EP2594478A1 - Propelleranordnung, insbesondere für Wasserfahrzeuge - Google Patents

Propelleranordnung, insbesondere für Wasserfahrzeuge Download PDF

Info

Publication number
EP2594478A1
EP2594478A1 EP12191460.0A EP12191460A EP2594478A1 EP 2594478 A1 EP2594478 A1 EP 2594478A1 EP 12191460 A EP12191460 A EP 12191460A EP 2594478 A1 EP2594478 A1 EP 2594478A1
Authority
EP
European Patent Office
Prior art keywords
propeller
fin
stator
rotor
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12191460.0A
Other languages
English (en)
French (fr)
Other versions
EP2594478B1 (de
Inventor
Dirk Lehmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Becker Marine Systems GmbH and Co KG
Original Assignee
Becker Marine Systems GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Becker Marine Systems GmbH and Co KG filed Critical Becker Marine Systems GmbH and Co KG
Priority to PL12191460T priority Critical patent/PL2594478T3/pl
Priority to TW101141557A priority patent/TWI510407B/zh
Priority to US13/674,186 priority patent/US9328613B2/en
Priority to KR1020120129803A priority patent/KR101574105B1/ko
Priority to SG2012083788A priority patent/SG190535A1/en
Priority to JP2012251722A priority patent/JP5770705B2/ja
Priority to CA2795760A priority patent/CA2795760C/en
Priority to CN201210469489.8A priority patent/CN103121502B/zh
Publication of EP2594478A1 publication Critical patent/EP2594478A1/de
Application granted granted Critical
Publication of EP2594478B1 publication Critical patent/EP2594478B1/de
Priority to HRP20150991TT priority patent/HRP20150991T1/hr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/18Propellers with means for diminishing cavitation, e.g. supercavitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/28Other means for improving propeller efficiency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • B63H5/10Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/28Other means for improving propeller efficiency
    • B63H2001/283Propeller hub caps with fins having a pitch different from pitch of propeller blades, or a helix hand opposed to the propellers' helix hand

