EP2642130B1 - Laufrad zur axialen Förderung von Flüssigkeiten, insbesondere für Kälteanlagen - Google Patents

Laufrad zur axialen Förderung von Flüssigkeiten, insbesondere für Kälteanlagen Download PDF

Info

Publication number
EP2642130B1
EP2642130B1 EP13160281.5A EP13160281A EP2642130B1 EP 2642130 B1 EP2642130 B1 EP 2642130B1 EP 13160281 A EP13160281 A EP 13160281A EP 2642130 B1 EP2642130 B1 EP 2642130B1
Authority
EP
European Patent Office
Prior art keywords
radius
impeller
edge
angle
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13160281.5A
Other languages
English (en)
French (fr)
Other versions
EP2642130A1 (de
Inventor
Leonardo Vitaletti
Roberto Lucchetti
Mariano Tartuferi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elica SpA
Original Assignee
Elica SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elica SpA filed Critical Elica SpA
Publication of EP2642130A1 publication Critical patent/EP2642130A1/de
Application granted granted Critical
Publication of EP2642130B1 publication Critical patent/EP2642130B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form

Definitions

  • EP0259061A2 describes a prior art axial flow fan in accordance with the preamble of claim 1.
  • the impellers of the type indicated above have to meet needs of reduced bulk, reduced weights, manufacturing easiness, and cost effectiveness. From a performance point of view, higher and higher levels of fluido-dynamic efficiency and noiselessness are required.
  • the object of the present invention is to propose an axial impeller having such characteristics as to better meet the above-mentioned needs and to reconcile them to one another.
  • an axial impeller is generally indicated with the reference 1.
  • the impeller 1 has a plurality of, preferably five, blades 2 symmetrically connected to a hub 3 suitable for the connection of the impeller 1 to a shaft, the longitudinal axis of which forms the rotation axis R of the impeller 1.
  • the blades 2 of the impeller 1 are equal to one another, and it is therefore sufficient to determine the geometry of a single blade 2 and the hub 3 of the impeller 1, since the other blades 2 are obtained by rotation about the axis R of the reference blade by the angular pitch [360°/(number of blades)] of the blades.
  • the blade 2 of the impeller 1 is rigidly secured to the hub 3 that connects the blades 2 together and that can be, in turn, connected to a shaft suitable to rotate the impeller 1.
  • Each blade 2 forms a front surface 4 and an opposite back surface 5 connected together along a profile edge 6 made up of a radially outer apical edge 7, a side leading edge 8 that is the first to meet the flow F, a side trailing edge 9 opposite the leading edge 8, and joining edges 10 in the connection area of the blade 2 with the hub 3 (referred to as blade root).
  • the outer radius 13 of the impeller 1 is the radius of a circular circumference 14 circumscribing the impeller and tangent to the radially outermost points, referred to as shrouds 15, of the blades 2.
  • the inner radius 16 of the impeller 1 is the radius of an inner circular circumference 19 circumscribing the hub 3 and tangent to the connection points between the hub 3 and the blades 2 (referred to as blade roots 11). The difference between the outer radius 13 and the inner radius 16 defines the blade length.
  • a blade section is obtained for a given radius of the co-axial intersection cylinder.
  • the rectilinear segment joining the circumferentially extreme points of the blade section is referred to as the chord 29 of the section.
  • the length of the blade section, measured along the chord, is referred to as a length of chord at the radius at issue.
  • the angle of incidence 24 defines the angle formed by the chord of an impeller blade with the plane perpendicular to the rotation axis R.
  • the maximum axial dimension of the blade section denotes the maximum thickness of the section at the same radius.
