EP2628572B1 - Chisel - Google Patents

Chisel Download PDF

Info

Publication number
EP2628572B1
EP2628572B1 EP13155007.1A EP13155007A EP2628572B1 EP 2628572 B1 EP2628572 B1 EP 2628572B1 EP 13155007 A EP13155007 A EP 13155007A EP 2628572 B1 EP2628572 B1 EP 2628572B1
Authority
EP
European Patent Office
Prior art keywords
axis
chisel
ribs
deflection
rib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13155007.1A
Other languages
German (de)
French (fr)
Other versions
EP2628572A1 (en
Inventor
Jens Schneider
Karsten Brandenburg
Zsolt Kosa
Lajos Tóth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hilti AG
Original Assignee
Hilti AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hilti AG filed Critical Hilti AG
Publication of EP2628572A1 publication Critical patent/EP2628572A1/en
Application granted granted Critical
Publication of EP2628572B1 publication Critical patent/EP2628572B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D17/00Details of, or accessories for, portable power-driven percussive tools
    • B25D17/02Percussive tool bits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D3/00Hand chisels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/211Cross-sections of the tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/305Twisted part of a chisel or percussive non-drilling tool bit

Definitions

  • the present invention relates to a chisel, in particular for a hand-held machine tool.
  • Generic chisel according to the preamble of claim 1 are for example from the WO 9740965 A and the DE 1846211 U known.
  • Chisels are to divide a subsoil into several fragments.
  • a user attaches the chisel to the ground.
  • the chisel first penetrates along its axis into the ground.
  • the chisel displaces material while building up compressive stresses. If the stresses exceed the load capacity of the substrate, it breaks up around the chisel. If, however, the ground resists the tensions, the chisel clamps itself into the underground. The user can only pull the chisel out of the ground with great physical effort.
  • the chisel according to the invention has a lower tendency to jam in a substrate.
  • the bit has an impact face, a shank, a spreader and a tip sequentially on an axis in the direction of impact.
  • the spreader has distributed around the axis arranged a plurality of ribs extending along the axis.
  • the ribs are each wave-shaped with a tangential to the axis deflection. The tangential deflection is perpendicular to the radial direction and perpendicular to the axis.
  • the tangential deflection may be curved, eg, circular along a circumferential direction about the axis or straight along a tangent to the circumferential direction or a combination of the circular and rectilinear deflections.
  • the waveform unlike a helix, causes the rib to be deflected alternately circumferentially and circumferentially about the axis.
  • the alternating deflection causes shear stresses in the ground which reduce a tendency of the bit to jam.
  • the amplitude of the deflection is advantageously limited.
  • the amplitude denotes the distance between two consecutive extrema of the deflection.
  • the amplitude of the deflection is advantageously smaller than a width of the rib.
  • the amplitude of a Deflection in a circumferential direction about the axis may be equal to an amplitude of the deflection against the circumferential direction.
  • the amplitude of the deflection can be between 5 degrees and 20 degrees.
  • At least one of the ribs may be deflected to itself in parallel in a circumferential direction about the axis through the tangential undulating deflection.
  • a shape of a cross section perpendicular to the axis changes continuously along the axis.
  • At least one of the ribs may be rotated in a circumferential direction about the axis through the tangential undulating deflection.
  • a cross section perpendicular to the axis rotates along the axis while maintaining its shape alternately in the circumferential direction and against the circumferential direction.
  • the deflection causes the rib to tilt relative to the axis 15.
  • the tilt varies in synchronism with the waveform.
  • the inclination is advantageous to prevent jamming.
  • a large amount of slope proves to be a hindrance to a high mining efficiency.
  • the periodically changing angle (34) along the axis (2) assumes a minimum and maximum value. The smallest value is preferably in the range between -20 degrees and -3 degrees and the largest value is between 3 degrees and 20 degrees.
  • the bit preferably has at least three wave trains.
  • Fig. 1 1 shows an exemplary chisel 1 in a side view .
  • the chisel 1 has a tip 3 lying on an axis 2 at one end and a striking surface 4 at an opposite end .
  • a shock applied by a striking body 5, 56 of a handheld power tool 6 to the striking surface 4 becomes in the direction of impact 7 along the axis 2 of the club face 4 in the top 3 forwarded.
  • the striking surface 4 is formed by a front side of a shaft 8 of the chisel 1 .
  • the end face is oriented substantially perpendicular to the axis 2 and spherical or flat.
  • the preferably coaxial with the axis 2 formed shaft 8 has a prismatic, such as hexagonal, or cylindrical, for example, circular cylindrical, cross-section.
  • a portion of the shaft 8 immediately adjacent to the striking surface 4 may be formed as a spigot 9 for a hammer drill 6 or a chisel hammer.
  • groove-shaped recesses 10 are introduced along the axis 2 in the shaft 8 , in which locking elements of the power tool 6 can engage.
  • an annular collar 11 may be provided on the shaft 8 . The radially projecting collar 11 can be engaged behind by a stirrup of the hammer drill 6 for axially securing the chisel 1 .
  • the tapering in the direction of impact 7 tip 3 is preferably formed symmetrically to the axis 2 .
  • the tip 3 is pyramidal or conical.
  • an expansion body 12 is arranged, which reduces jamming of the bit 1 in a substrate.
  • the expansion body 12 is made of the same material as the entire tip 3, preferably made of a steel.
  • Fig. 2 illustrates a cross section through the exemplary expansion body 12 in the plane II-II, Fig. 3 a cross section in the plane III-III and Fig. 4 a cross section in the plane IV-IV.
  • Level III-III lies midway between levels II-II and IV-IV.
  • the exemplary rod-shaped spreading body 12 has a plurality of longitudinal axis 2 extending ribs 13, which are arranged distributed around the axis. 2 The ribs 13 preferably all start from the tip 3.
  • the ribs 13 are preferably arranged at equidistant angles 15 about the axis 2 . In the exemplary illustrated embodiment, the ribs 13 are identical and formed parallel to each other.
  • the ribs 13 are wave-shaped with a tangential to the axis 2 changing deflection. Characteristic of the waveform are local minima 16 and maxima 17 of the deflection, which occur along the axis 2 . Starting from a minimum 16 , the deflection of the rib 13 continuously increases in the circumferential direction 18 up to the following maximum 17, running along the direction of impact 7. In the illustration of the figures, the circumferential direction 18 is viewed in the direction of impact 7 looking counterclockwise. From the maximum 17 , the deflection of the rib 13, running continuously along the direction of impact 7 , decreases continuously counter to the circumferential direction 18 up to the next minimum 16. The deflection tangential to the axis 2 changes, for example, sinusoidally along the axis 2.
  • the average deflection of the rib 13 is preferably equal to zero, the deflections in the circumferential direction 18 and the deflections counter to the circumferential direction 18 are the same size.
  • the minima 16 of a rib 13 are all in alignment along the axis 2.
  • the minima 16 of a rib 13 are offset from each other along the axis 2 , but otherwise have the same angular position 19 relative to the axis 2.
  • Equally, preferably all maxima 17 are the The rib 13 in alignment with the axis 2 at an angular position 20.
  • the symmetrical structure promotes a uniform introduction of forces in and against the circumferential direction 18 and improved behavior with respect to the jamming of the bit 1 in the ground.
  • the extremities 16, 17 are preferably at a constant distance 21 along the axis 2.
  • the ribs 13 are thus over a longer portion mirror-symmetrical to a plane perpendicular to the axis 2, for example one of the levels II-II or IV-IV, which by one of the minima 16 or one of the maxima 17 run.
  • the number of ribs 13 is exemplary, preferably between three ribs 13 for narrow chisel 1 and six ribs 13 for thick chisel 1 are provided.
  • the ribs 13 are preferably distributed uniformly about the axis 2 .
  • the structure is rotationally symmetric, so that the forces in and against the circumferential direction 18 are equal.
  • the ribs 13 can all have the same shape, resulting in a fourfold rotational symmetry in the construction shown by way of example.
  • diametrically opposed ribs are the same but different formed to their adjacent ribs. The rotational symmetry is thus only appris Congress Congressig with four ribs.
  • the ribs 13 of the exemplary expansion body 12 each have three minima 16 and three maxima 17, that is three wave trains 22.
  • the number of extremes 17, 16 depends on the length 14 of the expansion body 12 .
  • a distance 21 of one extremum 16, 17 to a next extremum 17, 16 is preferably in the range between 1 cm and 3 cm.
  • the bit 1 typically penetrates up to 10 cm when working on a substrate and with more than one wave 22 .
  • the rib 13 has a back 23 and adjacent to the back 23 against a circumferential direction 18 adjacent a first flank and in the circumferential direction 18 adjacent a second flank.
  • a surface of the rib 13 is composed largely of a circumferentially oriented 18 first side surface 24, the back 23 and a counter to the circumferential direction 18 facing second side surface 25 together.
  • the first side surface 24 has exclusively in the circumferential direction 18.
  • the first side surface 24 is inclined in the circumferential direction 18 only in the direction of the axis 2 .
  • the first side surface 24 is contiguous and extends over the entire axial dimension 14 of the rib 13.
  • the second side surface 25 has, as a counterpart to the first side surface 24 only against the circumferential direction 18.
  • the second side surface 25 increases in the circumferential direction 18 everywhere, ie away from the axis 2.
  • the second side surface 25 extends along the entire length 14 of the rib 13 and is continuous.
  • the second side surface 25 extends along the axis 2 preferably parallel to the first side surface 24.
  • a curvature in the direction of impact 7 of the first side surface 24 is equal to the curvature in the direction of impact 7 of the second side surface 25.
  • a width 26 of the rib 13 is constant along the axis 2 , The width 26 can be determined quantitatively at half the height 27 of the rib 13 .
  • the half height 27 is half the radial distance between the back 23 and foot 28 or half the arithmetic mean of outer diameter 29 and inner diameter 30.
  • the coverage of the circumference by the plurality of ribs 13 is at half height 27 between 90 degrees and 150 degrees.