Definitions

  • the invention relates to a propeller arrangement, in particular for a propulsion system of a watercraft, for example a ship, comprising a propeller, which is rotatable about a propeller axis.
  • Most marine vehicles include a propulsion system that includes a propeller rotatable about a propeller axis.
  • a propulsion system that includes a propeller rotatable about a propeller axis.
  • Object of the present invention is now to provide a propeller assembly, with which the hub vortex further reduced and the efficiency can thus be further improved.
  • a propeller arrangement in particular for a drive system of a watercraft, comprising a propeller, which is rotatable about a propeller axis, further provided at least one rotor fin is.
  • the rotor fin is expediently designed like a wing and freely rotatable about the propeller axis. Accordingly, the rotor fin is free-rotating or unpowered, that is, it has no separate drive for rotation about the propeller axis, but is optionally driven by the respective prevailing environmental conditions, in particular by the prevailing water flow, for rotation about the propeller axis.
  • the at least one rotor Fin propellerabstrom solution, ie in the outflow of (propeller), arranged.
  • the at least one rotor fin is located in the direction of the ship behind the propeller. This ensures that the outflow of the propeller meets the at least one rotor fin and this is expediently designed such that it is thereby set in rotation.
  • the rotor fin is designed such that it influences the propeller effluent in such a way that the vortex formation in the region of the hub, ie the so-called hub vortex, is reduced.
  • This can be achieved, for example, by the fact that the rotor fin produces a counter-rotation with respect to the twisting in the flow from the propeller in the region of the hub, which then leads to an overall homogenization of the flow of the propeller in the hub region and thus to a more laminar flow.
  • This effect is achieved in particular by the freely rotatable design of the rotor-fin.
  • the invention freely rotatable rotor fin compared to the known from the prior art, fixedly mounted on the hub cap and forcibly mitfitenden with the propeller fins on a variable speed on the configuration of the storage and the flow, for example, the velocity of the flow, Degree of twisting, etc., depends.
  • This results in an improved flow pattern of the propeller exhaust flow in the region of the hub and thus an overall better efficiency.
  • the overall drive power of the propeller is thereby sustainably improved.
  • the rotational speed of the free-rotating at least one rotor-Fins will be lower than that of the propeller. However, this does not necessarily have to be the case in every operating state.
  • the diameter of a circular path described by the rotation of the at least one rotor fin is smaller than the diameter of the propeller.
  • the circular path is described by the outermost tip of the rotor-Fins, viewed in the radial direction of the propeller axis. This imaginary circular path is created by a full rotation of the rotor-Fins.
  • the rotor-fin surface spanned by the at least one rotor fin during a full rotation is smaller or has a smaller diameter than the propeller surface spanned by the propeller.
  • the length of the rotor-fin is less than the length of the propeller blades.
  • the diameter of the circular path of the at least one rotor fin is less than 75%, particularly less than 55% and in particular less than 35% of the diameter of the propeller. If the diameter of the rotor fin were larger and thus the individual rotor fin blades viewed in the radial direction longer, could possibly be a negative effect on the propeller flow and there might be strength problems at least one rotor fin.
  • the rotor fin can basically be made of any suitable material. Preferably, stainless steel or other suitable metal is used to make the rotor fin.
  • any flow guide body which is designed to actively influence the flow to a non-insignificant extent can be used as a rotor fin.
  • the rotor fin may be formed in the form of a fin.
  • the rotor fin may be formed with or without airfoil profile. In training with airfoil, the fin has a pressure and a suction side, wherein then in particular the suction side arcuately arched outward and the pressure side can be formed substantially flat.
  • the profile of the rotor-Fins over the length considered uniform or different.
  • the profile of the rotor-fin may be turned, ie twisted, in itself.
  • the at least one rotor fin has a free end.
  • the free end of the opposite end of the rotor-Fins is expediently attached to a rotary bearing, which allows the rotation about the propeller axis.
  • the free end is therefore generally farthest from the propeller axis, as viewed in the radial direction from the propeller axis.
  • the term "free end" is to be understood that this end portion of the rotor-fin is not attached to another component.
  • no nozzle or turbine ring is provided around the free end portion of the rotor fin, d. h., The at least one rotor fin is not disposed within a nozzle or turbine ring.
  • the propeller assembly according to the invention is particularly suitable for fixed propellers.
  • the term "fixed propeller” is understood in the present case to mean those propellers which, although rotatable about the propeller axis, are not pivotable about a rudder axis for controlling the watercraft.
  • the at least one rotor fin is expediently arranged on or in the region of the propeller hub of the propeller.
  • the at least one rotor fin will also be mounted on the hub, so that it is freely rotatably mounted on the hub.
  • the at least one rotor fin may also be arranged on a component placed on the hub, for example a separate hub end piece or the like.
  • the rotor fin is arranged in the region of the (free) hub end.
  • At least one stator fin which rotates with the propeller, is also provided.
  • the at least one stator fin is expediently arranged between the freely rotatable rotor fin and the propeller. Accordingly, in a preferred arrangement, the at least one stator fin in the axial direction behind the propeller and behind the at least one stator fin, in turn, the at least one rotor fin arranged.
  • the term "co-rotating" is to be understood in the present case that the stator Fin forced to rotate in unison with the propeller, d. H. at the same speed and frequency. Conveniently, therefore, the stator fin is connected directly to the propeller or to the propeller hub.
  • the at least one stator fin comprises a fin, ie a fin for non-insignificant influencing of the flow.
  • a fin ie a fin for non-insignificant influencing of the flow.
  • the length of the fin or fin blade of the at least one stator fin is not longer than the length of the propeller blades.
  • a circular path described by the stator fin during rotation can have a smaller diameter than the diameter of the propeller.
  • the circular path of the stator fin is preferably less than 75%, particularly preferably less than 55%, in particular less than 35%, of the diameter of the propeller.
  • the length of the stator fins the length of the rotor-Fins - each viewed in the radial direction - correspond.
  • other dimensioning and design aspects such as the angle of attack or the depth of the fins in the axial direction, similar or similar to the rotor fin may be different.
  • the at least one stator fin is offset by an angle relative to the propeller blades of the propeller.
  • the stator fin as viewed over the circumference of the propeller hub, is mounted at different positions on the propeller hub than the propeller blades. If a plurality of stator fins are provided, advantageously all the stator fins, and particularly preferably each, are to be arranged at the same distance offset from the propeller blades. The staggered arrangement results in a more favorable hydrodynamic efficiency.
  • the stator Fin is arranged such that it is arranged in the circumferential direction approximately centrally disposed between two propeller blades.
  • stator fin viewed in the circumferential direction on the route from one propeller blade to the other propeller blades (each viewed from the propeller blade center) in the range between 25% and 75% of the total distance, preferably in Range between 35% and 65% of the total distance (in each case on the basis of the center of the stator fin) is arranged.
  • a number of rotor fins and / or a number of stator fins are provided.
  • the plurality of rotor fins and the plurality of stator fins are expediently arranged in the axial direction at the same height and distributed over the circumference. Particularly preferably, the distribution is uniform over the circumference, ie at equal intervals.
  • the rotor fins and / or the stator fins may each be the same in terms of their design (shape, size, material, etc.) may be formed. Basically, the number of rotor fins and / or the stator fins is not limited.
  • stator fins and / or stator fins Preferably, two to seven rotor fins and / or stator fins, more preferably three to five rotor fins and / or stator fins are provided.
  • the stator fins and / or the rotor fins may each have an equal length.
  • the number of rotor fins and / or the stator fins may correspond to the number of propeller blades.
  • the stator fins be offset from the propeller blades to be arranged, in which case viewed in the axial direction between two propeller blades in each case a stator fin is arranged.
  • the respective portion of a propeller blade at the turbulent outflow of the propeller is assigned to a respective stator, so that then a particularly efficient setting or alignment of the stator fins can be done.
  • the at least one rotor fin and / or the at least one stator fin is arranged at an angle of attack with respect to the propeller axis.
  • the angle of attack is included, for example, between a longitudinal axis of the fin in a cross-sectional view and the propeller axis or a parallel to the propeller axis.
  • the individual rotor fins and / or stator fins can each have the same or different angles of attack. It is also possible to arrange all rotor fins with a predetermined angle of attack and all stator fins with a different predetermined angle of attack.
  • the employment of the stator fins and the rotor fins is preferably in the same direction, for example both to port or both to starboard.
  • a propeller blade is set in the same direction as the stator fins and / or the rotor fins.
  • the stator fins and / or the rotor fins may have the same angle of attack as the propeller blades or different thereto. If the individual rotor fins and / or stator fins are twisted or twisted, different pitch angles for the individual fin are also obtained in sections. In particular, the pitch angle can be between 10 ° and 80 °, preferably 25 ° to 70 ° preferably 40 ° to 60 °.
  • the stator fins and / or the rotor fins are preferably arranged fixed with respect to their angle of attack. Basically, however, an adjustable arrangement that allows adjustment of the angle of attack, conceivable.
  • the optimum angle of attack can vary depending on the particular circumstances (eg propeller size, propeller speed, propeller blade profile, etc.) from one propeller arrangement to another.
  • the at least one rotor fin and / or the at least one stator fin extend radially to the propeller axis.
  • a stator body is provided, the front end, d. H. at the free end, located at the propeller hub of the propeller and firmly connected to the propeller hub.
  • the at least one stator fin is arranged on this stator body and expediently also attached thereto.
  • the at least one stator fin and the stator body may be formed as an integral unit.
  • the bearing for the at least one rotor fin is expediently designed to be lubricated with water. Accordingly, it is not oil lubricated and not formed sealed or sealed. This has the advantage that no complex lubrication / sealing system must be provided, which reduces the manufacturing and maintenance costs of storage.
  • the bearing is preferably designed as a combined axial and radial bearings. In principle, however, it is also possible to provide two or more separate bearings for mounting the rotor finger in radial as well as in axial direction.
  • the bearing is preferably designed as a plain bearing and provided on the propeller hub or on the stator body.
  • the bearing can be designed to be self-lubricating.
  • Self-lubricating bearings are also called “solid friction bearings” because they generally experience solid friction. This is due to a self-lubrication property of one of the bearing partners or one of the two bearing elements. These bearings do not require additional lubrication, since solid lubricants are embedded in the material from which the layers are made Micro-wear causes the surface of the company to reach the surface and thus reduce friction and wear on the bearings.
  • one of the two mutually movable bearing elements made of plastic or plastic composite and / or ceramic materials is formed for the formation of the self-lubricating bearing.
  • a part of the bearing or one of the bearing elements of the bearing can be made of PTFE or ACM.
  • the other bearing part or the bearing partner is preferably made of metal, for example bronze or brass.
  • the movable, second bearing part or bearing partner may preferably be formed as a bearing ring, in particular bronze ring, wherein suitably the at least one rotor fin is fixedly attached to this second bearing element.
  • the at least one rotor fin is arranged in the axial direction at a small distance from the propeller.
  • the distance can be a maximum of 0.8 times the diameter of the propeller, preferably at most 0.5 times the diameter of the propeller, particularly preferably at most 0.3 times the diameter of the propeller.
  • an arrangement may be provided at a pitch of 0.2 times the propeller diameter or less.
  • the arrangement of the at least one rotor-fins is to be provided at a small distance from the propeller on the downstream side of the propeller.
  • the propeller assembly 100 includes a marine propeller 10 that includes a propeller hub 11 fixedly connected to a propeller shaft (not shown).
  • the propeller shaft extends along a propeller shaft 13.
  • the propeller shaft is mounted in a shaft bearing 12, which is designed here as a sterntube. End side of the shaft bearing 12, the propeller hub 11 is arranged. From the propeller hub 11 are in the radial direction of the propeller axis 13, five propeller blades 14 before.
  • the propeller blades 14 are arranged distributed over the circumference of the propeller hub 11 evenly distributed.
  • each propeller blade 14 each have an angle of incidence relative to the propeller axis 13, the propeller blades 14 being twisted or twisted toward one another along their length in the radial direction, so that different angles of incidence prevail depending on the section of the propeller blade 14.
  • the shape of each propeller blade 14 is the same.
  • five stator fins 20 are arranged behind the propeller 10.
  • the term "navigation direction" is to be understood here as the direction of travel of the ship or watercraft when driving forwards.
  • the stator fins 20 are arranged on a stator body 21 (see Fig. 4 ), which in turn is fixedly connected to the propeller hub 11.
  • stator fins 20 rotate with rotation of the propeller shaft with the propeller hub 11 and thus with the propeller 10 forcibly with.
  • the stator fins 20 are formed as substantially flat, plate-like (fin) bodies toward both fin sides.
  • the stator fins 20 have an angle of attack relative to the propeller axis 13. This angle of attack is about 45 °.
  • the angle of attack of the stator fins is greater than the average angle of attack of the propeller blades.
  • the rotor fins 30 Seen in the direction of ship 15 behind the stator fins 20 five rotor fins 30 are also provided.
  • the rotor fins 30 are fixed to a bearing ring 41 of a sliding bearing 40 (see in particular Fig. 4 ) appropriate.
  • the rotor fins 30 are arranged distributed at a uniform distance around the bearing ring 41 and are freely rotatable about the propeller axis 13.
  • the rotor fins 30 are provided with flat sides, plate-shaped guide or fin body, which has an angle of attack to the propeller axis 13 have.
  • the angle of attack has the same direction as that of the stator fins 20 or the propeller blades 14, however, the angle of attack of the rotor fins 30 has a smaller amount than the pitch of the stator fins 20 or the propeller blades 14.
  • the individual rotor fins 30th are the same in terms of their shape and angle of attack.
  • Both the rotor fins 30 and the stator fins 20 are formed of noble metal.
  • the bearing ring 41 is made of bronze. In particular from the Fig. 3 It can be seen that the radial length of the stator fins 20 and the rotor fins 30 is approximately equal and the length of a fin 20, 30 is only about 10% to 20%, in particular 15%, of the length of a propeller blade 14.
  • the diameter 31 of the circular path described by the rotation of the rotor fins 30 is correspondingly much smaller than the diameter 16 of the propeller 10. In particular, the diameter 31 of the rotor fins 30 is only about 25% of the diameter 16 of the propeller 10. Der Diameter 31 of the rotor fins 30 also corresponds approximately to the diameter of a circular path described by the stator fins 20 due to the similar radial lengths.
  • the individual stator fins 20 are each arranged approximately directly behind a propeller blade 14 in the axial direction.
  • Fig. 4 shows a sectional view through the viewed in direction of ship 15 rear part of the propeller assembly 100.
  • a stator body 21 is placed on the front end portion 11a of the propeller hub 11.
  • the stator body 21 has a similar diameter to the propeller hub 11.
  • the stator body 21 has a taper 22. This taper is also cylindrical as the other portion of the stator body 21. This results in a stepped outer contour of the stator body 21 with a laterally over the Rejuvenation region 22 protruding outside area 23.
  • stator fins 20 protrude radially outwards. These are preferably formed integrally with the stator body 21.
  • the stator fins 20 have a substantially rectangular plan, wherein the two remote from the hub 11 corner portions 201, 202 are rounded. A front portion 203 of the stator fins 20 projects beyond a portion of the propeller hub 11. On the other side (in the axial direction towards the rear), the stator fin 20 terminates approximately flush with the outer portion 23 of the stator body 21.
  • the taper portion 22 of the stator body 21 has a peripheral surface 221 and an end surface 222.
  • a bearing sleeve 42 made of plastic is firmly attached on the peripheral surface 221.
  • On this bearing sleeve 42 is also the bearing ring 41 of the rotor fins 30, which is formed of bronze.
  • the bearing sleeve 42 has self-lubricating properties, so that a total of a self-lubricating sliding bearing 40 results.
  • the rotor fins 30 can rotate freely with the bearing ring 41 on the bearing sleeve 42. In the axial direction, the bearing ring 41 is enclosed in each case by two bearing rings 43, 44 aligned perpendicular to the propeller axis 13 and likewise formed from a self-lubricating plastic material.
  • the bearing ring 43 is fixedly arranged on the end face of the outer region portion 23 of the stator body 21.
  • the bearing ring 44 is fixedly arranged on an end cap 50, which in turn is fastened with bolts 51 to the taper 22 of the stator body and bears against the end face 222.
  • the sliding bearing 40 consists of the bearing sleeve 42, the bearing ring 41 on which the rotor fins 30 are mounted, and the two transverse to the propeller shaft 13 aligned bearing rings 43, 44.
  • the sliding bearing 40 is thus formed as a combined axial and radial bearings.
  • the rotor fins 30 have a substantially rectangular ground plan, wherein the two of the propeller hub 11 and the stator body 21 remote corner portions 301, 302 are rounded. A back Part 303 projects beyond the end cap 50 and terminates approximately flush with this. On the opposite side (seen in the axial direction forward), the leading edge 304 of the rotor-fin 30 is located practically directly behind the trailing edge 204 of the stator-fins. D. h., The stator fins 20 and the rotor fins 30 follow in the axial direction immediately one behind the other. Likewise, the stator fins 20 are also arranged only at an extremely short distance from the propeller 10.
  • Fig. 5 shows a front view of a propeller assembly 100 according to the invention with stator fins 20 which are arranged offset relative to the propeller blades 14.
  • the stator fins 20 are arranged approximately centrally between two propeller blades 14, ie the stator fins 20 are arranged in the circumferential direction on the path from one propeller blade 14 to the next propeller blade 14.
  • the distance from one propeller blade 14 to the next is measured circumferentially from a propeller blade center CP1 of a first propeller blade 14a to a propeller blade center CP2 of a second propeller blade 14b.
  • a stator fin 20 is interposed between two propeller blades 14a, 14b when a center point CP3 of the stator fin 20 extends circumferentially (or circumferentially concentric and parallel) between the first propeller blade center CP1 and the first second propeller wing center CP2 is located.
  • the centers CP1, CP2, and CP3 may be defined as the geometric centroids of the areas covered by a propeller blade 14 or stator fin 20, in the direction of the propeller axis 13.
  • the center may also be defined as the center of mass of a propeller blade 14 or stator fin 20. Other definitions are also possible.
  • first line L1 through the propeller shaft 13 and the first propeller blade center CP1, a second line L2 through the propeller shaft 13 and the second propeller center CP2, and a third line L3 through the propeller shaft 13 and the center CP3 of the stator fin 20 are considered , wherein the lines L1, L2 and L3 are at right angles to the propeller axis 13 and extend radially outwardly, an angle A1 included between the first and second lines L 1, L2 becomes approximately equal in two through the third line L3 Angle, a second angle A2 and a third angle A3, divided.
  • approximately equal means that the second angle A2 (or equivalently the complementary angle A3) is between 25% and 75% of the first angle A1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Motor Power Transmission Devices (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Friction Gearing (AREA)

Abstract

Die Erfindung betrifft eine Propelleranordnung (100), insbesondere für ein Antriebssystem eines Wasserfahrzeuges, welche einen Propeller (10) umfasst, der um eine Propellerachse (13) drehbar ist. Ferner ist mindestens ein Rotor-Fin (30) vorgesehen, der frei drehbar um die Propellerachse (13) angeordnet ist, wobei der Durchmesser (31) einer durch die Drehung des mindestens einen Rotor-Fins (30) beschriebenen Kreisbahn kleiner ist als der Durchmesser (16) des Propellers (10).