  • the skew of the blade 2 indicates a displacement of each blade section along the helicoidal intersection line with the coaxial cylinder, measured by the generator at the section reference point.
  • a positive skew is oriented in a direction opposite the "forward" direction of rotation R of the impeller or, in other terms, going radially outwardly, the barycenter of the area of circumferential section of the blade moves to the direction opposite the "forward" direction of rotation R of the impeller 1.
  • the angle of inclination 27 denotes the angle between the direction of the flow (axial R) and the tangent to the blade surface in a point of a curve, defined by the intersection of a cylinder co-axial to the rotation axis R and the blade surface ( Figures 4 , 6 ).
  • the wrap angle 28 denotes, when seen in a projection axial on a plane normal to the rotation axis R, the angular width or the circumferential extension expressed in terms of the angle defined between two planes radial to the rotation axis R and tangent at the leading edge and at the trailing edge of the blade for the same radius.
  • the wrap angle 28 (Theta) defines the width of the blades in the circumferential direction, at a given radius R, particularly in the area comprised between the outer radius 13 and the intermediate radius 25 ( Fig. 1 ).
  • the leading edge 8 of the blade 2 when seen in a projection on a plane normal to the rotation axis R of the impeller 1 ( Fig. 1 ), is substantially rectilinear and extends in a direction radial to the rotation axis R, except for a rounded or beveled transition length between the leading edge 8 and the apical edge 7.
  • Such a beveled transition length has a very reduced extension of a few millimeters, both in the radial direction and in the circumferential direction relative to the rotation axis R.
  • the beveled length may have an extension from about 0.016*R1 to 0.063*R1, preferably from 0.031*R1 to 0.047*R1, even more preferably about 0.039*R1, both in the radial direction and in the direction circumferential relative to the rotation axis R, in which R1 is the outer radius of the impeller 1.
  • the apical edge 7 of the blade 2 is shaped like an arc of circle concentric to the rotation axis R, except for the above-mentioned rounded or beveled transition length between the leading edge 8 and the apical edge 7.
  • the trailing edge 9 of the blade 2 has a curved and concave shape, imparting to the blade 2 a positive skew and a continuous increase, approximately exponential, of the circumferential extension (axial projection of the length of chord) of the blade 2, as the radial distance relative to the rotation axis R increases.
  • a rounded or beveled transition length is formed, which may have a very reduced extension of a few millimeters both in the radial direction and in the circumferential direction relative to the rotation axis R.
  • the beveled length has an extension from about 0.016*R1 to 0.063*R1, preferably from 0.031*R1 to 0.047*R1, even more preferably about 0.039*R1, both in the radial direction and in the circumferential direction relative to the rotation axis R, in which R1 is the outer radius 13 of the impeller 1.
  • the joining edge 10 extends in the root area 11 of the blades 2 continuously and stepless from the trailing edge 9 of a blade 2 to the leading edge 8 of the adjacent blade 2.
  • a joining edge 10 preferably has an arc of circle shape, having a radius of between 0.12*R1 and 0.18*R1, preferably between 0.14*R1 and 0.16*R1, even more preferably about 0.15*R1, in which R1 is the outer radius 13 of the impeller 1, as well as an angular extension of between 160° and 180°, preferably between 170° and 175°.
  • the inner radius 16 of the impeller is within the range from 0.2*R1 to 0.3*R1, preferably from 0.25*R1 to 0.28*R1, even more preferably about 0.27*R1, in which R1 is the outer radius 13 of the impeller 1.
