 2 dann zunächst auf eine Trocknungszone T, in der das Leichtmetallbauteil 2 von einem etwaigen Schmiermittel getrocknet wird. Innerhalb der Trocknungszone T zirkuliert ein Luftstrom L, der sowohl eine Vorderseite 5 als auch eine Rückseite 6 des Leichtmetallbauteils 2 umströmt. Von der Trocknungszone T tritt das Leichtmetallbauteil 2 in eine erste Temperaturzone Z1 über, in der wiederum ein Luftstrom L1 die Vorderseite 5 und die Rückseite 6 des Leichtmetallbauteils 2 umströmt. Der Luftstrom L1 in der ersten Temperaturzone Z1 weist dazu eine Strömungsgeschwindigkeit v1 sowie eine Temperatur T1 auf, mit der das Leichtmetallbauteil 2 umströmt wird und somit eine vorgegebene Bauteiltemperatur innerhalb der Temperaturzone Z1 erfährt.Within the furnace 1, the light metal component 2 then strikes a drying zone T, in which the light metal component 2 is dried by a possible lubricant. Within the drying zone T circulates an air flow L, which flows around both a front side 5 and a rear side 6 of the light metal component 2. From the drying zone T, the light metal component 2 passes into a first temperature zone Z1, in which an air flow L1 flows around the front side 5 and the rear side 6 of the light metal component 2. For this purpose, the air flow L1 in the first temperature zone Z1 has a flow velocity v1 and a temperature T1, with which the light metal component 2 flows around and thus experiences a predetermined component temperature within the temperature zone Z1.

Anschließend tritt das Leichtmetallbauteil 2 in eine zweite Temperaturzone Z2 ein, in der es wiederum mit einem Luftstrom L2 an einer Vorderseite 5 und einer Rückseite 6 überströmt wird, wobei der Luftstrom L2 der zweiten Temperaturzone Z2 eine zweite Strömungsgeschwindigkeit v2 und eine zweite Temperatur T2 aufweist. Hierdurch wird eine Bauteiltemperatur des Leichtmetallbauteils 2 beim Passieren der zweiten Temperaturzone T2 eingestellt.Subsequently, the light metal component 2 enters a second temperature zone Z2, in which it in turn with an air flow L2 on a front side 5 and a back 6 is overflowed, wherein the air flow L2 of the second temperature zone Z2 has a second flow velocity v2 and a second temperature T2. As a result, a component temperature of the light metal component 2 is set when passing through the second temperature zone T2.

Nach der zweiten Temperaturzone T2 tritt das Leichtmetallbauteil 2 in eine Abkühlzone Z3 über, wobei das Leichtmetallbauteil 2 in der Abkühlzone Z3 wiederum mit einem Luftstrom L3 an Vorderseite 5 und Rückseite 6 überströmt wird, der eine dritte Strömungsgeschwindigkeit v3 sowie eine dritte Temperatur T3 aufweist, wobei insbesondere die Temperatur T3 niedriger ist als die Temperatur T1 und T2 sowie die Strömungsgeschwindigkeit v3 höher ist als die Strömungsgeschwindigkeiten v1 und v2. Hierdurch wird das Bauteil in der hier dargestellten Variante in der Abkühlzone Z3 auf eine Abkühltemperatur abgekühlt. Danach tritt das Bauteil an einem Austritt A aus der Ofenanlage 1 aus und wird entnommen und somit als thermisch behandeltes Bauteil 7 einer nicht näher dargestellten Weiterverarbeitung zugeführt.After the second temperature zone T2, the light metal component 2 passes into a cooling zone Z3, the light metal component 2 in the cooling zone Z3 in turn being overflowed with an air flow L3 on the front 5 and back 6, which has a third flow velocity v3 and a third temperature T3 in particular, the temperature T3 is lower than the temperature T1 and T2 and the flow velocity v3 is higher than the flow velocities v1 and v2. As a result, the component is cooled in the variant shown here in the cooling zone Z3 to a cooling temperature. Thereafter, the component occurs at an outlet A from the furnace 1 and is removed and thus supplied as a thermally treated component 7 of a further processing, not shown.

