EP2652330B1 - Kompressor, druckluftversorgungsanlage, pneumatisches system und verfahren zum betreiben einer druckluftversorgungsanlage - Google Patents

Kompressor, druckluftversorgungsanlage, pneumatisches system und verfahren zum betreiben einer druckluftversorgungsanlage Download PDF

Info

Publication number
EP2652330B1
EP2652330B1 EP11787619.3A EP11787619A EP2652330B1 EP 2652330 B1 EP2652330 B1 EP 2652330B1 EP 11787619 A EP11787619 A EP 11787619A EP 2652330 B1 EP2652330 B1 EP 2652330B1
Authority
EP
European Patent Office
Prior art keywords
compressor
compressed
air supply
air
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11787619.3A
Other languages
English (en)
French (fr)
Other versions
EP2652330A1 (de
Inventor
Uwe Stabenow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF CV Systems Hannover GmbH
Original Assignee
Wabco GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wabco GmbH filed Critical Wabco GmbH
Publication of EP2652330A1 publication Critical patent/EP2652330A1/de
Application granted granted Critical
Publication of EP2652330B1 publication Critical patent/EP2652330B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
    • B60G17/0408Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics details, e.g. antifreeze for suspension fluid, pumps, retarding means per se
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
    • B60G17/056Regulating distributors or valves for hydropneumatic systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B5/00Machines or pumps with differential-surface pistons
    • F04B5/02Machines or pumps with differential-surface pistons with double-acting pistons