  • the blade 2 has a maximum circumferential extension (axial projection of the length of chord) at the apical edge 7 with an apical angle 17 (the angle defined between two planes radial to the rotation axis R that include together the total circumferential bulk of the apical edge 7 of the blade 2 on the leading side and on the trailing side) selected approximately within the range from 50° to 55°, preferably about 53°.
  • the total number of blades 2 is preferably 5, with a consequent angular pitch of 72°.
  • the blade 2 has a maximum axial bulk 18 ( Fig. 4 ) at the apical edge 7, or more precisely, at the transition lengths from the apical edge 7 to the leading 8 and trailing 9 edges.
  • a maximum axial bulk 18 can be selected within the range from 0.35*R1 to 0.40*R1, preferably from 0.37*R1 to 0.38*R1, even more preferably about 0.376*R1, in which R1 is the outer radius 13 of the impeller 1.
  • the maximum axial bulk 18 can be of about 47.8 mm.
  • the blade thickness is substantially constant over the entire extension of the blade 2.
  • the impeller 1 can be manufactured in metal sheet by cutting and cold deformation by a press or, alternatively, in synthetic material by injection molding with homogeneous thicknesses, promoting the control of the material shrinkage during the cooling thereof.
  • the hub 3 and the blades 2 are formed in a single piece and with a wall thickness that is substantially equal and uniform.
  • the hub 3 (or a hub 3 portion of the sheet or wall forming the impeller 1) may have the shape of a disc that is substantially planar and perpendicular to the rotation axis R.
  • the roots 11 of the blades 2 connect to the hub 2 along the inner circumference 19 in a single plane normal to the rotation axis R and, with further advantage, the hub 3 is substantially plane and lies in such a normal plane 20.
  • the blade 2 has a twisted portion 21 extending radially from the root 11 (inner circumference 19) up to a retroflection area or line 23 formed in the blade 2 at an intermediate circumference 22, and characterized by an extreme (maximum) angle of incidence 24 and an extreme local curvature (minimum radius of curvature) in the opposite direction to the torsion direction of the twisted portion 21, particularly at the leading 8 and trailing 9 edges.
  • a retroflection line 23 implements a reinforcement rib for the blade 2.
  • the twisted portion 21 has a twisted shape ("twisted" in the meaning of a twisting deformation) about an axis radial to the rotation axis R, obtaining a transition of the blade 2 shape and orientation from the root 11 (inner circumference 19) up to the retroflection area or line 23 (intermediate circumference 22).
  • the intermediate radius 25, i.e., the average radial distance between the rotation axis R and the retroflection line 23 of the blade 2 is preferably selected within the range from 0.42*R1 to 0.52*R1, preferably between 0.460*R1 and 0.480*R1, even more preferably about 0.472*R1, in which R1 is the outer radius 13 of the impeller 1.
  • R1 is the outer radius 13 of the impeller 1.
  • the intermediate radius 25 has preferably a length of 60mm.
  • the axial bulk 26 of the blade 2 at the retroflection line 23 is selected within the range from 0.6*Z1 to 0.65*Z1, preferably from 0.62*Z1 to 0.63*Z1, even more preferably about 0.628*Z1, wherein Z1 is the maximum axial bulk of the blade 2 at the apical edge 7.
  • Z1 is the maximum axial bulk of the blade 2 at the apical edge 7.
  • the axial bulk 26 at the retroflection line 23 may be of about 30 mm.
  • the axial bulk 26 at the retroflection line can be selected within the range from 0.21*R1 to 0.26*R1, preferably from 0.23*R1 to 0.24*R1, even more preferably about 0.236*R1, in which R1 is the outer radius 13 of the impeller 1.
  • R1 is the outer radius 13 of the impeller 1.
  • the axial bulk 26 at the retroflection line 23 can be of 30 mm.
