EP2606206B1 - Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine - Google Patents

Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine Download PDF

Info

Publication number
EP2606206B1
EP2606206B1 EP11767234.5A EP11767234A EP2606206B1 EP 2606206 B1 EP2606206 B1 EP 2606206B1 EP 11767234 A EP11767234 A EP 11767234A EP 2606206 B1 EP2606206 B1 EP 2606206B1
Authority
EP
European Patent Office
Prior art keywords
steam
power
temperature
characteristic
flow medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11767234.5A
Other languages
English (en)
French (fr)
Other versions
EP2606206A2 (de
Inventor
Martin Effert
Frank Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL11767234T priority Critical patent/PL2606206T3/pl
Publication of EP2606206A2 publication Critical patent/EP2606206A2/de
Application granted granted Critical
Publication of EP2606206B1 publication Critical patent/EP2606206B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/165Controlling means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/12Controlling superheat temperature by attemperating the superheated steam, e.g. by injected water sprays

Definitions

  • the invention relates to a method for controlling a short-term increase in output of a steam turbine with an upstream fossil-fueled steam generator with a number of a flow path forming, flowed through by a flow medium economizer, evaporator and superheater heating, in which branched off in a pressure stage flow medium from the flow path and the flow medium side is injected before a Kochhitzerterrorism Colour Simulation the respective pressure stage in the flow path, wherein a for the deviation of the outlet temperature of the flow medium side last superheater heating surface of the respective pressure stage of a predetermined temperature setpoint characteristic first characteristic value is used as a controlled variable for the amount of the injected flow medium.
  • a fossil-fueled steam generator produces superheated steam using the heat generated by burning fossil fuels.
  • Fossil fueled steam generators are mostly used in steam power plants, which are mainly used for power generation.
  • the generated steam is fed to a steam turbine.
  • the fossil-fueled steam generator also comprises a plurality of pressure stages with different thermal states of the respectively contained water-steam mixture.
  • the flow medium In the first (high) pressure stage, the flow medium first passes through economizers on its flow path, using residual heat to preheat the flow medium, and then various stages of evaporator and superheater heating surfaces.
  • the evaporator the flow medium is evaporated, then separated any residual moisture in a separator and further heated the remaining steam in the superheater. After that If the superheated steam flows into the high-pressure part of the steam turbine, it is depressurized and fed to the following pressure stage of the steam generator. There it is again superheated (reheater) and fed to the next pressure part of the steam turbine.
  • the heat output transferred to the superheaters can fluctuate greatly. Therefore, it is often necessary to control the superheat temperature. Usually, this is usually achieved by an injection of feed water before or after individual Matterhitzersammlung inhabit for cooling, ie, an overflow branches off from the main flow of the flow medium and leads to there arranged injection valves.
  • the injection is usually controlled by a characteristic of the temperature deviations from a predetermined temperature setpoint at the outlet of the superheater, such as, for example, from FR 2 401 380 A1 known.
  • Modern power plants not only require high levels of efficiency but also the most flexible mode of operation possible. Apart from short start-up times and high load change speeds, this also includes the possibility of compensating for frequency disturbances in the power grid. To meet these requirements, the power plant must be able to provide more power, for example, 5% and more within a few seconds.
  • Such power changes of a power plant block in the second range are possible only by a coordinated interaction of steam generator and steam turbine.
  • the contribution that the fossil-fueled steam generator can make is the use of its storage, d. H. of the steam but also of the fuel storage, as well as rapid changes of the control variables feedwater, injection water, fuel and air.
  • Step valve This can be done, for example, by opening partially throttled turbine valves of the steam turbine or a so-called Step valve happen, whereby the vapor pressure is lowered in front of the steam turbine.
  • steam is expelled from the steam storage of the upstream fossil-fueled steam generator and fed to the steam turbine.
  • the short-term increase in output should be possible without invasive structural modifications to the overall system, regardless of the design of the fossil-fueled steam generator.
  • This object is achieved according to the invention by reducing the temperature setpoint for the short-term increase in output of the steam turbine and temporarily increasing the characteristic value for the period of the reduction of the temperature setpoint disproportionately to the deviation.
  • the invention is based on the consideration that additional injection of feedwater can make a further contribution to the short-term rapid change in performance.
  • a desired-actual comparison between desired and measured steam temperature is made in a corresponding control system via a subtractor.
  • this signal can be further modified by additional information from the process before it is subsequently connected as an input signal (control deviation), for example, to a PI controller.
  • control deviation for example, to a PI controller.
  • the temporary increase of the characteristic value can be generated by advantageously forming the parameter characteristic for the deviation of the temperature from the desired value from the sum of this deviation and a second characteristic value characteristic of the temporal change of the temperature nominal value.
  • the second characteristic value is essentially the temporal change of the temperature setpoint multiplied by a gain factor.
  • a parameter of one of the parameters is determined system-specific. That is, the amount of amplification, the parameters of the differentiating element, etc. should be determined specifically based on the individual equipment concerned. This can be done in advance, for example, with the help of simulation calculations or during the commissioning of the control.
  • the advantages achieved by the invention are in particular that the targeted reduction of the steam temperature setpoint using the injection control method, the stored in the downstream of the injection metal masses stored thermal energy for a temporary increase in power of the steam turbine can be used. If the adjusted control methods described are used, significantly faster power increases can be achieved with the aid of the injection system in the event of a sudden reduction in the steam temperature setpoint.
  • the method is applicable in each pressure stage either individually or in combination, d. H. both in the live steam (high pressure stage) and in the reheat (medium or low pressure stage).
  • the method for providing a temporary increase in power of the steam turbine is independent of other measures, so that, for example, throttled turbine valves can be additionally opened in order to increase the power increase of the steam turbine yet.
  • the effectiveness of the procedure remains largely unaffected by these parallel measures.
  • the degree of throttling of the turbine valves can be reduced, the use of the injection system should be used for the power increase.
  • the desired performance release can then be achieved under these circumstances with less, in the best case even completely without additional throttling.
  • the plant can be operated in the usual load operation, where it must be available for an immediate reserve, with a relatively greater efficiency, which also reduces the operating costs.