Description

  • Die Erfindung betrifft eine Propelleranordnung, insbesondere für ein Antriebssystem eines Wasserfahrzeuges, beispielsweise eines Schiffes, umfassend einen Propeller, der um eine Propellerachse drehbar ist.
  • Die meisten Wasserfahrzeuge umfassen ein Antriebssystem, das einen sich um eine Propellerachse drehbaren Propeller umfasst. Wenn das Wasser durch die vom sich drehenden Propeller aufgespannte Propellerfläche hindurchströmt, wird es beschleunigt und verdrillt. Hierdurch können im Propellerabstrom Verwirbelungen auftreten. Es ist allgemein bekannt, dass diese Verwirbelungen in der Regel besonders hoch im Bereich der Nabe bzw. in Schifffahrtrichtung gesehen hinter der Nabe sind. Diese Verwirbelungen werden auch "Nabenwirbel" genannt und wirken sich negativ auf die Antriebsleistung aus.
  • Um die Nabenwirbel zu reduzieren und so den Wirkungsgrad des Propellers zu erhöhen, wurde beispielsweise in der EP 0 255 136 A1 vorgeschlagen, auf der in Schifffahrtrichtung hinter dem Propeller angeordneten Nabenkappe, d. h. den Propellernabenendbereich, feste Fins bzw. Strömungsleitflossen vorzusehen, die fest mit der Propellernabe verbunden sind und sich mit dieser mitdrehen. Die radiale Ausdehnung der Fins ist im Wesentlichen auf den Nabenbereich beschränkt. Durch die Vorsehung dieser festen Fins auf der Nabenkappe, die sich mit dem Propeller mitdrehen, kann eine Abschwächung der Nabenwirbel und damit eine Verbesserung der Antriebsleistung des Propellers erreicht werden.
  • Aufgabe der vorliegenden Erfindung ist es nunmehr, eine Propelleranordnung anzugeben, mit der die Nabenwirbel weiter reduziert und der Wirkungsgrad somit weiter verbessert werden kann.
  • Die Lösung dieser Aufgabe gelingt mit einer Propelleranordnung, insbesondere für ein Antriebssystem eines Wasserfahrzeuges, umfassend einen Propeller, der um eine Propellerachse drehbar ist, wobei ferner mindestens ein Rotor-Fin vorgesehen ist. Der Rotor-Fin ist zweckmäßigerweise flügelartig ausgebildet und frei drehbar um die Propellerachse angeordnet. Entsprechend ist der Rotor-Fin freidrehend bzw. antriebslos ausgebildet, d. h., er weist für die Drehung um die Propellerachse keinen gesonderten Antrieb auf, sondern wird gegebenenfalls durch die jeweilig vorherrschenden Umgebungsbedingungen, insbesondere durch die vorherrschende Wasserströmung, zur Drehung um die Propellerachse angetrieben. Zweckmäßigerweise ist der mindestens eine Rotor-Fin propellerabstromseitig, d. h. im Abstrom des (Schiffs-)Propellers, angeordnet. Mit anderen Worten befindet sich der mindestens eine Rotor-Fin in Schifffahrtrichtung hinter dem Propeller. Hierdurch wird erreicht, dass der Abstrom des Propellers auf den mindestens einen Rotor-Fin trifft und dieser ist zweckmäßigerweise derart ausgebildet, dass er hierdurch in Rotation versetzt wird.
  • Der Rotor-Fin ist so ausgestaltet, dass er den Propellerabstrom derart beeinflusst, dass sich die Wirbelbildung im Bereich der Nabe, d. h. der sogenannte Nabenwirbel, verringert. Dies kann beispielsweise dadurch erreicht werden, dass der Rotor-Fin einen Gegendrall gegenüber der vom Propeller im Bereich der Nabe in der Strömung aufgebrachten Verdrallung erzeugt, der dann insgesamt zu einer Vergleichmäßigung der Strömung des Propellers im Nabenbereich und somit zu einer laminareren Strömung führt. Dieser Effekt wird insbesondere durch die frei drehbare Ausbildung des Rotor-Fins erreicht. So weist der erfindungsgemäße frei drehbare Rotor-Fin gegenüber den aus dem Stand der Technik bekannten, fest auf der Nabenkappe angebrachten und zwangsweise mit dem Propeller mitdrehenden Fins eine variable Drehzahl auf, die von der Ausgestaltung der Lagerung und der Anströmung, beispielsweise Geschwindigkeit der Anströmung, Grad der Verdrallung, etc., abhängt. Hierdurch stellt sich eine verbessertes Strömungsbild des Propellerabstroms im Bereich der Nabe und somit ein insgesamt besserer Wirkungsgrad ein. Die Gesamtantriebsleistung des Propellers wird hierdurch nachhaltig verbessert. In der Regel wird die Rotationsgeschwindigkeit des freidrehenden mindestens einen Rotor-Fins geringer sein als die des Propellers. Dies muss jedoch nicht zwingend in jedem Betriebszustand der Fall sein.
  • Da der mindestens eine Rotor-Fin im Wesentlichen ausschließlich die Propellerströmung im Nabenbereich beeinflussen soll, ist ferner vorgesehen, dass der Durchmesser einer durch die Drehung des mindestens einen Rotor-Fins beschriebenen Kreisbahn kleiner ist als der Durchmesser des Propellers. Die Kreisbahn wird dabei von der äußersten Spitze des Rotor-Fins, in Radialrichtung von der Propellerachse aus betrachtet, beschrieben. Diese nur gedanklich gebildete Kreisbahn entsteht durch eine volle Umdrehung des Rotor-Fins. Mit anderen Worten ist die von dem mindestens einem Rotor-Fin bei einer vollen Umdrehung aufgespannte Rotor-Fin-Fläche kleiner bzw. hat einen kleineren Durchmesser als die vom Propeller aufgespannte Propellerfläche. Entsprechend ist auch die Länge des Rotor-Fins geringer als die Länge der Propellerflügel. Durch die Begrenzung auf einen kleineren Rotor-Fin-Durchmesser als der Propellerdurchmesser wird erreicht, dass die Beeinflussung des Propellerabstroms sich im Wesentlichen auf den Nabenbereich konzentriert und nicht in anderen Bereichen gegebenenfalls unerwünschte und nachteilige Beeinflussungen der Propellerströmung auftreten. In diesem Zusammenhang ist es besonders bevorzugt, dass der Durchmesser der Kreisbahn des mindestens einen Rotor-Fins weniger als 75 %, besonders weniger als 55 % und insbesondere weniger als 35 % des Durchmessers des Propellers beträgt. Wäre der Durchmesser des Rotor-Fins größer und damit die einzelnen Rotor-Fin-Blätter in Radialrichtung betrachtet länger, könnte gegebenenfalls eine negative Beeinflussung der Propellerströmung erfolgen und es könnten Festigkeitsprobleme beim mindestens einen Rotor-Fin auftreten.
  • Der Rotor-Fin kann grundsätzlich aus jedem geeigneten Material hergestellt sein. Bevorzugt wird Edelstahl oder ein sonstiges geeignetes Metall zur Herstellung des Rotor-Fins verwendet. Grundsätzlich kann jedweder Strömungsleitkörper, der zur aktiven Beeinflussung der Strömung in nicht insignifikantem Maße ausgebildet ist, als Rotor-Fin verwendet werden. Insbesondere ist es zweckmäßig, den Rotor-Fin flügelartig bzw. flossenartig auszubilden. Beispielsweise kann der Rotor-Fin in Form einer Leitflosse ausgebildet sein. Ferner kann der Rotor-Fin mit oder ohne Tragflügelprofil ausgebildet sein. Bei Ausbildung mit Tragflügelprofil weist der Fin eine Druck- und eine Saugseite auf, wobei dann insbesondere die Saugseite kreisbogenförmig nach außen gewölbt und die Druckseite im Wesentlichen eben ausgebildet sein kann. Grundsätzlich ist jedoch auch eine plattenförmige Ausbildung mit im Wesentlichen ebenen Verlauf auf beiden Seiten oder auch eine gewölbte Ausbildung auf beiden Fin-Seiten möglich. Ferner kann das Profil des Rotor-Fins über dessen Länge betrachtet gleichmäßig oder auch unterschiedlich sein. Insbesondere kann das Profil des Rotor-Fins entlang der Längsrichtung des Fins betrachtet in sich gedreht, d. h. getwistet, sein.
  • Weiterhin ist es bevorzugt, dass der mindestens eine Rotor-Fin ein freies Ende aufweist. Das dem freien Ende gegenüberliegende Ende des Rotor-Fins ist dabei zweckmäßig an einer Drehlagerung, die die Rotation um die Propellerachse ermöglicht, befestigt. Das freie Ende ist daher in der Regel in Radialrichtung von der Propellerachse aus betrachtet am weitesten von der Propellerachse entfernt. Unter dem Begriff "freien Ende" ist zu verstehen, dass dieser Endbereich des Rotor-Fins nicht an einem weiteren Bauteil befestigt ist. insbesondere ist es bevorzugt, dass um den freien Endbereich des Rotor-Fins kein Düsen- oder Turbinenring vorgesehen ist, d. h., der mindestens eine Rotor-Fin nicht innerhalb eines Düsen- oder Turbinenringes angeordnet ist.
  • Die erfindungsgemäße Propelleranordnung ist insbesondere für feststehende Propeller geeignet. Unter dem Begriff "feststehende Propeller" werden vorliegend solche Propeller verstanden, die zwar um die Propellerachse drehbar, jedoch nicht um eine Ruderachse zur Steuerung des Wasserfahrzeuges schwenkbar sind.
  • Zweckmäßigerweise ist der mindestens eine Rotor-Fin an bzw. im Bereich der Propellernabe des Propellers angeordnet. In der Regel wird der mindestens eine Rotor-Fin auch an der Nabe gelagert sein, so dass er frei drehbar auf der Nabe befestigt ist. Alternativ kann der mindestens eine Rotor-Fin auch an einem auf die Nabe aufgesetzten Bauteil, beispielsweise einem separaten Nabenendstück o. dgl., angeordnet sein. Insbesondere ist es zweckmäßig, dass der Rotor-Fin im Bereich des (freien) Nabenendes angeordnet ist.
  • In einer bevorzugten Ausführungsform ist ferner zusätzlich zum mindestens einen, frei drehbaren Rotor-Fin mindestens ein, sich mit dem Propeller mitdrehender Stator-Fin vorgesehen. Zweckmäßigerweise wird der mindestens eine Stator-Fin zwischen dem freidrehbaren Rotor-Fin und dem Propeller angeordnet. Entsprechend ist bei einer bevorzugten Anordnung der mindestens eine Stator-Fin in Axialrichtung hinter dem Propeller und hinter dem mindestens einen Stator-Fin wiederum der mindestens eine Rotor-Fin angeordnet. Unter dem Begriff "mitdrehend" ist vorliegend zu verstehen, dass der Stator-Fin zwangsweise im Gleichtakt mit dem Propeller rotiert, d. h. bei gleicher Geschwindigkeit und Frequenz. Zweckmäßigerweise wird daher der Stator-Fin direkt mit dem Propeller bzw. mit der Propellernabe verbunden. Vorteilhaft ist hierbei, dass durch eine entsprechende Ausbildung des Stator-Fins in Bezug auf seine Form und seinen Anstellwinkel bereits ein gewisse Entdrallung der Propellerströmung im Bereich des Nabenbereichs erreicht wird, bevor die Strömung auf den Rotor-Fin trifft, der durch sie angetrieben wird und die Strömung dabei weiter laminarisiert bzw. entdrallt.
  • Der mindestens eine Stator-Fin umfasst einen Fin, d. h. eine Leitflosse zur nicht insignifikanten Beeinflussung der Strömung. Bezüglich seines Materials, seiner Form bzw. sonstiger geometrischer Gestaltung kann er vorteilhaft ebenso wie vorstehend zum Rotor-Fin beschrieben ausgebildet sein. Insbesondere ist es ebenso wie beim Rotor-Fin zweckmäßig, dass die Länge des Fins bzw. Fin-Blattes des mindestens einen Stator-Fins nicht länger ist als die Länge der Propellerflügel. Insbesondere kann daher eine vom Stator-Fin bei Rotation beschriebene Kreisbahn einen kleineren Durchmesser aufweisen als der Durchmesser des Propellers. Bevorzugt beträgt die Kreisbahn des Stator-Fins weniger als 75 %, besonders bevorzugt weniger als 55 %, insbesondere weniger als 35 % des Durchmessers des Propellers. Auch kann die Länge des Stator-Fins der Länge des Rotor-Fins - jeweils in Radialrichtung betrachtet - entsprechen. Darüber hinaus können auch andere Dimensionierungs- und Gestaltungsaspekte, wie der Anstellwinkel oder die Tiefe des Fins in Axialrichtung, ähnlich bzw. gleich zum Rotor-Fin oder auch davon abweichend sein.