  • the angle of inclination 27 at the leading edge 8 [Beta_LE] gradually increases starting from the retroflection line 23 and going radially outwardly up to the shroud 15 of the blade 2. Furthermore, starting from the retroflection line 23 and going radially outwardly up to the shroud 15 of the blade 2, the gradient of the angle of inclination 27 at the leading edge 8 [ ⁇ Beta_LE/ ⁇ R] decreases.
  • the trend of the angle of inclination 27 at the leading edge 8 follows a polynomial function starting from an initial value (at the intermediate radius 25) within the range between 55° and 58°, preferably about 56.4° and up to a final value (outer radius 13) within the range between 74° and 78°, preferably about 76.0°.
  • the angle of inclination 27 at the trailing edge 9 [Beta_TE] gradually increases starting from the retroflection line 23 and going radially outwardly up to close to the shroud 15 of the blade 2. Furthermore, starting from the retroflection line 23 and going radially outwardly up to the shroud 15 of the blade 2, also the gradient of the angle of inclination 27 at the trailing edge 9 [ ⁇ Beta_TE/ ⁇ R] decreases and, close to the shroud 15, such a gradient changes sign, since the angle of inclination 27 at the trailing edge 9 locally decreases close to the apical edge 7.
  • the trend 15 of the angle of inclination 27 at the leading edge 8 follows a polynomial function starting from an initial value (at the intermediate radius 25) within the range between 16.0° and 18.0°, preferably about 17.4°, and up to a final value (outer radius 13) within the range between 44° and 47°, preferably about 45.3°.
  • the difference between the angle of inclination 27 at the leading edge 8 and that at the trailing edge 9 for the same radius of the impeller [Beta_LE-Beta_TE] gradually decreases starting from the retroflection line 23 and going radially outwardly up to close to the shroud 15 of the blade 2. Furthermore, starting from the retroflection line 23 and going radially outwardly up to close to the shroud 15 of the blade 2, also the absolute value of the gradient of the difference in the angle of inclination 27 at the leading 8 and trailing 9 edges [ ⁇ (Beta_LE-Beta_TE)/ ⁇ R] decreases. Close to the shroud, such a gradient changes sign and becomes positive at the apical edge 7.
  • the trend of the difference in the angle of inclination 27 at the leading 8 and trailing 9 edges [Beta_LE-Beta_TE] follows a polynomial function starting from an initial value (at the intermediate radius 25) within the range between 38.0° and 40.0°, preferably about 39.0°, and up to a final value (outer radius 13) within the range between 29° and 32°, preferably about 30.7°.
  • the wrap angle 28 to the leading edge 8 [Theta_LE] is substantially zero from the retroflection line 23 up to the shroud 15 of the blade 2.
  • the wrap angle 28 at the trailing edge 9 [Theta_TE] gradually increases starting from the retroflection line 23 and going radially outwardly up to close to the shroud 15 of the blade 2.
  • the gradient of the wrap angle 28 at the trailing edge 9 [ ⁇ Theta_TE/ ⁇ R] increases continuously.
  • the trend of the wrap angle 28 at the trailing edge 9 follows a polynomial function starting from an initial value (at the intermediate radius 25) within the range between 29.0° and 32.0°, preferably about 30.6°, and up to a final value (outer radius 13) within the range between 55° and 57°, preferably about 56.1°.
  • the table 1 indicates the trend of the angles of inclination Beta_LE and Theta_LE at the leading and trailing edges and the relationships thereof.
  • a graphical representation of such values is provided in Fig. 5 .
  • the impeller 1 according to the invention has a number of advantages. It is particularly noiseless, it has a high degree of fluido-dynamic efficiency, can be easily manufactured, has a reduced overall weight and overall dimensions while keeping the energization of the processed flow constant.
  • the axial impeller 1 according to the invention is particularly suitable for conveying cooling flows in refrigeration systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Claims (14)