Definitions

  • the invention relates to a compressor for a compressed air supply of a compressed air supply system for operating a pneumatic system according to the preamble of claim 1 and a compressed air supply system according to the preamble of claim 14. Further, the invention relates to a pneumatic system according to claim 19 and a method according to the preamble of claim 20 ,
  • a compressed air supply system is used in vehicles of all kinds, in particular for supplying an air spring system of a vehicle with compressed air.
  • Air suspension systems may also include level control devices, with which the distance between the vehicle axle and vehicle body can be adjusted.
  • An air spring system of a pneumatic system mentioned above comprises a number of air bellows pneumatically connected to a common line (gallery), which can lift the vehicle body with increasing filling and accordingly lower with decreasing filling. With increasing distance between the vehicle axle and vehicle body or ground clearance, the spring travel longer and larger bumps can be overcome without causing a contact with the vehicle body.
  • such systems are increasingly being used in off-road vehicles and sport utility vehicles (SUVs). Especially with SUVs, it is desirable for very powerful engines to provide the vehicle on the one hand for high speeds on the road with relatively low ground clearance and on the other hand to provide for the terrain with a relatively large ground clearance.
  • DE 10 2008 034 240 A1 discloses a compressed air supply system of the type mentioned. This provides a compressor with a first and a second compressor stage, which can be used together to fill an air spring system comparatively quickly and at high pressures. Overall, the performance of two- or multi-stage compressors turns out to be superior to a single-stage compressor.
  • a two-stage compressor is provided which has a suction space and a compression space in each compression stage. The per se advantageous two-stage design of the compressor is still improvable.
  • double-piston compressors such as those in DE 103 21 771 A1 or DE 197 15 291 C2 are described, in particular due to the parts and space requirements and their weight as still to be improved.
  • Known per se double-piston compressors with a first and a second compressor stage are still improved due to the caused by a double piston little compact design and inevitably high mass inertia of the system.
  • a two-stage compressor of JP9088819A provides a piston and two compression chambers of different volume, which are formed outside of the cylinder space. This compressor can be improved in particular in terms of space requirements.
  • Desirable is a two- or multi-stage compaction, which preserves the benefits associated with a two-stage compaction, which nevertheless can be implemented more compact and flexible.
  • the FR2036744 discloses a device for pressurizing and lubricating a two-stage compressor with suction and discharge lines connected in series, and two compression pistons fixed to each other with respective piston rings.
  • the GB214907 discloses a compressor having a cylinder with adjacent coaxial bores respectively provided for a compression stage, the bore of the low pressure stage being provided at each end with intake and exhaust valves, and the adjacent smaller bores at its distal end only with suction and pressure valves, all areas are provided inside the cylinder, and compression spaces and a cylinder head, which is releasably secured to the larger end of the cylinder.
  • the stepped piston has a piston ring seal per piston stage, the smallest compression stage, ie low-pressure compression chamber, of the piston being assigned to the side of the piston rod and the compression chamber having the highest pressure being assigned to the piston end to the compressor housing.
  • the low pressure compression chamber is sealed by two stuffing boxes in the compressor housing opposite the piston rod.
  • the DE1403963 discloses a compressor with at least three stages. Using one-stage pistons in one in which the weaker part of the piston faces the piston drive element and the larger diameter piston head sucks from ambient, while a higher pressure stage is provided in the annulus formed by the stepped piston and valves are arranged on suction and discharge nozzles, wherein at least two cylinders are provided, suck all piston heads from the environment and together form the first pressure stage and at most two annular spaces in the cylinders form a higher pressure level, wherein the piston shafts of the differential pistons for higher stages increasingly larger diameter.
  • the invention begins, whose task is to provide an apparatus and a method for operating a pneumatic system, wherein an improvement in the availability of compressed air while still compact design of the device and flexible process management should be possible.
  • a compressor should have a comparatively high efficiency while still having a compact design.
  • the compressed air supply system for a filling operation of the pneumatic system to make a compressed air available in an improved manner.
  • a noise emission during operation of the compressor or the compressed air supply system should be kept comparatively low.
  • the object relating to the device is achieved by a compressor of the type mentioned, in which according to the invention, the features of the characterizing part of claim 1 are provided.
  • the invention is based on the consideration that a known per se compressor with a first and second compressor stage for a compressed air supply should be able to produce comparatively high pressure differences - these are regularly above the atmospheric pressure to maximum pressures of at least 20bar, sometimes up to 30bar or more , In addition, should - especially for the intended use of an air suspension system of a vehicle compressed air comparatively quickly and flexibly available.
  • the invention has recognized that it is possible to provide a two-stage compressor unit for a compressor.
  • the compact design as a two-stage compressor unit according to the invention comprises a single cylinder with a single in a compression chamber of the cylinder on two sides pressurizable piston.
  • the invention has recognized that such a two-stage compressor unit can be made comparatively compact and lightweight, without compromising efficiency and performance.
  • the execution of a two-stage compressor unit offers particularly good possibilities of sound emission limitation.
  • An optimal 180 ° phase shift of a compression in the first compressor stage relative to the second compressor stage is ensured due to the arrangement of the compressor chambers to the piston.
  • the invention provides that the piston of the two-stage compressor unit is designed as a stepped piston with a flat side and with a step side adjoining a piston rod.
  • the invention provides that the piston rod rigidly, in particular vertically adjoins the stepped side of the piston.
  • a surface of the flat side of the piston is designed to be larger than a surface of the stepped side of the piston particularly simple.
  • the first compressor stage is accordingly advantageously located on the flat side of the piston and has a larger stroke volume than the second compression chamber adjoining the stage side.
  • the invention provides for solving the problem with respect to the device further a compressed air supply system of claim 14, having a compressor according to the invention.
  • the compressed air supply system is used to operate a pneumatic system in which an air supply is connected to the air supply port and to the second compressed air supply port, a pressure medium reservoir is connected.
  • the invention also leads to a pneumatic system of claim 19.
  • the concept of the invention offers, in particular as regards the method, an optional boost function for the second compressor stage.
  • the concept of the invention provides an air supply port at the first compressor stage.
  • Air supplied via the air supply connection can be compressed to a low pressure level in the first compressor stage and the compressed compressed air in the second compressor stage can be further compressed to a high pressure level.
  • the compressor optionally provides a second compressed air supply connection between the first and second compressor stage, which can be optionally used.
  • the second compressor stage can thus be supplied, in addition to compressed air compressed to a low pressure level, with further compressed air, preferably from a pressure medium reservoir.
  • the piston rod in particular rigidly connected to the piston and then guided axially over the joint in a connecting region between the cylinder housing and the crankcase to the compression chamber passing through the guide channel and is arranged movable.
  • the piston can then advantageously be reciprocated along the axis of the cylinder along with the piston rod in an axial movement. This advantage is particularly true when the piston rod itself is rigidly connected to the piston. Volume variability in the compression chamber is kept low and dead spaces are avoided.
  • Advantageously causes a piston assembly with rigid piston rod in the cylinder also a particularly stable and thus not least movable arrangement.
  • a particularly preferred structural realization provides for the formation of the joint before a coupled to a drive shaft crankshaft, with which the piston rod is connected via a coupling rod.
  • the coupling rod is connected to both a crankshaft and at an opposite end of the piston piston rod by means of a angularly movable joint.
  • another linkage or a variant of a joint that is alternative to a linkage can also be used.
  • the guide channel is provided with guide and / or sealing means which use the gap between the piston rod and a wall of the guide channel for improved guidance of the piston rod on the one hand and / or for sealing the gap on the other.
  • a two-stage seal of the gap has been found.
  • a first sealing means is provided for this purpose as a high-pressure seal on a section of the guide channel facing the second compressor chamber.
  • a second sealant is additionally formed as an environmental seal on a portion of the guide channel facing a crankcase.
  • a double-stage seal ensures safe operation of the compressor even at high pressures.
  • the effort of a double-stage seal proves to be particularly effective because it combines sealing and guiding effect.
  • only the or the high-pressure seal may be formed as a guide element for the piston rod. In this way, a reliable seal to the compression chamber of the cylinder on the one hand and the ambient space of the crankcase on the other hand is achieved under the leadership of the piston rod.
  • the first and second compression chamber are pneumatically connected via a connecting line, wherein the compressed air supply connection is arranged in the connecting line.
  • the connecting line is advantageous to open by suitable cylinder valves and closable - expediently clocked according to the compression cycles of the two-stage compression.
  • the input and output sides of the connecting line d. H. Cylinder valves for opening or closing the connecting line provided at an orifice to the first compression chamber or inlet of the second compression chamber.
  • the connecting line has or represents an intercooler.
  • an intercooler function has the particular advantage that highly compressed charge air from the second compressor stage has a comparatively low temperature.
  • this has the advantage that cooled, precompressed charge air from the first compressor stage can be better compressed further in a second compressor stage.
  • the intercooler may be formed, for example, in the form of a heat exchanger arrangement with a cooling circuit that removes heat from the connecting line and discharges it.
  • a suitable heat-dissipating means may be provided in the connecting line (in the present embodiment, particularly advantageously realizable). Particularly advantageous is a heat transfer between the compressed air in the connecting line and the environment, in particular of the cylinder housing, improving heat transfer or heat transfer agent.
  • a heat dissipation means may be formed, for example, as a cooling passage or the like guided in the vicinity or to the connection line.
  • a heat transfer medium can be formed, for example, in the form of a rib, a flag or any other heat transfer medium which improves the surface between the connecting line and the surroundings.
  • the connecting line is formed in a housing wall of the cylinder.
  • the connecting line can also-wholly or partially-run outside the housing wall as required, in particular at least in some cases outside the cylinder.
  • an intercooler in particular a heat exchanger and / or a heat removal means, in the external connection line.
  • Such intercooling, heat dissipation can be realized with a comparatively large capacity and designed very effectively. In this case, an intercooler can still be realized comparatively compact.
  • a particularly compact development provides that the connecting lines as a passage of a piston body, in particular a piston head, the piston is formed.
  • the implementation may in particular have the abovementioned heat removal means and a suitable arrangement of cylinder valves.
  • the implementation is advantageously connected via a cylinder valve to a second compressor stage.
  • the invention leads to the solution of the problem also to a compressed air supply system with an aforementioned compressor and a pneumatic system with the compressed air supply system and a pneumatic system.
  • the pneumatic system is particularly preferably formed in the form of an air spring system of a vehicle.
  • the air suspension system preferably has a number of air springs.
  • An air spring is formed as a combination of a bellows with a spring valve. The spring valve regulates the air filling or venting of the bellows.
  • the method offers in a particularly preferred way the possibility that the compressed air supply is operated open in the first operating mode.
  • an open operation an operation is understood in the compressed air supply open is against the environment, namely with supply of air from the environment via the air supply port.
  • the method also offers the possibility, in addition to or as an alternative to the aforementioned refinements, to operate the compressed air supply in the second operating mode closed.
  • the air supply port is closed.
  • compressed air is supplied only from the pressure medium container of the second compression stage.
  • boost mode encompassed by the second operating mode, air can also be supplied via the air supply connection and also compressed air from the pressure medium reservoir to the compression chamber in the cylinder.
  • the concept of the invention is not limited to the design of a vent line and main pneumatic line described in the following embodiments.
  • solenoid valve assemblies to provide a separation function between the pneumatic system and compressed air supply system and / or a venting function.
  • a vent solenoid valve arrangement may be provided which provides a directly venting vent valve in the vent line.
  • a bleed solenoid valve assembly may be provided which provides a pilot operated bleed valve in the bleed line, with a control valve providing a pressure of the main pneumatic line uses to pressurize the vent valve with a control pressure.
  • the solenoid valve arrangement may be electrically controllable and in particular provide a suitable number and configuration of directional control valves, for example a 2/2-way or a 3/2-way valve, which if required can also be realized in a double-armature solenoid valve or the like construction.
  • Fig. 1 shows a pneumatic system 300 with a compressed air supply system 100 and a presently formed in the form of an air spring system of a vehicle 400, not shown, the pneumatic system 200th
  • the air spring system is formed with an exemplary number of four air springs 210, wherein each air spring 210 is associated with a wheel of a vehicle 400, not shown. From the vehicle 400, the support 410, which is formed in the vicinity of the wheel, is shown symbolically only in the present case, which can be lifted or lowered when the air spring 210 is vented when the air spring 210 is filled.
  • An air spring 210 comprises an air bellows designated here as a bellows 211 for receiving compressed air and an air spring valve 212 which holds or discharges the compressed air quantity in the bellows 211 or allows the bellows 211 to be filled with compressed air.
  • An air spring valve 212 is formed as a controllable solenoid valve, here as a 2/2-way valve. Each of the air spring valves 212 is presently shown in a state in which the spring force of an unspecified spring in a normally closed state.
  • the air spring valves 212 are connected to a gallery line 220 designed as a manifold via suitable spring branch lines 221.
  • a voltage-pressure sensor 230 Connected directly to the gallery line 220 is a voltage-pressure sensor 230 which is capable of measuring a pressure in the gallery line 220 and, with suitable switching of the air spring valves 212-, also a pressure in the air springs 210.
  • the voltage-pressure sensor 230 may also measure a reservoir pressure in conjunction with a storage system, namely, the reservoir 20, the pneumatic line 40, and the accumulator valve 41. Pressure sensor signals can be transmitted to initiate further control measures to an air spring control and / or a vehicle control, which is not shown here in detail.
  • the supply of the pneumatic system 200 in the form of the air spring system takes place here with compressed air from the compressed air supply system 100.
  • the pneumatic system 200 is connected via a compressed air connection 2 to the compressed air supply system 100.
  • the compressed air connection 2 compressed air can be supplied from a compressed air supply 10 with a compressor 1 via a pneumatic main line 30.
  • the compressed air connection 2 can also compressed air from a pressure medium reservoir 20 via a further compressed air connection 2 'and a further pneumatic line 40 are supplied.
  • the compressed air supply system 100 has for appropriate selection of the Zu arrangementsart of compressed air to the pneumatic system 200 suitable isolation valves, namely a first isolation valve 31 in the main pneumatic line 30 and a second isolation valve 41 in the further pneumatic line 40.
  • the first and second isolation valve 31, 41 is in each case designed as a controllable solenoid valve - here as a 2/2-way valve.
  • Fig. 1 The first and second isolation valves 31, 41 are each shown in a closed state, so that the pneumatic system 200 is completely separated from the compressed air supply system 100.
  • the compressed air supply system 100 has a compressed air supply 10, to which the main pneumatic line 30 is connected.
  • the first isolation valve 31 is pneumatically connected in series. Between the air dryer 50 and the first isolation valve 31 is designed as a pneumatic parallel circuit valve assembly is connected.
  • the valve arrangement has a non-return valve 32, which automatically opens in the direction of ventilation B to the pneumatic system 200 and blocks in the venting direction E from the pneumatic system 200 to the air dryer 50.
  • a throttle 34 is arranged, which serves as a regeneration throttle bidirectional flow.
  • the throttle 34 has a nominal diameter which is sufficient to provide a pressure drop during venting of the pneumatic system 200 when the first separating valve 31 is open in such a way that an air dryer 50 sufficiently regenerates as part of a pressure swing adsorption.
  • a compressed air flow guided in the venting direction E can be vented via a venting line 35 connected to the main pneumatic line 30 to a venting connection 3 to the environment.
  • a venting further isolation valve 36 is arranged in the vent line 35 a to be opened for a venting further isolation valve 36 is arranged.
  • the further isolation valve 36 is like the first and second isolation valve 31, 41 as a controllable solenoid valve, namely designed here as a 2/2-way valve.
  • a fundamentally different design of the main pneumatic line 30 and vent line 35 may be provided, for. B. with a suitable pilot operated vent solenoid valve assembly or the like.
  • the compressed air supply 10 in the present case has a compressor 11 designed according to the concept of the invention, which is based on the in Fig. 1 and Fig. 2 exemplified, particularly preferred embodiment will be described below.
  • the compressor 11 of the compressed air supply 10 is formed with the compressed air supply 10 present as a separately connectable to the compressed air supply system 100 device.
  • the component of the compressed air supply 10 to be designated in this respect as a compressed air supply device has a first compressed air supply connection 2.1, to which the main pneumatic line 30 of the compressed air supply system 100 can be connected.
  • the compressed air supply 10 has a second compressed air supply connection 2.2, to which a further pneumatic line 37 to the pressure medium reservoir 20 can be connected via a still further separating valve 38. At the still further pneumatic line 37 of the pressure medium reservoir 20 via the above second compressed air connection 2 'connected.
  • To the second compressed air port 2 'and the other pneumatic line 40 is connected to the compressed air port 2.
  • the still further pneumatic line 37 is -with the open still further separating valve 38 - only unidirectionally by compressed air flowed through, namely in a from the pressure fluid reservoir 20 looking, further venting direction E '.
  • the still further pneumatic line 37 has a further check valve 39 which automatically opens in the still further venting direction E 'and blocks in the opposite direction.
  • the still further pneumatic line 37 is thus designed to supply compressed air from the pressure medium reservoir 20 to the second compressed air supply connection 2.2 of the compressed air supply 10 when the still further separating valve 38 opens.
  • the compressed air supply 10 to an air supply port 0 can be supplied via the air from an air supply L - filtered in a filter 52 a suction 51.
  • the compressor 11 of the compressed air supply 10 is recognizably designed with a first compressor stage 11.1 and a second compressor stage 11.2.
  • the compressor 11 is provided with a single cylinder 12 with an in Fig. 2 executed closer described compression space.
  • a single in the compression chamber on both sides pressurizable piston 13 of the compressor 11 is driven to move in the compression space of a motor M.
  • the cylinder 12 with compression chamber and piston 13 of the compressor 11 is presently arranged to form both compression stages 11.1 and 11.2 on a single side of the motor M.
  • this is a particularly compact arrangement of the cylinder 12 using a single piston 13.
  • Fig. 1 symbolically represents three variants of embodiments of a compressed air supply 10.
  • the compressed air supply or the compressor 11 has a Connecting line 14 between the first compressor stage 11.1 and the second compressor stage 11.2 in all designated as I, II, III variants.
  • the arrangement of a connecting line between the first and second compressor stage 11.1, 11.2 in the variants I, II, III is designed differently.
  • the connecting line 14 is formed in a housing wall of the cylinder 12.
  • the connecting line 14 also has an intercooler 15, which may have both a heat exchanger and suitable heat-dissipating means.
  • This in Fig. 2 shown particularly preferred first variant I of a compressed air supply 10 to the compressor 11 has proven to be particularly compact and at the same time efficient to cool compressed air between a first and second compressor stage 11.1, 11.2.
  • a cooled precompressed compressed air of the first compressor stage 11.1 can be compressed to a higher pressure in the second compressor stage 11.2 and thus made available to the first compressed air supply connection 2.1 at a higher pressure level.
  • the availability of compressed air ie in particular a quantity of compressed air
  • connection line 14 'shown in dotted lines here is also guided with an intercooler 15' outside the housing wall of the cylinder 12, insofar as it is outside the compressed air supply 10.
  • This additionally creates installation space in order to make an intercooler 15 'larger and thus able to arrange it with greater cooling capacity and more efficiently in the connection line 14' of the second variant II.
  • Fig. 1 is also a connecting line 14 "of the third variant III of the compressed air supply 10 - shown here without intercooler -
  • the connecting line 14" of the third variant III is formed as a passage of a piston body of the piston 13.
  • the third variant III of the preferred embodiment of a compressor 11 or a compressed air supply 10 is thus designed to be particularly compact. Due to the comparatively short connection line 14 ", the entire compression space in the cylinder 12 is kept low, so that a particularly high compression pressure amplitude can be achieved be increased to the inlet valve in the compression chamber.
  • a compressor 11 is shown here with a single two-stage compressor unit.
  • a compressor with a second, third and further higher number of two-stage compressor units. These can be coupled in series as sequential two-stage compressor units and thus provide a particularly high compression pressure level of the compressed air in the main pneumatic line.
  • the two-stage compressor units can also be connected independently of one another to a main pneumatic line 30, so as to provide a particularly large volume of comparatively highly compressed compressed air in the main pneumatic line 30.
  • the named in the first variant I embodiment of a compressor 11 provides for a two-stage compressor unit, which will be described in more detail below with the compressor 11.
  • FIG. 2 the compressor 11 with a single cylinder 12 and a single in a compression chamber of the cylinder 12 on both sides pressurizable piston 13.
  • the piston 13 is presently designed as a stepped piston having a flat side 13.1 and a step side 13.2.
  • a first compression chamber 16.1 in the compression space is formed as part of the first compressor stage 11.1 on the flat side 13.1 of the piston 13.
  • a second compression chamber 16.2 is formed in the compression chamber as part of the second compressor stage 11.2 on the stage side 13.2 of the piston 13.
  • the present case in the cylinder 12 formed cylindrical compression space is thus divided by the piston 13 into two substantially cylindrical compression chambers 16.1, 16.2.
  • the designated as flat side 13.1 piston top and referred to as the stepped side piston bottom are both pressurized in compression mode.
  • the second compression chamber 16.2 is reduced in the available compression volume due to the volume of the piston rod 17 by a technically variable design accessible differential volume of the piston rod 17 compared to the available compression volume of the first compression chamber 16.1.
  • the second compression chamber 16.2 has a higher high pressure level when compressed compared to a lower low pressure level of the first compression chamber 16.1 when compressed.
  • the piston 13 has a circumferential circumferential piston seal D1, which seals the first compression chamber 16.1 against the second compression chamber 16.2. Via cylinder valves Z1, Z2, the first compression chamber 16.1 and the second compression chamber 16.2 are pneumatically connected by the connecting line 14 explained above.
  • the connecting line 14 the first variant I following the present case, the intercooler 15 is shown symbolically.
  • the pneumatic connecting line 14 is formed according to the first variant II in a housing wall ZG of the cylinder 12 as a passage.
  • the bushing has a closable opening to the first compression chamber 16.1 on the cylinder valve Z1 and a second closable opening to the second compression chamber 16.2 on the cylinder valve Z2.
  • the pneumatic connection line 14 also has the second compressed air supply connection 2.2.
  • the connecting line 14 is formed in a section-substantially in a low pressure region-in a head ZG K of the cylinder housing ZG.
  • the head ZG K of the cylinder housing ZG is fitted with a seal D2 on the foot ZG F of the cylinder housing ZG and so tightly attached to form the cylinder housing ZG.
  • the air supply port 0 is connected via a cylinder valve Z3, wherein the supply port 0 is formed with a passage in the head ZG K of the cylinder housing ZG.
  • the foot ZG F of the cylinder housing ZG of the first compressed air supply port 2.1 is formed as a passage.
  • the first compressed air supply port 2.1 is closed at an opening to the second compressor chamber 16.2 by a fourth cylinder valve Z4.
  • the second compressor chamber 16.2 is sealed against the piston rod 17 via a high-pressure seal D3 in the gap to the foot ZG F of the cylinder housing ZG.
  • the piston rod 17 by a seal D4 against the environment, namely here the interior R of a crankcase KG, sealed.
  • the piston rod 17 is - rigidly attached to the piston 13 - along the axis A of the compressor 11 back and forth movable.
  • the piston rod 17 is driven together with the piston 13 for performing a translational movement, in this case a reciprocating motion, along the axis A by a motor M.
  • the rotational movement of a drive shaft MW and the crankshaft K is converted via a joint G with forming coupling rod 18 in the reciprocating motion.
  • the coupling rod 18 for forming the joint G a rotary bearing K1 on the piston rod 17 on the one hand and a rotary bearing K2 on the crankshaft K on the other hand.
  • the otherwise formed with oval interior R crankcase KG thus allows the movement of the joint G in the interior R.
  • Fig. 2 shows the upper reversal point of the reciprocating motion, wherein the piston 13 at the upper reversal point of the first compression chamber 16.1 has already compressed a supplied via the air supply L air to a low pressure level in the first compression chamber 16.1.
  • the cylinder valve Z3 closes in this state the opening to the air supply port 0 while the cylinder valve Z1 opens the opening to the connecting line 14.
  • the compressed to a low pressure level air can be pressed as compressed air in the connecting line 14.
  • the thus compressed to a low pressure level compressed air is cooled by the intercooler 15 via the open from the cylinder valve Z2 opening of the connecting line 14 of the second compression chamber 16.2 supplied.
  • 12.2 compressed air at high pressure level from the pressure medium reservoir 20 of the connecting line 14 under opening to the second compression chamber 16.2 are supplied under the opening of the second pressure port.
  • the compressed air in the second compression chamber 16.2 can be further compressed to a high pressure level.
  • the compressed to a high pressure level compressed air can finally be supplied to the first compressed air supply port 2.1 with a closed cylinder valve Z2 while opening the cylinder valve Z4.
  • the compressed air compressed to a very high pressure level can thus be supplied to the pneumatic main line 30 of the printer supply system.
  • the compressor 11 ensures an operating pressure of at least 20 bar for compressed air compressed at high pressure level.
  • the guide channel 19 passes as a passage both the foot ZG F of the cylinder housing ZG and the upper part of the crankcase KG to the interior R of the crankcase KG.
  • the first and second sealing chamber 16.1, 16.2 are space-saving in the embodiment described here by in a cylinder housing ZG or a crankcase KG, lying Seals D1, D2, D3, D4 sealed.
  • a housing ZG, KG corresponding annular grooves or lugs to allow a slip-proof attachment of the seal D1, D2, D3, D4.
  • This embodiment has proven to be safer compared to attaching a seal to the piston rod 17.
  • attaching a seal D1 to a moving part such as the piston 13 is still possible.
  • the present embodiment has proved to be particularly advantageous in order to realize a comparatively small and unchangeable dead space volume.
  • the fixed position of the high-pressure seal D3 ensures that the compression volume of the second compression chamber 16.2 is constant.
  • the embodiment of a joint G as modified from the present embodiment is possible as needed within the scope of the concept of the invention.
  • the present embodiment allows a comparatively cost-effective production of a compressor 11.
  • Both the first variant I and the third variant III sees a dead space volume limiting direct and compact channel management of the connecting line 14 in the cylinder housing ZG - in the third variant III in the piston body of the piston 13 - in front.
  • the operation of the compressor 11 ensures a 180 ° piston phase shift between the first compressor stage and the second compressor stage. This causes a low dynamic force level for cranking operation and engine as well as a low noise level. In addition, a noise level is reduced by the comparatively small number of kinematically operated parts and masses. Also, an emission surface for sound is kept comparatively small in the present embodiment; This extends namely only on the cylinder head in particular only on the head of the cylinder housing ZG K.
  • the present embodiment allows a customized variable design of different lifting and compression cross sections depending on the design of the piston rod 17 and the piston 13.
  • a compressor 11 in particular a compressed air supply 10 similar to a modular principle as needed to customer needs.
  • the compressor is interface compatible with known electric motor drives.
  • a compressed air supply connection 2.2 acting as a charging connection can also be pneumatically connected to a pressure medium reservoir 20 in order to realize a boost operation for the second compressor stage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Description