  • In einer weiteren bevorzugten Ausführungsform ist der mindestens eine Stator-Fin in Axialrichtung gesehen um einen Winkel gegenüber den Propellerflügeln des Propellers versetzt angeordnet. Somit ist der Stator-Fin über den Umfang der Propellernabe betrachtet an anderen Positionen an der Propellernabe angebracht ist als die Propellerflügel. Sind mehrere Stator-Fins vorgesehen, sind vorteilhafterweise alle Stator-Fins und besonders bevorzugt jeweils im gleichen Abstand versetzt zu den Propellerflügeln anzuordnen. Durch die versetzte Anordnung ergibt sich ein günstigerer hydrodynamischer Wirkungsgrad. Vorteilhaft ist der Stator-Fin derart angeordnet, dass er in Umfangsrichtung betrachtet in etwa mittig zwischen zwei Propellerflügeln angeordnet ist. "In etwa mittig" ist im vorliegenden Zusammenhang so zu verstehen, dass der Stator-Fin in Umfangsrichtung betrachtet auf der Strecke von einem Propellerflügel zum anderen Propellerflügel (jeweils vom Propellerflügelmittelpunkt aus betrachtet) im Bereich zwischen 25 % und 75 % der Gesamtstrecke, bevorzugt im Bereich zwischen 35 % und 65 % der Gesamtstrecke (jeweils unter Zugrundelegung des Mittelpunktes des Stator-Fins) angeordnet ist.
  • In einer bevorzugten Ausführungsform ist eine Anzahl von Rotor-Fins und/oder eine Anzahl von Stator-Fins vorgesehen. Bei diesem Ausführungsbeispiel sind die mehreren Rotor-Fins bzw. die mehreren Stator-Fins zweckmäßigerweise in Axialrichtung auf derselben Höhe und über den Umfang verteilt angeordnet. Besonders bevorzugt erfolgt die Verteilung über den Umfang gleichmäßig, d.h. in gleichen Abständen. Zweckmäßigerweise können die Rotor-Fins und/oder die Stator-Fins jeweils gleich in Bezug auf ihre Ausgestaltung (Form, Größe, Material, etc.) ausgebildet sein. Grundsätzlich ist die Anzahl der Rotor-Fins und/oder der Stator-Fins nicht beschränkt. Bevorzugt sind zwei bis sieben Rotor-Fins und/oder Stator-Fins, besonders bevorzugt drei bis fünf Rotor-Fins und/oder Stator-Fins vorgesehen. Insbesondere können die Stator-Fins und/oder die Rotor-Fins jeweils eine gleiche Länge aufweisen. Mit weiterem Vorteil kann die Anzahl der Rotor-Fins und/oder der Stator-Fins der Anzahl der Propellerflügel entsprechen. Insbesondere bei Vorsehung einer gleichen Anzahl von Stator-Fins und Propellerflügeln ist es bevorzugt, die Stator-Fins versetzt zu den Propellerflügeln anzuordnen, wobei dann in Axialrichtung betrachtet zwischen zwei Propellerflügeln jeweils ein Stator-Fin angeordnet ist. Besonders vorteilhafterweise wird bei dieser Anordnung der jeweilige Teilbereich eines Propellerflügels an der turbulenten Abströmung des Propellers jeweils einem Stator zugeordnet, so dass dann eine besonders effiziente Einstellung bzw. Ausrichtung der Stator-Fins erfolgen kann.
  • In einer weiteren bevorzugten Ausführungsform ist der mindestens eine Rotor-Fin und/oder der mindestens eine Stator-Fin in Bezug auf die Propellerachse unter einem Anstellwinkel angeordnet. Der Anstellwinkel wird beispielsweise zwischen einer Längsachse des Fins in einer Querschnittsbetrachtung und der Propellerachse bzw. einer Parallelen zur Propellerachse eingeschlossen. Die einzelnen Rotor-Fins und/oder Stator-Fins können jeweils gleiche oder verschiedene Anstellwinkel aufweisen. Auch ist es möglich, alle Rotor-Fins mit einem vorgegebenen Anstellwinkel und alle Stator-Fins mit einem anderen vorgegebenen Anstellwinkel anzuordnen. Die Anstellung der Stator-Fins und der Rotor-Fins erfolgt bevorzugt in die gleiche Richtung, beispielsweise beide nach Backbord oder beide nach Steuerbord. Auch kann es bevorzugt sein, dass ein Propellerflügel in die gleiche Richtung wie die Stator-Fins und/oder die Rotor-Fins angestellt ist. Auch können die Stator-Fins und/oder die Rotor-Fins einen gleichen Anstellwinkel aufweisen, wie die Propellerflügel oder auch unterschiedlich hierzu. Sind die einzelnen Rotor-Fins und/oder Stator-Fins in sich verdreht bzw. getwistet ausgebildet, ergeben sich auch abschnittsweise unterschiedliche Anstellwinkel für den einzelnen Fin. Insbesondere kann der Anstellwinkel zwischen 10° und 80°, bevorzugt 25° bis 70°, besonders bevorzugt 40° bis 60° betragen. Die Stator-Fins und/oder die Rotor-Fins sind bevorzugt in Bezug auf ihren Anstellwinkel fixiert angeordnet. Grundsätzlich ist jedoch auch eine verstellbare Anordnung, die eine Verstellung des Anstellwinkels zulässt, denkbar. Durch die Vorsehung eines Anstellwinkels kann auf einfache Weise ein gezielte Beeinflussung der Strömung und somit eine besonders effiziente Entdrallung erreicht werden. Die optimalen Anstellwinkel können in Abhängigkeit der jeweiligen Umstände (z.B. Propellergröße, Propellergeschwindigkeit, Propellerflügelprofil, etc.) von einer Propelleranordnung zur anderen variieren.
  • Zweckmäßigerweise verlaufen der mindestens eine Rotor-Fin und/oder der mindestens eine Stator-Fin radial zur Propellerachse.
  • Bei einer bevorzugten Ausführungsform ist ein Stator-Körper vorgesehen, der stirnendseitig, d. h. am freien Ende, an der Propellernabe des Propellers angeordnet und mit der Propellernabe fest verbunden ist. Der mindestens eine Stator-Fin ist an diesem Stator-Körper angeordnet und zweckmäßigerweise an diesem auch befestigt. Der mindestens eine Stator-Fin und der Stator-Körper können als einstückige Einheit ausgebildet sein. Hierdurch wird die Herstellung der Propelleranordnung erleichtert, da die Stator-Fins nicht einstückig bzw. monolithisch mit der Propellernabe ausgeführt sein müssen, sondern als gesondertes Bauteil hergestellt und nur noch mittels geeigneter Verbindungsmittel, wie z. B. Bolzen, mit der Propellernabe zu verbinden sind. Auch ist hierdurch die Möglichkeit einer relativ einfachen Nachrüstung gegeben.
  • Das Lager für den mindestens einen Rotor-Fin ist zweckmäßigerweise wassergeschmiert ausgebildet. Entsprechend ist es nicht ölgeschmiert und auch nicht verschlossen bzw. abgedichtet ausgebildet. Dies hat den Vorteil, dass kein aufwendiges Schmier-/Dichtsystem vorgesehen werden muss, was den Herstellungs- und Wartungsaufwand der Lagerung verringert. Ferner ist das Lager bevorzugt als kombiniertes Axial- und Radiallager ausgebildet. Grundsätzlich ist jedoch auch die Vorsehung zweier oder mehrerer separater Lager zur Lagerung des Rotor-Fins in Radial- als auch in Axialrichtung möglich.
  • Das Lager ist vorzugsweise als Gleitlager ausgebildet und an der Propellernabe bzw. am Stator-Körper vorgesehen. Besonders bevorzugt kann das Lager selbstschmierend ausgebildet sein. Selbstschmierende Lager werden auch "Festkörperreibungslager" genannt, da bei ihnen im Allgemeinen Festkörperreibungen auftreten. Dies ist bedingt durch eine Selbstschmierungseigenschaft eines der Lagerpartner bzw. eines der beiden Lagerelemente. Diese Lager kommen ohne zusätzliche Schmierung bzw. Schmiermittel aus, da in dem Material, aus dem die Lagen hergestellt sind, feste Schmierstoffe eingebettet sind, die während des Betriebes durch Mikroverschleiß an die Oberfläche gelangen und somit Reibung und Verschleiß der Lager senken. Zweckmäßigerweise ist für die Ausbildung des selbstschmierenden Lagers eines der zwei gegeneinander bewegbaren Lagerelemente aus Kunststoff bzw. Kunststoffverbund und/oder aus Keramikbaustoffen ausgebildet. Bevorzugt kann ein Teil des Lagers bzw. eines der Lagerelemente des Lagers aus PTFE oder ACM ausgebildet sein. Auch ist die Verwendung von graphithaltigen Werkstoffen möglich. Der andere Lagerteil bzw. der Lagerpartner ist bevorzugt aus Metall, beispielsweise Bronze oder Messing, ausgebildet. Hierdurch wird der Aufbau des Lagers vereinfacht, da keine zusätzlichen Mittel zur Bereitstellung eines Schmierfilms o. dgl. und keine externen Schmierstoffe zur Verfügung gestellt werden müssen. Auch unter ökologischen Aspekten ist dies vorteilhaft, da keine Schmierstoffe, beispielsweise Fett, aus dem Lager ins Meer gelangen können. Der bewegliche, zweite Lagerteil bzw. Lagerpartner kann bevorzugt als Lagerring, insbesondere Bronzering, ausgebildet sein, wobei zweckmäßig der mindestens eine Rotor-Fin fest an diesem zweiten Lagerelement angebracht ist.
  • In einer weiteren bevorzugten Ausführungsform ist der mindestens eine Rotor-Fin in Axialrichtung in einem geringen Abstand zum Propeller angeordnet. Insbesondere kann der Abstand maximal eine Größe von 0,8 mal Propellerdurchmesser, bevorzugt maximal 0,5 mal Propellerdurchmesser, besonders bevorzugt maximal 0,3 mal Propellerdurchmesser betragen. Bei den vorliegenden Angaben ist jeweils vom Mittelpunkt des Propellers bzw. des mindestens einen Rotor-Fins aus zu messen. Gegebenenfalls kann auch eine Anordnung in einem Abstand von 0,2 mal Propellerdurchmesser oder weniger vorgesehen sein. Zweckmäßig ist die Anordnung des mindestens einen Rotor-Fins in einem geringen Abstand zum Propeller auf der Abstromseite des Propellers vorzusehen.
  • Nachfolgend wird die erfindungsgemäße Propelleranordnung anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zeigen schematisch:
  • Fig. 1
    eine Seitenansicht einer Propelleranordnung;
    Fig. 2
    eine perspektivische Ansicht der Propelleranordnung aus Fig. 1;
    Fig. 3
    eine Frontalansicht der Propelleranordnung aus Fig. 1;
    Fig. 4
    eine Schnittansicht durch einen Teil der Propelleranordnung aus der Fig. 1; und
    Fig. 5
    eine Frontalansicht einer Propelleranordnung mit versetzt zu den Propellerflügeln angeordneten Stator-Fins.