  • the method can also be implemented without invasive structural measures, but merely by additional components are to be provided or implemented in the control system. As a result, higher system flexibility and benefits are achieved at no extra cost.
  • FIG. 1 exemplified the medium-pressure part.
  • the FIG. 1 schematically represents a part of the flow path 2 of the flow medium M, in particular the superheater 4.
  • the spatial arrangement of the individual superheater 4 in the hot gas duct is not shown and may vary.
  • the illustrated superheater heating surfaces 4 may each represent a plurality of serially connected heating surfaces, which are not shown differentiated due to the clarity.
  • the flow medium M is before entering the in the FIG. 1 shown relaxed part in the high pressure part of a steam turbine.
  • the flow medium M can then optionally enter a first, not shown superheater heating surface before it reaches the part shown.
  • an injection valve 6 is arranged on the flow medium side.
  • cooler and unevaporated flow medium M for control the outlet temperature at the outlet 8 of the medium-pressure part of the fossil-fired steam generator 1 are injected.
  • the introduced into the injection valve 6 amount of flow medium M is controlled by an injection control valve 10.
  • the flow medium M is supplied via a previously branched off in the flow path 2 overflow 12.
  • a plurality of measuring devices are further provided for controlling the injection, namely a temperature measuring device 14 and a pressure measuring device 16 after the injection valve 6 and before the superheater heating surfaces 4, and a temperature measuring device 18 after the superheater 4.
  • a temperature measuring device 14 and a pressure measuring device 16 after the injection valve 6 and before the superheater heating surfaces 4, and a temperature measuring device 18 after the superheater 4.
  • a temperature setpoint is set at a setpoint generator 22.
  • This temperature setpoint is connected together with the output of the temperature measuring device 18 after the superheater 4 to a subtractor 24, where thus the deviation of the temperature at the outlet of the superheater 4 is formed by the desired value.
  • This deviation is corrected in an adder 26, the correction modeling the time delay of a temperature change as it passes through the superheater heating surfaces 4.
  • the temperature at the entrance of the superheater heating surfaces 4 from the temperature measuring device 14 is switched to a time-delaying PTn element 28 which is fed to the adder 26 on the input side.
  • the output of the adder 26 is switched to a maximum member 30 and in the further course together with the signal of the temperature measuring device 14 to a subtractor 32nd
  • the pressure measured at the pressure measuring device 16 is switched into a functional element 34 that outputs the boiling temperature of the flow medium M corresponding to this pressure.
  • a preset constant is output a transmitter 38 added, which may be for example 10 ° C and ensures a safe distance to the boiling line. The thus determined minimum temperature is given to the maximum member 30.
  • the signal detected in the maximum element 30 is applied via the subtractor 32 to a PI control element 40 for controlling the injection control valve 10.
  • the injection system In order to be able to use the injection system not only to regulate the outlet temperature but also to provide an immediate power reserve, it comprises corresponding means for carrying out the method for regulating a short-term power increase of a steam turbine.
  • the temperature setpoint at the setpoint generator 22 is reduced, which results in an increase in the injection quantity.
  • a fast controller response of the PI control element 40 should be ensured.
  • the caused deviation of the actual temperature from the temperature target value is alleviated by the PTn member 28 shortly after the change.
  • the signal of the desired temperature setpoint generator 22 is switched to a first-order differentiator (DT1).
  • DT1 first-order differentiator
  • a PT1 element 42 is acted on the input side with the signal of the setpoint generator 22 and the output side connected together with the original signal of the setpoint generator 22 to a subtractor 44 whose output is connected to a multiplier 46, the signal by a factor, for. B. 10 amplified from a transmitter 48.
  • This signal is given via the adder 50 in the signal of the temperature deviation from the subtractor 24.
  • the interconnection via the PT1 element 42 In the case of a change in the setpoint, the interconnection via the PT1 element 42 generates a signal which is different from zero and which is amplified by the multiplier 46 and artificially disproportionately amplifies the characteristic value characteristic of the deviation.
  • the signal via the interconnection of the PTn element 28 is then relatively smaller and a faster controller response of the PI controller element 40 is forced.
  • an increase in steam quantity is achieved quickly and the power of the downstream steam turbine is increased.
  • FIG. 2 now shows a diagram with simulation results using the described control method.
  • Plotted is the percent additional power versus full load 52 vs. time 54 in seconds after a 20 ° C sudden drop in the setpoint temperature set point 22 for the respective stage of a fossil fired steam generator with high pressure and intermediate superheat or medium pressure stage at 95% load.
  • the circuit described above can be used with the PT1 element 42 for the disproportionate amplification of the characteristic value characteristic of the deviation in both stages.
  • the curves 56 and 58 show the results for a modification of the high-pressure part, the curves 60 and 62, the results for a modification of reheat and the curves 64 and 66, the results for a modification of both stages.
  • the curves 56, 60 and 64 each show the results without PT1 element 42, ie according to the usual control system, the curves 58, 62 and 66 respectively the results with PT1 element 42 connected as described above.
  • FIG. 3 is opposite FIG. 2 only slightly modified and shows the simulated curves 56, 58, 60, 62, 64, 66 for 40% load, all other parameters coincide FIG. 2 the same applies to the curves 56, 58, 60, 62, 64, 66.
  • the unmodified curves 56, 60, 62 show a much flatter course than in FIG. 2 That is, an even slower controller response of the PI controller 40 can be seen. Due to the described interconnection of the PT1 member 42 in the high pressure part, the maximum of the curve 58 is further left and higher than curve 56, so it is a faster and higher performance increase achieved. However, the curve 58 remains relatively flat.
  • the modification of the reheat shown in trace 62, shows a similar behavior, but in addition shows a comparatively high power increase about 60 seconds after changing the setpoint, which then drops rapidly thereafter, to go to the maximum of the flat course. This increase in performance is also evident in a modification of both pressure levels after curve 66 in comparison to curve 64.
  • a steam power plant equipped with such a fossil-fueled steam generator 1 is capable of rapidly increasing the output via an instant power output of the steam turbine, which serves to support the frequency of the composite power network.
  • This power reserve is achieved by a double use of injection fittings in addition to the usual temperature control, a permanent throttling of the steam turbine valves to provide a reserve can be reduced or eliminated, whereby a particularly high efficiency is achieved during normal operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Control Of Turbines (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine mit einem vorgeschalteten fossil befeuerten Dampferzeuger mit einer Anzahl von einen Strömungsweg bildenden, von einem Strömungsmedium durchströmten Economiser-, Verdampfer- und Überhitzerheizflächen, bei dem in einer Druckstufe Strömungsmedium aus dem Strömungsweg abgezweigt und strömungsmediumsseitig vor einer Überhitzerheizfläche der jeweiligen Druckstufe in den Strömungsweg eingespritzt wird, wobei ein für die Abweichung der Austrittstemperatur der strömungsmediumsseitig letzten Überhitzerheizfläche der jeweiligen Druckstufe von einem vorgegebenen Temperatursollwert charakteristischer erster Kennwert als Regelgröße für die Menge des eingespritzten Strömungsmediums verwendet wird.