  • Die Erfindung betrifft einen Kompressor für eine Druckluftzuführung einer Druckluftversorgungsanlage zum Betreiben einer Pneumatikanlage gemäß dem Oberbegriff des Anspruchs 1 sowie eine Druckluftversorgungsanlage gemäß dem Oberbegriff des Anspruchs 14. Weiter betrifft die Erfindung ein pneumatisches System gemäß dem Anspruch 19 und ein Verfahren gemäß dem Oberbegriff des Anspruchs 20.
  • Eine Druckluftversorgungsanlage wird in Fahrzeugen aller Art, insbesondere zur Versorgung einer Luftfederanlage eines Fahrzeugs mit Druckluft, eingesetzt. Luftfederanlagen können auch Niveauregelungseinrichtungen umfassen, mit denen der Abstand zwischen Fahrzeugachse und Fahrzeugaufbau eingestellt werden kann. Eine Luftfederanlage eines eingangs genannten pneumatischen Systems umfasst eine Anzahl von an einer gemeinsamen Leitung (Galerie) pneumatisch angeschlossenen Luftbälgen, die mit zunehmender Befüllung den Fahrzeugaufbau anheben und entsprechend mit abnehmender Befüllung absenken können. Mit wachsendem Abstand zwischen Fahrzeugachse und Fahrzeugaufbau bzw. Bodenfreiheit werden die Federwege länger und auch größere Bodenunebenheiten können überwunden werden, ohne dass es zu einer Berührung mit dem Fahrzeugaufbau kommt. Vorzugsweise werden solche Systeme zunehmend in Geländefahrzeugen und Sport-Utility-Vehicles (SUV) eingesetzt. Insbesondere bei SUVs ist es bei sehr leistungsstarken Motoren wünschenswert, das Fahrzeug einerseits für hohe Geschwindigkeiten auf der Straße mit vergleichsweise geringer Bodenfreiheit zu versehen und anderseits für das Gelände mit einer vergleichsweise großen Bodenfreiheit zu versehen.
  • Es ist weiter wünschenswert, eine Veränderung der Bodenfreiheit möglichst schnell umzusetzen, was die Anforderungen hinsichtlich Schnelligkeit, Flexibilität und Verlässlichkeit einer Luftdruckversorgungsanlage erhöht.
  • DE 10 2008 034 240 A1 offenbart eine Druckluftversorgungsanlage der eingangs genannten Art. Diese sieht einen Kompressor mit einer ersten und einer zweiten Verdichterstufe vor, die gemeinsam verwendet werden können, um eine Luftfederanlage vergleichsweise zügig und bei hohen Drücken zu befüllen. Insgesamt stellt sich die Leistungsfähigkeit von zwei- oder mehrstufigen Verdichtern als überlegen gegenüber einem einstufigen Verdichter heraus. In der vorgenannten DE 10 2008 034 240 A1 ist ein zweistufiger Kompressor vorgesehen, der in jeder Verdichtungsstufe einen Ansaugraum und einen Verdichtungsraum aufweist. Die an sich vorteilhafte zweistufige Auslegung des Kompressors ist noch verbesserbar.
  • Insbesondere haben sich Doppelkolben-Kompressoren, wie sie in DE 103 21 771 A1 oder DE 197 15 291 C2 beschrieben sind, insbesondere aufgrund des Teile- und Raumbedarfs sowie ihres Gewichts als noch verbesserungswürdig erwiesen. An sich bekannte Doppelkolben- Kompressoren mit einer ersten und einer zweiten Verdichterstufe sind aufgrund der mit einem Doppelkolben verursachten wenig kompakten Bauweise und zwangsläufig hohe Masse-Trägheit des Systems noch verbesserbar.
  • Ein zweistufiger Kompressor der JP9088819A sieht einen Kolben und zwei Verdichtungsräume mit unterschiedlichem Volumen vor, die außerhalb des Zylinderraumes gebildet sind. Dieser Kompressor lässt sich insbesondere hinsichtlich des Bauraumbedarfs verbessern.
  • Wünschenswert ist eine zwei- oder mehrstufige Verdichtung, die unter Erhalt der mit einer zweistufigen Verdichtung verbundenen Vorteile, die sich dennoch kompakter und flexibler einsetzbar realisieren lässt.
  • Die FR2036744 offenbart eine Vorrichtung zur Druckerzeugung und Schmierung eines zweistufigen Verdichter mit Saug- und Druckleitungen, welche in Reihe geschaltet sind, und zwei miteinander fest verbundene Verdichtungskolben mit jeweiligen Kolbenringen.
  • Die GB214907 offenbart einen Kompressor, der einen Zylinder mit angrenzenden koaxialen Bohrungen jeweils vorgesehen für eine Kompressionsstufe aufweist, wobei die Bohrung der Niederdruckstufe an jedem Ende mit Ansaug- und Auslassventilen vorgesehen ist, und die angrenzenden kleineren Bohrungen an seinem entfernten Ende nur mit Saug- und Druckventilen, alle Bereiche im Inneren des Zylinders, vorgesehen ist, sowie Verdichtungsräumen und einen Zylinderkopf, welcher lösbar mit dem größeren Ende des Zylinders befestigt ist. Der gestufte Kolben weist je Kolbenstufe eine Kolbenringdichtung auf, wobei die kleinste Verdichtungsstufe, d. h. Niederdruck-Verdichtungskammer, des Kolbens der Seite der Kolbstange zugeordnet ist und die Verdichtungskammer mit dem höchsten Druck dem Kolbenende zum Verdichtergehäuse zugeordnet ist. Die Niederdruck-Verdichtungskammer wird durch zwei Stopfbuchsen in dem Verdichtergehäuse gegenüber der Kolbenstange abgedichtet.
  • Die DE1403963 offenbart einen Kompressor mit wenigstens drei Stufen. Unter Verwendung von Kolben mit jeweils einer Stufe in einer in der der schwächere Teil des Kolbens dem Kolbenantriebselement zugekehrt ist und der Kolbenkopf mit größerem Durchmesser aus Umgebung ansaugt, während eine höhere Druckstufe in dem Ringraum vorgesehen ist, der durch den abgesetzten Kolben gebildet ist und Ventile an Saug- und Druckstutzen angeordnet sind, wobei wenigstens zwei Zylinder vorgesehen sind, alle Kolbenköpfe aus der Umgebung ansaugen und
    gemeinsam die erste Druckstufe bilden und höchstens zwei Ringräume in den Zylindern eine höhere Druckstufe bilden,
    wobei die Kolbenschäfte der Differentialkolben für höhere Stufen zunehmend größere Durchmesser aufweisen.
  • An dieser Stelle setzt die Erfindung an, deren Aufgabe es ist, eine Vorrichtung und ein Verfahren zum Betreiben einer Pneumatikanlage anzugeben, wobei eine Verbesserung der Verfügbarkeit von Druckluft bei dennoch kompakter Auslegung der Vorrichtung und flexibler Verfahrensführung möglich sein soll. Insbesondere soll ein Kompressor einen vergleichsweise hohen Wirkungsgrad bei dennoch kompakter Bauweise aufweisen. Insbesondere soll die Druckluftversorgungsanlage für einen Befüllbetrieb der Pneumatikanlage eine Druckluft in verbesserter Weise verfügbar machen. Insbesondere soll eine Druckluftversorgungsanlage Druckluft in verbesserter Weise befüllen und/oder entlüften können. Insbesondere soll eine Schallemission beim Betrieb des Kompressors bzw. der Druckluftversorgungsanlage vergleichsweise gering gehalten sein.
  • Die Aufgabe betreffend die Vorrichtung wird durch einen Kompressor der eingangs genannten Art gelöst, bei dem erfindungsgemäß auch die Merkmale des kennzeichnenden Teils des Anspruchs 1 vorgesehen sind.
  • Die Erfindung geht von der Überlegung aus, dass ein an sich bekannter Kompressor mit einer ersten und zweiten Verdichterstufe für eine Druckluftzuführung vergleichsweise hohe Druckdifferenzen erzeugen können sollte - diese liegen regelmäßig oberhalb des Atmosphärendrucks bis hin zu Druckmaxima von wenigstens 20bar, teilweise bis zu 30bar oder mehr. Darüber hinaus soll - insbesondere für den Einsatzzweck einer Luftfederanlage eines Fahrzeugseine Druckluft vergleichsweise schnell und flexibel verfügbar sein. Die Erfindung hat erkannt, dass es möglich ist, für einen Kompressor eine zweistufige Verdichtereinheit zur Verfügung zu stellen. Die als solche kompakt ausgebildete zweistufige Verdichtereinheit weist erfindungsgemäß einen einzigen Zylinder mit einem einzigen in einem Verdichtungsraum des Zylinders zweiseitig druckbeaufschlagbaren Kolben auf. Die Erfindung hat erkannt, dass eine solche zweistufige Verdichtereinheit vergleichsweise kompakt und in Leichtbauweise ausgeführt werden kann, ohne Kompromisse beim Wirkungsgrad und der Leistungsfähigkeit machen zu müssen. Darüber hinaus bietet die Ausführung einer zweistufigen Verdichtereinheit besonders gute Möglichkeiten einer Schallemissionsbegrenzung. Eine optimale 180° Phasenverschiebung einer Verdichtung in der ersten Verdichterstufe relativ zur zweiten Verdichterstufe ist aufgrund der Anordnung der Verdichterkammern zum Kolben gewährleistet.
  • Die Erfindung sieht zur Ausführung dieses Konzepts vor, dass der Kolben der zweistufigen Verdichtereinheit als ein Stufenkolben mit einer Flachseite und mit einer an eine Kolbenstange anschließende Stufenseite ausgebildet ist. Insbesondere sieht die Erfindung vor, dass die Kolbenstange starr, insbesondere senkrecht an der Stufenseite des Kolbens fest anschließt. Auf diese Weise ist besonders einfach eine Fläche der Flachseite des Kolbens größer gestaltet als eine Fläche der Stufenseite des Kolbens. Die erste Verdichterstufe befindet sich dementsprechend vorteilhaft auf der Flachseite des Kolbens und weist ein größeres Hubvolumen als die zweite, der Stufenseite angrenzenden Verdichtungskammer auf. Im Ergebnis wird mit dem Konzept der Erfindung eine leichte, vergleichsweise einfache und dennoch effektive und kompakte Integration einer zweistufigen Verdichtung in einem einzigen Zylinder mit einem einzigen Kolben erreicht.
  • Die Erfindung sieht zur Lösung der Aufgabe hinsichtlich der Vorrichtung weiter eine Druckluftversorgungsanlage des Anspruchs 14 vor, die einen erfindungsgemäßen Kompressor aufweist. Die Druckluftversorgungsanlage dient zum Betreiben einer Pneumatikanlage, bei welcher an den Luftzufuhranschluss eine Luftzufuhr angeschlossen ist und an den zweiten Druckluftzuführungsanschluss ein Druckmittelvorratsbehälter angeschlossen ist.
  • Die Erfindung führt auch auf ein pneumatisches System des Anspruchs 19.
  • Die Aufgabe hinsichtlich des Verfahrens wird durch die Erfindung mittels einem Verfahren der eingangs genannten Art gelöst, bei dem erfindungsgemäß die Merkmale des kennzeichnenden Teils des Anspruchs 20 vorgesehen sind.
  • Das Konzept der Erfindung bietet, insbesondere hinsichtlich des Verfahrens, eine optionale Boost-Funktion für die zweite Verdichterstufe. Das Konzept der Erfindung sieht einen Luftzufuhranschluss an der ersten Verdichterstufe vor.
  • Über den Luftzufuhranschluss zugeführte Luft kann in der ersten Verdichterstufe auf ein Niederdruckniveau verdichtet und die so verdichtete Druckluft in der zweiten Verdichterstufe auf ein Hochdruckniveau weiter verdichtet werden.
  • Im Rahmen einer besonders bevorzugten Weiterbildung sieht der Kompressor optional einen zweiten Druckluftzuführungsanschluss zwischen der ersten und zweiten Verdichterstufe vor, der optional genutzt werden kann. Optional kann so die zweite Verdichterstufe zusätzlich zu der auf ein Niederdruckniveau verdichtete Druckluft mit weiterer Druckluft, vorzugsweise aus einem Druckmittelvorratsbehälter, versorgt werden.
  • Hinsichtlich Ergänzungen und Details wird auf die DE 10 2008 034 240 A1 verwiesen, deren Offenbarungsgehalt, insbesondere hinsichtlich der zusätzlichen Aufladung eines Kompressors aus einem Druckmittelvorratsbehälter, hiermit durch Zitat in den Offenbarungsgehalt der vorliegenden Anmeldung vollumfänglich aufgenommen ist.
  • Weitere vorteilhafte Weiterbildungen der Erfindung sind den Unteransprüchen zu entnehmen und geben im Einzelnen vorteilhafte Möglichkeiten an, das oben erläuterte Konzept im Rahmen der Aufgabenstellung sowie hinsichtlich weiterer Vorteile zu realisieren.
  • Hinsichtlich der Anbindung des Kompressors an einen Antrieb hat es sich als vorteilhaft erwiesen, dass die Kolbenstange, insbesondere an sich starr, mit dem Kolben verbunden ist und dann über das Gelenk in einem einen Verbindungsbereich zwischen Zylindergehäuse und Kurbelgehäuse zum Verdichtungsraum durchsetzenden Führungskanal axial geführt und hin und her bewegbar angeordnet ist. Der Kolben kann dann vorteilhaft in einer axialen Bewegung definiert entlang der Achse des Zylinders zusammen mit der Kolbenstange hin und her bewegt werden. Dieser Vorteil trifft besonders, dann wenn die Kolbenstange an sich starr mit dem Kolben verbunden ist. Eine Volumenvariabilität im Verdichtungsraum ist gering gehalten und Schadräume vermieden. Vorteilhaft bewirkt eine Kolbenanordnung mit starrer Kolbenstange im Zylinder auch eine besonders stabile und damit nicht zuletzt geräuscharm bewegbare Anordnung.
