EP2604098B1 - Procédé de fonctionnement d'une lampe à décharge haute pression au-delà de sa plage de puissance nominale - Google Patents

Procédé de fonctionnement d'une lampe à décharge haute pression au-delà de sa plage de puissance nominale Download PDF

Info

Publication number
EP2604098B1
EP2604098B1 EP11743499.3A EP11743499A EP2604098B1 EP 2604098 B1 EP2604098 B1 EP 2604098B1 EP 11743499 A EP11743499 A EP 11743499A EP 2604098 B1 EP2604098 B1 EP 2604098B1
Authority
EP
European Patent Office
Prior art keywords
lamp
nominal
power
commutation
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11743499.3A
Other languages
German (de)
English (en)
Other versions
EP2604098A1 (fr
Inventor
Norbert Magg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP2604098A1 publication Critical patent/EP2604098A1/fr
Application granted granted Critical
Publication of EP2604098B1 publication Critical patent/EP2604098B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/292Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2928Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the lamp against abnormal operating conditions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/17Operational modes, e.g. switching from manual to automatic mode or prohibiting specific operations

Definitions

  • the invention relates to a method for operating high-pressure discharge lamps, in particular high-pressure and high-pressure discharge lamps, as used in apparatus for the projection of images, outside their nominal power range.
  • the invention is particularly concerned with the problem of flicker phenomena caused by the operation of these discharge lamps outside their nominal power range.
  • the invention is based on a method for operating a high pressure discharge lamp outside its nominal power range according to the preamble of the main claim.
  • Projection devices such as video projectors often use so-called ultrashort arc lamps due to the requirements for optical imaging.
  • These are high-pressure discharge lamps which have a very short electrode spacing in order to be able to ensure good optical imaging of the video projector. Due to the high power of these lamps and the short electrode spacing, the electrodes become very hot. Therefore, with these types of lamps no simple pin electrodes are used. Instead, electrodes with a very wide electrode head are used to increase their thermal mass.
  • the head diameter is greater than the electrode spacing (eg, head diameter of 1.5 mm for a lamp with an electrode spacing of 1.0 mm).
  • the inner end of the lamp electrode which is in the discharge space of the gas-discharge lamp burner, is referred to as the electrode end.
  • the electrode tip is a needle-shaped or hump-shaped elevation on the end of the electrode, the end of which serves as a starting point for the arc.
  • this punctiform arch approach is unstable and likes to travel over the electrode tip, which can be perceived as flicker in the application.
  • a wandering arc approach leads to undesired changes in the front region of the electrode head.
  • Video projectors often require a light source that has a temporal sequence of different colors. As in the writing US 5,917,558 (Stanton ), this can be achieved, for example, by a rotating color wheel which filters colors changing from the light of the lamp. The periods during which the light assumes a certain color need not necessarily be the same. Rather, a desired color temperature, which results for the projected light, can be set via the ratio of these time periods to one another.
  • the lamp is operated with a rectangular lamp current.
  • the reciprocal of the period of the rectangular lamp current as in Fig. 1 represented, understood.
  • the reciprocal of the period of the rectangular lamp current is understood in the operation of the lamp with nominal power.
  • the nominal power is the power specified by the manufacturer of the lantern with which the lamp should be operated.
  • the high pressure discharge lamp is usually operated at a predetermined frequency.
  • the lamp current is generated in the prior art from a DC power source by means of a commutation device.
  • the commutation usually consists of electronic switches, which commute the polarity of the DC power source in time with the rectangular lamp current. In commutation, overshoots can not be completely avoided in practice.
  • the timing at which commutation is to take place is merged with the timing at which the color of the light changes to mask out the overshoots.
  • a sync signal is provided which has a sync pulse in sync with the above color wheel.
  • the color change and the commutation of the lamp current are synchronized.
  • the lamp current does not always have to show a rectangular shape, but the current level can run in several stages. This current progression over time will be described below also called "waveform". An explanation of the term can be found below.