  • the width 26 of the ribs 13 in the spreader body 12 with four ribs 13 is at an angle between 22.5 degrees and 37.5 degrees.
  • the rib 13 preferably has a mirror-symmetrical profile. Cross sections of the rib 13 perpendicular to the axis 2 are mirror-symmetrical to a plane passing through the back 23 mirror axis 31 . From the back 23, extending in the radial direction, is a Curvature along the radial direction of the first side surface 24 mirror-symmetrical to (the negative) of a curvature along the radial direction of the second side surface 25th
  • the back 23 may be planar or, as in the example shown, linear.
  • the ridge 23 extends tangentially to the circumferential direction 18.
  • the two side surfaces 24, 25 adjoining the ridge 23 fall in or against the circumferential direction 18 from the ridge 23 in the direction of the axis 2 .
  • the spine 23 is made up of the points at the surface of the rib 13, which have in the planes perpendicular to the axis 2 of the largest radial distance to the axis. 2
  • a distance of the back 23 to the axis 2 preferably decreases continuously along the direction of impact 7, in particular in the region of the tip 3 , the back 23 monotonically approaches the axis 2 .
  • the distance 23 may alternatively increase and decrease periodically along the axis 2 .
  • the points of the surface closest to the axis 2 form a foot 28 of the rib 13.
  • a distance 30 of the foot 28 to the axis 2 is preferably constant over the entire length 14 of the expansion body 12 .
  • the foot 28 of a rib 13 can pass into the foot 28 of a circumferentially 18 adjacent rib 13 .
  • the arranged around the axis 2 ribs 13 shape a non-convex shape of the spreader 12.
  • the recessed in the radial direction relative to the back 23 side surfaces 24, 25 define between the ribs 13 extending gears 32.
  • the gears 32 are located within a convex envelope of the Spreader body 12.
  • An outer diameter 29, given by the double distance of the back 23 from the axis 2, is preferably at least 50% larger than an inner diameter 30, given by twice the distance of the foot 28 from the axis 2, the spreader 12.
  • the ribs 13 can protrude radially from a soul 33 .
  • the core 33 is a convex solid body, eg a body of revolution or cylinder concentric with the axis 2 .
  • the first side surface 24 is corrugated corresponding to the rib 13 .
  • An angle 34 between the first side surface 24 and the axis 2 changes alternately along the axis 2.
  • the angle 34 assumes in particular negative and positive values, whereby the structure significantly different from a helix with a constant angle and a fixed sense of rotation.
  • the angle 34 changes by way of example sinusoidally along the axis 2.
  • the maximum value of the angle 34 is between 3 degrees and 20 degrees, the minimum value is between 3 degrees and 20 degrees.
  • the first side surface 24 is divided along the axis 2 into alternately successive first portions 35 and second portions 36 .
  • the first side surface 25 is in the first Sections 35 inclined at a positive angle 34 to the axis 2 .
  • the first side surface 25 increases following the direction of impact 7 in the circumferential direction 18 .
  • the first side surface 25 inclined in the first sections 35 and their perpendiculars 37 point in the direction of impact 7.
  • the second sections 36 are opposite to the first sections 35 .
  • the first side surface 24 occupies a negative angle 34 to the axis 2 .
  • the first side surface 24 is opposite to the circumferential direction 18 .
  • the first side surface 24 and its perpendiculars 38 point opposite to the direction of impact 7 towards the striking surface 4.
  • the tangential deflection of the rib 13 takes place for example by a parallel offset.
  • the first side surface 24 is parallel at a minimum 16 to itself at a maximum 17 and preferably all other cross sections perpendicular to the axis 2 .
  • the inclination 34 of the first side surface 24 to the axis 2 changes repeatedly along the axis 2, but is constant in the radial direction.
  • the parallel offset can, for example, take place along a straight line 39 , which is perpendicular to the axis 2 and tangentially bears against a point of the back 23 of the rib 13 .
  • the location is, for example, in the middle 40 (level III-III) between a minimum 16 and a maximum 17.
  • Each of the ribs 13 is associated with its own this straight line 39 , which are equal to the angle 15 between the ribs 13 also arranged at this angle 15 about the axis 2 .
  • the parallel offset takes place for the different ribs 13, in each case by a direction 15 rotated by the direction.
  • the profile of the spreading body 12 changes along the axis 2.
  • the cross-sections through the expander 12 at the minima 16, the center 40 and the peaks 17 vary in their shape.
  • the cross sections can not be brought into coincidence by a rotation about the axis 2 .
  • the cross-section in the middle 40 is, for example, mirror-symmetrical to the mirror axis 31.
  • the cross-sections through the minima 16 and the maxima 17, however, have no mirror symmetry, but may be designed mirror-symmetrically to each other.
  • Fig. 4 shows in addition to the cross-section by the maximum of 17 has a cross-section through the minimum 16. In particular, none of the ribs intersect 13.
  • the amplitude of the displacement between each two adjacent extrema 16, 17 is at most so large that an overlapping surface 41 of the cross-section of the rib 13 in one of the extrema 16, eg minimum, and the cross-section through the same rib 13 in the other of the extrema 17, eg Maximum, at least 25% of the cross-sectional area of the rib 13 is.
  • the amplitude of the deflection ie the distance from minimum 16 to maximum 17, is less than 75% of the width 26 of the rib 13.
  • the amplitude is at least so large that the overlapping surface 41 ( FIG. crossed hatching) of the cross sections of the rib 13 in the minimum 16 and at the maximum 17 is less than 75% of the cross-sectional area of the rib 13 .
  • the amplitude corresponds to about 25% of the width 26 of the rib 13th
  • the amplitude given as the angular offset 42 in and against the circumferential direction 18 between the maxima 17 and adjacent minima 16 is less than 30 degrees and preferably greater than 5 degrees.
  • the ribs 13 extend within the first portions 35 by at least 5 degrees and less than one twelfth of a revolution in the circumferential direction 18 to extend in the immediately adjacent second portion 36 by at least 5 degrees against the circumferential direction 18 .
  • the circulation in the opposite direction in the second section 36 is also limited to one-twelfth of one revolution.
  • the flights 32 between the ribs 13 have a straight line along the axis 2 extending core having a width 43 of at least 30 degrees.
  • the angular dimensions are preferably determined based on a contour line at half height 27 of the ribs 13 .
  • Fig. 5 to Fig. 7 show cross sections through an expansion body 12th Fig. 5 passes through a minimum of deflection corresponding to level II-II, Fig. 7 by a maximum of the deflection according to the level IV-IV and Fig. 6 by a level in the middle between minimum and maximum according to level III-III.
  • the expansion body 44 has a plurality of ribs 45, which are arranged distributed about the axis 2 .
  • the ribs 45 which extend along the axis 2, are wave-shaped, wherein the deflection takes place tangentially to the axis 2 .
  • the ribs 45 each have a contiguous first side surface 24, which has only in the circumferential direction 18 , and a contiguous second side surface 25 which faces only the circumferential direction 18 .
  • the two side surfaces 24, 25 form the surface of the rib 45 and preferably parallel to each other. For more details of the ribs 45 will be on description of the Fig. 2 to Fig. 4 directed.
  • the rib 45 is wound around the axis 2 .
  • the tangential deflection is effected by rotating the rib 45 about the axis 2.
  • Cross-sections perpendicular to the axis 2 through the spreader 12 have the same shape; they can be turned by turning the axis 2 in Covering be brought.
  • the cross section may, for example, be mirror-symmetrical to the mirror axes 31 of the ribs 45 .
  • Fig. 7 shows next to the cross section through the maximum 17 (hatched) a cross section through the minimum 16 (not hatched).
  • the angular offset 42 between the minimum 16 and the maximum 17 is less than 30 degrees.
  • the angular offset 42 is greater than 5 degrees.
  • the angular offset 42 is preferably equal in magnitude between all extremes 16, 17 (see Fig. 1 ).
  • a width 26 of the rib 45 is preferably greater than the angular offset 42.
  • the width 26 of the rib 45 is selected, for example, such that the ribs 45 cover at half height 27 between 90 degrees and 150 degrees of the circumference. In the exemplary expansion body 12 with four ribs 45 , the width 26 is between 22.5 degrees and 37.5 degrees.
  • the tangential deflection of the width 46 of the ribs 45 adapted limited to the extent that the ribs 45 do not cross each other.
  • the angle 34 between the first side surface 24 and the axis 2 increases in the radial direction to the back 23rd
  • Fig. 8 shows as an example of a chiseling hand tool machine schematically a hammer 6.
  • the hammer 6 has a tool holder 47, in which a spigot 9 of the chisel 1, can be used.
  • a primary drive of the hammer drill 6 forms a motor 48, which drives a striking mechanism 49 and an output shaft 50 .
  • a user can guide the hammer 6 by means of a handle 51 and take means of a system switch 52 to the hammer 6 in operation. In operation, the hammer 6 strikes the drill bit 53 in the impact direction 7 along the working axis 54 in a substrate.
  • the percussion mechanism 49 is, for example, a pneumatic percussion mechanism 49.
  • An exciter 55 and a racket 5 are movably guided in the striking mechanism 49 along the working axis 54 .
  • the exciter 55 is coupled via an eccentric 56 or a wobble finger to the motor 48 and forced to a periodic, linear movement.
  • An air spring formed by a pneumatic chamber 57 between exciter 55 and racket 5 couples a movement of the racket 5 to the movement of the exciter 55 at.
  • the racket 5 can strike directly on a rear end of the chisel 1 or indirectly transfer part of its momentum to the drill bit 53 via a substantially stationary intermediate racket 58 .
  • the percussion mechanism 49 and preferably the further drive components are arranged within a machine housing 59 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Percussive Tools And Related Accessories (AREA)
  • Earth Drilling (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Description

GEBIET DER ERFINDUNGFIELD OF THE INVENTION

Die vorliegende Erfindung betrifft einen Meißel, insbesondere für eine handgehaltene Werkzeugmaschine. Gattungsgemäße Meißel nach dem Oberbegriff von Anspruch 1 sind beispielsweise aus der WO 9740965 A und der DE 1846211 U bekannt.The present invention relates to a chisel, in particular for a hand-held machine tool. Generic chisel according to the preamble of claim 1 are for example from the WO 9740965 A and the DE 1846211 U known.