  • Eine besonders bevorzugte konstruktive Realisierung sieht zur Ausbildung des Gelenks eine an eine Antriebswelle gekoppelte Kurbelwelle vor, mit der die Kolbenstange über einen Koppelstange verbunden ist. Die Koppelstange ist dabei sowohl an einer Kurbelwelle als auch an einem dem Kolben gegenüberliegenden Ende der Kolbenstange mittels einem winkelbeweglichen Gelenk angebunden. Es kann generell auch ein anderes Gestänge oder eine zu einem Gestänge alternative Variante eines Gelenks genutzt werden.
  • Vorzugsweise ist der Führungskanal mit Führungs- und/oder Dichtmitteln versehen, welche den Spalt zwischen Kolbenstange und einer Wandung des Führungskanals zur verbesserten Führung der Kolbenstange einerseits und/oder zur Abdichtung des Spalts andererseits nutzen. Besonders bevorzugt hat sich eine zweistufige Abdichtung des Spalts erwiesen. Insbesondere ist dazu ein erstes Dichtmittel als eine Hochdruckdichtung an einem der zweiten Verdichterkammer zugewandten Abschnitt des Führungskanals vorgesehen. Insbesondere ist darüber hinaus ein zweites Dichtmittel als eine Umgebungsdichtung an einem einem Kurbelgehäuse zugewandten Abschnitt des Führungskanals gebildet. Eine doppelstufige Dichtung gewährleistet einen sicheren Betrieb des Kompressors auch bei hohen Drücken.
  • Es hat sich als besonders bevorzugt erwiesen, die Umgebungsdichtung gleichzeitig als ein Führungselement für die Kolbenstange auszubilden. So erweist sich der Aufwand einer doppelstufige Dichtung als besonders effektiv, da er Dicht- und Führungswirkung vereint. Insbesondere kann nur die oder auch die Hochdruckdichtung als ein Führungselement für die Kolbenstange ausgebildet sein. Auf diese Weise wird eine verlässliche Abdichtung zum Verdichtungsraum des Zylinders einerseits und zum Umgebungsraum des Kurbelgehäuse andererseits unter Führung der Kolbenstange erreicht.
  • Im Rahmen einer besonders bevorzugten Weiterbildung ist vorgesehen, dass die erste und zweite Verdichtungskammer über eine Verbindungsleitung pneumatisch verbunden sind, wobei der Druckluftzuführungsanschluss in der Verbindungsleitung angeordnet ist. Die Verbindungsleitung ist vorteilhaft durch geeignete Zylinderventile zu öffnen und verschließbar - zweckmäßigerweise entsprechend der Verdichtungszyklen der zweistufigen Verdichtung getaktet. Insbesondere sind eingangs- und ausgangsseitig der Verbindungsleitung, d. h. an einer Mündung zu ersten Verdichtungskammer bzw. Einlass der zweiten Verdichtungskammer Zylinderventile zum Öffnen bzw. Schließen der Verbindungsleitung vorgesehen.
  • Im Rahmen einer weiteren besonders bevorzugten Weiterbildung ist vorgesehen, dass die Verbindungsleitung einen Zwischenkühler aufweist bzw. darstellt. Eine Zwischenkühlerfunktion hat im Rahmen einer zweistufigen Verdichtung insbesondere den Vorteil, dass -hochverdichtete- Ladeluft aus der zweiten Verdichterstufe eine vergleichsweise geringe Temperatur aufweist. Insbesondere hat dies im Rahmen einer zweistufigen Verdichtung den Vorteil, dass sich gekühlte, vorverdichtete Ladeluft aus der ersten Verdichterstufe besser in einer zweiten Verdichterstufe weiter verdichten lässt.
  • Der Zwischenkühler kann beispielsweise in Form eine Wärmetauscheranordnung mit einem der Verbindungsleitung Wärme entziehenden und abführenden Kühlkreis gebildet sein. Zusätzlich oder alternativ kann - vorliegend konstruktiv besonders vorteilhaft realisierbar - in der Verbindungsleitung ein geeignetes Wärmeabführmittel vorgesehen sind. Als vorteilhaft erweist sich insbesondere eine den Wärmeübergang zwischen Druckluft in der Verbindungsleitung und der Umgebung, insbesondere des Zylindergehäuses, verbesserndes Wärmeabführmittel oder Wärmeübergangsmittel. Ein Wärmeabführmittel kann beispielsweise als ein in der Nähe oder zur Verbindungsleitung geführter Kühlkanal oder dergleichen gebildet sein. Ein Wärmeübergangsmittel kann beispielsweise in Form einer Rippe, einer Fahne oder einer sonstigen die Oberfläche zwischen Verbindungsleitung und Umgebung verbesserndes Wärmeübergangsmittel gebildet sein.
  • In einer besonders kompakten Weiterbildung ist die Verbindungsleitung in einer Gehäusewandung des Zylinders gebildet. Generell kann die Verbindungsleitung je nach Bedarf auch -ganz oder teilweise- außerhalb der Gehäusewandung verlaufen, insbesondere jedenfalls teilweise auch außerhalb des Zylinders verlaufen. Im Rahmen der vorgenannten zum Zylinder extern gebildeten Verbindungsleitung hat es sich als vorteilhaft erwiesen, einen Zwischenkühler, insbesondere Wärmetauscher und/oder ein Wärmeabführmittel, in der externen Verbindungsleitung vorzusehen. Eine solche Zwischenkühlung kann eine Wärmeabfuhr mit vergleichsweise großer Kapazität realisiert und sehr effektiv ausgelegt werden. Dabei kann ein Zwischenkühler dennoch vergleichsweise kompakt realisiert sein.
  • Eine besonders kompakte Weiterbildung sieht vor, dass die Verbindungsleitungen als Durchführung eines Kolbenkörpers, insbesondere eines Kolbenkopfes, des Kolbens gebildet ist. Die Durchführung kann insbesondere oben genannte Wärmeabführmittel und eine geeignete Anordnung von Zylinderventilen aufweisen. Die Durchführung ist vorteilhaft über ein Zylinderventil an eine zweite Verdichterstufe angeschlossen.
  • Die Erfindung führt zur Lösung der Aufgabe auch auf eine Druckluftversorgungsanlage mit einem vorgenannten Kompressor und ein pneumatisches System mit der Druckluftversorgungsanlage und einer Pneumatikanlage. Die Pneumatikanlage ist besonders bevorzugt in Form einer Luftfederanlage eines Fahrzeugs gebildet. Dazu weist die Luftfederanlage vorzugsweise eine Anzahl von Luftfedern auf. Eine Luftfeder ist dabei als eine Kombination eines Balgs mit einem Federventil gebildet. Das Federventil regelt die Luftbefüllung bzw. Entlüftung des Balgs.
  • Das Verfahren bietet in besonders bevorzugter Weise die Möglichkeit, dass die Druckluftzuführung im ersten Betriebsmodus offen betrieben wird. Unter einem offenen Betrieb wird ein Betrieb verstanden, bei dem Druckluftzuführung offen gegen die Umgebung ist, nämlich unter Zuführung von Luft aus der Umgebung über den Luftzufuhranschluss.
  • Das Verfahren bietet auch die Möglichkeit, zusätzlich oder alternativ zu den vorgenannten Weiterbildungen, die Druckluftzuführung im zweiten Betriebsmodus geschlossen zu betreiben. Insbesondere, jedoch nicht notwendiger Weise, kann dazu vorgesehen sein, dass der Luftzufuhranschluss geschlossen ist. In der geschlossenen Betriebsweise wird insbesondere Druckluft nur aus dem Druckmittelbehälter der zweiten Verdichtungsstufe zugeführt. In einem vom zweiten Betriebsmodus umfassten sogenannten Boost-Modus, kann auch Luft über den Luftzufuhranschluss als auch Druckluft aus dem Druckmittelvorratsbehälter dem Verdichtungsraum im Zylinder zugeführt werden.
  • Ausführungsbeispiele der Erfindung werden nun nachfolgend anhand der Zeichnung beschrieben. Diese soll die Ausführungsbeispiele nicht notwendigerweise maßstäblich darstellen, vielmehr ist die Zeichnung, wo zur Erläuterung dienlich, in schematisierter und/oder leicht verzerrter Form ausgeführt. Im Hinblick auf Ergänzungen der aus der Zeichnung unmittelbar erkennbaren Lehren wird auf den einschlägigen Stand der Technik verwiesen. Dabei ist zu berücksichtigen, dass vielfältige Modifikationen und Änderungen betreffend die Form und das Detail einer Ausführungsform vorgenommen werden können, ohne von der allgemeinen Idee der Erfindung abzuweichen.
  • Insbesondere ist das Konzept der Erfindung nicht beschränkt auf die in den folgenden Ausführungsformen beschriebene Gestaltung einer Entlüftungsleitung und Pneumatikhauptleitung. Diese können je nach Bedarf mit verschiedensten Magnetventilanordnungen versehen sein, um eine Trennfunktion zwischen Pneumatikanlage und Druckluftversorgungsanlage und/oder eine Entlüftungsfunktion vorzusehen. Insbesondere kann eine Entlüftungsmagnetventilanordnung vorgesehen sein, die ein direkt entlüftendes Entlüftungsventil in der Entlüftungsleitung vorsieht. Insbesondere kann eine Entlüftungsmagnetventilanordnung vorgesehen sein, die ein vorgesteuertes Entlüftungsventil in der Entlüftungsleitung vorsieht, wobei ein Steuerventil einen Druck der Pneumatikhauptleitung nutzt, um das Entlüftungsventil mit einem Steuerdruck zu beaufschlagen. Die Magnetventilanordnung kann elektrisch steuerbar sein und insbesondere eine geeignete Anzahl und Ausgestaltung von Wegeventilen, z.B. ein 2/2- oder ein 3/2-Wegeventil vorsehen, die bei Bedarf auch in einem Doppelanker-Magnetventil oder dgl. Konstruktion realisiert sein können.
  • Die in der Beschreibung, in der Zeichnung sowie in den Ansprüchen offenbarten Merkmale der Erfindung können sowohl einzeln als auch in beliebiger Kombination für die Weiterbildung der Erfindung wesentlich sein. Zudem fallen in den Rahmen der Erfindung alle Kombinationen aus zumindest zwei der in der Beschreibung, der Zeichnung und/oder den Ansprüchen offenbarten Merkmale. Die allgemeine Idee der Erfindung ist nicht beschränkt auf die exakte Form oder das Detail der im folgenden gezeigten und beschriebenen bevorzugten Ausführungsform oder beschränkt auf einen Gegenstand, der eingeschränkt wäre im Vergleich zu dem in den Ansprüchen beanspruchten Gegenstand. Bei angegebenen Bemessungsbereichen sollen auch innerhalb der genannten Grenzen liegende Werte als Grenzwerte offenbart und beliebig einsetzbar und beanspruchbar sein. Der Einfachheit halber sind nachfolgend für identische oder ähnliche Teile oder Teile mit identischer oder ähnlicher Funktion gleiche Bezugszeichen verwendet.
  • Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung der bevorzugten Ausführungsbeispiele sowie anhand der Zeichnung; diese zeigt in:
    • Fig. 1 ein Schaltbild eines pneumatischen Systems mit einer besonders bevorzugten Ausführungsform einer Druckluftversorgungsanlage, die eine verbesserte Verfügbarkeit von Druckluft sowohl beim Belüften als auch Entlüften einer als Luftfederanlage gebildeten Pneumatikanlage eines Fahrzeugs vorsieht;
    • Fig. 2 eine besonders bevorzugte Ausführungsform eines Kompressors mit vorliegend einer einzigen zweistufigen Verdichtereinheit mit einem einzigen Zylinder und einem einzigen in einem Verdichtungsraum des Zylinders zweiseitig druckbeaufschlagbaren Kolben.
  • Fig. 1 zeigt ein pneumatisches System 300 mit einer Druckluftversorgungsanlage 100 und einer vorliegend in Form einer Luftfederanlage eines nicht näher dargestellten Fahrzeugs 400 gebildeten Pneumatikanlage 200.
  • Vorliegend ist die Luftfederanlage mit einer beispielhaften Anzahl von vier Luftfedern 210 gebildet, wobei jede Luftfeder 210 einem Rad eines nicht näher dargestellten Fahrzeugs 400 zugeordnet ist. Vom Fahrzeug 400 ist vorliegend lediglich symbolisch das in radnähe gebildet Auflager 410 gezeigt, das bei Befüllen der Luftfeder 210 angehoben bzw. bei Entlüften der Luftfeder 210 abgesenkt werden kann.