  • Ein fossil befeuerter Dampferzeuger erzeugt überhitzten Dampf mit Hilfe der durch Verbrennung fossiler Brennstoffe erzeugten Wärme. Fossil befeuerte Dampferzeuger kommen meist in Dampfkraftwerken zum Einsatz, die überwiegend der Stromerzeugung dienen. Der erzeugte Dampf wird dabei einer Dampfturbine zugeführt.
  • Analog zu den verschiedenen Druckstufen einer Dampfturbine umfasst auch der fossil befeuerte Dampferzeuger eine Mehrzahl von Druckstufen mit unterschiedlichen thermischen Zuständen des jeweils enthaltenen Wasser-Dampf-Gemisches. In der ersten (Hoch-)Druckstufe durchläuft das Strömungsmedium auf seinem Strömungsweg zunächst Economiser, die Restwärme zur Vorwärmung des Strömungsmediums nutzen, und anschließend verschiedene Stufen von Verdampfer- und Überhitzerheizflächen. Im Verdampfer wird das Strömungsmedium verdampft, danach eventuelle Restnässe in einer Abscheideeinrichtung abgetrennt und der übrig behaltene Dampf im Überhitzer weiter erhitzt. Danach strömt der überhitzte Dampf in den Hochdruckteil der Dampfturbine, wird dort entspannt und der folgenden Druckstufe des Dampferzeugers zugeführt. Dort wird er erneut überhitzt (Zwischenüberhitzer) und dem nächsten Druckteil der Dampfturbine zugeführt.
  • Aufgrund unterschiedlichster äußerer Einflüsse kann die an die Überhitzer übertragene Wärmeleistung stark schwanken. Daher ist es häufig notwendig, die Überhitzungstemperatur zu regeln. Üblicherweise wird dies meistens durch eine Einspritzung von Speisewasser vor oder nach einzelnen Überhitzerheizflächen zur Kühlung erreicht, d. h., eine Überströmleitung zweigt vom Hauptstrom des Strömungsmediums ab und führt zu dort entsprechend angeordneten Einspritzventilen. Die Einspritzung wird dabei üblicherweise über einen für die Temperaturabweichungen von einem vorgegebenen Temperatursollwert am Austritt des Überhitzers charakteristischen Kennwert geregelt, so wie beispielsweise aus der FR 2 401 380 A1 bekannt.
  • Von modernen Kraftwerken werden nicht nur hohe Wirkungsgrade gefordert, sondern auch eine möglichst flexible Betriebsweise. Hierzu gehört außer kurzen Anfahrzeiten und hohen Laständerungsgeschwindigkeiten auch die Möglichkeit, Frequenzstörungen im Stromverbundnetz auszugleichen. Um diese Anforderungen zu erfüllen, muss das Kraftwerk in der Lage sein, Mehrleistungen von beispielsweise 5% und mehr innerhalb weniger Sekunden zur Verfügung zu stellen.
  • Derartige Leistungsänderungen eines Kraftwerksblockes im Sekundenbereich sind nur durch ein abgestimmtes Zusammenwirken von Dampferzeuger und Dampfturbine möglich. Der Beitrag, den der fossil befeuerte Dampferzeuger hierfür leisten kann, ist die Nutzung seiner Speicher, d. h. des Dampf- aber auch des Brennstoffspeichers, sowie schnelle Änderungen der Stellgrößen Speisewasser, Einspritzwasser, Brennstoff und Luft.
  • Dies kann beispielsweise durch das Öffnen teilweise angedrosselter Turbinenventile der Dampfturbine oder eines so genannten Stufenventils geschehen, wodurch der Dampfdruck vor der Dampfturbine abgesenkt wird. Dadurch wird Dampf aus dem Dampfspeicher des vorgeschalteten fossil befeuerten Dampferzeugers ausgespeichert und der Dampfturbine zugeführt. Mit dieser Maßnahme wird innerhalb weniger Sekunden ein Leistungsanstieg erreicht.
  • Eine permanente Androsselung der Turbinenventile zur Vorhaltung einer Reserve führt jedoch immer zu einem Wirkungsgradverlust, so dass für eine wirtschaftliche Fahrweise der Grad der Androsselung so gering wie unbedingt notwendig gehalten werden sollte. Zudem weisen einige Bauformen von fossil befeuerten Dampferzeugern, so z. B. Zwangdurchlauf-Dampferzeuger unter Umständen ein erheblich kleineres Speichervolumen auf als z. B. Naturumlauf-Dampferzeuger. Der Unterschied in der Größe des Speichers hat im oben beschriebenen Verfahren Einfluss auf das Verhalten bei Leistungsänderungen des Kraftwerksblocks.
  • Es ist daher Aufgabe der Erfindung, ein Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine mit einem vorgeschalteten fossil befeuerten Dampferzeuger der oben genannten Art anzugeben, bei dem der Wirkungsgrad des gesamten Dampfprozesses nicht über Gebühr beeinträchtigt wird. Gleichzeitig soll die kurzfristige Leistungssteigerung unabhängig von der Bauform des fossil befeuerten Dampferzeugers ohne invasive bauliche Modifikationen am Gesamtsystem ermöglicht werden.
  • Diese Aufgabe wird erfindungsgemäß gelöst, indem zur kurzfristigen Leistungserhöhung der Dampfturbine der Temperatursollwert reduziert und der Kennwert für den Zeitraum der Reduzierung des Temperatursollwerts temporär überproportional zur Abweichung erhöht wird.
  • Die Erfindung geht dabei von der Überlegung aus, dass zusätzliches Einspritzen von Speisewasser einen weiteren Beitrag zur kurzfristigen schnellen Leistungsänderung leisten kann.
  • Durch diese zusätzliche Einspritzung im Bereich der Überhitzer kann nämlich der Dampfmassenstrom temporär erhöht werden. Wird eine Einspritzung jedoch unter Umgehung des sie üblicherweise kontrollierenden Dampftemperaturregelsystems ausgelöst, kann in diesem Fall ein unzulässig hoher Abfall der Dampftemperatur vor der Turbine nicht immer vermieden werden. Darüber hinaus muss bei der im Anschluss benötigten Neuaktivierung der kompletten Dampftemperaturregelung mit mehr oder minder starken Störungen des Regelbetriebs der Dampftemperatur gerechnet werden. Aus diesen genannten Gründen ist es daher günstiger, die im Lastbetrieb aktive Dampftemperaturregelung auch zur Bereitstellung der kurzfristigen Leistungsreserve zu nutzen. Die Einspritzung sollte daher ausgelöst werden, indem der Temperatursollwert reduziert wird. Ein Sprung des Temperatursollwerts ist über einen entsprechenden Kennwert mit einem Sprung der Reglerabweichung verknüpft, die den Regler dazu veranlasst, den Öffnungsgrad des Einspritzregelventils zu verändern. Somit kann eine Leistungserhöhung der Dampfturbine genau durch eine derartige Maßnahme, d. h. eine sprunghafte Reduktion des Temperatursollwerts, realisiert werden.
  • Diese Leistungserhöhung und damit auch der Einspritzmassenstrom sollen jedoch möglichst schnell bereitgestellt werden. Dabei können aber dämpfende Eigenschaften des Regelsystems hinderlich sein, die übermäßig schnelle Änderungen des Einspritzmassenstromes verhindern, was aus Stabilitätsgründen der Regelung im gewöhnlichen Lastbetrieb auch gewünscht ist, jedoch nicht bei einer schnell bereitzustellenden Leistungserhöhung. Daher sollte die Regelung für den Fall einer kurzfristigen Leistungserhöhung entsprechend angepasst werden. Dies ist in besonders einfacher Weise möglich, in dem das Regelsignal für den Einspritzmassenstrom entsprechend verstärkt wird, und zwar für den Zeitraum der erwünschten kurzfristigen Leistungserhöhung. Dazu wird der für die Abweichung der Austrittstemperatur der strömungsmediumsseitig letzten Überhitzerheizfläche von einem vorgegebenen Temperatursollwert charakteristische Kennwert für den Zeitraum der Reduzierung des Temperatursollwerts temporär überproportional zur Abweichung erhöht.
  • Im oben beschriebenen Verfahren wird in einem entsprechenden Regelsystem über ein Subtrahierglied ein Soll-Ist-Vergleich zwischen gewünschter und gemessener Dampftemperatur gemacht. Je nach eingesetztem Regelkonzept kann dieses Signal noch durch zusätzliche Informationen aus dem Prozess weiter modifiziert werden, bevor es im Anschluss als Eingangssignal (Regelabweichung) beispielsweise auf einen PI-Regler aufgeschaltet wird. Vorteilhafterweise kann zusätzlich die Temperatur unmittelbar nach dem Einspritzort des Strömungsmediums, d. h. am Eintritt der letzten Überhitzerheizflächen, als Regelgröße verwendet werden. Bei einer derartigen so genannten Zweikreisregelung werden schlagartige Änderungen des Einspritzmassenstroms, die durch einen Reglereingriff erfolgt sind, abgedämpft. Unter diesen Umständen kann die auf schnelle Eingriffe optimierte Regelung durch Verhinderung eines Überschwingens stabilisiert werden.