  • Electrodes tips In the operation of discharge lamps there is the phenomenon of the growth of electrode tips, which, as explained above, represent an essential prerequisite for a stable arc approach. Material which evaporates from the electrodes at one location is redeposited at preferred locations on the electrode and may thereby contribute to the formation of electrode tips. Furthermore, the repeated melting and solidification of tungsten at the electrode tip transports tungsten material from regions of the electrode located further back into the tip of the electrode. These transport phenomena depend strongly on the temperature of the electrode, as well as the temporal changes of this temperature and thus the operating mode of the lamp.
  • the growth of the electrode tips may e.g. caused by so-called "maintenance pulses", which are also referred to below as commutation pulses. These are short current pulses, usually shortly before the commutation, which have an increased amount of current.
  • Fig. 1 shows an example of such a commutation pulse in a very simple waveform.
  • the waveform is divided into a plateau and the commutation pulse.
  • the plateau is characterized by a plateau length and a plateau height, ie. described by a certain residence time of a current amount.
  • the commutation pulse is also described by a pulse length and a pulse height, ie by the duration of the pulse at a certain amount of current.
  • the commutation pulse causes a stronger melting of the electrode in the front region, which is then pulled together by the surface tension of the tungsten and then cooled again after the commutation pulse and the subsequent commutation. will this Repeated procedures with appropriate time intervals, slowly forms a tip out.
  • the commutation It should always be before commutation for effective application.
  • Fig. 2a shows another example of a waveform having a further current increase in addition to the commutation pulse.
  • the period of successive full waves is always the same size .
  • Fig. 2b shows a third example of a waveform of an advanced operating method in which the period changes from full-wave to full-wave and also changes the current waveform from half-wave to half-wave.
  • the current waveform is more complex in such cases and shows current peaks and staircase waveforms that are synchronized with the sequence of individual color segments of the color wheel. With such complex currents, it is more difficult to operate the lamp optimally, and there are a few basic design rules to follow when generating a waveform.
  • the temperature of the electrode should always be within a certain range so that the electrode tip is just liquid.
  • the electrode tip has the optimal temperature for a stable bow approach. This is basically unproblematic when operating the lamp at nominal power and. feasible with the known operating methods.
  • the lamp is to be strongly dimmed, ie operated at a power significantly lower than the nominal power, then there is the problem that due to the reduced lamp power, the temperature of the electrodes decreases, and it comes to flicker of the discharge arc due to the low temperature of the electrodes. If the lamp is to be operated with higher power, the problem arises that the electrodes can become too hot and an increased electrode burn-back occurs. Furthermore, the increased compared to normal operation temperatures devitrification of the burner vessel result.
  • the object is achieved according to the invention with a method for operating a high pressure discharge lamp outside its nominal power range according to claim 1.
  • the operating method according to the invention makes it possible to operate high-pressure discharge lamps, in particular for projection applications, in an expanded power range.
  • the power range for projection lamps typically achievable to date from the prior art is between 70% -85% and 110% -115% of the nominal power of the lamp for which the electrodes were dimensioned.
  • the operation according to the invention makes it possible to operate high-pressure discharge lamps, in particular for projection applications, in the power range, preferably between 20% and 130% of the nominal power.
  • the electrodes are thermally overloaded. Accordingly, the energy modulation must be reduced. This can be achieved by the following individual measures, which can also be combined if necessary: lowering of the lamp frequency, lowering of the pulse height, lowering of the pulse width, as well as a suitable adaptation of the commutation scheme. If the power changes to less than 85% of the rated power, the electrodes will be too cold and tend to flicker. The performance depends on the lamp type, some lamp types can be dimmed with the known methods up to 70% of the nominal power and the inventive method is necessary only below 70% of the nominal power. Accordingly, the energy modulation must be increased. This can be achieved by the following individual measures, which can also be combined, if necessary: increasing the lamp frequency, increasing the pulse height, increasing the pulse width, as well as a suitable adaptation of the commutation scheme.
