EP2543111A1 - Structure antennaire à dipôles - Google Patents

Structure antennaire à dipôles

Info

Publication number
EP2543111A1
EP2543111A1 EP11706290A EP11706290A EP2543111A1 EP 2543111 A1 EP2543111 A1 EP 2543111A1 EP 11706290 A EP11706290 A EP 11706290A EP 11706290 A EP11706290 A EP 11706290A EP 2543111 A1 EP2543111 A1 EP 2543111A1
Authority
EP
European Patent Office
Prior art keywords
dipoles
reflector
horns
dipole
feet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11706290A
Other languages
German (de)
English (en)
Other versions
EP2543111B1 (fr
Inventor
Sébastien PALUD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telediffusion de France ets Public de Diffusion
Original Assignee
Telediffusion de France ets Public de Diffusion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telediffusion de France ets Public de Diffusion filed Critical Telediffusion de France ets Public de Diffusion
Publication of EP2543111A1 publication Critical patent/EP2543111A1/fr
Application granted granted Critical
Publication of EP2543111B1 publication Critical patent/EP2543111B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines

Definitions

  • the present invention relates to a broadband antennal structure of the type comprising a dipole with two metal cones.
  • the antennal structure may be used in reception for the interception of radio signals, or in transmission for broadcasting radio signals, particularly in the VHF and UHF bands.
  • Directional antenna structures having several dipoles are known.
  • such a dual polarization antennal structure comprises two first parallel strand dipoles forming a directional assembly with a vertical rectilinear polarization and two second parallel stranded dipoles forming another directional assembly for a horizontal rectilinear polarization.
  • the strands of each dipole are collinear.
  • the four dipoles are arranged along the sides of a square and fixed by four feet above a grid reflector panel much wider than the square.
  • the operating frequency band of this antenna structure is narrow, for example between 174 MHz and 240 MHz, and thus much less than an octave.
  • the radiation and gain performances of the antennal structures are strongly degraded over an octave.
  • the reflector has dimensions much larger than the half-wavelength associated with the low frequency of operation.
  • the object of the invention is to provide an antenna structure with two dipoles associated with a linear polarization, adapted to a wider operating frequency band and a smaller footprint for a predetermined low frequency of operation.
  • the antenna structure is usable in a group of antenna structures having an omnidirectional radiation pattern for the entire operating frequency band.
  • an antenna structure according to the invention comprising a flat reflector, two dipoles symmetrical with respect to a plane of symmetry perpendicular to the reflector and a dipole supply network, is characterized in that
  • the length of the sides of the reflector is at most equal to half the wavelength corresponding to the low frequency of an operating frequency band
  • each of the dipoles has two metal cones forming a vee, hollow metal feet are fixed transversely to the horns and on the reflector so that projections of the dipoles orthogonal to the reflector are contained in the reflector,
  • the horns and the feet have lengths less than a quarter of the wavelength
  • the supply network extends for each dipole in the foot of one of the horns and in said each dipole between the foot of said one horn and the small base of the other horn to feed the dipoles symmetrically.
  • the antenna structure of the invention has dipoles and a reflector carrying the dipoles having small dimensions vis-à-vis the wavelength associated with the low frequency of operation.
  • This characteristic associated with the vee shape of the horned dipoles confers a small footprint on the antenna structure and thus allows a grouping of several antenna structures according to the invention on a pylon, while providing a better omnidirectionality of the radiation patterns over a wide area. frequency band of at least one octave.
  • the low losses and the good high power performance of the dipole horns, the vee shape, the positioning and spacing of the dipoles and their distances to the reflector as well as the orientation of the cones of the dipoles, for example frustoconical or truncated pyramidal, above the reflector contribute to obtaining radiation patterns and controlled gains on octave bandwidths.
  • Various characteristics of the antenna structure set forth below in combination with those set forth above contribute to the improvement of these results.
  • Each dipole may comprise a dielectric bent sleeve attached to the small bases of the horns, sealing one end of the supply network.
  • the axes of the horns of each dipole and the axes of the feet of the horns may be situated on a plane perpendicular to the reflector, and the large bases of the horns may be closer to the reflector than the vertices of the ves formed by the dipoles. .
  • the axis of one of the horns of each dipole and the axis of the foot of said one horn may be coplanar to the half-plane of an obtuse dihedron whose other half-plane is coplanar to the axis of the other horn of said each dipole and the axis of the foot of the other horn, and the large bases of two horns of the dipoles oriented towards one side of the reflector may be further apart than the vertices of the vés formed by the dipoles and may be closer to the reflector than the tops of the ves.
  • the supply network can be advantageously embedded in the antenna structure without the use of visible cables or wires and while retaining the coaxial nature of the cable feeding the antenna structure and winding for example in a pylon whose top supports the antennal structure .
  • parallel metal hollow sleepers may be attached to both sides of the reflector and each support the feet of two horns, and the feed network may extend from a connector attached to one of the cross between the two feet supported by said one cross member, to the dipoles through said one cross member and said two legs.