  • Für die Bereitstellung einer Sofortreserve über das Einspritzsystem ist diese dämpfende Wirkung der Zweikreisregelung jedoch eher hinderlich. Daher ist es insbesondere bei der Zweikreisregelung von besonderem Vorteil, die beschriebene verstärkende Anpassung des Kennwerts vorzunehmen. Die dadurch erzeugte regelseitige künstliche Erhöhung der Abweichung der tatsächlichen Temperatur zum vorgegebenen Sollwert erreicht nämlich, dass die anschließende Korrektur durch die Temperatur am Eintritt der letzten Überhitzerheizflächen, d. h. unmittelbar nach dem Einspritzort, bei der Zweikreisregelung verhältnismäßig geringer ausfällt. Dadurch bleibt eine größere Regelabweichung bestehen, die unmittelbar eine stärkere Reglerantwort, d. h. eine größere Erhöhung des Einspritzmassenstroms, zur Folge hat, was in diesem Fall erwünscht ist. Dadurch, dass der Kennwert jedoch nur für den Zeitraum der Reduzierung des Temperatursollwerts temporär überproportional erhöht wird, verschwindet der Einfluss dieser Überhöhung wieder, so dass die über den Sollwert eingestellte Dampftemperatur auch wirklich erreicht werden kann. Somit bleibt der Vorteil der Zweikreisregelung, unzulässige Dampftemperaturabfälle zu vermeiden, nach wie vor bestehen.
  • In besonders einfacher Weise kann die temporäre Erhöhung des Kennwerts erzeugt werden, indem vorteilhafterweise der für die Abweichung der Temperatur vom Sollwert charakteristische Kennwert aus der Summe dieser Abweichung und einem für die zeitliche Änderung des Temperatursollwerts charakteristischen zweiten Kennwert gebildet wird. Dabei ist in besonders vorteilhafter Ausgestaltung der zweite Kennwert im Wesentlichen die mit einem Verstärkungsfaktor multiplizierte zeitliche Änderung des Temperatursollwerts. Regeltechnisch wird dies realisiert, indem der vorgegebene Dampftemperatursollwert als Eingangssignal eines Differenzierglieds erster Ordnung verwendet wird und der Ausgang dieses Elements nach geeigneter Verstärkung von der Differenz aus gemessener und vorgegebener Temperatur am Heizflächenaustritt subtrahiert wird. Dadurch wird die gewünschte künstliche Erhöhung der Abweichung besonders einfach realisiert und über das zusätzliche Differenzierglied erster Ordnung wird der Einspritzmassenstrom und somit die zusätzlich entbundene Leistung über die Dampfturbine wesentlich schneller erhöht.
  • Aufgrund des differentiellen Charakters, d. h. die Berücksichtigung nur der zeitlichen Änderung des Sollwerts, nimmt der Einfluss einer derartigen Regelung auf das Gesamtsystem mit fortlaufender Zeit ab (Verschwindimpuls). Das bedeutet, dass das Differenzierglied keinen weiteren Einfluss auf die Regelabweichung hat und die tatsächliche über den Sollwert eingestellte Temperatur auch erreicht wird. Auch für den Fall, dass sich der Sollwert der Dampftemperatur nicht ändert (der Normfall im gewöhnlichen Lastbetrieb) hat eine derartige Ausgestaltung keinen Einfluss auf die restliche Regelstruktur. Somit treten im gewöhnlichen Lastbetrieb keine Unterschiede im Regelverhalten der Dampftemperaturregelung zwischen der Regelstruktur mit bzw. ohne dieses zusätzliche Differenzierglied auf.
  • In vorteilhafter Ausgestaltung wird ein Parameter eines der Kennwerte anlagenspezifisch bestimmt. Das heißt, die Höhe der Verstärkung, die Parameter des Differenzierglieds etc. sollten spezifisch anhand der im Einzelfall betroffenen Anlage bestimmt werden. Dies kann beispielsweise vorab mit Hilfe von Simulationsrechnungen oder aber während der Inbetriebsetzung der Regelung geschehen.
  • Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch die gezielte Reduzierung des Dampftemperatursollwerts unter Verwendung des Einspritzregelverfahrens die in den stromab der Einspritzung gelegenen Metallmassen eingespeicherte thermische Energie für eine temporäre Leistungssteigerung der Dampfturbine genutzt werden kann. Kommen dabei die beschriebenen angepassten Regelverfahren zur Anwendung, sind für den Fall einer schlagartigen Reduzierung des Dampftemperatursollwerts wesentlich schnellere Leistungserhöhungen mit Hilfe des Einspritzsystems realisierbar. Dabei ist das Verfahren in jeder Druckstufe entweder einzeln oder in Kombination anwendbar, d. h. sowohl beim Frischdampf (Hochdruckstufe) als auch in der Zwischenüberhitzung (Mittel- oder Niederdruckstufe).
  • Durch die Integration in das bestehende Dampftemperaturregelsystem wird der abgesenkte Temperatursollwert bei guter Regelgüte der Temperaturregelung nach Öffnen der Einspritzarmaturen nicht nennenswert unterschritten. Somit wird einem unzulässig hohen Temperaturabfall des Dampfes am Turbineneintritt effektiv entgegengewirkt. An- und Abschaltprozesse der Regelung und der Koordination entfallen ebenfalls, da das Regelsystem dauerhaft aktiv bleiben kann.
  • Darüber hinaus ist das Verfahren zur Bereitstellung einer temporären Leistungssteigerung der Dampfturbine unabhängig von anderen Maßnahmen, so dass auch beispielsweise angedrosselte Turbinenventile zusätzlich geöffnet werden können, um die Leistungserhöhung der Dampfturbine noch zu verstärken. Die Wirksamkeit des Verfahrens bleibt durch diese parallelen Maßnahmen zum größten Teil unberührt.
  • Dabei ist hervorzuheben, dass bei einer fest vorgegebenen Anforderung an zusätzlicher Leistung der Androsselungsgrad der Turbinenventile vermindert werden kann, sollte die Verwendung des Einspritzsystems für die Leistungserhöhung zur Anwendung kommen. Die gewünschte Leistungsentbindung kann unter diesen Umständen dann auch mit geringerer, im günstigsten Fall sogar gänzlich ohne zusätzliche Androsselung erreicht werden. Somit kann die Anlage im gewöhnlichen Lastbetrieb, in der sie für eine Sofortreserve zur Verfügung stehen muss, mit einem vergleichsweise größeren Wirkungsgrad betrieben werden, was auch die betrieblichen Kosten vermindert.
  • Letztlich ist das Verfahren auch ohne invasive bauliche Maßnahmen zu realisieren, sondern lediglich durch zusätzliche Bausteine sind im Regelsystem vorzusehen oder zu implementieren. Dadurch werden höhere Anlagenflexibilität und -nutzen ohne zusätzliche Kosten erzielt.
  • Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen:
  • FIG 1
    strömungsmediumsseitig schematisch den Mitteldruckteil eines fossil befeuerten Dampferzeugers mit datenseitiger Verschaltung des Einspritzregelsystems mit Zweikreisregelung zur Nutzung für eine Sofortleistungsentbindung,
    FIG 2
    ein Diagramm mit Simulationsergebnissen zur Verbesserung der Sofortreserve eines fossil befeuerten Dampferzeugers durch Erhöhung der Einspritzung von Hochdruck-Dampf, Zwischenüberhitzungs-Dampf und jeweils in beiden Drucksystemen in einem oberen Lastbereich, und
    FIG 3
    ein Diagramm mit Simulationsergebnissen zur Verbesserung der Sofortreserve eines fossil befeuerten Dampferzeugers durch Erhöhung der Einspritzung von Hochdruck-Dampf, Zwischenüberhitzungs-Dampf und jeweils beiden Drucksystemen für einen unteren Lastbereich.
  • Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen.
  • Vom fossil befeuerten Dampferzeuger 1 ist in der FIG 1 beispielhaft der Mitteldruckteil dargestellt. Die Erfindung kann natürlich auch in anderen Druckstufen zur Anwendung kommen. Die FIG 1 stellt schematisch einen Teil des Strömungswegs 2 des Strömungsmediums M dar, insbesondere die Überhitzerheizflächen 4. Die räumliche Anordnung der einzelnen Überhitzerheizflächen 4 im Heißgaskanal ist nicht dargestellt und kann variieren. Die dargestellten Überhitzerheizflächen 4 können jeweils stellvertretend für eine Mehrzahl seriell geschalteter Heizflächen stehen, die jedoch aufgrund der Übersichtlichkeit nicht differenziert dargestellt sind.