Meißel sollen einen Untergrund in mehrere Bruchstücke zerteilen. Ein Anwender setzt dazu den Meißel an den Untergrund an. Der Meißel dringt zunächst längs seiner Achse in den Untergrund ein. Der Meißel verdrängt dabei Material unter Aufbau von Druckspannungen. Überschreiten die Spannungen die Belastbarkeit des Untergrunds zerbricht dieser um den Meißel. Falls allerdings der Untergrund den Spannungen widersteht, klemmt sich der Meißel in dem Untergrund ein. Der Anwender kann nur mit hohem körperlichen Einsatz den Meißel aus dem Untergrund herausziehen.Chisels are to divide a subsoil into several fragments. A user attaches the chisel to the ground. The chisel first penetrates along its axis into the ground. The chisel displaces material while building up compressive stresses. If the stresses exceed the load capacity of the substrate, it breaks up around the chisel. If, however, the ground resists the tensions, the chisel clamps itself into the underground. The user can only pull the chisel out of the ground with great physical effort.

OFFENBARUNG DER ERFINDUNGDISCLOSURE OF THE INVENTION

Der erfindungsgemäße Meißel hat eine geringere Tendenz in einem Untergrund zu verklemmen. Der Meißel hat auf einer Achse in Schlagrichtung aufeinanderfolgend eine Schlagfläche, einen Schaft, einen Spreizkörper und eine Spitze. Der Spreizkörper hat um die Achse verteilt angeordnet mehrere längs der Achse verlaufende Rippen. Die Rippen sind jeweils wellenförmig mit einer zu der Achse tangentialen Auslenkung ausgebildet. Die tangentiale Auslenkung ist senkrecht zu der radialen Richtung und senkrecht zu der Achse. Die tangentiale Auslenkung kann gebogen, z.B. kreisförmig entlang einer Umfangsrichtung um die Achse oder geradlinig entlang einer Tangente an die Umfangsrichtung oder eine Kombination der kreisförmigen und der geradlinigen Auslenkung sein. Die Wellenform bedingt im Gegensatz zu einer Helix, dass die Rippe abwechselnd in Umfangsrichtung und gegen die Umfangsrichtung um die Achse ausgelenkt ist. Die abwechselnde Auslenkung bewirkt Scherspannungen in dem Untergrund, welche eine Tendenz des Meißels zu verklemmen verringern.The chisel according to the invention has a lower tendency to jam in a substrate. The bit has an impact face, a shank, a spreader and a tip sequentially on an axis in the direction of impact. The spreader has distributed around the axis arranged a plurality of ribs extending along the axis. The ribs are each wave-shaped with a tangential to the axis deflection. The tangential deflection is perpendicular to the radial direction and perpendicular to the axis. The tangential deflection may be curved, eg, circular along a circumferential direction about the axis or straight along a tangent to the circumferential direction or a combination of the circular and rectilinear deflections. The waveform, unlike a helix, causes the rib to be deflected alternately circumferentially and circumferentially about the axis. The alternating deflection causes shear stresses in the ground which reduce a tendency of the bit to jam.

Die Amplitude der Auslenkung ist vorteilhafterweise begrenzt. Die Amplitude bezeichnet die Distanz zwischen zwei aufeinanderfolgende Extrema der Auslenkung. Die Amplitude der Auslenkung ist vorteilhafterweise geringer als eine Breite der Rippe. Die Amplitude einer Auslenkung in einer Umfangsrichtung um die Achse kann gleich einer Amplitude der Auslenkung gegen die Umfangsrichtung sein. Die Amplitude der Auslenkung kann zwischen 5 Grad und 20 Grad betragen.The amplitude of the deflection is advantageously limited. The amplitude denotes the distance between two consecutive extrema of the deflection. The amplitude of the deflection is advantageously smaller than a width of the rib. The amplitude of a Deflection in a circumferential direction about the axis may be equal to an amplitude of the deflection against the circumferential direction. The amplitude of the deflection can be between 5 degrees and 20 degrees.

Wenigstens eine der Rippen kann zu sich selbst parallel in einer Umfangsrichtung um die Achse durch die tangentiale wellenförmige Auslenkung ausgelenkt sein. Eine Form eines zu der Achse senkrechten Querschnittes ändert sich längs der Achse kontinuierlich.At least one of the ribs may be deflected to itself in parallel in a circumferential direction about the axis through the tangential undulating deflection. A shape of a cross section perpendicular to the axis changes continuously along the axis.

Wenigstens eine der Rippen kann in eine Umfangsrichtung um die Achse durch die tangentiale wellenförmige Auslenkung gedreht sein. Ein zu der Achse senkrechter Querschnitt dreht sich längs der Achse unter Beibehalten seiner Form abwechselnd in die Umfangsrichtung und gegen die Umfangsrichtung.At least one of the ribs may be rotated in a circumferential direction about the axis through the tangential undulating deflection. A cross section perpendicular to the axis rotates along the axis while maintaining its shape alternately in the circumferential direction and against the circumferential direction.

Die Auslenkung bewirkt eine Neigung der Rippe gegenüber der Achse 15. Die Neigung variiert synchron zu der Wellenform. Die Neigung ist vorteilhaft, um ein Verklemmen zu verhindern. Zugleich erweist sich eine betragsmäßig große Neigung als hinderlich für eine hohe Abbaueffizienz. Der sich längs der Achse (2) periodisch ändernde Winkel (34) nimmt einen kleinsten und größten Wert an. Der kleinste Wert liegt vorzugsweise im Bereich zwischen -20 Grad und -3 Grad und der größte Wert liegt zwischen 3 Grad und 20 Grad.The deflection causes the rib to tilt relative to the axis 15. The tilt varies in synchronism with the waveform. The inclination is advantageous to prevent jamming. At the same time, a large amount of slope proves to be a hindrance to a high mining efficiency. The periodically changing angle (34) along the axis (2) assumes a minimum and maximum value. The smallest value is preferably in the range between -20 degrees and -3 degrees and the largest value is between 3 degrees and 20 degrees.

Der Meißel hat vorzugsweise wenigstens drei Wellenzüge.The bit preferably has at least three wave trains.

KURZE BESCHREIBUNG DER FIGURENBRIEF DESCRIPTION OF THE FIGURES

Die nachfolgende Beschreibung erläutert die Erfindung anhand von exemplarischen Ausführungsformen und Figuren. In den Figuren zeigen:

  • Fig. 1 einen Meißel
  • Fig. 2, 3 und 4 Querschnitte durch den Meißel in den Ebenen II-II, III-III bzw. IV-IV von Fig. 1
  • Fig. 5, 6 und 7 Querschnitte durch einen Meißel und
  • Fig. 8 einen Bohrhammer.
The following description explains the invention with reference to exemplary embodiments and figures. In the figures show:
  • Fig. 1 a chisel
  • Fig. 2, 3 and 4 Cross sections through the chisel in the levels II-II, III-III and IV-IV of Fig. 1
  • FIGS. 5, 6 and 7 Cross sections through a chisel and
  • Fig. 8 a hammer drill.

Gleiche oder funktionsgleiche Elemente werden durch gleiche Bezugszeichen in den Figuren indiziert, soweit nicht anders angegeben.Identical or functionally identical elements are indicated by the same reference numerals in the figures, unless stated otherwise.

AUSFÜHRUNGSFORMEN DER ERFINDUNGEMBODIMENTS OF THE INVENTION

Fig. 1 zeigt in einer Seitenansicht einen beispielhaften Meißel 1. Der Meißel 1 hat auf einer Achse 2 liegend an einem Ende eine Spitze 3 und an einem gegenüberliegenden Ende eine Schlagfläche 4. Ein von einem Schlagkörper 5, 56 einer Handwerkzeugmaschine 6 auf die Schlagfläche 4 ausgeübter Schlag wird in Schlagrichtung 7 längs der Achse 2 von der Schlagfläche 4 in die Spitze 3 weitergeleitet. Fig. 1 1 shows an exemplary chisel 1 in a side view . The chisel 1 has a tip 3 lying on an axis 2 at one end and a striking surface 4 at an opposite end . A shock applied by a striking body 5, 56 of a handheld power tool 6 to the striking surface 4 becomes in the direction of impact 7 along the axis 2 of the club face 4 in the top 3 forwarded.