Die einzelnen Luftströme L können aus einem nicht näher dargestellten Umluftgebläse erzeugt werden und dann mittels Variation eines Querschnitts oder aber eines Ventils die Strömungsgeschwindigkeit v1, v2, v3 der jeweiligen Zone angepasst eingestellt werden. Im Rahmen der Erfindung ist es jedoch auch möglich, jeder Zone ein eigenes Umluftgebläse zuzuordnen. Gleiches gilt für die Temperatur. Diese kann von einer Wärmequelle erhitzt werden oder aber auch von verschiedenen Wärmquellen, beispielsweise ist jeder Temperaturzone Z1, Z2 eine separate Wärmequelle zugeordnet.The individual air streams L can be generated from a circulating air fan not shown in detail, and then the flow speed v1, v2, v3 of the respective zone can be adjusted by means of variation of a cross section or a valve. In the context of the invention, however, it is also possible to assign each zone its own circulating air blower. The same applies to the temperature. This can be heated by a heat source or else from different heat sources, for example, each temperature zone Z1, Z2 is assigned a separate heat source.

In der Figur 1 dargestellten Variante sind die Leichtmetallbauteile 2 in Form von Platinen zwischen Steckvorrichtungen 8 angeordnet, so dass sie im Wesentlichen vertikal orientiert in Transportrichtung 4 durch die Ofenanlage 1 transportiert werden. Im Rahmen der Erfindung ist es jedoch auch möglich, wie in Figur 2 dargestellt, die Platinen im Wesentlichen in einem Winkel α durch die Ofenanlage 1 zu befördern. Sowohl am Eintritt E, als auch am Austritt A, genauso wie zwischen den einzelnen Zonen sind Formblenden 9 angeordnet, wobei die Formblenden 9 näher dargestellt sind in Figur 3.In the FIG. 1 In the variant shown, the light metal components 2 are arranged in the form of boards between plug-in devices 8, so that they are transported through the furnace installation 1 oriented substantially vertically in the transport direction 4. In the context of the invention, however, it is also possible, as in FIG. 2 shown to convey the boards substantially at an angle α through the furnace 1. Both at the inlet E, as well as at the outlet A, as well as between the individual zones are arranged mold apertures 9, wherein the mold apertures 9 are shown in more detail in FIG FIG. 3 ,

Figur 3 zeigt eine erfindungsgemäße Formblende 9 in einer Draufsicht. Das Leichtmetallbauteil 2 passiert in Transportrichtung 4, also auf die Bildebene bezogen in diese hinein, die Formblende 9, wobei zwischen dem äußeren Rand 10 des Leichtmetallbauteils 2 und der Öffnung 11 ein Spalt 12 verbleibt, den es zu minimieren gilt, so dass möglichst wenig des Luftstroms L über den Spalt 12 aus den Temperaturzonen Z1, Z2 oder aber aus dem Eintritt E oder Austritt A der Ofenanlage 1 entweichen kann. FIG. 3 shows a mold panel 9 according to the invention in a plan view. The light metal component 2 passes in the transport direction 4, so based on the image plane in this, the mold aperture 9, wherein between the outer edge 10 of the light metal component 2 and the opening 11, a gap 12 remains to minimize it, so that as little as possible Air flow L can escape via the gap 12 from the temperature zones Z1, Z2 or from the inlet E or outlet A of the furnace 1.

Das Leichtmetallbauteil 2 gemäß Figur 3 weist eine asymmetrische Konfiguration auf, es ist jedoch auch möglich, große und kleine viereckige Platinen durch Austausch der Formblenden 9 durch die Ofenanlage 1 zu führen. Dies ist in Figur 4 dargestellt, in der ein kleines Leichtmetallbauteil 2 durch die Formblende 9 erfasst ist, und durch die gestrichelte Linie angedeutet, durch Austausch der Formblende 9 auch ein in den geometrischen Abmessungen größeres Leichtmetallbauteil 2 durch die Ofenanlage 1 beförderbar ist, wobei jeweils zwischen dem Leichtmetallbauteil 2 und der Formblende 9 ein geringer Spalt 12 verbleibt.The light metal component 2 according to FIG. 3 has an asymmetric configuration, but it is also possible to lead large and small square boards by replacing the mold aperture 9 through the furnace 1. This is in FIG. 4 represented, in which a small light metal component 2 is detected by the mold panel 9, and indicated by the dashed line, by replacing the mold panel 9 also in the geometrical dimensions larger light metal component 2 is conveyed through the furnace 1, wherein each between the light metal component 2 and the mold plate 9 a small gap 12 remains.