  • Das Strömungsmedium M wird vor dem Eintritt in den in der FIG 1 dargestellten Teil im Hochdruckteil einer Dampfturbine entspannt. Das Strömungsmedium M kann dann optional in eine erste, nicht dargestellte Überhitzerheizfläche eintreten, bevor es den dargestellten Teil erreicht. Zunächst ist strömungsmediumsseitig ein Einspritzventil 6 angeordnet. Hier kann kühleres und unverdampftes Strömungsmedium M zur Regelung der Austrittstemperatur am Austritt 8 des Mitteldruckteils des fossil befeuerten Dampferzeugers 1 eingespritzt werden. Die in das Einspritzventil 6 eingebrachte Menge an Strömungsmedium M wird über ein Einspritzregelventil 10 geregelt. Das Strömungsmedium M wird dabei über eine zuvor im Strömungsweg 2 abzweigende Überströmleitung 12 zugeführt. Im Strömungsweg 2 sind weiterhin zur Regelung der Einspritzung mehrere Messeinrichtungen vorgesehen, nämlich eine Temperaturmesseinrichtung 14 und eine Druckmesseinrichtung 16 nach dem Einspritzventil 6 und vor den Überhitzerheizflächen 4, sowie eine Temperaturmesseinrichtung 18 nach den Überhitzerheizflächen 4.
  • Die übrigen Teile der FIG 1 zeigen das Regelsystem 20 für die Einspritzung. Zunächst wird ein Temperatursollwert an einem Sollwertgeber 22 eingestellt. Dieser Temperatursollwert ist zusammen mit dem Ausgang der Temperaturmesseinrichtung 18 nach den Überhitzerheizflächen 4 auf ein Subtrahierglied 24 geschaltet, wo somit die Abweichung der Temperatur am Austritt der Überhitzerheizflächen 4 vom Sollwert gebildet wird. Diese Abweichung wird in einem Addierglied 26 korrigiert, wobei die Korrektur die Zeitverzögerung einer Temperaturänderung beim Durchlauf durch die Überhitzerheizflächen 4 modelliert. Dazu wird die Temperatur am Eintritt der Überhitzerheizflächen 4 aus der Temperaturmesseinrichtung 14 auf ein zeitverzögerndes PTn-Glied 28 geschaltet, das eingangsseitig dem Addierglied 26 zugeführt wird. Der Ausgang des Addierglieds 26 wird auf ein Maximumglied 30 geschaltet und im weiteren Verlauf zusammen mit dem Signal der Temperaturmesseinrichtung 14 auf ein Subtrahierglied 32.
  • Im Maximumglied 30 wird eingangsseitig ein weiterer Parameter berücksichtigt, nämlich dass die Temperatur einen gewissen Abstand zur druckabhängigen Siedetemperatur haben sollte. Dazu ist der an der Druckmesseinrichtung 16 gemessene Druck in ein Funktionsglied 34 geschaltet, dass die diesem Druck entsprechende Siedetemperatur des Strömungsmediums M ausgibt. In einem Addierglied 36 wird eine voreingestellte Konstante aus einem Geber 38 addiert, die beispielsweise 10 °C betragen kann und einen Sicherheitsabstand zur Siedelinie gewährleistet. Die so ermittelte Mindesttemperatur wird an das Maximumglied 30 gegeben. Das im Maximumglied 30 ermittelte Signal wird über das Subtrahierglied 32 einem PI-Regelglied 40 zur Steuerung des Einspritzregelventils 10 aufgeschaltet.
  • Um das Einspritzsystem nicht nur zur Regelung der Austrittstemperatur, sondern auch zur Bereitstellung einer sofortigen Leistungsreserve nutzen zu können, umfasst dieses entsprechende Mittel zum Ausführen des Verfahrens zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine. Zunächst wird dazu der Temperatursollwert am Sollwertgeber 22 reduziert, was eine Erhöhung der Einspritzmenge zur Folge hat. Damit diese aber unmittelbar zu einer Leistungserhöhung führt, sollte eine schnelle Reglerantwort des PI-Regelglieds 40 gewährleistet sein. Die verursachte Abweichung der tatsächlichen Temperatur vom Temperatursollwert wird jedoch durch das PTn-Glied 28 kurz nach der Änderung abgemildert.
  • Um dies im Falle einer gewünschten schnellen Leistungserhöhung zu verhindern, ist das Signal des Sollwertgebers 22 für den Temperatursollwert auf ein ein Differenzierglied erster Ordnung (DT1) geschaltet. Hierfür ist ein PT1-Glied 42 eingangsseitig mit dem Signal des Sollwertgebers 22 beaufschlagt und ausgangsseitig zusammen mit dem ursprünglichen Signal des Sollwertgebers 22 auf ein Subtrahierglied 44 geschaltet, dessen Ausgang mit einem Multiplizierglied 46 verbunden ist, das das Signal um einen Faktor, z. B. 10 aus einem Geber 48 verstärkt. Dieses Signal wird über das Addierglied 50 in das Signal der Temperaturabweichung aus dem Subtrahierglied 24 gegeben. Im Falle einer Änderung des Sollwertes erzeugt die Verschaltung über das PT1-Glied 42 ein von Null verschiedenes Signal, das über das Multiplizierglied 46 verstärkt wird und den für die Abweichung charakteristischen Kennwert künstlich überproportional verstärkt. Das Signal über die Verschaltung des PTn-Glieds 28 ist verhältnismäßig dann kleiner und es wird eine schnellere Reglerantwort des PI-Reglerglieds 40 erzwungen. Somit wird schnell eine Dampfmengenerhöhung erreicht und die Leistung der nachgeschalteten Dampfturbine erhöht.
  • FIG 2 zeigt nun ein Diagramm mit Simulationsergebnissen unter Ausnutzung des beschriebenen Regelverfahrens. Aufgetragen ist die prozentuale zusätzliche Leistung bezogen auf Volllast 52 gegen die Zeit 54 in Sekunden nach einer sprunghaften Reduzierung des Temperatursollwerts am Sollwertgeber 22 um 20 °C für die jeweilige Stufe eines fossil befeuerten Dampferzeugers mit Hochdruck- und Zwischenüberhitzungs- oder Mitteldruckstufe bei 95 % Last. Wie bereits erwähnt kann die oben beschriebene Schaltung mit dem PT1-Glied 42 zur überproportionalen Verstärkung des für die Abweichung charakteristischen Kennwerts in beiden Stufen zur Anwendung kommen. Die Kurvenzüge 56 und 58 zeigen die Ergebnisse für eine Modifikation des Hochdruckteils, die Kurvenzüge 60 und 62 die Ergebnisse für eine Modifikation der Zwischenüberhitzung und die Kurvenzüge 64 und 66 die Ergebnisse für eine Modifikation beider Stufen. Dabei zeigen die Kurvenzüge 56, 60 und 64 jeweils die Ergebnisse ohne PT1-Glied 42, also gemäß dem üblichen Regelsystem, die Kurvenzüge 58, 62 und 66 jeweils die Ergebnisse mit wie oben beschrieben verschalteten PT1-Glied 42.
  • In FIG 2 ist erkennbar, dass die Maxima der Kurvenzüge 58, 62 und 66 jeweils einerseits höher als auch weiter links angeordnet sind als ihre jeweiligen entsprechenden Kurvenzüge 56, 60 und 64. Die zusätzlich entbundene Leistung ist damit einerseits höher, andererseits steht sie schneller zur Verfügung. Die Beschleunigung ist bei den Kurvenzügen 60, 62 der Zwischenüberhitzung geringer ausgeprägt, dafür ist eine signifikante relative Erhöhung der Leistung erkennbar, wenn auch auf absolut niedrigerem Niveau als im Hochdruckteil.
  • FIG 3 ist gegenüber FIG 2 nur geringfügig modifiziert und zeigt die simulierten Kurvenzüge 56, 58, 60, 62, 64, 66 für 40 % Last, alle übrigen Parameter stimmen mit FIG 2 überein, ebenso die Bedeutung der Kurvenzüge 56, 58, 60, 62, 64, 66.
  • Hier zeigen insbesondere die unmodifizierten Kurvenzüge 56, 60, 62 einen wesentlich flacheren Verlauf als in FIG 2, d. h., es ist eine noch langsamere Reglerantwort des PI-Regelglieds 40 ersichtlich. Durch die beschriebene Verschaltung des PT1-Glieds 42 im Hochdruckteil ist das Maximum des Kurvenzugs 58 weiter links und höher als Kurvenzug 56, es ist also eine schnellere und höhere Leistungserhöhung erreicht. Der Kurvenzug 58 bleibt jedoch relativ flach.
  • Die Modifikation der Zwischenüberhitzung, dargestellt in Kurvenzug 62, zeigt ein ähnliches Verhalten, zusätzlich zeigt sich jedoch ein vergleichsweise hoher Leistungsanstieg ca. 60 Sekunden nach Änderung des Sollwerts, der danach rasch wieder abfällt, um in das Maximum des flachen Verlaufs überzugehen. Dieser Leistungsanstieg zeigt sich entsprechend auch bei einer Modifikation beider Druckstufen nach Kurvenzug 66 im Vergleich zu Kurvenzug 64.
  • Ein mit einem derartigen fossil befeuerten Dampferzeuger 1 ausgestattetes Dampfkraftwerk ist in der Lage, über eine sofortige Leistungsentbindung der Dampfturbine schnell eine Leistungserhöhung zu leisten, die zur Stützung der Frequenz des Verbundstromnetzes dient. Dadurch, dass diese Leistungsreserve durch eine Doppelnutzung der Einspritzarmaturen neben der üblichen Temperaturregelung erreicht wird, kann auch eine permanente Androsselung der Dampfturbinenventile zur Bereitstellung einer Reserve verringert werden oder ganz entfallen, wodurch ein besonders hoher Wirkungsgrad während des normalen Betriebs erreicht wird.