  • Nominal operation means that the high pressure discharge lamp is operated at the power specified by the lamp manufacturer and within the operating parameters specified by the lamp manufacturer. With this measure, an even more uniform electrode temperature can be achieved.
  • Fig.1 shows a simple waveform with a commutation pulse according to the prior art, as used for example for LCD projectors (LCD stands for Liquid Crystal Display). Based on this simple waveform, some terms are defined below that are necessary for the explanation of the invention.
  • the waveform is divided into full and half waves, where the (average) length of a full wave is defined as 1 / (f L ) and the (average) length of a half wave is 1 / (2 * f L ), where f L is the (mean ) Frequency at which the lamp is operated, also referred to below as the lamp frequency.
  • Simple symmetrical waveforms are characterized by a single constant lamp frequency. The same applies to the length of the half or full waves.
  • Complex waveforms consist of half-waves and full-waves of different lengths, so that only an average length and thus an average frequency can be given for them.
  • the waveform has an input already described commutation pulse, which is defined in more detail here by means of a pulse length and a pulse height.
  • the remaining half-wave, which is not attributable to the commutation pulse, is defined as a plateau, with analog definition of the plateau length and plateau height.
  • the pulse-plateau ratio is defined as the quotient of the pulse height to the plateau height.
  • a duty cycle is defined as the quotient of the pulse length to the length of a half-wave.
  • Fig. 2a shows a more complex waveform, as used in so-called DLP projectors (DLP stands for Digital Light Processing).
  • DLP Digital Light Processing
  • the current is often modulated even in the plateau of the half-wave, the modulation is closely matched to the color wheel in the projector.
  • the current curve looks accordingly more complicated than in the Fig. 1
  • the pulse-to-plateau ratio is generally not used to describe the relative pulse level, but rather the ratio of pulse current to RMS current.
  • I RMS P L / U L is the thermal current or RMS current that is set by the operating equipment when the power P L is regulated when the lamp has a voltage U L.
  • Fig. 2b shows another complex current profile with several different current levels in the plateau region.
  • the plateau area and the commutation pulse are already flowing into each other, so that a definition in some half-waves is not quite easy.
  • the commutation should preferably be shortly after such a commutation pulse, since at this time the electrode is hot enough to ensure a clean and flicker-free commutation can.
  • the greater the lamp power the smaller the lamp frequency and possibly the pulse height or the pulse width of the commutation pulse should be.
  • the commutation should be done in areas of the current curve in which only small, possibly even no pulses are applied to the high-pressure discharge lamp, so that the electrodes are not too hot during commutation.
  • FIGS. 3a and 3b An example of waveform optimization with respect to the commutation scheme for dimmed operation of the high pressure discharge lamp is shown in FIGS FIGS. 3a and 3b .
  • Fig. 3a which shows a waveform for the nominal operation of the high pressure discharge lamp
  • the waveform has a current overshoot 110 in the plateau and a commutation pulse 111 just before the commutation.
  • the commutation pulse 111 is too small, it should meet the criteria according to obi-. comply with the table. But it can not be increased arbitrarily, without changing the color rendering of the lamp in an undesirable manner. Therefore, as in Fig.
  • the commutation shifted the current overshoot 110 in the waveform of the Fig. 3a So is the commutation pulse 110 in Fig. 3b , and the previous commutation pulse 111 in Fig. 3a is then only a current increase 111 in Fig. 3b which does not commute after.
  • the electrodes are heated in a suitable manner before the commutation so that the commutation itself is unproblematic. Exactly the same can be done with over-performance.
  • the commutation of areas of high current is shifted to areas with lower lamp current in order to avoid excessive melting of the electrode tips and possibly also a blackening of the lamp bulb by the Matterialabtrag on the electrode due to the high current.
  • Fig. 4 shows a flow diagram of the inventive method for operating a high-pressure discharge lamp outside its nominal power range.
  • the lamp power is set to a corresponding range less than or equal to 85% of the nominal lamp power.
  • it is checked whether the lamp is prone to flicker or shows excessive electrode burn-back. This can be assessed by the method according to the invention exporting operating device, for example, based on the change in the lamp voltage. If the lamp voltage shows no abnormality, the normal nominal operation waveform is further maintained in step 60.