  • In den Fig. 1 bis 3 ist eine erfindungsgemäße Propelleranordnung 100 jeweils in einer Seitenansicht, einer perspektivischen Ansicht und einer Frontalansicht dargestellt. Die Propelleranordnung 100 umfasst einen Schiffspropeller 10, der eine Propellernabe 11 umfasst, die fest mit einer Propellerwelle (hier nicht dargestellt) verbunden ist. Die Propellerwelle verläuft entlang einer Propellerachse 13. Die Propellerwelle ist in einem Wellenlager 12 gelagert, das vorliegend als Stevenrohr ausgebildet ist. Endseitig am Wellenlager 12 ist die Propellernabe 11 angeordnet. Von der Propellernabe 11 stehen in Radialrichtung zur Propellerachse 13 fünf Propellerflügel 14 vor. Die Propellerflügel 14 sind über den Umfang der Propellernabe 11 gesehen gleichmäßig verteilt angeordnet. Ferner weisen die Propellerflügel 14 jeweils einen Anstellwinkel zur Propellerachse 13 auf, wobei die Propellerflügel 14 über ihre Länge in Radialrichtung gesehen hin in sich verdreht bzw. getwistet sind, so dass je nach Abschnitt des Propellerflügels 14 unterschiedliche Anstellwinkel vorherrschen. Die Form der einzelnen Propellerflügel 14 ist jedoch jeweils gleich. In Schifffahrtrichtung 15 betrachtet sind hinter dem Propeller 10 fünf Stator-Fins 20 angeordnet. Unter dem Begriff "Schifffahrtrichtung" ist vorliegend die Fahrtrichtung des Schiffes bzw. Wasserfahrzeuges bei Vorwärtsfahrt zu verstehen. Die Stator-Fins 20 sind an einem Stator-Körper 21 angeordnet (siehe Fig. 4), der wiederum fest mit der Propellernabe 11 verbunden ist. Entsprechend drehen die Stator-Fins 20 bei Drehung der Propellerwelle mit der Propellernabe 11 und somit mit dem Propeller 10 zwangsweise mit. Die Stator-Fins 20 sind als im Wesentlichen zu beiden Fin-Seiten hin ebene, plattenartige (Flossen-)Körper ausgebildet. Die Stator-Fins 20 weisen einen Anstellwinkel gegenüber der Propellerachse 13 auf. Dieser Anstellwinkel beträgt etwa 45°. Der Anstellwinkel der Stator-Fins ist größer als der durchschnittliche Anstellwinkel der Propellerflügel.
  • In Schifffahrtrichtung 15 gesehen hinter den Stator-Fins 20 sind ferner fünf Rotor-Fins 30 vorgesehen. Die Rotor-Fins 30 sind fest an einem Lagerring 41 eines Gleitlagers 40 (siehe insbesondere Fig. 4) angebracht. Die Rotor-Fins 30 sind in gleichmäßigen Abstand um den Lagerring 41 verteilt angeordnet und sind frei drehbar um die Propellerachse 13. Auch die Rotor-Fins 30 sind als mit ebenen Seiten versehene, plattenförmige Leit- bzw. Flossenkörper ausgebildet, die einen Anstellwinkel zur Propellerachse 13 aufweisen. Der Anstellwinkel hat die gleiche Richtung wie derjenige der Stator-Fins 20 oder auch der Propellerflügel 14, jedoch hat der Anstellwinkel der Rotor-Fins 30 einen kleineren Betrag als die Anstellwinkel der Stator-Fins 20 oder der Propellerflügel 14. Die einzelnen Rotor-Fins 30 sind in Bezug auf ihre Form und ihren Anstellwinkel gleich ausgebildet. Sowohl die Rotor-Fins 30 als auch die Stator-Fins 20 sind aus Edelmetall ausgebildet. Der Lagerring 41 besteht aus Bronze. Insbesondere aus der Fig. 3 ist ersichtlich, dass die radiale Länge der Stator-Fins 20 und der Rotor-Fins 30 etwa gleich ist und die Länge eines Fins 20, 30 nur etwa 10 % bis 20 %, insbesondere 15 %, der Länge eines Propellerflügels 14 beträgt. Der Durchmesser 31 der durch die Drehung der Rotor-Fins 30 beschriebenen Kreisbahn ist entsprechend sehr viel kleiner als der Durchmesser 16 des Propellers 10. Insbesondere beträgt der Durchmesser 31 der Rotor-Fins 30 nur ca. 25 % des Durchmessers 16 des Propellers 10. Der Durchmesser 31 der Rotor-Fins 30 entspricht aufgrund der ähnlichen Radiallängen auch in etwa dem Durchmesser einer von den Stator-Fins 20 beschriebenen Kreisbahn. Die einzelnen Stator-Fins 20 sind in Axialrichtung jeweils in etwa direkt hinter einem Propellerflügel 14 angeordnet.
  • Fig. 4 zeigt eine Schnittdarstellung durch den in Schifffahrtrichtung 15 betrachtet hinteren Teil der Propelleranordnung 100. Auf den stirnseitigen Endbereich 11a der Propellernabe 11 ist ein Stator-Körper 21 aufgesetzt. Der Stator-Körper 21 weist im Bereich des Anschlusses an die Nabe 11 einen ähnlichen Durchmesser auf wie die Propellernabe 11. Im weiteren Verlauf in Axialrichtung weist der Stator-Körper 21 eine Verjüngung 22 auf. Diese Verjüngung ist ebenfalls wie der andere Bereich des Stator-Körpers 21 zylindrisch ausgebildet. Somit ergibt sich eine abgestufte Außenkontur des Stator-Körpers 21 mit einem seitlich über den Verjüngungsbereich 22 hinwegstehenden Außenbereich 23. Durch diesen Au-βenbereich 23 hindurch sind Verbindungsmittel, nämlich Bolzen 24, geführt, die in die Propellernabe 11 hineinreichen und den Stator-Körper 21 mit der Propellernabe 11 fest verbinden. Von diesem Außenbereich 23 des Stator-Körpers 21 stehen die Stator-Fins 20 radial nach außen vor. Diese sind bevorzugt einstückig mit dem Stator-Körper 21 ausgebildet. Die Stator-Fins 20 haben einen im Wesentlichen rechteckigen Grundriss, wobei die beiden von der Nabe 11 entfernt liegenden Eckbereiche 201, 202 abgerundet ausgebildet sind. Ein vorderer Teilbereich 203 der Stator-Fins 20 überragt einen Teilbereich der Propellernabe 11. Zur anderen Seite hin (in Axialrichtung gesehen nach hinten) schließt der Stator-Fin 20 in etwa bündig mit dem Außenbereich 23 des Stator-Körpers 21 ab.
  • Der Verjüngungsabschnitt 22 des Stator-Körpers 21 weist eine Umfangsfläche 221 und eine Stirnseitenfläche 222 auf. Auf der Umfangsfläche 221 ist eine aus Kunststoff bestehende Lagerhülse 42 fest angebracht. Auf dieser Lagerhülse 42 liegt ferner der Lagerring 41 der Rotor-Fins 30 auf, der aus Bronze ausgebildet ist. Die Lagerhülse 42 hat selbstschmierende Eigenschaften, so dass sich insgesamt ein selbstschmierendes Gleitlager 40 ergibt. Die Rotor-Fins 30 können mit dem Lagerring 41 frei auf der Lagerhülse 42 rotieren. In Axialrichtung ist der Lagerring 41 jeweils von zwei senkrecht zur Propellerachse 13 ausgerichteten, ebenfalls aus einem selbstschmierenden Kunststoffmaterial ausgebildeten Lagerringen 43, 44 eingefasst. Der Lagerring 43 ist dabei fest an der Stirnfläche des Außenbereichsabschnitts 23 des Stator-Körpers 21 angeordnet. Der Lagerring 44 ist dagegen fest an einer Abschlusskappe 50 angeordnet, die wiederum mit Bolzen 51 an der Verjüngung 22 des Stator-Körpers befestigt ist und an der Stirnseitenfläche 222 anliegt. Somit besteht das Gleitlager 40 aus der Lagerhülse 42, dem Lagerring 41, an dem die Rotor-Fins 30 angebracht sind, sowie den beiden quer zur Propellerachse 13 ausgerichteten Lagerringen 43, 44. Das Gleitlager 40 ist somit als kombiniertes Axial- und Radiallager ausgebildet.
  • Die Rotor-Fins 30 weisen einen im Wesentlichen rechteckigen Grundriss auf, wobei die beiden von der Propellernabe 11 bzw. dem Stator-Körper 21 entfernt angeordneten Eckbereiche 301, 302 abgerundet ausgebildet sind. Ein hinterer Teilbereich 303 überragt die Abschlusskappe 50 und schließt in etwa bündig mit dieser ab. Auf der gegenüberliegenden Seite (in Axialrichtung gesehen vorne) ist die Vorderkante 304 des Rotor-Fins 30 praktisch direkt hinter der Hinterkante 204 des Stator-Fins angeordnet. D. h., die Stator-Fins 20 und die Rotor-Fins 30 folgen in Axialrichtung unmittelbar hintereinander. Ebenso sind die Stator-Fins 20 auch nur in einem äußerst geringen Abstand zum Propeller 10 angeordnet.
  • Fig. 5 zeigt eine Frontalansicht einer erfindungsgemäßen Propelleranordnung 100 mit Stator-Fins 20, welche gegenüber den Propellerflügeln 14 versetzt angeordnet sind. In Umfangsrichtung betrachtet sind die Stator-Fins 20 in etwa mittig zwischen zwei Propellerflügeln 14 angeordnet, d.h. die Stator-Fins 20 sind in Umfangsrichtung betrachtet auf der Strecke von einem Propellerflügel 14 zum nächsten Propellerflügel 14 angeordnet. Die Strecke von einem Propellerflügel 14 zu dem nächsten wird in Umfangsrichtung von einem Propellerflügelmittelpunkt CP1 eines ersten Propellerflügels 14a zu einem Propellerflügelmittelpunkt CP2 eines zweiten Propellerflügels 14b gemessen. Ein Stator-Fin 20 ist zwischen zwei Propellerflügeln 14a, 14b angeordnet, wenn sich ein Mittelpunkt CP3 des Stator-Fins 20 auf der Strecke in Umfangsrichtung (oder auf einer zu der Strecke in Umfangsrichtung konzentrischen und parallelen Strecke) zwischen dem ersten Propellerflügelmittelpunkt CP1 und dem zweiten Propellerflügelmittelpunkt CP2 befindet. Im Allgemeinen können die Mittelpunkte CP1, CP2 und CP3 als die geometrischen Schwerpunkte der von einem Propellerflügel 14 oder Stator-Fin 20, in Richtung der Propellerachse 13 gesehenen, abgedeckten Flächen definiert werden. Der Mittelpunkt kann jedoch auch als der Massenmittelpunkt eines Propellerflügel 14 oder Stator-Fins 20 definiert werden. Andere Definitionen sind ebenso möglich. Wenn entsprechend eine erste Linie L1 durch die Propellerachse 13 und den ersten Propellerflügelmittelpunkt CP1, eine zweite Linie L2 durch die Propellerachse 13 und den zweiten Propellerflügel Mittelpunkt CP2 und eine dritte Linie L3 durch die Propellerachse 13 und den Mittelpunkt CP3 des Stator-Fins 20 gedacht werden, wobei die Linien L1, L2 und L3 in einem rechten Winkel zu der Propellerachse 13 stehen und jeweils radial nach außen verlaufen, wird ein zwischen der ersten und zweiten Linie L 1, L2 eingeschlossener Winkel A1 durch die dritte Linie L3 in zwei annähernd gleich große Winkel, einen zweiten Winkel A2 und einen dritten Winkel A3, unterteilt. Hier bedeutet annähernd gleich, dass der zweite Winkel A2 (oder gleichbedeutend der komplementäre Winkel A3) zwischen 25 % und 75 % des ersten Winkels A1 beträgt.
  • Insbesondere in den Ansichten der Fig. 1 und 2 ist erkennbar, dass sich für das System aus Propellernabe 11, Stator-Körper 21, Lagerring 41 und Abschlusskappe 50 ein insgesamt geschlossenes, stufenfreies Profil ergibt, das insofern strömungsgünstig ist.
  • Bezugszeichenliste
  • 100
    Propelleranordnung
    10
    Propeller
    11
    Propellernabe
    11a
    Nabenstirnseite
    12
    Wellenlager
    13
    Propellerachse
    14
    Propellerflügel
    14a
    erster Propellerflügel
    14b
    zweiter Propellerflügel
    15
    Schifffahrtrichtung
    16
    Durchmesser Propeller
    20
    Stator-Fins
    201, 201
    Eckbereiche
    203
    vorderer Teilbereich
    204
    Hinterkante
    21
    Stator-Körper
    22
    Verjüngung
    221
    Umfangsfläche
    222
    Stirnseitenfläche
    23
    Außenbereich
    24
    Bolzen
    30
    Rotor-Fins
    301, 302
    Eckbereiche
    303
    hinterer Teilbereich
    304
    Vorderkante
    31
    Durchmesser (Kreisbahn) Rotor-Fins
    40
    Gleitlager
    41
    Lagerring
    42
    Lagerhülse
    43,44
    Lagerring
    50
    Abschlusskappe
    51
    Bolzen
    CP1
    Mittelpunkt des ersten Propellerflügels
    CP2
    Mittelpunkt des zweiten Propellerflügels
    CP3
    Mittelpunkt des dritten Propellerflügels
    L1
    erste Linie durch ersten Mittelpunkt
    L2
    zweite Linie durch zweiten Mittelpunkt
    L3
    dritte Linie durch dritten Mittelpunkt
    A1
    Winkel zwischen erster und zweiter Linie
    A2
    Winkel zwischen erster und dritter Linie
    A3
    Winkel zwischen zweiter und dritter Linie