Claims (5)

  1. Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine mit einem vorgeschalteten fossil befeuerten Dampferzeuger (1) mit einer Anzahl von einen Strömungsweg (2) bildenden, von einem Strömungsmedium M durchströmten Economiser-, Verdampfer- und Überhitzerheizflächen (4), bei dem in einer Druckstufe Strömungsmedium M aus dem Strömungsweg (2) abgezweigt und strömungsmediumsseitig vor einer Überhitzerheizfläche (4) der jeweiligen Druckstufe in den Strömungsweg eingespritzt wird, wobei ein für die Abweichung der Austrittstemperatur der strömungsmediumsseitig letzten Überhitzerheizfläche der jeweiligen Druckstufe von einem vorgegebenen Temperatursollwert charakteristischer erster Kennwert als Regelgröße für die Menge des eingespritzten Strömungsmedium M verwendet wird,
    wobei zur kurzfristigen Leistungserhöhung der Dampfturbine der Temperatursollwert reduziert und der Kennwert für den Zeitraum der Reduzierung des Temperatursollwerts temporär überproportional zur Abweichung erhöht wird.
  2. Verfahren nach Anspruch 1, bei dem zusätzlich die Temperatur unmittelbar nach dem Einspritzort des Strömungsmediums M als Regelgröße für die Menge des eingespritzten Strömungsmediums M verwendet wird.
  3. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der erste Kennwert aus der Summe der Abweichung und einem für die zeitliche Änderung des Temperatursollwerts charakteristischen zweiten Kennwert gebildet wird.
  4. Verfahren nach Anspruch 3, bei dem der zweite Kennwert im Wesentlichen die mit einem Verstärkungsfaktor multiplizierte zeitliche Änderung des Temperatursollwerts ist.
  5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem ein Parameter einer der Kennwerte anlagenspezifisch bestimmt wird.
EP11767234.5A 2010-10-05 2011-10-04 Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine Active EP2606206B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL11767234T PL2606206T3 (pl) 2010-10-05 2011-10-04 Sposób regulacji krótkotrwałego zwiększenia mocy turbiny parowej