Die Schlagfläche 4 ist durch eine Stirnseite eine Schafts 8 des Meißels 1 gebildet. Die Stirnseite ist im Wesentlichen senkrecht zu der Achse 2 orientiert und ballig oder eben ausgebildet. Der vorzugsweise koaxial zu der Achse 2 ausgebildete Schaft 8 hat einen prismatischen, beispielsweise hexagonalen, oder zylindrischen, beispielsweise kreiszylindrischen, Querschnitt. Ein Bereich des Schafts 8 unmittelbar anschließend an die Schlagfläche 4 kann als Einsteckende 9 für einen Bohrhammer 6 oder einen Meißelhammer ausgebildet sein. Beispielsweise sind in dem Schaft 8 nutenförmige Vertiefungen 10 längs der Achse 2 eingebracht, in welche Verriegelungselemente der Handwerkzeugmaschine 6 eingreifen können. Alternativ oder zusätzlich kann ein ringförmiger Kragen 11 auf dem Schaft 8 vorgesehen sein. Der radial vorstehende Kragen 11 kann von einem Bügel des Bohrhammers 6 zum axialen Sichern des Meißels 1 hintergriffen werden.The striking surface 4 is formed by a front side of a shaft 8 of the chisel 1 . The end face is oriented substantially perpendicular to the axis 2 and spherical or flat. The preferably coaxial with the axis 2 formed shaft 8 has a prismatic, such as hexagonal, or cylindrical, for example, circular cylindrical, cross-section. A portion of the shaft 8 immediately adjacent to the striking surface 4 may be formed as a spigot 9 for a hammer drill 6 or a chisel hammer. For example, groove-shaped recesses 10 are introduced along the axis 2 in the shaft 8 , in which locking elements of the power tool 6 can engage. Alternatively or additionally, an annular collar 11 may be provided on the shaft 8 . The radially projecting collar 11 can be engaged behind by a stirrup of the hammer drill 6 for axially securing the chisel 1 .

Die sich in Schlagrichtung 7 verjüngende Spitze 3 ist vorzugsweise symmetrisch zu der Achse 2 ausgebildet. Beispielsweise ist die Spitze 3 pyramidenförmig oder kegelförmig.The tapering in the direction of impact 7 tip 3 is preferably formed symmetrically to the axis 2 . For example, the tip 3 is pyramidal or conical.

Auf der Achse 2 zwischen der Spitze 3 und dem Schaft 8 ist ein Spreizkörper 12 angeordnet, welcher ein Verklemmen des Meißels 1 in einem Untergrund verringert. Der Spreizkörper 12 ist aus dem gleichen Material wie die gesamte Spitze 3, vorzugsweise aus einem Stahl. Fig. 2 illustriert einen Querschnitt durch den beispielhaften Spreizkörper 12 in der Ebene II-II, Fig. 3 einen Querschnitt in der Ebene III-III und Fig. 4 einen Querschnitt in der Ebene IV-IV. Die Ebene III-III liegt in der Mitte zwischen den Ebenen II-II und IV-IV. Der beispielhafte stabförmige Spreizkörper 12 hat mehrere längs der Achse 2 verlaufende Rippen 13, die um die Achse 2 verteilt angeordnet sind. Die Rippen 13 beginnen vorzugsweise alle ausgehend von der Spitze 3. Ihre jeweilige Länge (Abmessung längs der Achse 2) kann gleich und insbesondere gleich der Länge 14 der Spreizkörpers 12 sein. Die Rippen 13 sind vorzugsweise in äquidistanten Winkeln 15 um die Achse 2 angeordnet. Bei der beispielhaften dargestellten Ausführungsform sind die Rippen 13 identisch und parallel zueinander ausgebildet.On the axis 2 between the tip 3 and the shaft 8 , an expansion body 12 is arranged, which reduces jamming of the bit 1 in a substrate. The expansion body 12 is made of the same material as the entire tip 3, preferably made of a steel. Fig. 2 illustrates a cross section through the exemplary expansion body 12 in the plane II-II, Fig. 3 a cross section in the plane III-III and Fig. 4 a cross section in the plane IV-IV. Level III-III lies midway between levels II-II and IV-IV. The exemplary rod-shaped spreading body 12 has a plurality of longitudinal axis 2 extending ribs 13, which are arranged distributed around the axis. 2 The ribs 13 preferably all start from the tip 3. Their respective length (dimension along the axis 2 ) may be the same and in particular equal to the length 14 of the expansion body 12 . The ribs 13 are preferably arranged at equidistant angles 15 about the axis 2 . In the exemplary illustrated embodiment, the ribs 13 are identical and formed parallel to each other.

Die Rippen 13 sind wellenförmig mit einer sich tangential zu der Achse 2 ändernden Auslenkung. Charakteristisch für die Wellenform sind lokale Minima 16 und Maxima 17 der Auslenkung, welche längs der Achse 2 auftreten. Ausgehend von einem Minimum 16 erhöht sich, der Schlagrichtung 7 entlanglaufend, die Auslenkung der Rippe 13 kontinuierlich in Umfangsrichtung 18 bis zu dem folgenden Maximum 17. In der Darstellung der Figuren ist die Umfangsrichtung 18 in Schlagrichtung 7 blickend gegen den Uhrzeigersinn gewählt. Ab dem Maximum 17 verringert sich, der Schlagrichtung 7 entlanglaufend, die Auslenkung der Rippe 13 kontinuierlich entgegen der Umfangsrichtung 18 bis zu dem nächsten Minimum 16. Die zur Achse 2 tangentiale Auslenkung ändert sich beispielsweise sinusförmig entlang der Achse 2. The ribs 13 are wave-shaped with a tangential to the axis 2 changing deflection. Characteristic of the waveform are local minima 16 and maxima 17 of the deflection, which occur along the axis 2 . Starting from a minimum 16 , the deflection of the rib 13 continuously increases in the circumferential direction 18 up to the following maximum 17, running along the direction of impact 7. In the illustration of the figures, the circumferential direction 18 is viewed in the direction of impact 7 looking counterclockwise. From the maximum 17 , the deflection of the rib 13, running continuously along the direction of impact 7 , decreases continuously counter to the circumferential direction 18 up to the next minimum 16. The deflection tangential to the axis 2 changes, for example, sinusoidally along the axis 2.

Wenn der Meißel 1 in einen Untergrund eingedrungen ist, üben die Minima 16 eine Kraft entgegen der Umfangsrichtung 18 und die Maxima eine Kraft in die Umfangsrichtung 18 auf den Untergrund aus. Die resultierenden Scherkräfte schwächen die Tendenz eines weit in den Untergrund eingedrungen Meißels 1 zu verklemmen.When the bit 1 has penetrated into a ground, the minima 16 exert a force against the circumferential direction 18 and the maxima exert a force in the circumferential direction 18 on the ground. The resulting shearing forces weaken the tendency of a chisel 1, which has penetrated far into the ground, to jam.

Die mittlere Auslenkung der Rippe 13 ist vorzugsweise gleich Null, die Auslenkungen in Umfangsrichtung 18 und die Auslenkungen entgegen der Umfangsrichtung 18 sind gleich groß. Die Minima 16 einer Rippe 13 liegen alle in einer Flucht längs der Achse 2. Die Minima 16 einer Rippe 13 sind längs der Achse 2 zueinander versetzt, haben ansonsten aber die gleiche Winkelposition 19 bezogen auf die Achse 2. Gleichermaßen liegen vorzugsweise alle Maxima 17 der Rippe 13 in einer Flucht längs der Achse 2 an einer Winkelposition 20. Der symmetrische Aufbau begünstigt eine gleichmäßige Einleitung der Kräfte in und gegen die Umfangsrichtung 18 und ein verbessertes Verhalten hinsichtlich des Verklemmens des Meißels 1 im Untergrund. Die Extrema 16, 17 liegen vorzugsweise in einem konstanten Abstand 21 längs der Achse 2. Die Rippen 13 sind somit über einen längeren Abschnitt spiegelsymmetrisch zu einer Ebene senkrecht zu der Achse 2, z.B. eine der Ebenen II-II oder IV-IV, welche durch eines der Minima 16 oder einen der Maxima 17 verlaufen.The average deflection of the rib 13 is preferably equal to zero, the deflections in the circumferential direction 18 and the deflections counter to the circumferential direction 18 are the same size. The minima 16 of a rib 13 are all in alignment along the axis 2. The minima 16 of a rib 13 are offset from each other along the axis 2 , but otherwise have the same angular position 19 relative to the axis 2. Equally, preferably all maxima 17 are the The rib 13 in alignment with the axis 2 at an angular position 20. The symmetrical structure promotes a uniform introduction of forces in and against the circumferential direction 18 and improved behavior with respect to the jamming of the bit 1 in the ground. The extremities 16, 17 are preferably at a constant distance 21 along the axis 2. The ribs 13 are thus over a longer portion mirror-symmetrical to a plane perpendicular to the axis 2, for example one of the levels II-II or IV-IV, which by one of the minima 16 or one of the maxima 17 run.

Die Zahl der Rippen 13 ist exemplarisch, vorzugsweise sind zwischen drei Rippen 13 für schmale Meißel 1 und sechs Rippen 13 für dicke Meißel 1 vorgesehen. Die Rippen 13 sind vorzugsweise gleichmäßig um die Achse 2 verteilt angeordnet. Der Aufbau ist drehsymmetrisch, damit die Kräfte in und gegen die Umfangsrichtung 18 gleich groß sind. Die Rippen 13 können wie dargestellt alle die gleich Form aufweisen, wodurch sich bei dem beispielhaft dargestellten Aufbau eine vierzählige Drehsymmetrie ergibt. Alternativ sind beispielsweise bei vier Rippen, diametral gegenüberliegende Rippen gleich aber verschieden zu ihren benachbarten Rippen ausgebildet. Die Drehsymmetrie ist somit mit vier Rippen nur zweizählig.The number of ribs 13 is exemplary, preferably between three ribs 13 for narrow chisel 1 and six ribs 13 for thick chisel 1 are provided. The ribs 13 are preferably distributed uniformly about the axis 2 . The structure is rotationally symmetric, so that the forces in and against the circumferential direction 18 are equal. As shown, the ribs 13 can all have the same shape, resulting in a fourfold rotational symmetry in the construction shown by way of example. Alternatively, for example, with four ribs, diametrically opposed ribs are the same but different formed to their adjacent ribs. The rotational symmetry is thus only zweizählig with four ribs.