Claims (15)

  1. Propelleranordnung (100), insbesondere für ein Antriebssystem eines Wasserfahrzeugs, umfassend einen Propeller (10), der um eine Propellerachse (13) drehbar ist, wobei mindestens ein Rotor-Fin (30) vorgesehen ist, der frei drehbar um die Propellerachse (13) angeordnet ist, wobei der Durchmesser (31) einer durch die Drehung des mindestens einen Rotor-Fins (30) beschriebenen Kreisbahn kleiner ist als der Durchmesser (16) des Propellers (10).
  2. Propelleranordnung gemäß Anspruch 1,
    dadurch gekennzeichnet,
    dass der mindestens eine Rotor-Fin (30) an einer Propellernabe (11) des Propellers (10) angeordnet ist.
  3. Propelleranordnung gemäß Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass der Durchmesser (31) der Kreisbahn des mindestens einen Rotor-Fins (30) weniger als 75 %, bevorzugt weniger als 55 %, besonders bevorzugt weniger als 35 %, höchstbevorzugt weniger als 25 %, des Durchmessers (16) des Propellers (10) beträgt.
  4. Propelleranordnung gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass mindestens ein, sich mit dem Propeller (10) mitdrehender Stator-Fin (20) vorgesehen ist, der bevorzugt zwischen dem frei drehbaren, mindestens einen Rotor-Fin (30) und dem Propeller (10) angeordnet ist.
  5. Propelleranordnung gemäß Anspruch 4,
    dadurch gekennzeichnet,
    dass der mindestens eine Stator-Fin (20) an einer Propellernabe(11) des Propellers (10) angeordnet und fest mit dieser verbunden ist.
  6. Propelleranordnung gemäß Anspruch 4 oder 5,
    dadurch gekennzeichnet,
    dass der Durchmesser einer durch eine Drehung des mindestens einen Stator-Fins beschriebenen Kreisbahn kleiner ist als der Durchmesser (16) des Propellers (10), insbesondere beträgt der Durchmesser der Kreisbahn des mindestens einen Stator-Fins weniger als 75 %, bevorzugt weniger als 55%, besonders bevorzugt weniger als 35 % des Durchmessers (16) des Propellers (10).
  7. Propelleranordnung gemäß Anspruch 5 oder 6,
    dadurch gekennzeichnet,
    dass der mindestens eine Stator-Fin (20) in Axialrichtung gegenüber den Propellerflügeln (14) des Propellers (10) versetzt angeordnet ist.
  8. Propelleranordnung gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass eine Anzahl von Rotor-Fins (30) und/oder Stator-Fins (20) vorgesehen ist, die in Umfangsrichtung verteilt um die Propellerachse (13) angeordnet sind.
  9. Propelleranordnung gemäß Anspruch 8,
    dadurch gekennzeichnet,
    dass die Anzahl der Rotor-Fins (30) und/oder der Stator-Fins (20) der Anzahl der Propellerflügel (14) des Propellers (10) entspricht.
  10. Propelleranordnung gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der mindestens eine Rotor-Fin (30) und/oder der mindestens eine Stator-Fin (20) in Bezug auf die Propellerachse (13) einen Anstellwinkel aufweisen, wobei der Anstellwinkel insbesondere 10° bis 80°, bevorzugt 25° bis 70°, besonders bevorzugt 40° bis 60° beträgt.
  11. Propelleranordnung gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der mindestens eine Rotor-Fin (30) und/oder der mindestens eine Stator-Fin (20) radial zur Propellerachse (13) verlaufend angeordnet sind.
  12. Propelleranordnung gemäß einem der Ansprüche 4 bis 11,
    dadurch gekennzeichnet,
    dass der mindestens eine Stator-Fin (20) an einem Stator-Körper (21) angeordnet ist, wobei der Stator-Körper (21) stirnendseitig an einer Propellernabe (11) des Propellers (10) angeordnet und mit der Propellernabe (11) fest verbunden ist.
  13. Propelleranordnung gemäß einem der Ansprüche 2 bis 12,
    dadurch gekennzeichnet,
    dass an der Propellernabe (11) bzw. am Stator-Körper (21) ein Gleitlager (40), insbesondere ein selbstschmierendes Gleitlager, zur Lagerung des mindestens einen Rotor-Fins (30) vorgesehen ist.
  14. Propelleranordnung gemäß Anspruch 13,
    dadurch gekennzeichnet,
    dass das Gleitlager (40) ein erstes, fest an der Propellernabe (11) bzw. am Stator-Körper (21) angebrachtes Lagerelement und ein zweites Lagerelement, insbesondere einen Lagerring (41), umfasst, wobei das zweite Lagerelement gegenüber dem ersten Lagerelement bewegbar ist, und wobei der mindestens eine Rotor-Fin (30) fest am zweiten Lagerelement angebracht ist.
  15. Propelleranordnung gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der mindestens eine Rotor-Fin (30) in Richtung der Propellerachse (13) in einem geringen Abstand zum Propeller (10), insbesondere in einem Abstand von maximal 0,8 mal Propellerdurchmesser (16), bevorzugt maximal 0,5 mal Propellerdurchmesser (16), besonders bevorzugt maximal 0,3 mal Propellerdurchmesser (16), angeordnet ist.
EP12191460.0A 2011-11-18 2012-11-06 Propelleranordnung, insbesondere für Wasserfahrzeuge Not-in-force EP2594478B1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PL12191460T PL2594478T3 (pl) 2011-11-18 2012-11-06 Układ śmigła, zwłaszcza do pojazdów wodnych
TW101141557A TWI510407B (zh) 2011-11-18 2012-11-08 特別用於水上運輸工具之推進器裝置
US13/674,186 US9328613B2 (en) 2011-11-18 2012-11-12 Propeller arrangement, in particular for watercraft
SG2012083788A SG190535A1 (en) 2011-11-18 2012-11-15 Propeller arrangement, in particular for watercraft
KR1020120129803A KR101574105B1 (ko) 2011-11-18 2012-11-15 선박의 구동 시스템용 프로펠러 장치
JP2012251722A JP5770705B2 (ja) 2011-11-18 2012-11-16 特に船舶のためのプロペラ装置
CA2795760A CA2795760C (en) 2011-11-18 2012-11-16 Propeller arrangement, in particular for watercraft
CN201210469489.8A CN103121502B (zh) 2011-11-18 2012-11-19 尤其用于船舶的推进器装置
HRP20150991TT HRP20150991T1 (hr) 2011-11-18 2015-09-18 Sklop propelera, naroäśito za plovilo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011055515A DE102011055515A1 (de) 2011-11-18 2011-11-18 Propelleranordnung, insbesondere für Wasserfahrzeuge