  • Eine Luftfeder 210 umfasst einen hier als Balg 211 bezeichneten Luftbalg zur Aufnahme von Druckluft und ein Luftfederventil 212, das die Druckluftmenge im Balg 211 hält oder entlässt bzw. ein Befüllen des Balgs 211 mit Druckluft zulässt. Ein Luftfederventil 212 ist als steuerbares Magnetventil, hier als 2/2-Wegeventil, gebildet. Jedes der Luftfederventile 212 ist vorliegend in einem durch die Federkraft einer nicht näher bezeichneten Feder in einem stromlos geschlossenen Zustand gezeigt. Die Luftfederventile 212 sind an eine als Sammelleitung ausgebildete Galerieleitung 220 über geeignete Federzweigleitungen 221 angeschlossen. Direkt an die Galerieleitung 220 angeschlossen ist ein Spannungs-Druck-Sensor 230, der in der Lage ist, einen Druck in der Galerieleitung 220 -und bei geeigneter Schaltung der Luftfederventile 212- auch einen Druck in den Luftfedern 210 zu messen. Der Spannungs-Druck-Sensor 230 kann in Verbindung mit einem Speichersystem, nämlich vorliegend dem Speicher 20, der Pneumatikleitung 40 und dem Speicherventil 41 auch einen Speicherdruck messen. Drucksensorsignale können zur Veranlassung weiterer Steuermaßnahmen an eine Luftfedersteuerung und/oder eine Fahrzeugsteuerung übermittelt werden, welche vorliegend nicht näher dargestellt ist.
  • Die Versorgung der Pneumatikanlage 200 in Form der Luftfederanlage erfolgt vorliegend mit Druckluft aus der Druckluftversorgungsanlage 100. Die Pneumatikanlage 200 ist dazu über einen Druckluftanschluss 2 an die Druckluftversorgungsanlage 100 angeschlossen. Dem Druckluftanschluss 2 kann Druckluft aus einer Druckluftzuführung 10 mit einem Kompressor 1 über eine Pneumatikhauptleitung 30 zugeführt werden. Dem Druckluftanschluss 2 kann auch Druckluft aus einem Druckmittelvorratsbehälter 20 über einen weiteren Druckluftanschluss 2' und eine weitere Pneumatikleitung 40 zugeführt werden.
  • Die Druckluftversorgungsanlage 100 weist zur zweckmäßigen Auswahl der Zuführungsart von Druckluft zur Pneumatikanlage 200 geeignete Trennventile, nämlich ein erstes Trennventil 31 in der Pneumatikhauptleitung 30 und ein zweites Trennventil 41 in der weiteren Pneumatikleitung 40 auf. Das erste und zweite Trennventil 31, 41 ist jeweils als ein steuerbares Magnetventil - hier als ein 2/2-Wegeventil - ausgebildet. In Fig. 1 sind das erste und zweite Trennventil 31, 41 jeweils in einem geschlossenen Zustand gezeigt, so dass die Pneumatikanlage 200 von der Druckluftversorgungsanlage 100 vollständig getrennt ist. Dies führt vorteilhaft dazu, dass ein Lufttrockner 50 der Druckluftversorgungsanlage durch Druckluftbewegungen in der Pneumatikanlage 200 oder Umspeicherung von Druckluft aus dem Druckmittelvorratsbehälter 20 in die Pneumatikanlage 200 nicht nachteilig beeinflusst (z.B. befüllt) wird, wenn das erste Trennventil 31 geschlossen ist.
  • Insgesamt weist die Druckluftversorgungsanlage 100 eine Druckluftzuführung 10 auf, an welche die Pneumatikhauptleitung 30 angeschlossen ist. In der Pneumatikhauptleitung 30 ist druckluftzuführungsseitig der Lufttrockner 50 und druckluftanschlussseitig das erste Trennventil 31 pneumatisch in Reihenschaltung angeschlossen. Zwischen dem Lufttrockner 50 und dem ersten Trennventil 31 ist eine als pneumatische Parallelschaltung ausgeführte Ventilanordnung angeschlossen. Die Ventilanordnung weist ein in Belüftungsrichtung B zur Pneumatikanlage 200 selbsttätig öffnendes Rückschlagventil 32 auf, das in Entlüftungsrichtung E von der Pneumatikanlage 200 zum Lufttrockner 50 sperrt. In einer zur Pneumatikhauptleitung 30 parallelen als Bypassleitung 33 geschalteten pneumatischen Leitung ist eine Drossel 34 angeordnet, die bidirektional durchströmbar als Regenerationsdrossel dient. Die Drossel 34 weist eine Nennweite auf, die ausreichend ist, um beim Entlüften der Pneumatikanlage 200 bei geöffnetem ersten Trennventil 31 einen Druckabfall dergestalt zur Verfügung zu stellen, dass ein Lufttrockner 50 im Rahmen einer Druckwechsel-Adsorption ausreichend regeneriert.
  • Ein in Entlüftungsrichtung E geführter Druckluftstrom kann über eine an die Pneumatikhauptleitung 30 angeschlossene Entlüftungsleitung 35 zu einem Entlüftungsanschluss 3 zur Umgebung entlüftet werden. In der Entlüftungsleitung 35 ist ein für einen Entlüftungsvorgang zu öffnendes weiteres Trennventil 36 angeordnet. Das weitere Trennventil 36 ist wie das erste und zweite Trennventil 31, 41 als steuerbares Magnetventil, nämlich hier als 2/2-Wegeventil ausgebildet.
  • In einer hier nicht gezeigten Abwandlung kann auch eine grundsätzlich andere Gestaltung der Pneumatikhauptleitung 30 und Entlüftungsleitung 35 vorgesehen sein, z. B. mit einer geeigneten vorgesteuerten Entlüftungsmagnetventilanordnung oder dergleichen.
  • Die Druckluftzuführung 10 weist vorliegend einen gemäß dem Konzept der Erfindung ausgebildeten Kompressor 11 auf, der anhand der in Fig. 1 und Fig. 2 beispielhaft dargestellten, besonders bevorzugten Ausführungsform im Folgenden beschrieben wird. Der Kompressor 11 der Druckluftzuführung 10 ist mit der Druckluftzuführung 10 vorliegend als ein separat an die Druckluftversorgungsanlage 100 anschließbares Gerät gebildet. Das insofern als Druckluftzuführungsgerät zu bezeichnende Bauteil der Druckluftzuführung 10 weist einen ersten Druckluftzuführungsanschluss 2.1 auf, an den die Pneumatikhauptleitung 30 der Druckluftversorgungsanlage 100 anschließbar ist. Weiter weist die Druckluftzuführung 10 einen zweiten Druckluftzuführungsanschluss 2.2 auf, an den noch eine weitere Pneumatikleitung 37 zum Druckmittelvorratsbehälter 20 über ein noch ein weiteres Trennventil 38 anschließbar ist. An die noch weitere Pneumatikleitung 37 ist der Druckmittelvorratsbehälter 20 über den oben genannten zweiten Druckluftanschluss 2' angeschlossen. An den zweiten Druckluftanschluss 2' ist auch die weitere Pneumatikleitung 40 zum Druckluftanschluss 2 angeschlossen.
  • Die noch weitere Pneumatikleitung 37 ist -bei geöffnetem noch weiteren Trennventil 38 - nur unidirektional von Druckluft durchströmbar, nämlich in einer vom Druckmittelvorratsbehälter 20 ausgesehen, weiteren Entlüftungsrichtung E'. Dazu weist die noch weitere Pneumatikleitung 37 ein weiteres Rückschlagventil 39 auf, das in der noch weiteren Entlüftungsrichtung E' selbsttätig öffnet und in Gegenrichtung sperrt. Die noch weitere Pneumatikleitung 37 ist somit ausgelegt, dem zweiten Druckluftzuführungsanschluss 2.2 der Druckluftzuführung 10 Druckluft aus dem Druckmittelvorratsbehälter 20 zuzuführen, wenn das noch weitere Trennventil 38 öffnet.
  • Weiter weist die Druckluftzuführung 10 einen Luftzufuhranschluss 0 auf, über den Luft aus einer Luftzufuhr L - in einem Filter 52 einer Ansaugleitung 51 gefiltert - zugeführt werden kann.
  • Wie aus Fig. 1 erkennbar ist der Kompressor 11 der Druckluftzuführung 10 mit einer ersten Verdichterstufe 11.1 und einer zweiten Verdichterstufe 11.2 ausgelegt. Gemäß dem Konzept der Erfindung ist bei der hier beschriebenen Ausführungsform der Kompressor 11 mit einem einzigen Zylinder 12 mit einem in Fig. 2 näher beschriebenen Verdichtungsraum ausgeführt. Ein einziger im Verdichtungsraum beidseitig druckbeaufschlagbarer Kolben 13 des Kompressors 11 wird zur Bewegung in dem Verdichtungsraum von einem Motor M angetrieben. Der Zylinder 12 mit Verdichtungsraum und Kolben 13 des Kompressors 11 ist vorliegend unter Bildung beider Verdichtungsstufen 11.1 und 11.2 auf einer einzigen Seite des Motors M angeordnet. Wie aus der weiteren Beschreibung der Fig. 2 ersichtlich, ist dies eine besonders kompakte Anordnung des Zylinders 12 unter Nutzung eines einzigen Kolbens 13.
  • Fig. 1 stellt symbolisch drei Varianten von Ausführungsformen einer Druckluftzuführung 10 dar. Die Druckluftzuführung bzw. der Kompressor 11 weist eine Verbindungsleitung 14 zwischen der ersten Verdichterstufe 11.1 und der zweiten Verdichterstufe 11.2 in allen als I, II, III bezeichnete Varianten auf. Die Anordnung einer Verbindungsleitung zwischen der ersten und zweiten Verdichterstufe 11.1, 11.2 in den Varianten I, II, III ist unterschiedlich ausgeführt.
  • In der besonders bevorzugten in Fig. 2 beispielhaft weiter beschriebenen ersten Variante I ist die Verbindungsleitung 14 in einer Gehäusewandung des Zylinders 12 gebildet. Die Verbindungsleitung 14 weist in dieser Ausführungsform auch einen Zwischenkühler 15 auf, der sowohl einen Wärmetauscher als auch geeignete Wärmeabführmittel aufweisen kann. Diese in Fig. 2 dargestellte besonders bevorzugte erste Variante I einer Druckluftzuführung 10 mit dem Kompressor 11 hat sich als besonders kompakt und gleichzeitig effizient erwiesen, um Druckluft zwischen einer ersten und zweiten Verdichterstufe 11.1, 11.2 zu kühlen. Eine gekühlte vorverdichtete Druckluft der ersten Verdichterstufe 11.1 kann auf einen höheren Druck in der zweiten Verdichterstufe 11.2 verdichtet werden und so dem ersten Druckluftzuführungsanschluss 2.1 bei höherem Druckniveau zur Verfügung gestellt werden. Gegebenenfalls lässt sich die Verfügbarkeit von Druckluft, d.h. insbesondere eine Druckluftmenge, noch weiter dadurch steigern, dass über den zweiten optional nutzbaren Druckluftzuführungsanschluss 2.2 der zweiten Verdichterstufe 11.2 weiteres Druckmittel zugeführt wird und -in einem sogenannten Boost-Betrieb- zusammen mit der auf hohem Niveau verdichteten und gegebenenfalls gekühlten Druckluft der ersten Verdichterstufe 11.1 in der zweiten Verdichterstufe 11.2 weiter verdichtet und im ersten Druckluftzuführungsanschluss 2.1 zur Verfügung gestellt wird.
  • In einer das gleiche Konzept verfolgenden zweiten Variante II ist die vorliegend gepunktet dargestellte Verbindungsleitung 14' ebenfalls mit einem Zwischenkühler 15' außerhalb der Gehäusewandung des Zylinders 12 - insofern außerhalb der Druckluftzuführung 10 - geführt. Dies schafft zusätzlich Bauraum, um einen Zwischenkühler 15' größer auszubilden und damit mit größerer Kühlleistung und effizienter in der Verbindungsleitung 14' der zweiten Variante II anordnen zu können.
  • In Fig. 1 ist auch eine Verbindungsleitung 14" der dritten Variante III der Druckluftzuführung 10 - hier ohne Zwischenkühler - gezeigt. Die Verbindungsleitung 14" der dritten Variante III ist als Durchführung eines Kolbenkörpers des Kolben 13 gebildet. Die dritte Variante III der bevorzugten Ausführungsform eines Kompressors 11 bzw. einer Druckluftzuführung 10 ist somit besonders kompakt ausgelegt. Aufgrund der vergleichsweise kurzen Verbindungsleitung 14" wird der gesamte Verdichtungsraum im Zylinder 12 gering gehalten, so dass eine besonders hohe Verdichtungsdruckamplitude erreicht werden kann. Auch in dieser Ausführung kann die Druckluftmenge der Druckluftzuführung 10 mittels des Boost-Betriebs unter Nutzung der Pneumatikleitung 37 in Verbindung mit einem dem Einlassventil im Verdichtungsraum gesteigert werden.
  • Im Folgenden beispielhaft, lediglich Bezug nehmend auf die erste Variante I der Ausführungsform der Fig. 1, ist in Fig. 2 ein Kompressor 11 mit vorliegend einer einzigen zweistufigen Verdichtereinheit gezeigt. Grundsätzlich liegt es im Rahmen der Erfindung, einen Kompressor auch mit einer zweiten, dritten und weiteren höheren Anzahl von zweistufigen Verdichtereinheiten auszulegen. Diese können als sequentielle zweistufige Verdichtereinheiten in Reihe gekoppelt werden und so ein besonders hohes Verdichtungsdruckniveau der Druckluft in der Pneumatikhauptleitung zur Verfügung stellen. Wahlweise können die zweistufigen Verdichtereinheiten auch unabhängig voneinander an eine Pneumatikhauptleitung 30 angeschlossen sein, um so ein besonders großes Volumen von vergleichsweise hoch verdichteter Druckluft in der Pneumatikhauptleitung 30 zur Verfügung zu stellen. Die in der ersten Variante I benannte Ausführungsform eines Kompressors 11 sieht eine zweistufige Verdichtereinheit vor, die im Folgenden näher mit dem Kompressor 11 beschrieben wird.