Ferner zeigt Figur 5 eine Querschnittsansicht durch die erfindungsgemäße Ofenanlage 1, wobei das Leichtmetallbauteil 2 durch die Ofenanlage 1 in Transportrichtung 4 befördert wird und in der Querschnittsansicht eine Draufsicht auf eine Formblende 9 dargestellt ist. Es ist beispielsweise dargestellt ein Querschnitt durch die Temperaturzone Z1. Im unteren Teil der Ofenanlage 1 befindet sich ein Umluftgebläse 13, dass die Luftzirkulation innerhalb der Temperaturzone Z1 erzeugt. Der von dem Umluftgebläse 13 umgewälzte Luftstrom L passiert ein Heizregister 14 und wird dort erwärmt und strömt im Anschluss daran über das Leichtmetallbauteil 2. In einem oberen Bereich wird der Luftstrom L gesammelt und wiederum dem Umluftgebläse 13 zugeführt. Hier dargestellt sind ebenfalls Zusatzheizaggregate 15, mit denen es möglich ist, den Luftstrom L entsprechend zusätzlich zu heizen oder aber auch ausschließlich zu heizen, so dass die Wärmequelle dem Umluftgebläse 13 vorgeschaltet und nicht wie das Heizregister 14 nachgeschaltet ist.Further shows FIG. 5 a cross-sectional view through the furnace installation 1 according to the invention, wherein the light metal component 2 is conveyed through the furnace installation 1 in the transport direction 4 and in the cross-sectional view is a plan view of a mold panel 9 is shown. It is for example shown a cross section through the temperature zone Z1. In the lower part of the furnace 1 is a circulating air fan 13 that generates the air circulation within the temperature zone Z1. The air flow L circulated by the circulating air blower 13 passes through a heating register 14 where it is heated and subsequently flows via the light metal component 2. In an upper region, the air flow L is collected and in turn fed to the circulating air blower 13. Shown here are also additional heating units 15, with which it is possible to heat the air flow L in addition to or also to heat exclusively, so that the heat source upstream of the circulating air blower 13 and not like the heating coil 14 is connected downstream.

Bezugszeichen:Reference numerals:

