EP2601383A1 - Rotor de turbine à gaz à arbre de rotor de turbine mobile axialement - Google Patents

Rotor de turbine à gaz à arbre de rotor de turbine mobile axialement

Info

Publication number
EP2601383A1
EP2601383A1 EP11740864.1A EP11740864A EP2601383A1 EP 2601383 A1 EP2601383 A1 EP 2601383A1 EP 11740864 A EP11740864 A EP 11740864A EP 2601383 A1 EP2601383 A1 EP 2601383A1
Authority
EP
European Patent Office
Prior art keywords
rotor shaft
compressor
gas turbine
turbine rotor
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11740864.1A
Other languages
German (de)
English (en)
Inventor
Stefan Braun
Christopher Butzeck
Jürgen Hahn
Peter Schröder
Hubertus Michael Wigger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP11740864.1A priority Critical patent/EP2601383A1/fr
Publication of EP2601383A1 publication Critical patent/EP2601383A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/026Shaft to shaft connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/22Actively adjusting tip-clearance by mechanically actuating the stator or rotor components, e.g. moving shroud sections relative to the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D1/101Quick-acting couplings in which the parts are connected by simply bringing them together axially without axial retaining means rotating with the coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/37Retaining components in desired mutual position by a press fit connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D2001/103Quick-acting couplings in which the parts are connected by simply bringing them together axially the torque is transmitted via splined connections

Definitions

  • the invention relates to a gas turbine rotor according to the
  • Gas turbines comprise, in addition to one or more combustion chambers essentially a compressor and a downstream turbine, via a common rotor shaft in the axial
  • Energy production is the highest possible efficiency, ie the ratio of generated to the energy used a significant size.
  • Gap optimization is used to optimize the overall efficiency of the gas turbine.
  • the gas turbine rotor is moved counter to the flow direction of the hot gas to minimize the radial gap between the blade tips and the hot gas duct wall in a conically shaped hot gas duct.
  • Compressor rotor connects, it is mounted so that it can be moved in the axial direction. This can be used to optimize the turbine column in favor of
  • Compressor column adjusted to the detriment of the compressor efficiency. In order to avoid this opposite effect and thus to further optimize the overall efficiency, it was already considered to separate the common rotor at the interface of the compressor to the turbine and the two
  • Turbine efficiency through the hydraulic gap optimization thus no longer causes a simultaneous deterioration of the compressor efficiency, which would counteract the actual goal.
  • the object of the invention is to further improve
  • a gas turbine rotor for a gas turbine comprising a compressor rotor shaft and a compressor rotor shaft axially displaceable turbine rotor shaft and the two rotor shafts always connecting
  • the compressor rotor shaft is designed as a hollow shaft through which the turbine rotor shaft is passed.
  • Compressor rotor shaft designed as a hollow shaft is the extended end of the turbine rotor shaft through this
  • Positioning of the compressor rotor shaft and provided for axial positioning of the turbine rotor shaft, can both the compressor rotor and the turbine rotor are displaced independently of each other with respect to the gas turbine casing.
  • the gap optimization can thus be carried out separately for both parts - turbine and compressor - so that an optimal overall efficiency of the gas turbine can be achieved.
  • Efficiency losses in the compressor which arise in known rigid couplings of the two shafts due to an axial displacement in favor of the turbine efficiency, can be avoided.
  • the gas turbine can also operate in an extended operating range, such as part load or hot start.
  • an extended operating range such as part load or hot start.
  • FIG. 1 shows schematically a known gas turbine rotor
  • FIG. 3 shows a section through that shown in FIG
  • Gas turbine rotor for a gas turbine.
  • the gas turbine comprises in addition to a combustion device 1 for generating
  • Hot gas a compressor 10 with a compressor rotor shaft 100, a turbine 20 with a turbine rotor shaft 200 and a positive coupling device 300 between Compressor and turbine rotor shaft.
  • the two rotor shafts 100 and 200 are mounted so that an axial displacement of both rotor shafts is possible.
  • the coupling 300 is designed so that the traction even at a defined displacement of the two rotor shafts or
  • FIG. 2 schematically shows a first concrete embodiment of the gas turbine rotor according to the invention.
  • the rotor shaft 200 of the turbine 20 is here, as far as extended in the direction of the compressor 10, that the extended end 210 of the
  • Compressor rotor shaft 100 completely overlapped. About here only indicated bearing R is this elongated turbine rotor shaft 200 radially mounted in a known manner. There is also a
  • Thrust bearing T-HSO for axial displacement of the
  • Turbine rotor shaft 200 for the purpose of hydraulic
  • Compressor rotor shaft 100 is shown in the here
  • Embodiment designed as a hollow shaft which also has a thrust bearing V-HSO for axial displacement of the
  • Compressor rotor shaft 100 for the purpose of hydraulic
  • Gap optimization in the compressor 10 has. Characterized in that the turbine rotor shaft 200 is extended beyond the compressor rotor shaft 100 out, the coupling device 300 over a large area over the circumference of
  • Turbine rotor shaft extension 210 are formed.
  • the turbine rotor shaft extension 210 thus forms here
  • the two thrust bearings T-HSO and V-HSO are arranged at the cold, inflow end of the compressor 10. With the help of the two thrust bearings T-HSO, V-HSO, it is possible to use the two rotor shafts 100, 200 independently of each other
  • the coupling device can be designed, for example, as a splined connection 310.
  • a spline of the spline connection 310 extends on an inner surface of the hollow shaft
  • Compressor 10 is indicated as a convergent flow channel and the turbine 20 as a divergent flow channel in which the arranged on the rotor shafts blades are located.
  • Clutch device is divided into two areas 321 and 322 on both sides of the compressor rotor shaft 100. The teeth and thus the non-positive coupling
  • Compressor rotor shaft can be extended in a suitable manner and engage in a trained as a hollow shaft turbine rotor shaft.
  • the coupling devices of the two embodiments shown could be combined in order to achieve an even better torque transmission. It is always essential that the gas turbine rotor according to the invention is designed so that in a hydraulic Spaltoptimierung the efficiency losses in the compressor can not be increased and by a separate shifting of the
  • Compressor 10 possibly even can be improved. So could by such a separate gap optimization on the part of the compressor beyond the normal state, a
  • Part-load operation can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Bearings For Parts Moving Linearly (AREA)