Die Rippen 13 des beispielhaften Spreizkörpers 12 haben jeweils drei Minima 16 und drei Maxima 17, also drei Wellenzüge 22. Die Anzahl der Extrema 17, 16 hängt von der Länge 14 des Spreizkörpers 12 ab. Ein Abstand 21 eines Extremums 16, 17 zu einem nächsten Extremum 17, 16 liegt vorzugsweise im Bereich zwischen 1 cm und 3 cm. Der Meißel 1 dringt beim Bearbeiten eines Untergrund typischerweise bis zu 10 cm und mit mehr als einem Wellenzug 22 ein.The ribs 13 of the exemplary expansion body 12 each have three minima 16 and three maxima 17, that is three wave trains 22. The number of extremes 17, 16 depends on the length 14 of the expansion body 12 . A distance 21 of one extremum 16, 17 to a next extremum 17, 16 is preferably in the range between 1 cm and 3 cm. The bit 1 typically penetrates up to 10 cm when working on a substrate and with more than one wave 22 .

Die Rippe 13 hat einen Rücken 23 und an den Rücken 23 entgegen einer Umfangsrichtung 18 angrenzend eine erste Flanke und in Umfangsrichtung 18 angrenzend eine zweite Flanke. Eine Oberfläche der Rippe 13 setzt sich weitgehend aus einer in Umfangsrichtung 18 orientierten ersten Seitenfläche 24, dem Rücken 23 und einer entgegen die Umfangsrichtung 18 weisenden zweiten Seitenfläche 25 zusammen. Die erste Seitenfläche 24 weist ausschließlich in die Umfangsrichtung 18. Die erste Seitenfläche 24 ist in Umfangsrichtung 18 nur in Richtung zu der Achse 2 geneigt. Die erste Seitenfläche 24 ist zusammenhängend und verläuft über die gesamte axiale Abmessung 14 der Rippe 13. Die zweite Seitenfläche 25 weist als Gegenstück zu der ersten Seitenfläche 24 nur entgegen der Umfangsrichtung 18. Die zweite Seitenfläche 25 steigt in Umfangsrichtung 18 überall an, d.h. entfernt sich von der Achse 2. Gleich der ersten Seitenfläche 24 verläuft die zweite Seitenfläche 25 entlang der gesamte Länge 14 der Rippe 13 und ist zusammenhängend.The rib 13 has a back 23 and adjacent to the back 23 against a circumferential direction 18 adjacent a first flank and in the circumferential direction 18 adjacent a second flank. A surface of the rib 13 is composed largely of a circumferentially oriented 18 first side surface 24, the back 23 and a counter to the circumferential direction 18 facing second side surface 25 together. The first side surface 24 has exclusively in the circumferential direction 18. The first side surface 24 is inclined in the circumferential direction 18 only in the direction of the axis 2 . The first side surface 24 is contiguous and extends over the entire axial dimension 14 of the rib 13. The second side surface 25 has, as a counterpart to the first side surface 24 only against the circumferential direction 18. The second side surface 25 increases in the circumferential direction 18 everywhere, ie away from the axis 2. Like the first side surface 24 , the second side surface 25 extends along the entire length 14 of the rib 13 and is continuous.

Die zweite Seitenfläche 25 verläuft längs der Achse 2 vorzugsweise parallel zu der ersten Seitenfläche 24. Eine Krümmung in Schlagrichtung 7 der ersten Seitenfläche 24 ist gleich der Krümmung in Schlagrichtung 7 der zweiten Seitenfläche 25. Eine Breite 26 der Rippe 13 ist längs der Achse 2 konstant. Die Breite 26 kann quantitativ auf halber Höhe 27 der Rippe 13 bestimmt werden. Die halbe Höhe 27 ist der halbe radiale Abstand zwischen Rücken 23 und Fuß 28 oder die Hälfte des arithmetischen Mittels von Außendurchmesser 29 und Innendurchmesser 30. Die Abdeckung des Umfangs durch die mehreren Rippen 13 liegt auf der halben Höhe 27 zwischen 90 Grad und 150 Grad. Die Breite 26 der Rippen 13 bei dem Spreizkörper 12 mit vier Rippen 13 liegt in einem Winkelmaß zwischen 22,5 Grad und 37,5 Grad.The second side surface 25 extends along the axis 2 preferably parallel to the first side surface 24. A curvature in the direction of impact 7 of the first side surface 24 is equal to the curvature in the direction of impact 7 of the second side surface 25. A width 26 of the rib 13 is constant along the axis 2 , The width 26 can be determined quantitatively at half the height 27 of the rib 13 . The half height 27 is half the radial distance between the back 23 and foot 28 or half the arithmetic mean of outer diameter 29 and inner diameter 30. The coverage of the circumference by the plurality of ribs 13 is at half height 27 between 90 degrees and 150 degrees. The width 26 of the ribs 13 in the spreader body 12 with four ribs 13 is at an angle between 22.5 degrees and 37.5 degrees.

Die Rippe 13 hat vorzugsweise ein spiegelsymmetrisches Profil. Querschnitte der Rippe 13 senkrecht zu der Achse 2 sind zu einer durch den Rücken 23 verlaufenden Spiegelachse 31 spiegelsymmetrisch. Von dem Rücken 23, in radialer Richtung verlaufend, ist eine Krümmung längs der radialen Richtung der ersten Seitenfläche 24 spiegelsymmetrisch zu (das Negative) einer Krümmung längs der radialen Richtung der zweiten Seitenfläche 25. The rib 13 preferably has a mirror-symmetrical profile. Cross sections of the rib 13 perpendicular to the axis 2 are mirror-symmetrical to a plane passing through the back 23 mirror axis 31 . From the back 23, extending in the radial direction, is a Curvature along the radial direction of the first side surface 24 mirror-symmetrical to (the negative) of a curvature along the radial direction of the second side surface 25th

Der Rücken 23 kann flächig oder wie in dem dargestellten Beispiel linienförmig sein. Der Rücken 23 verläuft tangential zu der Umfangsrichtung 18. Die an den Rücken 23 angrenzenden beiden Seitenflächen 24, 25 fallen in bzw. gegen die Umfangsrichtung 18 von dem Rücken 23 in Richtung zu der Achse 2 ab. Der Rücken 23 setzt sich aus den Punkten an der Oberfläche der Rippe 13 zusammen, welche in den Ebenen senkrecht zur Achse 2 den größten radialen Abstand zu der Achse 2 aufweisen. Ein Abstand des Rückens 23 zu der Achse 2 verringert sich vorzugsweise kontinuierlich längs der Schlagrichtung 7, insbesondere im Bereich der Spitze 3 nähert sich der Rücken 23 monoton der Achse 2 an. Der Abstand 23 kann alternativ längs der Achse 2 periodisch zu- und abnehmen. Die der Achse 2 am nächsten liegenden Punkte der Oberfläche bilden einen Fuß 28 der Rippe 13. Ein Abstand 30 des Fußes 28 zu der Achse 2 ist vorzugsweise über die gesamte Länge 14 des Spreizkörpers 12 konstant. Der Fuß 28 einer Rippe 13 kann in den Fuß 28 einer in Umfangsrichtung 18 benachbarten Rippe 13 übergehen.The back 23 may be planar or, as in the example shown, linear. The ridge 23 extends tangentially to the circumferential direction 18. The two side surfaces 24, 25 adjoining the ridge 23 fall in or against the circumferential direction 18 from the ridge 23 in the direction of the axis 2 . The spine 23 is made up of the points at the surface of the rib 13, which have in the planes perpendicular to the axis 2 of the largest radial distance to the axis. 2 A distance of the back 23 to the axis 2 preferably decreases continuously along the direction of impact 7, in particular in the region of the tip 3 , the back 23 monotonically approaches the axis 2 . The distance 23 may alternatively increase and decrease periodically along the axis 2 . The points of the surface closest to the axis 2 form a foot 28 of the rib 13. A distance 30 of the foot 28 to the axis 2 is preferably constant over the entire length 14 of the expansion body 12 . The foot 28 of a rib 13 can pass into the foot 28 of a circumferentially 18 adjacent rib 13 .

Die um die Achse 2 angeordneten Rippen 13 prägen eine nicht-konvexe Form des Spreizkörpers 12. Die in radialer Richtung gegenüber dem Rücken 23 zurückgesetzten Seitenflächen 24, 25 begrenzen zwischen den Rippen 13 verlaufende Gänge 32. Die Gänge 32 befinden sich innerhalb einer konvexen Einhüllenden des Spreizkörpers 12. Ein Außendurchmesser 29, vorgegeben durch den doppelten Abstand des Rückens 23 von der Achse 2, ist vorzugsweise wenigstens 50 % größer als ein Innendurchmesser 30, vorgegeben durch den doppelten Abstand des Fußes 28 von der Achse 2, des Spreizkörpers 12. Die Rippen 13 können von einer Seele 33 radial abstehen. Die Seele 33 ist ein konvexer Vollkörper, z.B. ein zu der Achse 2 konzentrischer Rotationskörper oder Zylinder.The arranged around the axis 2 ribs 13 shape a non-convex shape of the spreader 12. The recessed in the radial direction relative to the back 23 side surfaces 24, 25 define between the ribs 13 extending gears 32. The gears 32 are located within a convex envelope of the Spreader body 12. An outer diameter 29, given by the double distance of the back 23 from the axis 2, is preferably at least 50% larger than an inner diameter 30, given by twice the distance of the foot 28 from the axis 2, the spreader 12. The ribs 13 can protrude radially from a soul 33 . The core 33 is a convex solid body, eg a body of revolution or cylinder concentric with the axis 2 .