  • 1 - Ofenanlage1 - Furnace plant
  • 2 - Leichtmetallbauteil2 - light metal component
  • 2a - längere Platine2a - longer board
  • 2b - gewellte Platine2b - corrugated board
  • 2c - Bauteil2c - component
  • 3 - Transportband3 - conveyor belt
  • 4 - Transportrichtung4 - Transport direction
  • 5 - Vorderseite zu 25 - Front to 2
  • 6 - Rückseite zu 26 - back to 2
  • 7 - thermisch behandeltes Leichtmetallbauteil7 - thermally treated light metal component
  • 8 - Steckvorrichtung8 - plug-in device
  • 9 - Formblende9 - mold panel
  • 10- äußerer Rand zu 210- outer edge to 2
  • 11 - Öffnung zu 911 - opening to 9
  • 12 - Spalt12 - gap
  • 13 - Umluftgebläse13 - Circulation fan
  • 14 - Heizregister14 - Heating register
  • 15 - Zusatzheizaggregat 16 - Trennwand15 - Additional heating unit 16 - Partition wall
  • 17 - Rücklauf17 - return
  • 18 - Schott18 - bulkhead
  • 19a, 19b - zweigeteiltes Schott19a, 19b - two-part bulkhead
  • 20 - Hülle20 - Case
  • 21 - Dichtlabyrinth21 - sealing labyrinth
  • 22 - Schlitz22 - slot
  • 23 - Aktuator23 - actuator
  • 24 - Koppelstange24 - coupling rod
  • a - Abstanda - distance
  • a1 - Abstanda1 - distance
  • a2 - Abstanda2 - distance
  • A - AustrittA - exit
  • E - EintrittE - entrance
  • h - Bauhöhe zu 17h - height to 17
  • T - TrocknungszoneT - drying zone
  • L - LuftstromL - airflow
  • L1 - Luftstrom zu Z1L1 - air flow to Z1
  • L2 - Luftstrom zu Z2L2 - air flow to Z2
  • L3 - Luftstrom zu Z3L3 - Airflow to Z3
  • Z1 - erste TemperaturzoneZ1 - first temperature zone
  • Z2 - zweite TemperaturzoneZ2 - second temperature zone
  • Z3 - AbkühlzoneZ3 - cooling zone
  • v1 - Strömungsgeschwindigkeit von L1 in Z1v1 - flow velocity from L1 to Z1
  • v2 - Strömungsgeschwindigkeit von L2 in Z2v2 - flow velocity from L2 to Z2
  • v3 - Strömungsgeschwindigkeit von L3 in Z3v3 - flow velocity of L3 in Z3
  • T1 - Temperatur von L1 in Z1T1 - temperature of L1 in Z1
  • T2 - Temperatur von L2 in Z2T2 - temperature of L2 in Z2
  • T3 - Temperatur von L3 in Z3T3 - temperature of L3 in Z3
  • R - RelativbewegungR - relative movement
  • a - Winkela - angle

Claims (13)

  1. Furnace system (1) for thermally treating light metal components (2), wherein the light metal components (2) are continuously conveyable through the furnace system (1) and the furnace system (1) has a heat source, wherein an air flow (L) is circulated in the furnace system (1) and the light metal components (2) in the furnace system (1) are convectively heated by the air flow (L), characterised in that sealing elements are arranged at the inlet (E) and the outlet (A) as interchangeable shaping panels (9), wherein the shaping panels (9) have an opening (11) which substantially correspond to a reference area of the light metal components (2) arranged orthogonally to the conveying direction (4) such that a light metal component (2) respectively entering the furnace system (1) and a light metal component (2) respectively exiting the furnace system (1) are formed as a pressure seal impeding the air flow (L) from escaping out of the furnace system (1).
  2. Furnace system according to claim 1, characterised in that the heat source is formed as an electric heating system and/or in that the heat source is formed as a fuel heating system.
  3. Furnace system according to claim 1 or 2, characterised in that an air circulating fan (13) generates the air flow (L) inside the furnace system (1).
  4. Furnace system according to any one of claims 1 to 3, characterised in that the furnace system (1) has at least two temperature areas (Z1, Z2), wherein the light metal components (2) can be used as a pressure seal between the areas (Z1, Z2, Z3), in particular interchangeable shaping panels (9) are arranged at a transition between the areas (Z1, Z2, Z3).
  5. Furnace system according to any one of claims 1 to 4, characterised in that the furnace system (1) has a drying area in the region of its inlet (E) and/or in that the furnace system (1) has a cooling area (Z3) in the region of its outlet (A).
  6. Furnace system according to any one of claims 1 to 5, characterised in that the circulated air flow (L) flows over the light metal components (2) in a laminar manner when passing through the furnace system (1), in particular the overflow takes place at different temperature areas (Z1, Z2) at air temperatures different to one another and/or at flow speeds different from one another.
  7. Furnace system according to any one of claims 1 to 6, characterised in that the light metal components (2) are transportable through the furnace system (1) on a transport belt (3), in particular on a chain conveyor.
  8. Furnace system according to any one of claims 1 to 7, characterised in that the light metal components (2) are heatable to a temperature of between 200 and 450°C.
  9. Method to thermally treat light metal components (2) in a furnace system (1) according to at least claim 1, characterised by the following method steps:
    - fitting a transport belt (3) with a number of light metal components (2) placed one behind the other, in particular light metal plates
    - conveying the light metal components (2) through the furnace system (1), wherein the inlet opening at the inlet (E) of the furnace system (1) is sealed by the light metal component (2) respectively passing the inlet opening,
    - generating a continuously circulating hot air flow (L) and flowing over the light metal components (2) in at least one temperature area (Z1, Z2) inside the furnace system (1) while the light metal component (2) is continuously transported further through the furnace system (1), wherein the light metal components (2) in the furnace system (1) are heated convectively by the air flow (L),
    - the thermally-treated light metal components (2) exiting the furnace system (1), wherein an outlet opening at an outlet region of the furnace system (1) is sealed by the light metal component (2) respectively passing the outlet opening.
  10. Method according to claim 9, characterised in that the heating of the light metal components (2) is set by selecting the flow speed of the air flow (L) and/or the air temperature in the individual temperature areas (Z1, Z2).
  11. Method according to claim 9 or 10, characterised in that the light metal components (2) are supplied in a cycle time of less than 15 seconds to a further processing operation.
  12. Method according to any one of claims 9 to 11, characterised in that lubricating means are dried off the light metal components (2) in the drying area and/or they are cooled in the cooling area to a natural aging temperature.
  13. Method according to any one of claims 9 to 12, characterised in that the shaping panels (9) are interchanged as a function of the light metal components (2) to be treated.
EP13167263.6A 2012-05-25 2013-05-10 Kiln assembly and method for operating the kiln assembly Not-in-force EP2667132B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012104537A DE102012104537A1 (en) 2012-05-25 2012-05-25 Furnace plant and method for operating the furnace