Abstract

L'invention concerne un rotor pour une turbine à gaz, comportant un arbre de rotor de compresseur (100), un arbre de rotor de turbine (200) et un dispositif d'accouplement (310) reliant à force les deux arbres de rotor, le dispositif d'accouplement (310) étant conçu de telle manière que la liaison à force existe également lorsque les deux arbres de rotor (100, 200) sont déplacés l'un vers l'autre. L'arbre de rotor de turbine (200) est prolongé à son extrémité faisant face à l'arbre de rotor de compresseur (100) de telle manière qu'il chevauche l'arbre de rotor de compresseur (100) dans la direction axiale (A) et que le dispositif d'accouplement (300) relie ladite extrémité prolongée (210) de l'arbre de rotor de turbine (200) à l'arbre de rotor de compresseur (100) dans la direction radiale (R).
EP11740864.1A 2010-08-05 2011-07-20 Rotor de turbine à gaz à arbre de rotor de turbine mobile axialement Withdrawn EP2601383A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11740864.1A EP2601383A1 (fr) 2010-08-05 2011-07-20 Rotor de turbine à gaz à arbre de rotor de turbine mobile axialement

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10171951A EP2415966A1 (fr) 2010-08-05 2010-08-05 Train d'entraînement pour turbine à gaz
EP11740864.1A EP2601383A1 (fr) 2010-08-05 2011-07-20 Rotor de turbine à gaz à arbre de rotor de turbine mobile axialement
PCT/EP2011/062410 WO2012016830A1 (fr) 2010-08-05 2011-07-20 Rotor de turbine à gaz à arbre de rotor de turbine mobile axialement