Die erste Seitenfläche 24 ist entsprechend der Rippe 13 wellenförmig. Ein Winkel 34 zwischen der ersten Seitenfläche 24 und der Achse 2 ändert sich alternierend längs der Achse 2. Der Winkel 34 nimmt insbesondere negative und positive Werte an, wodurch sich der Aufbau maßgeblich von einer Wendel mit einem konstanten Winkel und einem festem Drehsinn unterscheidet. Der Winkel 34 ändert sich beispielhaft sinusförmig längs der Achse 2. Der Maximalwert des Winkels 34 liegt zwischen 3 Grad und 20 Grad, der Minimalwert liegt zwischen 3 Grad und 20 Grad.The first side surface 24 is corrugated corresponding to the rib 13 . An angle 34 between the first side surface 24 and the axis 2 changes alternately along the axis 2. The angle 34 assumes in particular negative and positive values, whereby the structure significantly different from a helix with a constant angle and a fixed sense of rotation. The angle 34 changes by way of example sinusoidally along the axis 2. The maximum value of the angle 34 is between 3 degrees and 20 degrees, the minimum value is between 3 degrees and 20 degrees.

Die erste Seitenfläche 24 ist längs der Achse 2 in abwechselnd aufeinanderfolgende erste Abschnitte 35 und zweite Abschnitte 36 unterteilt. Die erste Seitenfläche 25 ist in den ersten Abschnitten 35 unter einem positiven Winkel 34 zu der Achse 2 geneigt. Die erste Seitenfläche 25 steigt der Schlagrichtung 7 folgend in Umfangsrichtung 18 an. Die in den ersten Abschnitten 35 geneigte erste Seitenfläche 25 und ihre Lotrechten 37 weisen in Schlagrichtung 7. Die zweiten Abschnitte 36 sind zu den ersten Abschnitten 35 gegenläufig. Die erste Seitenfläche 24 nimmt einen negativen Winkel 34 zu der Achse 2 ein. Entlang der Schlagrichtung 7 ist die erste Seitenfläche 24 zu der Umfangsrichtung 18 gegenläufig. Die erste Seitenfläche 24 und ihre Lotrechten 38 weisen entgegen der Schlagrichtung 7 zu der Schlagfläche 4. The first side surface 24 is divided along the axis 2 into alternately successive first portions 35 and second portions 36 . The first side surface 25 is in the first Sections 35 inclined at a positive angle 34 to the axis 2 . The first side surface 25 increases following the direction of impact 7 in the circumferential direction 18 . The first side surface 25 inclined in the first sections 35 and their perpendiculars 37 point in the direction of impact 7. The second sections 36 are opposite to the first sections 35 . The first side surface 24 occupies a negative angle 34 to the axis 2 . Along the direction of impact 7 , the first side surface 24 is opposite to the circumferential direction 18 . The first side surface 24 and its perpendiculars 38 point opposite to the direction of impact 7 towards the striking surface 4.

Die tangentiale Auslenkung der Rippe 13 erfolgt beispielsweise durch einen Parallelversatz. Die erste Seitenfläche 24 ist an einem Minimum 16 zu sich selbst an einem Maximum 17 und vorzugsweise allen anderen Querschnitten senkrecht zu der Achse 2 parallel. Die Neigung 34 der ersten Seitenfläche 24 zu der Achse 2 ändert sich zwar wiederholt längs der Achse 2, ist jedoch in radialer Richtung konstant. Bei der vorzugsweise spiegelsymmetrischen Rippe 13 sind deren längs der Achse 2 unterschiedlichen Spiegelachsen 31 zueinander parallel. Der parallele Versatz kann beispielsweise entlang einer Geraden 39 erfolgen, welche senkrecht zu der Achse 2 ist und tangential an einer Stelle des Rückens 23 der Rippe 13 anliegt. Die Stelle ist beispielsweise in der Mitte 40 (Ebene III-III) zwischen einem Minimum 16 und einem Maximum 17. The tangential deflection of the rib 13 takes place for example by a parallel offset. The first side surface 24 is parallel at a minimum 16 to itself at a maximum 17 and preferably all other cross sections perpendicular to the axis 2 . Although the inclination 34 of the first side surface 24 to the axis 2 changes repeatedly along the axis 2, but is constant in the radial direction. In the preferably mirror-symmetrical rib 13 whose different axis along the axis 2 mirror axes 31 are parallel to each other. The parallel offset can, for example, take place along a straight line 39 , which is perpendicular to the axis 2 and tangentially bears against a point of the back 23 of the rib 13 . The location is, for example, in the middle 40 (level III-III) between a minimum 16 and a maximum 17.

Jeder der Rippen 13 ist eine eigene dieser Geraden 39 zugeordnet, welche gleich dem Winkel 15 zwischen den Rippen 13 ebenfalls um diesen Winkel 15 um die Achse 2 angeordnet sind. Der Parallelversatz erfolgt für die unterschiedlichen Rippen 13, jeweils um einen um den Winkel 15 gedrehte Richtung. Das Profil des Spreizkörpers 12 ändert sich längs der Achse 2. Die Querschnitte durch den Spreizkörper 12 an den Minima 16, der Mitte 40 und den Maxima 17 unterscheiden sich in ihrer Form. Die Querschnitte können nicht durch eine Drehung um die Achse 2 zueinander in Deckung gebracht werden. Der Querschnitt in der Mitte 40 ist beispielsweise spiegelsymmetrisch zu der Spiegelachse 31. Die Querschnitte durch die Minima 16 und die Maxima 17 hingegen weisen keine Spiegelsymmetrie auf, können jedoch zueinander spiegelsymmetrisch ausgestaltet sein.Each of the ribs 13 is associated with its own this straight line 39 , which are equal to the angle 15 between the ribs 13 also arranged at this angle 15 about the axis 2 . The parallel offset takes place for the different ribs 13, in each case by a direction 15 rotated by the direction. The profile of the spreading body 12 changes along the axis 2. The cross-sections through the expander 12 at the minima 16, the center 40 and the peaks 17 vary in their shape. The cross sections can not be brought into coincidence by a rotation about the axis 2 . The cross-section in the middle 40 is, for example, mirror-symmetrical to the mirror axis 31. The cross-sections through the minima 16 and the maxima 17, however, have no mirror symmetry, but may be designed mirror-symmetrically to each other.

Die Amplitude der tangentialen Auslenkung der Rippe 13 ist begrenzt. Fig. 4 zeigt neben dem Querschnitt durch das Maximum 17 einen Querschnitt durch das Minimum 16. Insbesondere kreuzen sich keine der Rippen 13. Die Amplitude der Auslenkung zwischen jeweils zwei benachbarten Extrema 16, 17 ist höchstens so groß, dass eine überlappende Fläche 41 des Querschnitts durch die Rippe 13 in dem einem der Extrema 16, z.B. Minimum, und des Querschnitts durch die gleiche Rippe 13 in dem anderen der Extrema 17, z.B. Maximum, mindestens 25 % der Querschnittsfläche der Rippe 13 beträgt. Bei dem in guter Näherung trapezförmigen Querschnitt der Rippen 13 ist die Amplitude der Auslenkung, d.h. der Abstand von Minimum 16 zu Maximum 17, geringer als 75 % der Breite 26 der Rippe 13. Die Amplitude ist wenigstens so groß, dass die überlappende Fläche 41 (gekreuzte Schraffur) der Querschnitte der Rippe 13 im Minimum 16 und im Maximum 17 geringer als 75 % der Querschnittsfläche der Rippe 13 beträgt. Die Amplitude entspricht etwa 25 % der Breite 26 der Rippe 13. The amplitude of the tangential deflection of the rib 13 is limited. Fig. 4 shows in addition to the cross-section by the maximum of 17 has a cross-section through the minimum 16. In particular, none of the ribs intersect 13. The amplitude of the displacement between each two adjacent extrema 16, 17 is at most so large that an overlapping surface 41 of the cross-section of the rib 13 in one of the extrema 16, eg minimum, and the cross-section through the same rib 13 in the other of the extrema 17, eg Maximum, at least 25% of the cross-sectional area of the rib 13 is. In the case of the approximately trapezoidal cross-section of the ribs 13 , the amplitude of the deflection, ie the distance from minimum 16 to maximum 17, is less than 75% of the width 26 of the rib 13. The amplitude is at least so large that the overlapping surface 41 ( FIG. crossed hatching) of the cross sections of the rib 13 in the minimum 16 and at the maximum 17 is less than 75% of the cross-sectional area of the rib 13 . The amplitude corresponds to about 25% of the width 26 of the rib 13th

Die Amplitude angegeben als Winkelversatz 42 in und gegen die Umfangsrichtung 18 zwischen den Maxima 17 und benachbarten Minima 16 ist geringer als 30 Grad und vorzugsweise größer als 5 Grad. Die Rippen 13 verlaufen innerhalb der ersten Abschnitte 35 um wenigstens 5 Grad und weniger als ein Zwölftel eines Umlaufs in die Umfangsrichtung 18, um in dem sich unmittelbar anschließenden zweiten Abschnitt 36 um wenigstens 5 Grad entgegen der Umfangsrichtung 18 zu verlaufen. Der Umlauf in die Gegenrichtung in dem zweiten Abschnitt 36 ist ebenfalls auf ein Zwölftel eines Umlaufs begrenzt. Die Gänge 32 zwischen den Rippen 13 haben einen geradlinig längs der Achse 2 verlaufenden Kern, der eine Breite 43 von wenigstens 30 Grad aufweist. Der Winkelabmessungen werden vorzugsweise basierend auf einer Höhenlinie auf halber Höhe 27 der Rippen 13 bestimmt.The amplitude given as the angular offset 42 in and against the circumferential direction 18 between the maxima 17 and adjacent minima 16 is less than 30 degrees and preferably greater than 5 degrees. The ribs 13 extend within the first portions 35 by at least 5 degrees and less than one twelfth of a revolution in the circumferential direction 18 to extend in the immediately adjacent second portion 36 by at least 5 degrees against the circumferential direction 18 . The circulation in the opposite direction in the second section 36 is also limited to one-twelfth of one revolution. The flights 32 between the ribs 13 have a straight line along the axis 2 extending core having a width 43 of at least 30 degrees. The angular dimensions are preferably determined based on a contour line at half height 27 of the ribs 13 .