Publications (3)

Publication Number Publication Date
EP2667132A2 EP2667132A2 (en) 2013-11-27
EP2667132A3 EP2667132A3 (en) 2013-12-18
EP2667132B1 true EP2667132B1 (en) 2019-02-27

Family

ID=48366212

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13167263.6A Not-in-force EP2667132B1 (en) 2012-05-25 2013-05-10 Kiln assembly and method for operating the kiln assembly

Country Status (3)

Country Link
US (1) US20130313763A1 (en)
EP (1) EP2667132B1 (en)
DE (1) DE102012104537A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014110415B4 (en) 2014-07-23 2016-10-20 Voestalpine Stahl Gmbh Method for heating steel sheets and apparatus for carrying out the method
DE102015003120A1 (en) * 2015-03-11 2016-09-15 Mall Herlan Mb Gmbh tempering
US10335845B2 (en) 2016-04-20 2019-07-02 Ford Global Technologies, Llc Hot-stamping furnace and method of hot stamping
US10350664B2 (en) 2016-06-30 2019-07-16 Ford Global Technologies, Llc Furnace assembly and method for hot-stamping vehicle components

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1865954A (en) * 1931-01-08 1932-07-05 Thomas F Powers Preheating furnace
US2139067A (en) * 1937-02-11 1938-12-06 Nat Tube Co Continuous heating furnace
US2872175A (en) * 1955-02-14 1959-02-03 Cie De Pont A Mousson Annealing furnace
ATE1667T1 (en) * 1978-05-26 1982-11-15 The Hepworth Iron Company Limited PROCESS, FURNACE AND PLANT FOR FIRING CERAMIC PRODUCTS.
DE3200582C1 (en) * 1982-01-12 1983-04-07 Heinrich, Emil, 7054 Korb Process for removing lubricants from molded parts pressed from metal powder and device for carrying out the process
FR2647885B1 (en) * 1989-05-31 1991-12-20 Mustad Fils Sa O FORGE TUNNEL WITH UNIT LOAD CHAIN CONVEYOR
US6036485A (en) * 1999-05-21 2000-03-14 Danieli Corporation Annealing furnace
JP4305716B2 (en) * 2002-02-12 2009-07-29 Dowaホールディングス株式会社 Heat treatment furnace
DE10256621B3 (en) * 2002-12-03 2004-04-15 Benteler Automobiltechnik Gmbh Continuous furnace used in the production of vehicle components, e.g. B-columns, comprises two zones lying opposite each other and separated from each other by a thermal insulating separating wall
DE102005029780A1 (en) * 2005-06-24 2006-12-28 Otto Junker Gmbh Furnace for heating long aluminum strands
SE530124C2 (en) * 2005-11-08 2008-03-04 Morphic Technologies Ab Publ Arrangement and method of heating metal objects
DE102005057742B3 (en) * 2005-12-02 2007-06-14 Voestalpine Automotive Holding Gmbh Method and device for heating steel components
US8039289B2 (en) * 2009-04-16 2011-10-18 Tp Solar, Inc. Diffusion furnaces employing ultra low mass transport systems and methods of wafer rapid diffusion processing
DE102010019215A1 (en) 2010-05-04 2011-11-10 Bsn Thermprozesstechnik Gmbh Transportation system such as a conveyor is useful in a device for heating steel sheets to press-hardening
FR2974788B1 (en) * 2011-05-05 2013-05-24 Sidel Participations CARPETS FOR TRANSPORTING PRODUCTS IN A TUNNEL FURNACE
FR2984371B1 (en) * 2011-12-20 2014-01-10 Saint Gobain Isover STOVE FOR THE PRODUCTION OF A MINERAL WOOL PRODUCT