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010041964A DE102010041964A1 (de) 2010-10-05 2010-10-05 Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine
PCT/EP2011/067294 WO2012045730A2 (de) 2010-10-05 2011-10-04 Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine

Publications (2)

Publication Number Publication Date
EP2606206A2 EP2606206A2 (de) 2013-06-26
EP2606206B1 true EP2606206B1 (de) 2016-07-27

Family

ID=44773073

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11767234.5A Active EP2606206B1 (de) 2010-10-05 2011-10-04 Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine

Country Status (10)

Country Link
US (1) US9080465B2 (de)
EP (1) EP2606206B1 (de)
JP (1) JP5855111B2 (de)
KR (1) KR101841316B1 (de)
CN (1) CN103249918B (de)
DE (1) DE102010041964A1 (de)
DK (1) DK2606206T3 (de)
ES (1) ES2600899T3 (de)
PL (1) PL2606206T3 (de)
WO (1) WO2012045730A2 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH704318B1 (de) * 2011-01-07 2016-03-15 Inducs Ag Induktionskochgerät zum temperaturgesteuerten Kochen.
DK2655811T3 (en) * 2011-02-25 2016-01-11 Siemens Ag A method for controlling a transient increase in power a steam turbine
AP2016009199A0 (en) * 2013-11-07 2016-05-31 Sasol Tech Pty Ltd Method and plant for co-generation of heat and power
US10302296B2 (en) 2013-11-07 2019-05-28 Sasol Technology Proprietary Limited Method and plant for co-generation of heat and power
US10233789B2 (en) 2013-11-07 2019-03-19 Sasol Technology Proprietary Limited Method and plant for co-generation of heat and power
CN106094740B (zh) * 2016-05-09 2019-05-21 国网江西省电力科学研究院 一种基于过热器蓄热前馈的火电机组负荷控制方法
DE102016218763A1 (de) * 2016-09-28 2018-03-29 Siemens Aktiengesellschaft Verfahren zur kurzfristigen Leistungsanpassung einer Dampfturbine eines Gas-und Dampfkraftwerks für die Primärregelung