Fig. 5 bis Fig. 7 zeigen Querschnitte durch einen Spreizkörper 12. Fig. 5 verläuft durch ein Minimum der Auslenkung entsprechend der Ebene II-II, Fig. 7 durch ein Maximum der Auslenkung entsprechend der Ebene IV-IV und Fig. 6 durch eine Ebene in der Mitte zwischen Minimum und Maximum entsprechend der Ebene III-III. Fig. 5 to Fig. 7 show cross sections through an expansion body 12th Fig. 5 passes through a minimum of deflection corresponding to level II-II, Fig. 7 by a maximum of the deflection according to the level IV-IV and Fig. 6 by a level in the middle between minimum and maximum according to level III-III.

Der Spreizkörper 44 hat mehrere Rippen 45, welche um die Achse 2 verteilt angeordnet sind. Die längs der Achse 2 ausgedehnten Rippen 45 sind wellenförmig, wobei die Auslenkung tangential zu der Achse 2 erfolgt. Die Rippen 45 haben jeweils eine zusammenhängende erste Seitenfläche 24, die nur in Umfangsrichtung 18 weist, und eine zusammenhängende zweite Seitenfläche 25, die nur entgegen die Umfangsrichtung 18 weist. Die beiden Seitenflächen 24, 25 bilden die Oberfläche der Rippe 45 und vorzugsweise zueinander parallel. Für weitere Details der Rippen 45 wird auf Beschreibung zu den Fig. 2 bis Fig. 4 verwiesen.The expansion body 44 has a plurality of ribs 45, which are arranged distributed about the axis 2 . The ribs 45 , which extend along the axis 2, are wave-shaped, wherein the deflection takes place tangentially to the axis 2 . The ribs 45 each have a contiguous first side surface 24, which has only in the circumferential direction 18 , and a contiguous second side surface 25 which faces only the circumferential direction 18 . The two side surfaces 24, 25 form the surface of the rib 45 and preferably parallel to each other. For more details of the ribs 45 will be on description of the Fig. 2 to Fig. 4 directed.

Die Rippe 45 ist um die Achse 2 gewunden. Die tangentiale Auslenkung erfolgt durch ein Drehen der Rippe 45 um die Achse 2. Querschnitte senkrecht zu der Achse 2 durch den Spreizkörper 12 haben die gleiche Form; sie können durch Drehen um die Achse 2 in Überdeckung gebracht werden. Die Querschnitt können beispielsweise spiegelsymmetrisch zu den Spiegelachsen 31 der Rippen 45 sein.The rib 45 is wound around the axis 2 . The tangential deflection is effected by rotating the rib 45 about the axis 2. Cross-sections perpendicular to the axis 2 through the spreader 12 have the same shape; they can be turned by turning the axis 2 in Covering be brought. The cross section may, for example, be mirror-symmetrical to the mirror axes 31 of the ribs 45 .

Die Amplitude der tangentialen Auslenkung der Rippe 45 ist begrenzt. Fig. 7 zeigt neben dem Querschnitt durch das Maximum 17 (schraffiert) einen Querschnitt durch das Minimum 16 (nicht schraffiert). Der Winkelversatz 42 zwischen dem Minimum 16 und dem Maximum 17 ist geringer als 30 Grad. Vorzugsweise ist der Winkelversatz 42 größer als 5 Grad. Der Winkelversatz 42 ist vorzugsweise zwischen allen Extrema 16, 17 betragsmäßig gleich groß (siehe Fig. 1).The amplitude of the tangential deflection of the rib 45 is limited. Fig. 7 shows next to the cross section through the maximum 17 (hatched) a cross section through the minimum 16 (not hatched). The angular offset 42 between the minimum 16 and the maximum 17 is less than 30 degrees. Preferably, the angular offset 42 is greater than 5 degrees. The angular offset 42 is preferably equal in magnitude between all extremes 16, 17 (see Fig. 1 ).

Eine Breite 26 der Rippe 45 ist vorzugsweise größer als der Winkelversatz 42. Die Breite 26 der Rippe 45 ist beispielsweise derart gewählt, dass die Rippen 45 auf halber Höhe 27 zwischen 90 Grad und 150 Grad des Umfangs abdecken. Bei dem beispielhaften Spreizkörper 12 mit vier Rippen 45 liegt die Breite 26 zwischen 22,5 Grad und 37,5 Grad. Die tangentiale Auslenkung ist der Breite 46 der Rippen 45 angepasst soweit begrenzt, dass die Rippen 45 einander nicht kreuzen.A width 26 of the rib 45 is preferably greater than the angular offset 42. The width 26 of the rib 45 is selected, for example, such that the ribs 45 cover at half height 27 between 90 degrees and 150 degrees of the circumference. In the exemplary expansion body 12 with four ribs 45 , the width 26 is between 22.5 degrees and 37.5 degrees. The tangential deflection of the width 46 of the ribs 45 adapted limited to the extent that the ribs 45 do not cross each other.

Der Winkel 34 zwischen der ersten Seitenfläche 24 und der Achse 2 erhöht sich in radialer Richtung zu dem Rücken 23. The angle 34 between the first side surface 24 and the axis 2 increases in the radial direction to the back 23rd

Fig. 8 zeigt als Beispiel einer meißelnden Handwerkzeugmaschine schematisch einen Bohrhammer 6. Der Bohrhammer 6 hat eine Werkzeugaufnahme 47, in welche ein Einsteckende 9 des Meißel 1, eingesetzt werden kann. Einen primären Antrieb des Bohrhammers 6 bildet ein Motor 48, welcher ein Schlagwerk 49 und eine Abtriebswelle 50 antreibt. Ein Anwender kann den Bohrhammer 6 mittels eines Handgriffs 51 führen und mittels eines Systemschalters 52 den Bohrhammer 6 in Betrieb nehmen. Im Betrieb schlägt der Bohrhammer 6 den Bohrmeißel 53 in Schlagrichtung 7 längs der Arbeitsachse 54 in einen Untergrund. Fig. 8 shows as an example of a chiseling hand tool machine schematically a hammer 6. The hammer 6 has a tool holder 47, in which a spigot 9 of the chisel 1, can be used. A primary drive of the hammer drill 6 forms a motor 48, which drives a striking mechanism 49 and an output shaft 50 . A user can guide the hammer 6 by means of a handle 51 and take means of a system switch 52 to the hammer 6 in operation. In operation, the hammer 6 strikes the drill bit 53 in the impact direction 7 along the working axis 54 in a substrate.

Das Schlagwerk 49 ist beispielsweise ein pneumatisches Schlagwerk 49. Ein Erreger 55 und ein Schläger 5 sind in dem Schlagwerk 49 längs der Arbeitsachse 54 beweglich geführt. Der Erreger 55 ist über einen Exzenter 56 oder einen Taumelfinger an den Motor 48 angekoppelt und zu einer periodischen, linearen Bewegung gezwungen. Eine Luftfeder gebildet durch eine pneumatische Kammer 57 zwischen Erreger 55 und Schläger 5 koppelt eine Bewegung des Schlägers 5 an die Bewegung des Erregers 55 an. Der Schläger 5 kann direkt auf ein hinteres Ende des Meißels 1 aufschlagen oder mittelbar über einen im Wesentlichen ruhenden Zwischenschläger 58 einen Teil seines Impuls auf den Bohrmeißel 53 übertragen.The percussion mechanism 49 is, for example, a pneumatic percussion mechanism 49. An exciter 55 and a racket 5 are movably guided in the striking mechanism 49 along the working axis 54 . The exciter 55 is coupled via an eccentric 56 or a wobble finger to the motor 48 and forced to a periodic, linear movement. An air spring formed by a pneumatic chamber 57 between exciter 55 and racket 5 couples a movement of the racket 5 to the movement of the exciter 55 at. The racket 5 can strike directly on a rear end of the chisel 1 or indirectly transfer part of its momentum to the drill bit 53 via a substantially stationary intermediate racket 58 .

Das Schlagwerk 49 und vorzugsweise die weiteren Antriebskomponenten sind innerhalb eines Maschinengehäuses 59 angeordnet.The percussion mechanism 49 and preferably the further drive components are arranged within a machine housing 59 .