  1. Axialer Impeller (1) zum Fördern von Fluiden, wobei der Impeller (1) eine Rotationsachse (R) definiert und eine Nabe (3) für das Verbinden des Impellers (1) mit einer Rotationswelle sowie eine Mehrzahl von identisch geformten Blättern (2) umfasst, welche mit der Nabe (3) mit konstantem Winkelabstand verbunden sind,
    wobei der Radius eines Außenumfangs (14), welcher den Impeller (1) umschreibt und tangential zu den äußersten Punkten der Blätter (2) ist, einen Außenradius (13) des Impellers (1) definiert,
    wobei der Radius eines Innenumfangs (19), welcher die Nabe (3) umschreibt und tangential zu den Verbindungspunkten zwischen der Nabe (3) und den Blättern (2) ist, einen Innenradius (16) des Impellers (1) definiert,
    wobei der Radius eines Zwischenumfangs (22) an einem Blattabschnitt mit extremem Einfallswinkel (24) einen Zwischenradius (25) des Impellers (1) definiert, wobei der Zwischenradius (25) größer als der Innenradius (16) und kleiner als der Außenradius (13) ist,
    wobei die Blätter (2) einen Profilrand (6) aufweisen, welcher aus einem radial äußeren apikalen Rand (7), einem führenden Rand (8), welcher der erste ist, der die Strömung (F) trifft, einem nachlaufenden Rand (9) gegenüber dem führenden Rand (8) und Verbindungsrändern (10) in dem Verbindungsbereich des Blatts (2) mit der Nabe (3) besteht,
    wobei, wenn in einer Projektion auf eine Ebene senkrecht zu der Rotationsachse (R):
    - der führende Rand (8) im Wesentlichen geradlinig ist und sich in eine Richtung radial zu der Rotationsachse (R) erstreckt,
    - der apikale Rand (7) wie ein Kreisbogen konzentrisch zu der Rotationsachse (R) geformt ist,
    - der nachlaufende Rand (9) eine gekrümmte und konkave Form mit einem Umschlingungswinkel (28) aufweist, welcher von dem Zwischenradius (25) bis nahe zu dem Außenradius (13) zunimmt,
    - sich der Verbindungsrand (10) durchgehend und stufenlos von dem nachlaufenden Rand (9) eines Blatts (2) zu dem führenden Rand (8) des benachbarten Blatts (2) erstreckt,
    dadurch gekennzeichnet, dass der Verbindungsrand (10), wenn er in einer Projektion auf eine Ebene senkrecht zu der Rotationsachse (R) betrachtet wird, eine Kreisbogenform aufweist, welche eine Winkelerstreckung von zwischen 160° und 180° und einen Radius von zwischen 0,12*R1 und 0,18*R1 aufweist, wobei R1 der Außenradius (13) des Impellers (1) ist.
  2. Axialer Impeller (1) nach Anspruch 1, wobei die Blätter (2) einen verdrehten Abschnitt (21) bilden, welcher sich radial von dem Innenumfang (19) bis zu einer Zurückbiegungslinie (23) erstreckt, wobei die Zurückbiegungslinie (23) an dem Zwischenumfang (22) gebildet ist und eine extreme lokale Krümmung in die entgegengesetzte Richtung zu der Richtung des Verdrehens des verdrehten Abschnitts (21) aufweist, wobei die Zurückbiegungslinie (23) eine Verstärkungsrippe für das Blatt (2) bildet.
  3. Axialer Impeller (1) nach einem der vorhergehenden Ansprüche, wobei der Verbindungsrand (10), wenn er in einer Projektion auf eine Ebene senkrecht zu der Rotationsachse (R) betrachtet wird, eine konkave Kreisbogenform aufweist, welche eine Winkelerstreckung von zwischen 170° und 175° und einen Radius von zwischen 0,14*R1 und 0,16*R1 aufweist, wobei R1 der Außenradius (13) des Impellers (1) ist.
  4. Axialer Impeller (1) nach einem der vorhergehenden Ansprüche, wobei der Innenradius (16) innerhalb des Bereichs von 0,2*R1 bis 0,3*R1 liegt, wobei R1 der Außenradius (13) des Impellers (1) ist.
  5. Axialer Impeller (1) nach einem der vorhergehenden Ansprüche, wobei die Gesamtanzahl von Blättern (2) fünf ist, und wenn es in einer Projektion auf eine Ebene senkrecht zu der Rotationsachse (R) betrachtet wird, das Blatt (2) eine maximale Umfangserstreckung an dem apikalen Rand (7) mit einem Apikalwinkel (17) von 50° bis 55° aufweist.