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3189008A (en) * 1963-08-21 1965-06-15 Combustion Eng Method and apparatus for controlling a vapor generator operating at supercritical pressure
DK118672B (da) * 1964-03-13 1970-09-21 Siemens Ag Reguleringsapparat til tvangscirkulationskedler.
DE1297624B (de) * 1964-03-14 1969-06-19 Siemens Ag Dampfkraftanlage
CH552771A (de) 1972-06-12 1974-08-15 Sulzer Ag Zwangdurchlaufdampferzeuger.
CH557986A (de) * 1974-03-22 1975-01-15 Sulzer Ag Verfahren und vorrichtung zum regeln eines dampferzeugers.
CH582851A5 (de) * 1974-09-17 1976-12-15 Sulzer Ag
US4028884A (en) * 1974-12-27 1977-06-14 Westinghouse Electric Corporation Control apparatus for controlling the operation of a gas turbine inlet guide vane assembly and heat recovery steam generator for a steam turbine employed in a combined cycle electric power generating plant
FR2401380A1 (fr) * 1977-08-23 1979-03-23 Sulzer Ag Generateur de vapeur a circulation forcee
US4144846A (en) 1977-09-27 1979-03-20 Sulzer Brothers Ltd. Forced-flow steam generator
US4241701A (en) * 1979-02-16 1980-12-30 Leeds & Northrup Company Method and apparatus for controlling steam temperature at a boiler outlet
JP2690511B2 (ja) 1988-08-12 1997-12-10 株式会社日立製作所 蒸気温度の制御方法、及び、同制御装置
JP2692978B2 (ja) 1989-08-31 1997-12-17 株式会社東芝 コンバインドサイクルプラントの起動運転方法
JP3673295B2 (ja) 1994-11-14 2005-07-20 バブコック日立株式会社 ボイラの再熱蒸気温度制御方法および装置
DE19749452C2 (de) * 1997-11-10 2001-03-15 Siemens Ag Dampfkraftanlage
DE19750125A1 (de) * 1997-11-13 1999-03-11 Siemens Ag Verfahren und Vorrichtung zur Primärregelung eines Dampfkraftwerkblocks
DE19901656A1 (de) * 1999-01-18 2000-07-20 Abb Alstom Power Ch Ag Verfahren und Vorrichtung zur Regelung der Temperatur am Austritt eines Dampfüberhitzers
US6474069B1 (en) * 2000-10-18 2002-11-05 General Electric Company Gas turbine having combined cycle power augmentation
EP2194320A1 (de) * 2008-06-12 2010-06-09 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Durchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
EP2224164A1 (de) 2008-11-13 2010-09-01 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Abhitzedampferzeugers
DE102010040623A1 (de) 2010-09-13 2012-03-15 Siemens Aktiengesellschaft Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine

Also Published As

Publication number Publication date
PL2606206T3 (pl) 2017-04-28
US9080465B2 (en) 2015-07-14
CN103249918B (zh) 2016-08-10
EP2606206A2 (de) 2013-06-26
JP2013543574A (ja) 2013-12-05
KR101841316B1 (ko) 2018-03-22
JP5855111B2 (ja) 2016-02-09
WO2012045730A3 (de) 2013-03-07
WO2012045730A2 (de) 2012-04-12
KR20140000239A (ko) 2014-01-02
CN103249918A (zh) 2013-08-14
DE102010041964A1 (de) 2012-04-05
DK2606206T3 (en) 2016-11-21
ES2600899T3 (es) 2017-02-13
US20130186091A1 (en) 2013-07-25

Similar Documents

Publication Publication Date Title
EP2606206B1 (de) Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine
EP2603672B1 (de) Abhitzedampferzeuger
DE102009036064B4 (de) rfahren zum Betreiben eines mit einer Dampftemperatur von über 650°C operierenden Zwangdurchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
EP2614303B1 (de) Verfahren zum betreiben einer kombinierten gas- und dampfturbinenanlage sowie zur durchführung des verfahrens hergerichtete gas- und dampfturbinenanlage und entsprechende regelvorrichtung
EP2212618B1 (de) Verfahren zum betreiben eines durchlaufdampferzeugers sowie zwangdurchlaufdampferzeuger
DE102007052234A1 (de) Verfahren zum Betreiben eines solarthermischen Kraftwerks und solarthermisches Kraftwerk
WO2009106563A2 (de) Verfahren zur regelung eines dampferzeugers und regelschaltung für einen dampferzeuger
EP2616643B1 (de) Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine
DE3304292A1 (de) Verfahren und vorrichtung zum ausregeln von netzfrequenzeinbruechen bei einem gleitdruckbetriebenen dampfkraftwerkblock
EP3269948B1 (de) Verfahren zur anpassung der leistung einer dampfturbinen-kraftwerksanlage und dampfturbinen-kraftwerksanlage
WO2018059840A1 (de) Verfahren zur kurzfristigen leistungsanpassung einer dampfturbine eines gas-und dampfkraftwerks für die primärregelung
DE2923288C2 (de)
DE102010043683A1 (de) Fossil befeuerter Dampferzeuger
EP2655811B1 (de) Verfahren zur regelung einer kurzfristigen leistungserhöhung einer dampfturbine
WO2015028366A2 (de) Betriebsverfahren für einen extern beheizten zwangdurchlaufdampferzeuger
EP2409078B1 (de) Verfahren zur Auslegung eines Durchlaufverdampfers
DE102011006390A1 (de) Verfahren zum Betreiben eines Durchlaufdampferzeugers und zur Durchführung des Verfahrens ausgelegter Dampferzeuger
WO2016188671A1 (de) Wasser-dampf-kreislauf einer gas- und dampfturbinenanlage
EP2625390B1 (de) Fossil befeuerter dampferzeuger
DE102019216179A1 (de) Verfahren zur Regelung der Eintrittstemperatur eines Arbeitsfluides einer Dampfturbine bei schwankender Bereitstellung thermischer Energie
EP2900945B1 (de) Verfahren zum flexiblen betrieb einer kraftwerksanlage
WO2014146846A2 (de) Verfahren zum betreiben eines solarthermischen kraftwerks
DD252660A1 (de) Verfahren und anordnung zum anfahren eines dampfkessels
WO2011051118A1 (de) Verfahren und steuerungssystem zum betrieb eines solarthermischen kraftwerks sowie solarthermisches kraftwerk
DD141938A1 (de) Verfahren zum betreiben von turboaggregaten mit geregelter dampfentnahme

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130322

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F22B 1/18 20060101ALI20160127BHEP

Ipc: F22G 5/12 20060101ALI20160127BHEP

Ipc: F01K 23/10 20060101AFI20160127BHEP

Ipc: F01K 13/02 20060101ALI20160127BHEP

INTG Intention to grant announced

Effective date: 20160219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 815985

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011010268

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20161115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161027

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20161004

Year of fee payment: 6

Ref country code: FR

Payment date: 20161028

Year of fee payment: 6

Ref country code: CZ

Payment date: 20161003

Year of fee payment: 6

Ref country code: DK

Payment date: 20161019

Year of fee payment: 6

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2600899

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161028

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20161128

Year of fee payment: 6

Ref country code: BE

Payment date: 20161019

Year of fee payment: 6

Ref country code: AT

Payment date: 20160908

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20161011

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011010268

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161027

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170502

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161004

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171004

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111004

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20171101

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 815985

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171101

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171004

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171005

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011010268

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171004

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220825 AND 20220831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231024

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231024

Year of fee payment: 13

Ref country code: DE

Payment date: 20231027

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230915

Year of fee payment: 13