  • Dazu zeigt Fig. 2 den Kompressor 11 mit einem einzigen Zylinder 12 sowie einem einzigen in einem Verdichtungsraum des Zylinders 12 zweiseitig druckbeaufschlagbaren Kolben 13. Der Kolben 13 ist vorliegend als ein Stufenkolben ausgebildet, der eine Flachseite 13.1 und eine Stufenseite 13.2 aufweist. Eine erste Verdichtungskammer 16.1 im Verdichtungsraum ist als Teil der ersten Verdichterstufe 11.1 auf der Flachseite 13.1 des Kolbens 13 gebildet. Eine zweite Verdichtungskammer 16.2 ist im Verdichtungsraum als Teil der zweiten Verdichterstufe 11.2 auf der Stufenseite 13.2 des Kolbens 13 gebildet. Der vorliegend im Zylinder 12 gebildete zylindrische Verdichtungsraum wird durch den Kolben 13 somit in zwei im Wesentlichen zylindrische Verdichtungskammern 16.1, 16.2 geteilt. Die als Flachseite 13.1 bezeichnete Kolbenoberseite und die als Stufenseite bezeichnete Kolbenunterseite sind im Verdichtungsbetrieb beide druckbeaufschlagt. An den Kolben 13 schließt kolbenunterseitig eine Kolbenstange 17 winkelstarr an. Ein so realisiertes Linearpleuel hat erhebliche Vorteile gegenüber sonstigen Schwenkpleueln, bei denen der Kolben an einer Kolbenstange beweglich oder schwenkbar befestigt wäre. Vorliegend sind Schadräume in diesem Bereich gering gehalten, was zu einem verbesserten Wirkungsgrad führt. Die zweite Verdichtungskammer 16.2 ist im verfügbaren Verdichtungsvolumen aufgrund des Volumens der Kolbenstange 17 um ein der technisch variablen Auslegung zugängliches Differenzvolumen der Kolbenstange 17 im Vergleich zum verfügbaren Verdichtungsvolumen der ersten Verdichtungskammer 16.1 verringert. Damit weist die zweite Verdichtungskammer 16.2 ein bei Verdichtung höheres Hochdruckniveau im Vergleich zu einem bei Verdichtung niedrigerem Niederdruckniveau der ersten Verdichtungskammer 16.1 auf.
  • Der Kolben 13 weist eine umfänglich umlaufende Kolbendichtung D1 auf, welche die erste Verdichtungskammer 16.1 gegen die zweite Verdichtungskammer 16.2 abdichtet. Über Zylinderventile Z1, Z2 sind die erste Verdichtungskammer 16.1 und die zweite Verdichtungskammer 16.2 pneumatisch durch die zuvor erläuterte Verbindungsleitung 14 verbunden. In der Verbindungsleitung 14 ist der ersten Variante I folgend vorliegend der Zwischenkühler 15 symbolisch eingezeichnet. Die pneumatische Verbindungsleitung 14 ist gemäß der ersten Variante II in einer Gehäusewandung ZG des Zylinders 12 als Durchführung gebildet. Die Durchführung weist am Zylinderventil Z1 eine verschließbare Öffnung zur ersten Verdichterkammer 16.1 auf, sowie am Zylinderventil Z2 eine zweite verschließbare Öffnung zur zweiten Verdichterkammer 16.2 auf. Die pneumatische Verbindungsleitung 14 weist auch den zweiten Druckluftzuführungsanschluss 2.2 auf.
  • Konstruktiv ist die Verbindungsleitung 14 in einem Abschnitt-im Wesentlichen in einem Niederdruckbereich- in einem Kopf ZGK des Zylindergehäuses ZG gebildet. Die Verbindungsleitung 14 -im Wesentlichen in einem Hochdruckbereich- ist in einem anderen Abschnitt in einem Fuß ZGF des Zylindergehäuses ZG gebildet. Der Kopf ZGK des Zylindergehäuses ZG ist mit einer Dichtung D2 auf den Fuß ZGF des Zylindergehäuses ZG aufgesetzt und so dicht unter Bildung des Zylindergehäuses ZG befestigt.
  • An die erste Verdichterkammer 16.1 ist der Luftzufuhranschluss 0 über ein Zylinderventil Z3 angeschlossen, wobei der Zufuhranschluss 0 mit einer Durchführung im Kopf ZGK des Zylindergehäuses ZG gebildet ist. Im Fuß ZGF des Zylindergehäuses ZG ist der erste Druckluftzuführungsanschluss 2.1 als Durchführung gebildet. Der erste Druckluftzuführungsanschluss 2.1 ist an einer Öffnung zur zweiten Verdichterkammer 16.2 durch ein viertes Zylinderventil Z4 verschließbar.
  • Die zweite Verdichterkammer 16.2 ist über eine Hochdruckdichtung D3 im Spalt zum Fuß ZGF des Zylindergehäuses ZG gegen die Kolbenstange 17 abgedichtet. Weiter ist die Kolbenstange 17 durch eine Dichtung D4 gegen die Umgebung, nämlich hier dem Innenraum R eines Kurbelgehäuses KG, abgedichtet. Die Kolbenstange 17 ist - starr am Kolben 13 befestigt- entlang der Achse A des Kompressors 11 hin und her bewegbar. Dabei wird die Kolbenstange 17 zusammen mit dem Kolben 13 zur Ausführung einer translatorischen Bewegung, vorliegend einer Hin- und Her-Bewegung, entlang der Achse A von einem Motor M angetrieben. Die Drehbewegung einer Antriebswelle MW und der Kurbelwelle K wird über eine das Gelenk G mit bildende Koppelstange 18 in die Hin- und Herbewegung umgesetzt. Dazu weist die Koppelstange 18 zur Ausbildung des Gelenks G eine Drehlagerung K1 an der Kolbenstange 17 einerseits und eine Drehlagerung K2 an der Kurbelwelle K andererseits auf. Das im Übrigen mit ovalem Innenraum R gebildete Kurbelgehäuse KG erlaubt so die Bewegung des Gelenks G im Innenraum R.
  • Bei drehender Antriebswelle MW erfolgt also ein Amplitudenhub unter Drehung der Kurbelwelle K, der die Amplitude der Hin- und Her-Bewegung je nach Auslegung der Kurbelwelle K und der Koppelstange 18 umsetzt.
  • Fig. 2 zeigt den oberen Umkehrpunkt der Hin- und Her-Bewegung, wobei der Kolben 13 an dem oberen Umkehrpunkt der ersten Verdichterkammer 16.1 bereits eine über die Luftzufuhr L zugeführte Luft bis auf ein Niederdruckniveau in der ersten Verdichterkammer 16.1 verdichtet hat. Das Zylinderventil Z3 verschließt in diesem Zustand die Öffnung zum Luftzufuhranschluss 0 während das Zylinderventil Z1 die Öffnung zur Verbindungsleitung 14 öffnet. Damit kann die auf ein Niederdruckniveau verdichtete Luft als Druckluft in die Verbindungsleitung 14 gedrückt werden. Die so bis auf ein Niederdruckniveau verdichtete Druckluft wird vom Zwischenkühler 15 gekühlt über die vom Zylinderventil Z2 geöffnete Öffnung der Verbindungsleitung 14 der zweiten Verdichterkammer 16.2 zugeführt. Optional kann auch unter Öffnung des zweiten Druckanschlusses 12.2 Druckluft auf Hochdruckniveau aus dem Druckmittelvorratsbehälter 20 der Verbindungsleitung 14 unter Öffnung zur zweiten Verdichterkammer 16.2 zugeführt werden. In einer Abwärtsbewegung der Hin- und Her-Bewegung aus dem Zustand der Kolbenstellung in Fig. 2 kann nun die Druckluft in der zweiten Verdichterkammer 16.2 weiter auf ein Hochdruckniveau verdichtet werden. Die auf ein Hochdruckniveau verdichtete Druckluft kann schließlich bei geschlossenem Zylinderventil Z2 unter Öffnen des Zylinderventils Z4 dem ersten Druckluftzuführungsanschluss 2.1 zugeführt werden. Über die Gesamtdruckluftzuführung 1 kann so die auf ein sehr hohes Hochdruckniveau verdichtete Druckluft der Pneumatikhauptleitung 30 der Druckerversorgungsanlage zugeführt werden. Der Kompressor 11 sichert einen Betriebsdruck von mindestens 20 bar für die auf Hochdruckniveau verdichtete Druckluft.
  • Der Führungskanal 19 durchsetzt als Durchführung sowohl den Fuß ZGF des Zylindergehäuses ZG als auch den oberen Teil des Kurbelgehäuses KG zum Innenraum R des Kurbelgehäuses KG. Die erste und zweite Dichtungskammer 16.1, 16.2 sind bei der hier beschriebenen Ausführungsform bauraumsparend durch in einem Zylindergehäuse ZG bzw. einem Kurbelgehäuse KG, liegende Dichtungen D1, D2, D3, D4 abgedichtet. Dazu weist ein Gehäuse ZG, KG entsprechende Ringnuten oder Ansätze auf, um ein verrutschsicheres Anbringen der Dichtung D1, D2, D3, D4 zu ermöglichen. Diese Ausführung hat sich als sicherer erwiesen im Vergleich zu einer Anbringung einer Dichtung an der Kolbenstange 17. Gleichwohl ist die Anbringung einer Dichtung D1 an einem bewegten Teil wie dem Kolben 13 dennoch möglich. Die vorliegende Ausführungsform hat sich jedoch als besonders vorteilhaft erwiesen, um ein vergleichsweise kleines und möglichst unveränderliches Schadraumvolumen zu realisieren. Mit anderen Worten ist durch die Fixposition der Hochdruckdichtung D3 sichergestellt, dass das Verdichtungsvolumen der zweiten Verdichtungskammer 16.2 konstant ist.
  • Im Übrigen ist die Ausführung eines Gelenks G in Abwandlung zur vorliegenden Ausführungsform je nach Bedarf im Rahmen des Konzepts der Erfindung möglich. insgesamt erlaubt die vorliegende Ausführungsform eine vergleichsweise kostengünstige Herstellung eines Kompressors 11. Sowohl die erste Variante I als auch die dritte Variante III sieht eine Schadraumvolumen begrenzende direkte und kompakte Kanalführung der Verbindungsleitung 14 im Zylindergehäuse ZG - in der dritten Variante III im Kolbenkörper des Kolbens 13 - vor.
  • Der Betrieb des Kompressors 11 sichert eine 180° Kolbenphasenverschiebung zwischen erster Verdichterstufe und zweiter Verdichterstufe. Dies bewirkt ein niedriges dynamisches Kraftniveau für Kurbelbetrieb und Motor sowie auch ein geringes Geräuschniveau. Darüber hinaus wird ein Geräuschniveau reduziert durch die vergleichsweise gering gehaltene Anzahl von kinematisch betriebenen Teilen und Massen. Auch ist eine Abstrahloberfläche für Schall bei der vorliegenden Ausführungsform vergleichsweise gering gehalten; diese erstreckt sich nämlich lediglich auf den Zylinderkopf insbesondere nur auf den Kopf des Zylindergehäuses ZGK.
  • Darüber hinaus ermöglicht die vorliegende Ausführungsform eine zweckangepasste variable Auslegung von unterschiedlichen Hub- und Verdichtungsquerschnitten je nach Auslegung der Kolbenstange 17 und des Kolbens 13. Dadurch lässt sich ein Kompressor 11, insbesondere eine Druckluftzuführung 10 ähnlich einem Baukastenprinzip je nach Bedarf auf Kundenbedürfnisse abstellen. Der Kompressor ist schnittstellenkompatibel zu bekannten Elektromotorantrieben.
  • Insgesamt erlaubt es das Konzept der Erfindung einen optionalen Zwischenkühler 15 je nach Bedarf in einer Verbindungsleitung 14 zur Wirkungsgradoptimierung zu integrieren. Auch lässt sich ein als Aufladeanschluss wirkender Druckluftzuführungsanschluss 2.2 mit einem Druckmittelvorratsbehälter 20 pneumatisch verbinden, um einen Boost-Betrieb für die zweite Verdichterstufe zu realisieren. Insgesamt ergibt sich eine verbesserte Verfügbar von Druckluft mit den Vorteilen, die eine zweistufige Verdichtung gegenüber einen einstufigen Verdichtung hat in Kombination mit einer kompakten und schallreduzierten sowie sehr effizienten Ausführung gemäß der beschriebenen Ausführungsform.
  • Bezugszeichenliste (Bestandteil der Beschreibung)
  • 0
    Luftzufuhranschluss
    1
    Gesamtdruckluftzuführung
    11
    Kompressor
    2,2',
    Druckluftanschluss
    2.1, 2.2
    Druckluftzuführungsanschluss
    3
    Entlüftungsanschluss
    10
    Druckluftzuführung
    11.1, 11.2
    Verdichterstufe
    12
    Zylinder
    13
    Kolben
    13.1
    Flachseite des Kolbens
    13.2
    Stufenseite des Kolbens
    14, 14', 14"
    Verbindungsleitung
    15, 15', 15"
    Zwischenkühler
    16.1
    erste Verdichterkammer
    16.2
    zweite Verdichterkammer
    17
    Kolbenstange
    18
    Koppelstange
    19
    Führungskanal
    20
    Druckmittelvorratsbehälter
    30
    Pneumatikhauptleitung
    31,36, 38, 41
    Trennventil
    32, 39
    Rückschlagventil
    34
    Drossel
    35
    Entlüftungsleitung
    37, 40
    Pneumatikleitung
    50
    Lufttrockner
    51
    Ansaugleitung
    52
    Filter
    100
    Druckluftversorgungsanlage
    200
    Pneumatikanlage
    210
    Luftfeder
    211
    Balg
    212
    Luftfederventil
    220
    Galerieleitung
    221
    Federzweigleitung
    230
    Spannungs-Druck-Sensor
    300
    Pneumatisches System
    400
    Fahrzeug
    410
    Auflager
    A
    Achse
    B
    Belüftungsrichtung
    D1, D2, D3, D4
    Dichtung
    E, E'
    Entlüftungsrichtung
    G
    Gelenk
    K
    Kurbelwelle
    K1, K2
    Drehlagerung
    KG
    Kurbelgehäuse
    L
    Luftzufuhr
    M
    Motor
    MW
    Antriebswelle
    R
    Raum
    ZGK
    Kopf
    ZGF
    Fuß
    ZG
    Zylindergehäuse
    Z1, Z2, Z3, Z4
    Zylinderventil