  6. Axialer Impeller (1) nach einem der vorhergehenden Ansprüche, wobei das Blatt (2) eine maximale axiale Größe (18) an dem apikalen Rand (7) aufweist, wobei die maximale axiale Größe (18) innerhalb des Bereichs von 0,35*R1 bis 0,40*R1 ausgewählt, wobei R1 der Außenradius (13) des Impellers (1) ist.
  7. Axialer Impeller (1) nach einem der vorhergehenden Ansprüche, wobei die Blattdicke über die gesamte Ausdehnung des Blatts (2) im Wesentlichen gleichförmig ist.
  8. Axialer Impeller (1) nach einem der vorhergehenden Ansprüche, wobei der Zwischenradius (25) innerhalb des Bereichs von 0,42*R1 bis 0,52*R1 ausgewählt ist, wobei R1 der Außenradius (13) des Impellers (1) ist.
  9. Axialer Impeller (1) nach einem der vorhergehenden Ansprüche, wobei die axiale Größe (26) des Blatts (2) an dem Zwischenradius innerhalb des Bereichs von 0,6*Z1 bis 0,65*Z1 ausgewählt ist, wobei Z1 die maximale axiale Größe des Blatts (2) an dem apikalen Rand (7) ist.
  10. Axialer Impeller (1) nach einem der vorhergehenden Ansprüche, wobei die axiale Größe (26) an dem Zwischenradius innerhalb des Bereichs von 0,21*R1 bis 0,26*R1 ausgewählt ist, wobei R1 der Außenradius (13) ist.
  11. Axialer Impeller (1) nach einem der vorhergehenden Ansprüche, wobei von dem Zwischenradius (25) bis zu dem Außenradius (13) der Neigungswinkel (27) an dem führenden Rand (8) graduell zunimmt und der Gradient des Neigungswinkels (27) an dem führenden Rand (8) abnimmt, wobei an dem Zwischenradius (25) der Neigungswinkel (27) an dem führenden Rand (8) innerhalb des Bereichs zwischen 55° und 58° liegt,
    wobei an dem Außenradius (13) der Neigungswinkel (27) an dem führenden Rand (8) innerhalb des Bereichs zwischen 74° und 78° liegt.
  12. Axialer Impeller (1) nach einem der vorhergehenden Ansprüche, wobei der Neigungswinkel (27) an dem nachlaufenden Rand (9) von dem Zwischenradius (25) bis nahe zu dem Außenrand (13) graduell zunimmt und lokal an dem apikalen Rand (7) abnimmt,
    wobei der Gradient des Neigungswinkels (27) an dem nachlaufenden Rand (9) von dem Zwischenradius (25) bis zu dem Außenradius (13) abnimmt und an dem apikalen Rand (7) sein Vorzeichen wechselt,
    wobei an dem Zwischenradius (25) der Neigungswinkel (27) an dem führenden Rand (8) innerhalb des Bereichs zwischen 16,0° und 18,0° liegt,
    wobei an dem Außenradius (13) der Neigungswinkel (27) an dem führenden Rand (8) innerhalb des Bereichs zwischen 44° und 47° liegt.
  13. Axialer Impeller (1) nach einem der vorhergehenden Ansprüche, wobei die Differenz zwischen dem Neigungswinkel (27) an dem führenden Rand (8) und an dem nachlaufenden Rand (9) für denselben Radius des Impellers von dem Zwischenradius (25) bis nahe zu dem Außenradius (13) abnimmt,
    wobei an dem Zwischenradius (25) die Differenz in dem Neigungswinkel (27) an dem führenden Rand (8) und dem nachlaufenden Rand (9) innerhalb des Bereichs zwischen 38,0° und 40,0° liegt,
    wobei an dem Außenradius (13) die Differenz in dem Neigungswinkel (27) an dem führenden Rand (8) und dem nachlaufenden Rand (9) innerhalb des Bereichs zwischen 29° und 32° liegt.
  14. Axialer Impeller (1) nach einem der vorhergehenden Ansprüche, wobei von dem Zwischenradius (25) bis nahe zu dem Außenradius (13) der Gradient des Umschlingungswinkels (28) an dem nachlaufenden Rand (9) zunimmt,
    wobei an dem Zwischenradius (25) der Umschlingungswinkel (28) an dem nachlaufenden Rand (9) innerhalb des Bereichs zwischen 29,0° und 32,0° liegt, wobei an dem Außenradius (13) der Umschlingungswinkel (28) an dem nachlaufenden Rand (9) innerhalb des Bereichs zwischen 55° und 57° liegt.
EP13160281.5A 2012-03-22 2013-03-21 Laufrad zur axialen Förderung von Flüssigkeiten, insbesondere für Kälteanlagen Active EP2642130B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT000451A ITMI20120451A1 (it) 2012-03-22 2012-03-22 Girante per il convogliamento assiale di fluidi, in particolare per sistemi di refrigerazione