Publications (2)

Publication Number Publication Date
EP2594478A1 true EP2594478A1 (de) 2013-05-22
EP2594478B1 EP2594478B1 (de) 2015-06-24

Family

ID=47143698

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12191460.0A Not-in-force EP2594478B1 (de) 2011-11-18 2012-11-06 Propelleranordnung, insbesondere für Wasserfahrzeuge

Country Status (15)

Country Link
US (1) US9328613B2 (de)
EP (1) EP2594478B1 (de)
JP (1) JP5770705B2 (de)
KR (1) KR101574105B1 (de)
CN (1) CN103121502B (de)
CA (1) CA2795760C (de)
DE (1) DE102011055515A1 (de)
DK (1) DK2594478T3 (de)
ES (1) ES2546427T3 (de)
HK (1) HK1184420A1 (de)
HR (1) HRP20150991T1 (de)
PL (1) PL2594478T3 (de)
PT (1) PT2594478E (de)
SG (1) SG190535A1 (de)
TW (1) TWI510407B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017178061A1 (en) * 2016-04-15 2017-10-19 Wärtsilä Finland Oy A propeller for a marine vessel and a method of installing the hub cap to the hub
WO2018065032A1 (en) * 2016-10-04 2018-04-12 Wärtsilä Netherlands B.V. A propeller for a marine vessel and a method of installing the hub cap to the hub

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10155575B2 (en) 2013-06-07 2018-12-18 National Taiwan Ocean University Diffuser-type endplate propeller
CN103803040A (zh) * 2014-01-24 2014-05-21 中国船舶重工集团公司第七○二研究所 螺旋桨桨毂消涡轮
KR101470896B1 (ko) * 2014-05-28 2014-12-09 한국해양과학기술원 허브 볼텍스 캐비테이션 저감을 위한 무회전 프로펠러 캡
SG10201810020RA (en) * 2014-05-28 2018-12-28 Korea Inst Ocean Sci & Tech Combined propeller cap for reducing rotating flow and hub vortex and enhancing propulsive efficiency
KR20160132676A (ko) 2015-05-11 2016-11-21 삼성중공업 주식회사 선박
CN105667747A (zh) * 2016-01-06 2016-06-15 浙江海洋学院 一种高效螺旋桨
JP2018039411A (ja) * 2016-09-08 2018-03-15 株式会社大内海洋コンサルタント フィン付プロペラボスキャップ
KR101788763B1 (ko) 2016-09-30 2017-10-20 대우조선해양 주식회사 전후연 비틀림 전류고정날개
JP6812057B2 (ja) * 2017-06-21 2021-01-13 ナカシマプロペラ株式会社 船舶用推進装置及びそれを備えた船舶
DE102017116516B3 (de) * 2017-07-21 2019-01-24 Promarin Propeller Und Marinetechnik Gmbh Propeller für ein Wasserfahrzeug
JP7146437B2 (ja) * 2018-04-23 2022-10-04 三菱重工業株式会社 舶用プロペラ及び船舶
CN111470052A (zh) * 2020-05-31 2020-07-31 陈泽进 行星齿轮桨扇组合发动机装置
CN111645838B (zh) * 2020-06-15 2021-04-06 中国船舶科学研究中心 导管桨支撑分区预旋导流装置
KR102241955B1 (ko) 2020-12-16 2021-04-19 주식회사 부산피알에스 선박용 조립식 프로펠러
CN113716005A (zh) * 2021-10-14 2021-11-30 邵建锋 一种电动推进器
KR20230103239A (ko) 2021-12-31 2023-07-07 주식회사 모쓰 캐비테이션을 방지하는 선박 프로펠러
CN114750916A (zh) * 2022-06-08 2022-07-15 华东交通大学 一种具有辅螺旋桨的船舶螺旋桨装置
CN115056950B (zh) * 2022-07-15 2024-06-25 上海外高桥造船有限公司 桨根调节构件以及船

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2160618A (en) * 1984-06-08 1985-12-24 Blohm Voss Ag Ship's propeller arrangement
FR2573722A1 (fr) * 1984-11-29 1986-05-30 Volvo Penta Ab Systeme de rotor, en particulier systeme d'helice pour bateau.
DE3508203A1 (de) * 1985-03-08 1986-09-11 Rudolf Dr. 6800 Mannheim Wieser Schiffsantrieb
EP0255136A1 (de) 1986-07-31 1988-02-03 Mitsui O.S.K. Lines, Ltd. Schiffsschraubennabe mit Flossen