  • the optimization parameter n is changed stepwise in step 30 on the basis of the standard waveform and a second time in step 40 it is checked whether the lamp tends to flicker or the electrodes to burn back. If this is the case, it is checked in step 50 whether the parameter is already outside the range according to the above table. If this is not the case, then jump back to step 30 and the parameters further changed there. If this is the case, then this parameter is not changed further.
  • the parameter counter n is incremented by one and it is jumped to step 30, in which then the next parameter is changed step by step. In step 40, no abnormalities measured, the lamp is operated in step 70 with this parameter set.
  • optimization parameters (order) LCD application Additional restrictions (LCD)
  • DLP application Additional restrictions (DLP) 1 Frequency f L ia no Frequency f L
  • commutations only possible with color change, possibly commutation in the white segment of the color wheel.
  • 2 pulse height ia no Commutating scheme ia no 3 pulse width ia no pulse height
  • Puls in color segments influence on the color mixture: if necessary, adaptation in the application necessary, no problem in the white segment.
  • Kommutierschema ia no pulse width For example, only stretching to a complete adjacent color segment. Thus influence on color mixing in the application, if necessary adjustment necessary.
  • the white light of the lamp is split into dichroic mirrors in the three basic colors red, green and blue. Then, the light is passed through the LCD panels, which determine for each individual image pixel whether the light can pass or be absorbed. Finally, the light is reflected on a prism composed.
  • a first limitation is that the lamp must run synchronously with the color wheel. Therefore, changes in frequency are limited, e.g. multiple or integer fractions of the color wheel frequency, commutations only in the Spoke (at the boundary) between the color segments.
  • the second limitation is the sequential processing of the light. If e.g.
  • Fig. 5 shows the operation of a high pressure discharge lamp with 330W nominal power at 200W, corresponding to 60.6% of the nominal output of the high pressure discharge lamp.
  • the 330W high pressure discharge lamp is operated continuously at 200W, however, in the change between two different operating modes:
  • mode 1 in Fig. 4 labeled with the reference numeral 510, the high pressure discharge lamp is operated with the same scheme as nominal power, but with 200W instead of 330W.
  • the slightly melted at nominal power tip solidifies and therefore can release only limited electrons.
  • the voltage is about 30V higher than the mode 2, denoted by reference numeral 511, in which frequency and pulse height have been adjusted by the method described above.
  • mode 1 in addition to a total of about 30V higher voltage, a clearly visible fluctuation of the burning voltage can be seen. This clearly visible oscillation of the burning voltage is shown visually in flickering of the high-pressure discharge lamp in response to the solidified electrode tip.
  • a Flickerdetetation can thus be done with strong dimming less than 85% of the nominal power on the burning voltage of the lamp.
  • a direct observation of the bow approach by means of a suitable projection optics may be useful.
  • Such an operation may also be used to permanently operate a high-pressure, high-intensity discharge lamp at significantly lower power to increase its life. This is usually not possible because the electrodes then become too cold and the lamp can go out or flicker during commutation. With the method according to the invention, this can be accomplished, since the electrodes can be heated accordingly before commutation, and the average power can nevertheless be lowered. However, flicker detection is necessary to ensure stable operation. However, this can be in the form of an electrical circuit, in particular in the form of additional software for a digitally operated circuit arrangement, so that no or only little additional costs for the circuit arrangement arise.
  • Fig. 6 shows the dependence of the lamp frequency of the lamp power based respectively on the lamp frequency and the lamp power in the nominal mode. This dependence is meaningful in a range between an upper limit curve 610 and a lower limit curve 611. The area within these two curves can therefore be used to optimize the lamp frequency.
  • An exemplary dimensioning for the lamp frequency f L as a function of the lamp power P L is, for example, the following input already mentioned relationship: 1 . 48 - 0 . 91 ⁇ P LN ⁇ f LN ⁇ 5 . 76 - 3 . 82 ⁇ P LN ; where f LN is the normalized lamp frequency and P LN is the normalized power.
  • any other relationship that lies within the lower limit curve 611 and the upper limit curve 610 is also conceivable.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Claims (12)