Publications (1)

Publication Number Publication Date
EP2601383A1 true EP2601383A1 (fr) 2013-06-12

Family

ID=43431957

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10171951A Withdrawn EP2415966A1 (fr) 2010-08-05 2010-08-05 Train d'entraînement pour turbine à gaz
EP11740864.1A Withdrawn EP2601383A1 (fr) 2010-08-05 2011-07-20 Rotor de turbine à gaz à arbre de rotor de turbine mobile axialement

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10171951A Withdrawn EP2415966A1 (fr) 2010-08-05 2010-08-05 Train d'entraînement pour turbine à gaz

Country Status (6)

Country Link
US (1) US9243499B2 (fr)
EP (2) EP2415966A1 (fr)
JP (1) JP5512893B2 (fr)
CN (1) CN103097664B (fr)
RU (1) RU2013109401A (fr)
WO (1) WO2012016830A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9109608B2 (en) * 2011-12-15 2015-08-18 Siemens Energy, Inc. Compressor airfoil tip clearance optimization system
US11143051B2 (en) 2013-10-02 2021-10-12 Raytheon Technologies Corporation Translating compressor and turbine rotors for clearance control
DE102014203318A1 (de) * 2014-02-25 2015-08-27 Siemens Aktiengesellschaft Verfahren zum Betrieb einer Gasturbine bei aktiver hydraulischer Spalteinstellung
RU2572744C1 (ru) * 2014-10-14 2016-01-20 Открытое акционерное общество "Авиадвигатель" Двухконтурный газотурбинный двигатель
CN106224016B (zh) * 2016-08-31 2018-01-12 中国南方航空工业(集团)有限公司 涡轮转子、发动机及提高发动机转子对中可靠性的方法
CN111828117B (zh) * 2020-07-09 2022-09-23 北京京桥热电有限责任公司 燃气蒸汽联合循环机组供热控制方法、装置及***
CN113700732B (zh) * 2021-08-25 2023-09-05 中国科学院工程热物理研究所 一种基于滑动轴承和推力盘的燃气轮机转子支撑***
DE102022111499B3 (de) 2022-05-09 2023-06-29 Sascha Larch Antriebsstufe einer Trägerrakete, Trägerrakete und Verfahren zum Betreiben einer Trägerrakete

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB658778A (en) * 1948-10-28 1951-10-10 Rolls Royce Improvements relating to rotary fluid machine assemblies
CA1126168A (fr) 1980-04-30 1982-06-22 William D. Long Rotor ceramique pour turbine de surcompresseur
US4611464A (en) 1984-05-02 1986-09-16 United Technologies Corporation Rotor assembly for a gas turbine engine and method of disassembly
US4639194A (en) * 1984-05-02 1987-01-27 General Motors Corporation Hybrid gas turbine rotor
JPS6432135U (fr) * 1987-08-20 1989-02-28
JP2863199B2 (ja) 1989-06-07 1999-03-03 ヤンマーディーゼル株式会社 ガスタービン機関
US5282358A (en) * 1991-05-28 1994-02-01 General Electric Company Gas turbine engine dual inner central drive shaft
US5580183A (en) * 1994-04-29 1996-12-03 United Technologies Corporation Gas turbine engine spline arrangement
US5533825A (en) * 1994-11-14 1996-07-09 General Electric Company Parabolically helical spline shaft coupling
JP3032135U (ja) 1996-06-07 1996-12-17 純郎 河村 病院用・介護用ベッド
WO2000028190A1 (fr) 1998-11-11 2000-05-18 Siemens Aktiengesellschaft Palier d'arbre pour turbomachine, turbomachine correspondante et procede de fonctionnement d'une turbomachine
JP2002201901A (ja) 2000-12-28 2002-07-19 Ishikawajima Harima Heavy Ind Co Ltd スプライン締結構造
GB2383380B (en) * 2001-12-19 2005-05-25 Rolls Royce Plc Rotor assemblies for gas turbine engines
DE102005048982A1 (de) * 2005-10-13 2007-04-19 Mtu Aero Engines Gmbh Vorrichtung und Verfahren zum axialen Verschieben eines Turbinenrotors
FR2905414B1 (fr) 2006-08-29 2013-03-01 Snecma Dispositif d'entrainement du rotor d'un equipement auxiliaire d'un turbomoteur.
US7748925B2 (en) 2006-09-15 2010-07-06 Aichi Machine Industry Co., Ltd. Rotating member fixing structure
FR2909146B1 (fr) * 2006-11-28 2009-06-05 Snecma Sa Dispositif de liaison de deux arbres rotatifs, en particulier dans une turbomachine.
US7716914B2 (en) 2006-12-21 2010-05-18 General Electric Company Turbofan engine assembly and method of assembling same
FR2917783B1 (fr) * 2007-06-25 2013-04-12 Snecma Systeme de liaison d'arbre moteur avec ecrou auto-extracteur
FR2918726A1 (fr) 2007-07-11 2009-01-16 Snecma Sa Accouplement d'arbres par engrenage a denture droite.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012016830A1 *