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1607116A (en) * 1926-11-16 Oeoeae checkley
US599125A (en) * 1898-02-15 fefel
US463322A (en) * 1891-11-17 Screw-propeller
US968823A (en) * 1904-07-25 1910-08-30 George Westinghouse Propelling device.
US1717663A (en) * 1927-12-07 1929-06-18 Checkley George Propeller
US1813552A (en) * 1930-04-02 1931-07-07 John Haas Propelling mechanism
DE606119C (de) 1933-11-12 1934-11-24 Nicholas Wladimir Akimoff Einrichtung zur Erhoehung des Wirkungsgrades eines Schraubenpropellers
US3549271A (en) * 1967-10-12 1970-12-22 Hidetsugu Kubota Backflow recovery propeller device
US3606579A (en) * 1969-01-22 1971-09-20 Henry Mehus Propeller
JPS58183382A (ja) 1982-04-19 1983-10-26 Nippon Kokan Kk <Nkk> 誘転プロペラ
SE445107B (sv) * 1983-06-22 1986-06-02 Volvo Penta Ab Rotoranordning
US4473308A (en) * 1983-08-22 1984-09-25 The B. F. Goodrich Company Bearing assembly
DE3469874D1 (en) * 1984-01-14 1988-04-21 Ostermann Metallwerke Gmbh & C Arrangement of ship screw and guide wheel
JPH05475Y2 (de) 1985-02-14 1993-01-07
JPS62103295A (ja) 1985-10-31 1987-05-13 Mitsubishi Heavy Ind Ltd 羽根付きプロペラキヤツプ
JPH07121716B2 (ja) * 1986-07-16 1995-12-25 大阪商船三井船舶株式会社 フィン付プロペラボスキャップ
CN1031975A (zh) 1987-09-14 1989-03-29 大阪商船三井船舶株式会社 带鳍板的螺旋桨桨毂盖
JPH01311982A (ja) 1988-06-10 1989-12-15 Ishikawajima Harima Heavy Ind Co Ltd 遊転プロペラ装置
JPH085431B2 (ja) 1989-01-20 1996-01-24 株式会社神戸製鋼所 舶用推進装置
US5096383A (en) * 1989-11-02 1992-03-17 Deutsche Forschungsanstalt Fur Luft- Und Raumfahrt E.V. Propeller blades
US5161369A (en) * 1991-01-28 1992-11-10 Williams International Corporation Aft fan gas turbine engine
JP3509903B2 (ja) * 1993-09-22 2004-03-22 ジャパン・ハムワージ株式会社 船舶の推進装置
CN2214354Y (zh) * 1994-08-18 1995-12-06 中国船舶工业总公司第七研究院第七○八研究所 带适进流鳍板的螺旋桨桨帽
US5480330A (en) * 1994-10-04 1996-01-02 Outboard Marine Corporation Marine propulsion pump with two counter rotating impellers
JPH08282590A (ja) 1995-04-14 1996-10-29 Mikado Propeller Kk 舶用プロペラ
EP0758606A1 (de) 1995-08-16 1997-02-19 Schottel-Werft Josef Becker GmbH &amp; Co KG. Nabenkappe für Schiffsschrauben
JP2002166888A (ja) 2000-11-29 2002-06-11 Mitsubishi Heavy Ind Ltd ステータフィン付船舶及びその製造方法
DE10152977C1 (de) 2001-10-26 2003-05-08 Howaldtswerke Deutsche Werft Vorrichtung zur Entgegenwirkung von im Nabenbereich von Propellern und/oder Propellerantrieben im umgebenden Fluid erzeugten Strömungswirbeln
SE524813C2 (sv) * 2003-02-20 2004-10-05 Volvo Penta Ab Propellerkombination för ett båtpropellerdrev med dubbla propellrar
US20060275131A1 (en) * 2005-06-06 2006-12-07 Duffy Electric Boat Co. Propeller
JP4382120B2 (ja) 2007-08-24 2009-12-09 株式会社新来島どっく ダクト付きタービンフィン
WO2010044966A2 (en) * 2008-10-16 2010-04-22 The Penn State Research Foundation Hub fin device
JP5524496B2 (ja) * 2009-03-18 2014-06-18 株式会社三井造船昭島研究所 船舶の推進装置とそれを備えた船舶

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2160618A (en) * 1984-06-08 1985-12-24 Blohm Voss Ag Ship's propeller arrangement
FR2573722A1 (fr) * 1984-11-29 1986-05-30 Volvo Penta Ab Systeme de rotor, en particulier systeme d'helice pour bateau.
DE3508203A1 (de) * 1985-03-08 1986-09-11 Rudolf Dr. 6800 Mannheim Wieser Schiffsantrieb
EP0255136A1 (de) 1986-07-31 1988-02-03 Mitsui O.S.K. Lines, Ltd. Schiffsschraubennabe mit Flossen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017178061A1 (en) * 2016-04-15 2017-10-19 Wärtsilä Finland Oy A propeller for a marine vessel and a method of installing the hub cap to the hub
WO2018065032A1 (en) * 2016-10-04 2018-04-12 Wärtsilä Netherlands B.V. A propeller for a marine vessel and a method of installing the hub cap to the hub
KR20190057375A (ko) * 2016-10-04 2019-05-28 바르트실라 네덜란드 비.브이. 선박용 프로펠러 및 허브에 허브 캡을 설치하는 방법
KR102134548B1 (ko) 2016-10-04 2020-07-16 바르트실라 네덜란드 비.브이. 선박용 프로펠러 및 허브에 허브 캡을 설치하는 방법

Also Published As

Publication number Publication date
CA2795760A1 (en) 2013-05-18
SG190535A1 (en) 2013-06-28
KR20130055528A (ko) 2013-05-28
TWI510407B (zh) 2015-12-01
DK2594478T3 (en) 2015-09-21
JP5770705B2 (ja) 2015-08-26
PT2594478E (pt) 2015-10-09
CN103121502B (zh) 2015-12-09
JP2013116727A (ja) 2013-06-13
EP2594478B1 (de) 2015-06-24
ES2546427T3 (es) 2015-09-23
HRP20150991T1 (hr) 2015-10-23
US20130129514A1 (en) 2013-05-23
US9328613B2 (en) 2016-05-03
KR101574105B1 (ko) 2015-12-03
PL2594478T3 (pl) 2015-12-31
CN103121502A (zh) 2013-05-29
TW201341267A (zh) 2013-10-16
HK1184420A1 (en) 2014-01-24
CA2795760C (en) 2015-05-05
DE102011055515A1 (de) 2013-05-23

Similar Documents

Publication Publication Date Title
EP2594478B1 (de) Propelleranordnung, insbesondere für Wasserfahrzeuge
DE69122884T2 (de) Propeller mit an den flügeln befestigtem mantelring
EP2591994B1 (de) Vorrichtung zur Verringerung des Antriebsleistungsbedarfs eines Wasserfahrzeuges
EP2060482B1 (de) Kortdüse
EP3064427B1 (de) Anordnung für mehrschraubenschiffe mit aussenliegenden propellerwellen sowie verfahren zur herstellung einer solchen anordnung
DE2852554A1 (de) Rotor zum einsatz in einem stroemungsmedium
EP2994379B1 (de) Vorrichtung zur verringerung des antriebsleistungsbedarfs eines wasserfahrzeuges
EP2594784A2 (de) Vertikalwindturbine und Rotorblatt hierfür
EP2508266A1 (de) Rotierende Düsenanordnung
DE19747561A1 (de) Wasserstrahlsystem
DE19847372B4 (de) Leitradschaufel für einen Drehmomentwandler
DE1551181A1 (de) Maschine zum Energieaustausch zwischen einem die Maschine durchfliessenden Medium und mit der Maschine verbundenen Arbeitsteilen
DE112017006146T5 (de) Trennbaugruppe mit einer einteiligen impulsturbine
EP2281743B1 (de) Propellergondel
DE69002413T2 (de) Seeschiffsantrieb.
EP2223853A1 (de) Strömungsdynamische Fläche mit einer von einer durch die angeströmte Fläche induzierten Strömung angetriebenen Turbine
EP2224125A2 (de) Vorrichtung zur Erzeugung von Energie aus eines Fluidströmung
DE1628297A1 (de) Axialstroemungsapparat
DE4031468A1 (de) Fluegelzellenpumpe
DE102015108556A1 (de) Turbinenanordnung
WO2002020347A2 (de) Ausserhalb des rumpfes angeordneter antrieb für ein wasserfahrzeug
DE10152977C1 (de) Vorrichtung zur Entgegenwirkung von im Nabenbereich von Propellern und/oder Propellerantrieben im umgebenden Fluid erzeugten Strömungswirbeln
EP3441610B1 (de) Vorrichtung für eine verbindung zwischen einem maschinenhaus und einer rotornabe einer windenergieanlage und windenergieanlage
EP2781449B1 (de) Mechanisch angetriebener nabenloser Schiffspropulsor
EP3280910A1 (de) Windenergieanlagen-rotorblatt

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20131002

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1184420

Country of ref document: HK

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502012003540

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B63H0001280000

Ipc: F01D0005140000

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 5/14 20060101AFI20140512BHEP

Ipc: B63H 5/10 20060101ALI20140512BHEP

Ipc: B63H 1/28 20060101ALI20140512BHEP

17Q First examination report despatched

Effective date: 20140523

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BECKER MARINE SYSTEMS GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150130

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 732979

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012003540

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20150991

Country of ref document: HR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20150918

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2546427

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150923

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20150831

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20150991

Country of ref document: HR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E011046

Country of ref document: EE

Effective date: 20150915

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1184420

Country of ref document: HK

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20150624

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20150991

Country of ref document: HR

Payment date: 20151124

Year of fee payment: 4

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150924

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20150401959

Country of ref document: GR

Effective date: 20151022

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20151120

Year of fee payment: 4

Ref country code: EE

Payment date: 20151123

Year of fee payment: 4

Ref country code: NO

Payment date: 20151123

Year of fee payment: 4

Ref country code: IE

Payment date: 20151123

Year of fee payment: 4

Ref country code: GR

Payment date: 20151124

Year of fee payment: 4

Ref country code: DK

Payment date: 20151124

Year of fee payment: 4

Ref country code: IT

Payment date: 20151130

Year of fee payment: 4

Ref country code: DE

Payment date: 20151127

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151024

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20151124

Year of fee payment: 4

Ref country code: HR

Payment date: 20151124

Year of fee payment: 4

Ref country code: PT

Payment date: 20151127

Year of fee payment: 4

Ref country code: RO

Payment date: 20151126

Year of fee payment: 4

Ref country code: FR

Payment date: 20151124

Year of fee payment: 4

Ref country code: SE

Payment date: 20151123

Year of fee payment: 4

Ref country code: NL

Payment date: 20151124

Year of fee payment: 4

Ref country code: CZ

Payment date: 20151130

Year of fee payment: 4

Ref country code: PL

Payment date: 20151201

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012003540

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151106

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

REG Reference to a national code

Ref country code: HR

Ref legal event code: PBON

Ref document number: P20150991

Country of ref document: HR

Effective date: 20161106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121106

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012003540

Country of ref document: DE

REG Reference to a national code

Ref country code: EE

Ref legal event code: MM4A

Ref document number: E011046

Country of ref document: EE

Effective date: 20161130

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20161130

Ref country code: NO

Ref legal event code: MMEP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20161201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161106

Ref country code: EE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170612

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161106

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161106

Ref country code: HR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161106

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161107

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161106

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161106

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161106

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161107

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150624

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 732979

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161106