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20130313763A1 (en) 2013-11-28
DE102012104537A1 (en) 2013-11-28
EP2667132A2 (en) 2013-11-27
EP2667132A3 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
EP2989220B1 (en) Device for press hardening components
EP2497840B2 (en) Oven system for partially heating steel blanks
DE102005032113B3 (en) Thermal deformation and partial hardening apparatus, e.g. for automobile components, comprises mold of at least two parts, each formed from segments adjustable to different temperatures
DE102014110415B4 (en) Method for heating steel sheets and apparatus for carrying out the method
EP1867738B2 (en) Hot forming line
DE102007012180B3 (en) Heat treating method for semi-finished steel products is carried out in continuous furnace, semi-finished product being passed into first zone and then moved so that section of it is in second zone at a different temperature from first
EP3408417B1 (en) Heat treatment method
EP2667132B1 (en) Kiln assembly and method for operating the kiln assembly
EP2110448A2 (en) Method and circulation oven for heating workpieces
EP3420111B1 (en) Process for targeted heat treatment of individual component zones
WO2015110456A1 (en) Heat treatment device
EP3408420B1 (en) Method of heat treating a metallic component
EP3408416B1 (en) Heat treatment method and heat treatment device
WO2017025460A1 (en) Method for heat treatment of a sheet steel component and heat treatment apparatus therefor
WO2019141682A1 (en) Continuous furnace for aluminum strips
DE102012102194A1 (en) Furnace useful for thermal treatment of metallic components, comprises heat source, preferably radiant heat source provided in first temperature zone such that first portion of component is heated and/or maintained at specific temperature
EP2920535B1 (en) Roller hearth furnace and method for the heat treatment of metal sheets
AT523871B1 (en) convection oven
DE102014002258A1 (en) System and method for tempering workpieces and product carriers for a system for tempering workpieces
DE102016109095B4 (en) Apparatus and method for partial hardening of sheet steel components
DE102005033042B3 (en) Preheating of e.g. sheet for hot-pressing in automobile industry, employs heat released by cooling- and deformation processes, to preheat workpieces before forming
DE102020133461A1 (en) Thermal treatment of components
DE102020133462A1 (en) Thermal treatment of components
DE102020111615A1 (en) Process for retrofitting a heat treatment system
DE102019122670A1 (en) Device for transferring heat between a gas flow and a fiber composite resin system, equipment and manufacturing process

Legal Events

Date Code Title Description
PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F27D 99/00 20100101ALI20131112BHEP

Ipc: F27B 9/20 20060101AFI20131112BHEP

Ipc: F27B 9/24 20060101ALI20131112BHEP

Ipc: F27B 9/30 20060101ALI20131112BHEP

17P Request for examination filed

Effective date: 20140618

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171012

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181018

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20190109

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013012265

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1101977

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190227

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013012265

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

26N No opposition filed

Effective date: 20191128

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200522

Year of fee payment: 8

Ref country code: DE

Payment date: 20200529

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1101977

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200603

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130510

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013012265

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210510

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227