Publications (2)

Publication Number Publication Date
EP2642130A1 EP2642130A1 (de) 2013-09-25
EP2642130B1 true EP2642130B1 (de) 2019-04-17

Family

ID=46582834

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13160281.5A Active EP2642130B1 (de) 2012-03-22 2013-03-21 Laufrad zur axialen Förderung von Flüssigkeiten, insbesondere für Kälteanlagen

Country Status (2)

Country Link
EP (1) EP2642130B1 (de)
IT (1) ITMI20120451A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6072274B2 (ja) * 2013-10-01 2017-02-01 シャープ株式会社 プロペラファンおよび送風装置
CN106903875A (zh) * 2017-03-16 2017-06-30 青岛科技大学 一种3d打印用小型螺杆塑化装置
CN113847275B (zh) * 2021-08-30 2023-06-16 珠海格力电器股份有限公司 翼型轴流风叶及空调外机
CN113898607B (zh) * 2021-09-30 2023-07-28 江苏徐工工程机械研究院有限公司 叶轮机械的叶片相贯线、叶片的设计方法及叶轮机械的叶片
CN115111194B (zh) * 2022-06-27 2024-05-10 约克广州空调冷冻设备有限公司 叶片及使用其的轴流叶轮

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030748A1 (ja) * 2009-09-11 2011-03-17 シャープ株式会社 プロペラファン、成型用金型および流体送り装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB401625A (en) * 1932-07-30 1933-11-16 British Thomson Houston Co Ltd Improvements in and relating to rotary fans
FR1399313A (fr) * 1964-06-22 1965-05-14 Rotron Mfg Company Ventilateur établissant une pression et dont la sortie ou l'échappement est de forme divergente
US3334807A (en) * 1966-03-28 1967-08-08 Rotron Mfg Co Fan
JPS6361800A (ja) * 1986-09-01 1988-03-17 Seiko Electronic Components Ltd 軸流送風機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030748A1 (ja) * 2009-09-11 2011-03-17 シャープ株式会社 プロペラファン、成型用金型および流体送り装置
EP2476912A1 (de) * 2009-09-11 2012-07-18 Sharp Kabushiki Kaisha Propellerlüfter, formmatrize und flüssigkeitszufuhrvorrichtung

Also Published As

Publication number Publication date
ITMI20120451A1 (it) 2013-09-23
EP2642130A1 (de) 2013-09-25

Similar Documents

Publication Publication Date Title
EP1797334B1 (de) Hochleistungsaxiallüfter
EP2642130B1 (de) Laufrad zur axialen Förderung von Flüssigkeiten, insbesondere für Kälteanlagen
EP1825148B1 (de) Axiallüfter
EP1792085B1 (de) Axiallaufrad mit verbesserter strömung
JP6117698B2 (ja) 翼弦長さが変化するブロアホイール
JP6121329B2 (ja) ピッチ角が変化するブロアホイール
EP2476862B1 (de) Leitschaufel für eine axiale Strömungsmaschine und zugehörige Strömungsmaschine
EP2545284B1 (de) Geneigte axialgebläseanordnung
US8672618B2 (en) Multi-vane variable stator unit of a fluid flow machine
EP3009686B1 (de) Laufrad und fluidmaschine
US11499564B2 (en) Free-tipped axial fan assembly
EP0992693B1 (de) Axiallüfter
TW202043097A (zh) 螺旋槳
EP2212562B1 (de) Lüfter
JP2018534164A5 (de)
CN107013488B (zh) 具有优化叶片根部的风扇转子叶片
US8475130B2 (en) Axial flow fan
US11111928B2 (en) Inducer and pump
JP5649608B2 (ja) 軸流送風機
KR20170116754A (ko) 고정압 원심임펠러
US11629726B2 (en) Centrifugal or diagonal impeller with modified blade edge
WO2023062579A1 (en) Blade for a low-noise industrial axial fan with terminal member, industrial axial fan and process for manufacturing a blade of an industrial axial fan

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140320

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180126

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181105

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013053928

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1121853

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190417

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190817

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190718

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1121853

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190817

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013053928

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

26N No opposition filed

Effective date: 20200120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200321

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602013053928

Country of ref document: DE

Owner name: EMC FIME S.R.L., CASTELFIDARDO, IT

Free format text: FORMER OWNER: ELICA S.P.A, FABRIANO, ANCONA, IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220818 AND 20220824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 12

Ref country code: GB

Payment date: 20240320

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240229

Year of fee payment: 12