Also Published As

Publication number Publication date
US9243499B2 (en) 2016-01-26
JP5512893B2 (ja) 2014-06-04
US20130129478A1 (en) 2013-05-23
CN103097664B (zh) 2015-11-25
WO2012016830A1 (fr) 2012-02-09
CN103097664A (zh) 2013-05-08
EP2415966A1 (fr) 2012-02-08
JP2013534287A (ja) 2013-09-02
RU2013109401A (ru) 2014-09-10

Similar Documents

Publication Publication Date Title
WO2012016830A1 (fr) Rotor de turbine à gaz à arbre de rotor de turbine mobile axialement
DE602004000204T2 (de) Vorrichtung zur Fixierung einer Motorenwelle auf einem Lager
EP1945931B1 (fr) Dispositif permettant le deplacement axial d'un rotor de turbine
EP1898054B1 (fr) Turbine a gaz
DE10210866C5 (de) Leitschaufelbefestigung in einem Strömungskanal einer Fluggasturbine
DE102012107419A1 (de) Anstellwinkeländerungsmechanismus für offenliegenen Rotoraufbau
EP3524781B1 (fr) Dispositif de raccordement pour une aube réglable d'une turbine à gaz
EP2132414B1 (fr) Agencement en feuillure
DE112006000603T5 (de) Leitrad und Schaufel für eine Turbomaschinenanlage
CH700973B1 (de) Turbinengehäuse mit innerer und äusserer Gehäuseanordnung befestigt an Biegeknotenstellen.
DE102009004991A1 (de) Windkraftanlage
EP1076765B1 (fr) Melangeur en forme de fleur destine a un turboreacteur a double flux
EP3283733A1 (fr) Dispositif de réglage d'aubes directrices et turbomachine
EP1653049B1 (fr) Couronne d'aubes directrices pour turbines à gaz et procédé pour sa modification
DE102014100087A1 (de) Innenaufbau einer Turbinenlaufschaufel
EP2344723B1 (fr) Turbine à gaz avec plaques d'étanchéité sur le disque de turbine
EP3273001A2 (fr) Procédé de fabrication d'un élément d'aube en tandem
EP2140111B1 (fr) Turbomachine
CH694257A5 (de) Dampfturbine.
EP2652350B1 (fr) Procédé de fabrication d'un segment d'accouplement d'un accouplement élastique
EP2824288A1 (fr) Moteur à turbine
EP3227578B1 (fr) Arbre de transmission, en particulier arbre à croisillon
WO2019011464A1 (fr) Dispositif d'assemblage pour turbocompresseur à gaz d'échappement et turbocompresseur à gaz d'échappement
EP3505295A1 (fr) Dispositif comportant une presse, deux composants et au moins un élément de serrage
EP3379037B1 (fr) Étanchéité sur une bague intérieure d'une couronne d'aubes directrices

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160708

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20161119