Claims (10)

  1. A chisel (1) having a striking surface (4), a shank (8), a spreading element (12) and a tip (3) extending one after the other in striking direction along an axis (2), in which case the spreading element (12) involves a number of ribs (13, 45) distributed about the axis (2) and extending along the axis (2) characterized in that the ribs (13, 45) are in each case wave-shaped with a deflection which is tangential to the axis (2).
  2. A chisel (1) according to Claim 1, characterized in that an amplitude (42) of the deflection is less than a width (26) of the rib (13, 45).
  3. A chisel (1) according to one of the preceding claims, characterized in that an amplitude (42) of a deflection of portions of the rib (13, 45) extending in a circumferential direction (18) is equal to an amplitude (42) of the deflection of portions of the rib (13, 45) extending counter to the circumferential direction (18).
  4. A chisel (1) according to one of the preceding claims, characterized in that the amplitude (42) of the deflection is between 5 degrees and 30 degrees.
  5. A chisel (1) according to one of the preceding claims, characterized in that at least one of the ribs (13) is deflected parallel to itself in a circumferential direction (18) about the axis (2) through the tangential wave-shaped deflection.
  6. A chisel (1) according to Claim 5, characterized in that a shape of a cross-section perpendicular to the axis (2) changes continuously along the axis (2).
  7. A chisel (1) according to one of the preceding Claims 1 to 4, characterized in that at least one of the ribs (45) is rotated in a circumferential direction (18) about the axis (2) through the tangential wave-shaped deflection.
  8. A chisel (1) according to Claim 7, characterized in that, whilst retaining its shape, a cross-section perpendicular to the axis (2) is rotated along the axis (2) alternately in the circumferential direction (18) and counter to the circumferential direction (18).
  9. A chisel (1) according to one of the preceding claims, characterized in that the chisel (1) has at least two wave trains (22).
  10. A chisel (1) according to one of the preceding claims, characterized in that the rib (13, 45) is inclined relative to the axis (2) at an angle (34) which changes periodically along the axis (2), and a minimum value of the angle (34) is between -20 degrees and -3 degrees and a maximum value of the angle (34) is between 3 degrees and 20 degrees.
EP13155007.1A 2012-02-15 2013-02-13 Chisel Active EP2628572B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012202300A DE102012202300A1 (en) 2012-02-15 2012-02-15 chisel

Publications (2)

Publication Number Publication Date
EP2628572A1 EP2628572A1 (en) 2013-08-21
EP2628572B1 true EP2628572B1 (en) 2016-06-01

Family

ID=47748416

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13155007.1A Active EP2628572B1 (en) 2012-02-15 2013-02-13 Chisel

Country Status (10)

Country Link
US (1) US9221164B2 (en)
EP (1) EP2628572B1 (en)
JP (1) JP6104628B2 (en)
CN (1) CN103252753B (en)
AR (1) AR089953A1 (en)
BR (1) BR102013003513A2 (en)
DE (1) DE102012202300A1 (en)
ES (1) ES2589279T3 (en)
PL (1) PL2628572T3 (en)
RU (1) RU2620526C2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD752937S1 (en) * 2013-06-18 2016-04-05 Hilti Aktiengesellschaft Chisel
US10131042B2 (en) 2013-10-21 2018-11-20 Milwaukee Electric Tool Corporation Adapter for power tool devices
USD756741S1 (en) * 2014-04-10 2016-05-24 Robert Bosch Gmbh Chisel
RU2606688C1 (en) * 2015-10-05 2017-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ставропольский государственный аграрный университет" Hand tool of impact action for division into parts of roll hay
EP3222390A1 (en) * 2016-03-23 2017-09-27 HILTI Aktiengesellschaft Chisel
EP3281748A1 (en) * 2016-08-08 2018-02-14 HILTI Aktiengesellschaft Chisel
CN106312941B (en) * 2016-11-04 2018-09-11 杭州中杰工具有限公司 A kind of preparation method of high productivity combinatorial disjunctor chisel
CA186295S (en) * 2018-09-07 2020-09-02 Arbortech Industries Ltd Chisel attachment for a power tool
USD922840S1 (en) * 2019-05-06 2021-06-22 Milwaukee Electric Tool Corporation Chisel
USD923447S1 (en) * 2019-05-06 2021-06-29 Milwaukee Electric Tool Corporation Chisel
USD922841S1 (en) * 2019-05-06 2021-06-22 Milwaukee Electric Tool Corporation Chisel
USD922842S1 (en) * 2019-05-06 2021-06-22 Milwaukee Electric Tool Corporation Chisel
USD921465S1 (en) * 2019-05-06 2021-06-08 Milwaukee Electric Tool Corporation Mortar knife

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US523095A (en) * 1894-07-17 Cutting-tool for granite
DE466471C (en) * 1928-10-06 Otto Schoebe Chisel
US2028993A (en) * 1934-10-26 1936-01-28 Arrow Tools Inc Chisel
US2629588A (en) * 1948-03-25 1953-02-24 Neamand Vincent Tool for breaking concrete and the like
DE1846211U (en) * 1961-06-07 1962-02-08 Guenther W Hammer TIP AGENTS FOR EXTRACTORS.
US3163865A (en) * 1961-09-13 1965-01-05 Port Clinton Mfg Company Drive tool
NL166204C (en) * 1976-07-06 1981-07-15 Hermanus Andreas Heitbrink CHISEL FOR A IMPACT TOOL.
US4828445A (en) * 1982-06-14 1989-05-09 Giannuzzi Louis Single-piece pre-shaped wall anchor
JP3010560B2 (en) * 1990-04-25 2000-02-21 有限会社野々川商事 Cosmetics
FR2720314B1 (en) * 1994-05-24 1996-07-05 Racodon Sa Expl Ets Gripping and shock absorbing device on striking tools.
RU2189305C2 (en) * 1995-10-12 2002-09-20 Роберт Бош Гмбх Detachable tool and attachment for securing it in electric machines with drilling and(or) perforating mode
IT239729Y1 (en) * 1996-04-26 2001-03-13 Giovanni Battista Andrina TOOLS FOR DEMOLITION HAMMERS WITH SPECIAL PROFILE.
CA2228532A1 (en) * 1997-02-04 1998-08-04 Maxtech Manufacturing Inc. Striking tools with deflector grips
WO2001036163A1 (en) * 1999-11-17 2001-05-25 Hawera Probst Gmbh Chisel
US7743847B2 (en) * 2000-08-15 2010-06-29 Wave Craft Limited Cam operated devices
DE10102308A1 (en) * 2001-01-19 2002-07-25 Hilti Ag Rotary-percussive rockdrill with flushing bore uses symmetrically placed driver grooves larger than residual web round smooth cylindrical shaft for increased torque and percussion rate.
DE10208627A1 (en) * 2002-02-28 2003-09-11 Hawera Probst Gmbh flat chisel
DE10244509A1 (en) * 2002-09-25 2004-04-08 Hilti Ag Pointed chisel
ATE446165T1 (en) * 2004-07-13 2009-11-15 Black & Decker Inc CHISEL
US20060196056A1 (en) * 2005-03-07 2006-09-07 Davis Waldon E Chisels with angled heads and ribbed grip handles
DE102006000208A1 (en) * 2006-04-28 2007-10-31 Hilti Ag Rotary hammer drill with four-turn drill bit shank
US8141255B2 (en) * 2009-08-29 2012-03-27 Cheng-Wei Su Multi-impact hand tool
US20120020751A1 (en) * 2010-07-23 2012-01-26 Suneel Bhaskar Bhat Multi-directionally fluted rotary cutting tool
CN201922428U (en) * 2010-11-27 2011-08-10 浙江永盛工具有限公司 Chisel edge
EP2502708B1 (en) * 2011-03-22 2017-02-01 Black & Decker Inc. Chisels

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN103252753A (en) 2013-08-21
ES2589279T3 (en) 2016-11-11
CN103252753B (en) 2016-08-10
DE102012202300A1 (en) 2013-08-22
JP6104628B2 (en) 2017-03-29
US20130205603A1 (en) 2013-08-15
JP2013166239A (en) 2013-08-29
EP2628572A1 (en) 2013-08-21
PL2628572T3 (en) 2016-12-30
RU2620526C2 (en) 2017-05-26
AR089953A1 (en) 2014-10-01
US9221164B2 (en) 2015-12-29
RU2013106398A (en) 2014-08-20
BR102013003513A2 (en) 2015-06-16

Similar Documents

Publication Publication Date Title
EP2628572B1 (en) Chisel
DE2444899C2 (en) Drilling tool with drill and receiving part
EP2802786B1 (en) Expansion anchor
CH618113A5 (en)
EP0433876B1 (en) Tool for percussive drilling and tool retainer for percussive drilling tools
EP2205403B1 (en) Chisel, particularly for motor-driven machines
EP0322565B1 (en) Rock drill bit
EP3433057B1 (en) Chisel
EP1536925A2 (en) Tool and toolholder for a hand tool machine
EP0937860B1 (en) Drill and or chisel tool
DE102011009092A1 (en) Rotor box for a ground milling machine with guide device for milled material and ground milling machine with such a rotor box
EP3310513A1 (en) Drill bit and production method
DE4200643A1 (en) IMPACT DRILLING TOOLS AND CHISELING TOOLS FOR THESE TOOLS
EP0614731B1 (en) Tool and toolchuck for handtools
EP3656494A1 (en) Step drill
WO1995019243A1 (en) Device on hand machine tools for rotary tool drive
EP2994255B1 (en) Twist drill and method of manufacturing
EP1455978A1 (en) Percussion or hammer drill
EP1273396B1 (en) Chisel resp. drill bit
EP1431511B1 (en) Rock drill
EP3648930B1 (en) Setting tool, set for a set tool system and set tool system
EP0465767B1 (en) Reinforced concrete foundation pile
DE19537900B4 (en) rotary drill
EP3515640B1 (en) Drill bit
EP0179232B1 (en) Clamping chuck

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140221

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B25D 17/02 20060101AFI20160129BHEP

Ipc: B25D 3/00 20060101ALI20160129BHEP

INTG Intention to grant announced

Effective date: 20160219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 803585

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013003236

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160901

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2589279

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20161111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160902

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161003

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013003236

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170213

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240219

Year of fee payment: 12

Ref country code: ES

Payment date: 20240325

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240220

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 12

Ref country code: CZ

Payment date: 20240205

Year of fee payment: 12

Ref country code: CH

Payment date: 20240301

Year of fee payment: 12

Ref country code: GB

Payment date: 20240219

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240219

Year of fee payment: 12

Ref country code: PL

Payment date: 20240202

Year of fee payment: 12

Ref country code: IT

Payment date: 20240228

Year of fee payment: 12

Ref country code: FR

Payment date: 20240221

Year of fee payment: 12