Claims (18)

  1. Kompressor (11) für eine Druckluftzuführung (10) einer Druckluftversorgungsanlage (100), zum Betreiben einer Pneumatikanlage (200), insbesondere einer Luftfederanlage eines Fahrzeugs (400), mit einer ersten Verdichterstufe (11.1) und einer zweiten Verdichterstufe (11.2), wobei für die Druckluftzuführung (10)
    - ein Luftzufuhranschluss (0) eingangs der ersten Verdichterstufe (11.1) ange-ordnet ist, und
    - ein erster Druckluftzuführungsanschluss (2.1), ausgangs der zweiten Verdichterstufe (11.2) angeordnet ist, wobei
    der Kompressor (1) wenigstens eine zweistufige Verdichtereinheit mit einem einzigen Zylinder (12) mit einem einzigen in einem Verdichtungsraum des Zylinders zweiseitig druckbeaufschlagbaren Kolben (13) aufweist, wobei der Kolben (13) als ein Stufenkolben mit einer Flachseite (13.1) und mit einer eine Kolbenstange (17) anschließenden Stufenseite (13.2) ausgebildet ist, und wobei
    eine erste Verdichtungskammer (16.1) der ersten Verdichterstufe (11.1) in dem Verdichtungsraum auf der Flachseite (13.1) des Stufenkolbens und
    eine zweite Verdichtungskammer (16.2) der zweiten Verdichterstufe (11.2) in dem Verdichtungsraum auf der Stufenseite (13.2) des Stufenkolbens gebildet ist,
    dadurch gekennzeichnet, dass ein Führungskanal (19) Führungs- und Dichtmittel zwischen der Kolbenstange (17) und der Wandung des Führungskanals (19) aufweist und
    dass ein erstes Dichtmittel (D3) als eine Hochdruckdichtung an einem der zweiten Verdichterkammer (16.2) zugewandten Abschnitt des Führungskanals (19) gebildet ist.
  2. Kompressor (11) nach Anspruch 1 dadurch gekennzeichnet, dass ein zweiter Druckluftzuführungsanschluss (2.2) zwischen der ersten und zweiten Verdichterstufe (11.1, 11.2) angeordnet ist.
  3. Kompressor (11) nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass die Kolbenstange (17) über ein Gelenk (G), insbesondere mit einer an eine Antriebswelle (MW) gekoppelten Kurbelwelle (K) über eine Koppelstange (18) verbunden, in einem einen Verbindungsbereich zwischen Zylindergehäuse (ZG) und Kurbelgehäuse (KG) zum Verdichtungsraum durchsetzenden Führungskanal (19) axial geführt, hin- und herbewegbar angeordnet ist.
  4. Kompressor (11) nach Anspruch 1 dadurch gekennzeichnet, dass ein zweites Dichtmittel (D4) als eine Umgebungsdichtung an einem einem Kurbelgehäuse (KG) zugewandten Abschnitt des Führungskanals (19), insbesondere unter Ausbildung eines Führungselements, gebildet ist.
  5. Kompressor (11) nach einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass die erste und zweite Verdichtungskammer (16.1, 16.2) über eine Verbindungsleitung (14, 14', 14") pneumatisch verbunden sind, insbesondere über ein jeweils kammerseitig angeordnetes Zylinderventil (Z1, Z2).
  6. Kompressor (11) nach Anspruch 5 dadurch gekennzeichnet, dass die Verbindungsleitung (14,14') einen Zwischenkühler (15, 15'), insbesondere Wärmetauscher und/oder Wärmeabführmittel, aufweist.
  7. Kompressor (11) nach Anspruch 5 oder 6 dadurch gekennzeichnet, dass die Verbindungsleitung (14) in einer Gehäusewandung des Zylindergehäuses (ZG) gebildet ist.
  8. Kompressor (11) nach Anspruch 5 oder 6 dadurch gekennzeichnet, dass die Verbindungsleitung (14') außerhalb einer Gehäusewandung, insbesondere wenigstens teilweise außerhalb des Zylindergehäuses (ZG), verläuft.
  9. Kompressor (11) nach einem der Ansprüche 1 bis 8 dadurch gekennzeichnet, dass ein zweiter Druckluftzuführungsanschluss (2.2) in einer Verbindungsleitung (14, 14') angeordnet ist.
  10. Kompressor (11) nach einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, dass eine Verbindungsleitung (14") als Durchführung eines Kolbenkörpers des Kolbens (13) gebildet ist.
  11. Kompressor (11) nach Anspruch 10 dadurch gekennzeichnet, dass die Durchführung über ein Einlassventil an die zweite Verdichterstufe (11.2) angeschlossen ist.
  12. Druckluftversorgungsanlage (100) zum Betreiben einer Pneumatikanlage (200), insbesondere einer Luftfederanlage eines Fahrzeugs (400), aufweisend:
    - eine Luftzufuhr (L) und eine daran über einen Luftzufuhranschluss (0) pneumatisch angeschlossene Druckluftzuführung (10) zur Verdichtung von Luft;
    - eine an die Druckluftzuführung (10) pneumatisch angeschlossene einen Lufttrockner (50) aufweisende Pneumatikhauptleitung (30) mit einem Druckluftanschluss (2) zur Pneumatikanlage (200)
    - einem an den Druckluftanschluss (2) zur Pneumatikanlage (200) und an den Druckluftzuführungsanschluss (2.2) der Druckluftzuführung (10) angeschlossenen Druckmittelvorratsbehälter (20), wobei
    die Druckluftzuführung (10) einen Kompressor (11) nach einem der Ansprüche 1 bis 11 aufweist, der über den Luftzufuhranschluss (0) mit der ersten Verdichterstufe (11.1) an die Luftzufuhr (L) angeschlossen ist.
  13. Druckluftversorgungsanlage (100) nach Anspruch 12 dadurch gekennzeichnet, dass der Kompressor (11) über einen zweiten Drucklüftzuführungsanschluss (2.2) zwischen der ersten und zweiten Verdichterstufe (11.1, 11.2) an den Druckmittelvorratsbehälter (20) angeschlossen ist.
  14. Druckluftversorgungsanlage (100) nach Anspruch 12 oder 13 dadurch gekennzeichnet, dass eine Luftzufuhr (L) separat von einer Entlüftung gebildet ist.
  15. Druckluftversorgungsanlage (100) nach Anspruch 12 oder 13 dadurch gekennzeichnet, dass ein Luftzufuhranschluss (0) und ein Entlüftungsanschluss (3) zusammengelegt sind, insbesondere einen gemeinsamen Filter aufweisen.
  16. Druckluftversorgungsanlage (100) nach einem der Ansprüche 12 bis 15 dadurch gekennzeichnet, dass ein, insbesondere pneumatisch, entsperrbares Rückschlagventil (32) mit dem Lufttrockner (50) in einer pneumatischen Reihenschaltung in der Pneumatikhauptleitung (30) angeordnet ist.
  17. Pneumatisches System (300) mit einer Druckluftversorgungsanlage (100) nach einem der Ansprüche 12 bis 16 und einer Pneumatikanlage (200), dadurch gekennzeichnet, dass die Pneumatikanlage (200) in Form einer Luftfederanlage eines Fahrzeugs (400) gebildet ist.
  18. Verfahren zum Betreiben einer Druckluftversorgungsanlage (100) nach einem der Ansprüche 12 bis 16 aufweisend die Schritte:
    - Verdichten von Luft aus der Umgebung in der ersten Verdichterstufe (11.1) auf ein Niederdruckniveau
    - weiteres Verdichten der in der ersten Verdichterstufe (11.1) auf ein Niederdruckniveau verdichteten Druckluft in der zweiten Verdichterstufe (11.2) auf ein Hochdruckniveau,
    - Zuführen der in der zweiten Verdichterstufe (11.2) auf ein Hochdruckniveau verdichteten Druckluft zur Pneumatikhauptleitung (30),
    dadurch gekennzeichnet, dass
    in einem ersten Betriebsmodus eine Druckluftzufuhr zur zweiten Verdichterstufe (11.2) aus dem Druckmittelvorratsbehälter (20) unterbunden, und,
    in einem zweiten, insbesondere optionalen, Betriebsmodus eine Druckluftzufuhr aus dem Druckmittelvorratsbehälter (20) zur zweiten Verdichterstufe (11.2) erfolgt, wobei die Schritte
    des Verdichtens und des weiteren Verdichtens in auf unterschiedlichen Seiten des Kolbens (13) gebildeten Verdichtungskammern (16.1, 16.2) desselben Verdichtungsraumes erfolgt.
EP11787619.3A 2010-12-16 2011-11-22 Kompressor, druckluftversorgungsanlage, pneumatisches system und verfahren zum betreiben einer druckluftversorgungsanlage Not-in-force EP2652330B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010054710 DE102010054710A1 (de) 2010-12-16 2010-12-16 Kompressor, Druckluftversorgungsanlage, pneumatisches System und Verfahren zum Betreiben einer Druckluftversorgungsanlage
PCT/EP2011/005867 WO2012079692A1 (de) 2010-12-16 2011-11-22 Kompressor, druckluftversorgungsanlage, pneumatisches system und verfahren zum betreiben einer druckluftversorgungsanlage