  1. Procédé de fonctionnement d'une lampe à décharge haute pression en dehors de sa plage de puissance nominale, caractérisé en ce que
    (i) pour une puissance de lampe supérieure à 110% de la puissance nominale (Pnominal), on modifie un ou plusieurs des paramètres
    - fréquence de la lampe,
    - courant de la lampe pendant une impulsion de commutation,
    - longueur de l'impulsion de commutation,
    par rapport au fonctionnement à la puissance nominale, et/ou on décale la commutation de grandes impulsions vers de petites impulsions, voire vers des plages de la courbe de courant de la lampe sans impulsion, et
    (ii) pour une puissance de lampe (PL) inférieure à 85% de la puissance nominale (Pnominal), la fréquence de lampe (fL) correspond à 1,3 jusqu'à 5 fois la fréquence de lampe (fnominal) à la puissance nominale, et/ou on modifie un ou plusieurs des paramètres
    - courant de la lampe pendant une impulsion de commutation,
    - longueur de l'impulsion de commutation,
    par rapport au fonctionnement à la puissance nominale, et/ou on décale la commutation de petites impulsions vers de grandes impulsions.
  2. Procédé selon la revendication 1, caractérisé en ce que pour une puissance de lampe (PL) entre 20% et 60% de la puissance nominale (Pnominal), on fait fonctionner la lampe à décharge haute pression avec une fréquence de lampe (fL) correspondant à 1,3 jusqu'à 3,5 fois la fréquence de lampe (fnominal) à la puissance nominale.
  3. Procédé selon la revendication 1, caractérisé en ce que pour une puissance de lampe (PL) inférieure à 85% de la puissance nominale (Pnominal), on fait fonctionner la lampe à décharge haute pression avec une hauteur d'impulsion de commutation correspondant à 1,2 jusqu'à 3 fois la hauteur d'impulsion de commutation à la puissance nominale (Pnominal).
  4. Procédé selon la revendication 1 ou 2, caractérisé en ce que pour une puissance de lampe (PL) entre 20% et 60% de la puissance nominale (Pnominal), on fait fonctionner la lampe à décharge haute pression avec une hauteur d'impulsion de commutation correspondant à 1,2 jusqu'à 3 fois la hauteur d'impulsion de commutation à la puissance nominale (Pnominal).
  5. Procédé selon la revendication 1 ou 3, caractérisé en ce que pour une puissance de lampe (PL) inférieure à 85% de la puissance nominale (Pnominal), on fait fonctionner la lampe à décharge haute pression avec une largeur d'impulsion de l'impulsion de commutation correspondant à 1,2 jusqu'à 3 fois la largeur d'impulsion de l'impulsion de commutation à la puissance nominale (Pnominal).
  6. Procédé selon la revendication 1, 2 ou 4, caractérisé en ce que pour une puissance de lampe (PL) entre 20% et 60% de la puissance nominale (Pnominal), on fait fonctionner la lampe à décharge haute pression avec une largeur d'impulsion de l'impulsion de commutation correspondant à 1,2 jusqu'à 3 fois la largeur d'impulsion de l'impulsion de commutation à la puissance nominale (Pnominal).
  7. Procédé selon l'une des revendications précédentes, caractérisé en ce que pour une puissance de lampe (PL) inférieure à 85% de la puissance nominale (Pnominal), on décale la commutation du courant de lampe (iL) de la lampe à décharge haute pression de façon à ce qu'elle intervienne après des impulsions de courant plus riches en énergie.
  8. Procédé selon la revendication 1, caractérisé en ce que pour une puissance de lampe (PL) supérieure à 110% de la puissance nominale (Pnominal), on fait fonctionner la lampe à décharge haute pression avec une fréquence de lampe (fL) correspondant à environ 0,3 jusqu'à 0,8 fois la fréquence de lampe (fnominal) à la puissance nominale.
  9. Procédé selon la revendication 1 ou 8, caractérisé en ce que pour une puissance de lampe (PL) supérieure à 110% de la puissance nominale (Pnominal), on fait fonctionner la lampe à décharge haute pression avec une hauteur d'impulsion de commutation correspondant à 0,3 jusqu'à 0,8 fois la hauteur d'impulsion de commutation à la puissance nominale (Pnominal).
  10. Procédé selon la revendication 1, 8 ou 9, caractérisé en ce que pour une puissance de lampe (PL) supérieure à 110% de la puissance nominale (Pnominal), on fait fonctionner la lampe à décharge haute pression avec une largeur d'impulsion de l'impulsion de commutation correspondant à 0,3 jusqu'à 0,8 fois la largeur d'impulsion de l'impulsion de commutation à la puissance nominale (Pnominal).
  11. Procédé selon l'une des revendications précédentes, caractérisé en ce que pour une puissance de lampe (PL) supérieure à 110% de la puissance nominale (Pnominal), on décale la commutation du courant de lampe de la lampe à décharge haute pression de plages à fort courant de lampe vers des plages à faible courant de lampe.
  12. Procédé selon l'une des revendications précédentes, caractérisé en ce que la fréquence de lampe fL en fonction de la puissance de lampe PL satisfait à la relation suivante : 1 , 48 - 0 , 91 P LN f LN 5 , 76 - 3 , 82 P LN ; f LN = f L f no min al ; P LN = P L P no min al
    Figure imgb0006