Publications (2)

Publication Number Publication Date
EP2652330A1 EP2652330A1 (de) 2013-10-23
EP2652330B1 true EP2652330B1 (de) 2018-07-25

Family

ID=45023790

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11787619.3A Not-in-force EP2652330B1 (de) 2010-12-16 2011-11-22 Kompressor, druckluftversorgungsanlage, pneumatisches system und verfahren zum betreiben einer druckluftversorgungsanlage

Country Status (3)

Country Link
EP (1) EP2652330B1 (de)
DE (1) DE102010054710A1 (de)
WO (1) WO2012079692A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012006382A1 (de) * 2012-03-30 2013-10-02 Wabco Gmbh Druckmittelversorgungsanlage, pneumatisches System und Verfahren zum Betreiben einer Druckmittelversorgungsanlage
DE102012024400A1 (de) * 2012-12-13 2014-06-18 Wabco Gmbh Verdichter zur Erzeugung von Druckluft, Druckluftversorgungsanlage, pneuma-tisches System und Verfahren zum Betrieb eines Verdichters
DE102015203276A1 (de) 2015-02-24 2016-08-25 Continental Teves Ag & Co. Ohg Kolbenpumpe
DE102016003662B4 (de) * 2016-03-30 2023-06-22 Zf Cv Systems Hannover Gmbh Druckluftversorgungsanlage
DE102016003661B4 (de) 2016-03-30 2023-06-29 Zf Cv Systems Hannover Gmbh Druckluftversorgungsanlage
DE102017004088A1 (de) 2017-04-28 2018-10-31 Wabco Gmbh Verdichter, Druckluftversorgungsanlage zum Betreiben einer Pneumatikanlage und Verfahren zum Betreiben einer Druckluftversorgungsanlage
DE102017222278B4 (de) * 2017-12-08 2021-12-30 Continental Teves Ag & Co. Ohg Federungseinrichtung für ein Radfahrzeug
DE102021110256A1 (de) 2021-04-22 2022-10-27 Zf Cv Systems Europe Bv Kolben, Verdichter, Druckluftversorgungsanlage, Fahrzeug und Verfahren zum Betreiben einer Druckluftversorgungsanlage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0000611A1 (de) * 1977-07-20 1979-02-07 Jörgen Reimer Meilstrup Kolbenverdichter zum Füllen von Taucheratemluftzylinder
DE19912800A1 (de) * 1999-03-11 2000-09-14 Stephan Kaszynski Regelbares Luftfedersystem, insbesondere für Fahrzeuge

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB214907A (en) * 1923-09-10 1924-05-01 Bruno Victor Nordberg High duty multi-stage compressors for compressing air or gases
DE1403963A1 (de) * 1963-07-02 1968-11-21 Kurt Braetsch Kompressor mit wenigstens drei Stufen
FR2036744A1 (de) * 1969-03-14 1970-12-31 Westinghouse Freins & Signaux
JPH0988819A (ja) 1995-09-19 1997-03-31 Tokico Ltd 多段式空気圧縮機
DE19715291C2 (de) 1997-04-11 2002-05-16 Pnp Luftfedersysteme Gmbh Zweistufiger Kompressor
DE10321771C5 (de) 2003-05-15 2017-01-19 Continental Teves Ag & Co. Ohg Verfahren zur Leistungsbegrenzung eines mehrstufigen Kompressor und Kompressor zur Durchführung des Verfahrens
US7632076B2 (en) * 2005-03-02 2009-12-15 Bendix Commercial Vehicle Systems Llc Air supply system control
DE102008034240B4 (de) 2008-07-23 2014-12-18 Wabco Gmbh Niveauregelanlage für Fahrzeuge und Verfahren zum Betreiben einer Niveauregelanlage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0000611A1 (de) * 1977-07-20 1979-02-07 Jörgen Reimer Meilstrup Kolbenverdichter zum Füllen von Taucheratemluftzylinder
DE19912800A1 (de) * 1999-03-11 2000-09-14 Stephan Kaszynski Regelbares Luftfedersystem, insbesondere für Fahrzeuge

Also Published As

Publication number Publication date
EP2652330A1 (de) 2013-10-23
WO2012079692A1 (de) 2012-06-21
DE102010054710A1 (de) 2012-06-21

Similar Documents

Publication Publication Date Title
EP2652330B1 (de) Kompressor, druckluftversorgungsanlage, pneumatisches system und verfahren zum betreiben einer druckluftversorgungsanlage
DE69801354T2 (de) Verdrängerkolben eines Kolbenverdichters
DE102016224081B4 (de) Luftfeder mit einem integrierten Luftverdichter
DE202012102278U1 (de) Luftkompressor
DE112014005076T5 (de) Automatisches Reifenfüllsystem mit doppelter Pumpe für eine Lkw-Anordnung
DE102007051940A1 (de) Aufgeladener Kompressor und Verfahren zur Steuerung eines aufgeladenen Kompressors
DE102006058671A1 (de) Radaufhängung für ein Kraftfahrzeug
EP3414456A1 (de) Hubkolbenmaschine, insbesondere zwei- oder mehrstufiger kolbenkompressor, druckluftversorgungsanlage, druckluftversorgungssystem und fahrzeug, insbesondere pkw mit einer druckluftversorgungsanlage
WO2017137144A1 (de) Hubkolbenmaschine, insbesondere zwei- oder mehrstufiger kolbenkompressor, druckluftversorgungsanlage, druckluftversorgungssystem und fahrzeug, insbesondere pkw mit einer druckluftversorgungsanlage
EP1438504B8 (de) Hubkolbenmaschine mit einer schiebehülse
EP3535495B1 (de) Hubkolbenmaschine, insbesondere ein-, zwei- oder mehrstufiger kolbenkompressor für eine druckluftversorgungsanlage eines fahrzeugs
DE102016203587A1 (de) Taumelscheibenverdichter mit veränderlicher Verdrängung
DE102016213957A1 (de) Hydropneumatischer Aktuator
EP3615800B1 (de) Verdichter, druckluftversorgungsanlage zum betreiben einer pneumatikanlage und verfahren zum betreiben einer druckluftversorgungsanlage
DE102017201905A1 (de) Steuerventil für Düsen und Düsenkopf mit dem Steuerventil
DE102015223129A1 (de) Hydraulisch betätigtes Schaltventil
DE3902658C2 (de) Kolbenmkompressor
DE19714143C2 (de) Taumelscheibenverdichter
DE19635880C2 (de) Selbstpumpendes hydropneumatisches Federbein mit innerer Niveauregelung
DE102007031525B4 (de) Kolbenspeicher zur Dämpfung von zwei Fluidsystemen
EP1963677A1 (de) Kompressoreinheit
DE4240590A1 (de) Verdrängerpumpe
DE102013000811A1 (de) Verstellbare hydrostatische Axialkolbenmaschine
DE102015206328A1 (de) Hydraulisch betätigtes Wegeventil
DE102019008858A1 (de) Anordnung eines Kolbenrings in einer Ringnut eines Kolbens für eine Hubkolbenmaschine, insbesondere für ein Kraftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130716

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170116

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180426

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1022051

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011014522

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180725

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181025

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181026

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181125

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011014522

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20190426

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181122

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181122

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1022051

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191130

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191121

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180725

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111122

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011014522

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601