    fL étant la fréquence de lampe actuelle, PL la puissance de lampe actuelle, fnominal la fréquence de lampe et Pnominal la puissance en fonctionnement nominal.
EP11743499.3A 2010-08-11 2011-08-01 Procédé de fonctionnement d'une lampe à décharge haute pression au-delà de sa plage de puissance nominale Active EP2604098B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010039221A DE102010039221A1 (de) 2010-08-11 2010-08-11 Verfahren zum Betreiben einer Hochdruckentladungslampe außerhalb ihres nominalen Leistungsbereiches
PCT/EP2011/063198 WO2012019935A1 (fr) 2010-08-11 2011-08-01 Procédé de fonctionnement d'une lampe à décharge haute pression au-delà de sa plage de puissance nominale

Publications (2)

Publication Number Publication Date
EP2604098A1 EP2604098A1 (fr) 2013-06-19
EP2604098B1 true EP2604098B1 (fr) 2015-10-14

Family

ID=44630241

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11743499.3A Active EP2604098B1 (fr) 2010-08-11 2011-08-01 Procédé de fonctionnement d'une lampe à décharge haute pression au-delà de sa plage de puissance nominale

Country Status (6)

Country Link
US (1) US9204520B2 (fr)
EP (1) EP2604098B1 (fr)
JP (1) JP5627786B2 (fr)
CN (1) CN103069927B (fr)
DE (1) DE102010039221A1 (fr)
WO (1) WO2012019935A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011089592B4 (de) 2011-12-22 2019-06-19 Osram Gmbh DLP-Projektor mit Stromüberhöhung, Frequenzmodulation und Stromhöhenmodulation für eine Entladungslampe und entsprechendes Verfahren
EP2852261B1 (fr) * 2013-09-18 2020-06-17 OSRAM GmbH Procédé de détermination d'une forme d'onde pouvant être prédéterminée d'un courant de lampe pour le fonctionnement d'une lampe de décharge d'un agencement de projection et agencement de projection
DE102014220275A1 (de) 2014-10-07 2016-04-07 Osram Gmbh Projektionsvorrichtung und Verfahren zum Projizieren mindestens eines Bildes auf eine Projektionsfläche
DE102014220780A1 (de) * 2014-10-14 2016-04-14 Osram Gmbh Verfahren zum Betreiben einer Entladungslampe einer Projektionsanordnung und Projektionsanordnung
JP5756223B1 (ja) * 2014-12-11 2015-07-29 フェニックス電機株式会社 高圧放電ランプの点灯装置、および高圧放電ランプの点灯方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011572A1 (fr) 1993-10-21 1995-04-27 Philips Electronics N.V. Dispositif de projection d'image et son systeme de commande de lampe
DE19731168A1 (de) * 1997-07-21 1999-01-28 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Beleuchtungssystem
WO2000036882A1 (fr) * 1998-12-17 2000-06-22 Koninklijke Philips Electronics N.V. Concept de circuit
DE10021537A1 (de) 2000-05-03 2001-11-08 Philips Corp Intellectual Pty Verfahren und Vorrichtung zum Betreiben einer Gasentladungslampe
JP2003338394A (ja) * 2002-05-21 2003-11-28 Matsushita Electric Ind Co Ltd 高圧放電ランプの点灯方法、点灯装置及び高圧放電ランプ装置
JP2005100786A (ja) * 2003-09-25 2005-04-14 Matsushita Electric Works Ltd 放電灯点灯装置
JP2006286460A (ja) * 2005-04-01 2006-10-19 Harison Toshiba Lighting Corp 高圧放電灯の点灯装置
JP4448396B2 (ja) 2004-07-13 2010-04-07 株式会社日立製作所 ランプ作動制御装置及びその方法
JP2008547169A (ja) * 2005-06-24 2008-12-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 高圧放電ランプをシャットダウンする方法および高圧放電ランプを駆動する駆動ユニット
EP1994806A1 (fr) * 2006-03-03 2008-11-26 Philips Intellectual Property & Standards GmbH Procédé de commande d'une lampe à décharge
JP5027498B2 (ja) 2006-12-25 2012-09-19 パナソニック株式会社 放電灯点灯装置および画像表示装置
JP4873371B2 (ja) 2007-04-24 2012-02-08 岩崎電気株式会社 高圧放電灯点灯装置、プロジェクタ及び高圧放電灯の点灯方法
EP2104404B1 (fr) * 2008-03-21 2012-01-18 Seiko Epson Corporation Appareil d'éclairage de lampe de décharge, son procédé de contrôle, et projecteur
JP2010055840A (ja) * 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd 放電灯点灯装置、前照灯点灯装置、車両

Also Published As

Publication number Publication date
EP2604098A1 (fr) 2013-06-19
US9204520B2 (en) 2015-12-01
WO2012019935A1 (fr) 2012-02-16
DE102010039221A1 (de) 2012-02-16
US20130134899A1 (en) 2013-05-30
CN103069927A (zh) 2013-04-24
JP2013533600A (ja) 2013-08-22
JP5627786B2 (ja) 2014-11-19
CN103069927B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
EP2382847B1 (fr) Methode et alimentation electronique pour un lampe a descharge et projecteur
EP2604098B1 (fr) Procédé de fonctionnement d'une lampe à décharge haute pression au-delà de sa plage de puissance nominale
EP1152645B1 (fr) Méthode et dispositif de control d'un circuit de lampe à décharge
EP1154652B1 (fr) Système de projection et méthode pour faire fonctionner un sytème de projection
DE69936708T2 (de) Verfahren und vorrichtung zur lampensteuerung
DE10220509A1 (de) Verfahren und Schaltungsanordnung zum Betrieb einer Hochdruckgasentladungslampe
EP2090143B1 (fr) Installation de circuit pour la commande de lampes à décharge et procédé de commande de lampes à décharge
DE102011055301A1 (de) Lichtgranulationsreduktion für Laserprojektionsanzeigen
DE102011089592B4 (de) DLP-Projektor mit Stromüberhöhung, Frequenzmodulation und Stromhöhenmodulation für eine Entladungslampe und entsprechendes Verfahren
DE4301276A1 (de) Verfahren und Stromversorgungseinheit zum stabilisierten Betrieb einer Natrium-Hochdruckentladungslampe
EP2382846A2 (fr) Procédé et appareil électronique pour faire fonctionner une lampe à décharge, et projecteur
EP2852261A1 (fr) Procédé de détermination d'une forme d'onde pouvant être prédéterminée d'un courant de lampe pour le fonctionnement d'une lampe de décharge d'un agencement de projection et agencement de projection
DE602004012450T2 (de) Verfahren und schaltungsanordnung zum betrieb einer entladungslampe
DE19927791A1 (de) Farbanzeige mit sequentieller Primärfarberzeugung
EP2417837A1 (fr) Circuiterie et procédé de fonctionnement d'une lampe à décharge à haute pression
DE102007057772A1 (de) Schaltungsanordnung zum Betrieb von Entladungslampen und Verfahren zum Betrieb von Entladungslampen
DE19829600A1 (de) Betriebsverfahren und elektronisches Vorschaltgerät für Hochdruck-Wechselspannungs-Entladungslampen
EP2103193B1 (fr) Montage électrique et procédé pour faire fonctionner une lampe à décharge à haute pression
EP2257966B1 (fr) Procédé pour produire une lampe à décharge haute pression, procédé pour produire de la lumière au moyen d'une lampe à décharge haute pression et vidéoprojecteur numérique
DE102005025682B4 (de) Vorrichtung zur Ansteuerung von Leuchtstofflampen in einer Beleuchtungsanordnung
DE102015219760B4 (de) Projektionsvorrichtung zum Projizieren mindestens eines Bildes auf eine Projektionsfläche und Verfahren dazu
DE102013210581A1 (de) Schaltungsanordnung und Verfahren zum Betreiben und Dimmen mindestens einer LED
DE102006040161A1 (de) Startverfahren für die quecksilberfreie, flache Leuchtstofflampe
EP2236012B1 (fr) Procédé d'exploitation et circuit électrique pour sources lumineuses
EP2465328B1 (fr) Agencement de circuits pour le fonctionnement de diodes électroluminescentes d'un agencement de micromiroirs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130311

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140703

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150529

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 755909

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011008108

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151014

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160214

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160114

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160115

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011008108

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

26N No opposition filed

Effective date: 20160715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160801

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160801

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160801

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 755909

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170822

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110801

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230821

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230821

Year of fee payment: 13