  • the power supply network may comprise coaxial cables combined with impedance matching means and housed at inside said one crossbar and said two feet, the impedance matching of the dipoles and the supply network with the characteristic impedance of the coaxial cable feeding the antenna structure is facilitated when the power supply is in coaxial line having, as external conductor, the walls of said one crossbeam, said two feet and the horns supported by said two feet and, as inner conductor, metal cores centered in said one crossbeam and said two feet, and for each dipole a bent core passing centrally through the dipole from the level of the foot of the horn acting as an external conductor to at least one metal return element fixed in the vicinity of the small base of the other horn of the dipole.
  • the impedance matching in each dipole can be achieved in particular by means of an impedance matching metal washer, acting as an iris at the small base of one of the horns, traversed without contact by the horn. bent core of the supply network in the dipole.
  • the adaptation can also be done by successive modifications of the diameter of the metal core in different places inside the metal sleepers.
  • the reflector may comprise a metal frame, for example square, and a wire mesh attached to the sides of the frame.
  • the antennal structure can be used as a single unit as was presented above. However, its performance is optimized for use in bundling to provide an omnidirectional diagram.
  • Several antenna structures according to the invention may be grouped by connecting two parallel sides of the reflector of each antenna structure to sides of the reflectors of two other antenna structures to form a polyhedral cage, having two parallel hollow faces, the dipoles being positioned at the outside the cage and oriented globally in a common direction.
  • the hollow parallel faces are triangular equilateral for a group of three antennal structures or are square for a group of four antenna structures.
  • An antenna structure according to the invention may be intended for operation with simple rectilinear polarization, as presented above. However, it may be intended for operation with two cross-polarized or circular or elliptically polarized polarizations, while covering a bandwidth of at least one octave.
  • the antenna structure comprising a square flat reflector, two first dipoles symmetrical with respect to a first plane of symmetry perpendicular to the reflector, two second dipoles symmetrical with respect to a second plane of symmetry perpendicular to the reflector and the first plane of symmetry , a first power supply network of the first dipoles and a second supply network of the second dipoles, is characterized in that
  • the length of the sides of the reflector is at most equal to half the wavelength corresponding to the low frequency of an operating frequency band
  • each of the first dipoles has two metal cones forming a vee and supported transversely by first hollow metal feet fixed on the reflector so that projections of the first dipoles orthogonal to the reflector are contained in the reflector
  • each of the second dipoles has two metal cones forming a vee and supported transversely by second hollow metal feet fixed on the reflector so that projections of the second dipoles orthogonal to the reflector are contained in the reflector
  • the horns and the feet of all the dipoles have lengths less than a quarter of the length wave
  • the first feed network has the first plane of symmetry and extends for each first dipole in the foot of one of said each first dipole horns and in said each dipole between the foot of said one horn and the small base of the another horn of said first dipole, for supplying phase to the first dipoles, and
  • the second feed network has the second plane of symmetry and extends for each second dipole in the foot of one of said each second dipole cones and in said each dipole between the foot said one horn and the small base of the other horn of said each second dipole, for supplying phase to the second dipoles.
  • the antenna structure with four dipoles may be such that for each first dipole, the axes of the horns and the axes of the feet of the horns are located on a plane perpendicular to the reflector, and the large bases of the horns are closer to the reflector than the top of the formed by said each first dipole, and
  • the axis of one of the horns and the axis of the foot of said one horn are coplanar to the half-plane of an obtuse dihedron whose other half-plane is coplanar to the axis of the another horn and the axis of the foot of the other horn, and the large bases of two horns of the second dipoles oriented towards one side of the reflector are farther apart than the vertices of the vés formed by the second dipoles and are closer to the reflector that the vertices of vés formed by the second dipoles.
  • first metal hollow sleepers fixed perpendicularly to two parallel sides of the reflector on one side of the reflector and each supporting the first feet of two horns of the first dipoles.
  • the first power supply network can then extend from a connector fixed on one of the first cross members between the first two feet supported by said first cross member, to said first dipoles through said first cross member and said first two feet.
  • second metal sleepers may be provided for the second supply network fixed perpendicularly to two other parallel sides of the reflector on another face of the reflector and each supporting the second feet of two horns. second dipoles.
  • the second supply network can then extend from a connector attached to one of the second cross members between the two second feet supported by said second cross member, to said second dipoles through said second cross member and said two second legs.
  • FIG. 1 is a perspective view of an antenna structure with two first dipoles and two second dipoles for orthogonal linear polarizations, according to the invention
  • FIG. 2 is a view from above of the antenna structure showing in detail a first power supply network for the first dipoles and a second power supply network for the second dipoles;
  • FIG. 3 is a view of the antenna structure with the supply networks, on the side of one of the first dipoles;
  • FIG. 4 is a view of the antenna structure with the supply networks, on the side of one of the second dipoles;
  • FIGS. 5 and 6 are views in perspective and from above of a cage grouping four antenna structures.
  • FIG. 7 is a perspective view of a group of four stands according to FIG. 5.
  • an antenna structure SA with a double polarization and two pairs of dipoles comprises two first dipoles in vee with cones 1 1 -12 for a first rectilinear polarization of the electric field, two second dipoles with cones 21 -22 for a second rectilinear polarization of the electric field orthogonal to the first polarization, and a square flat metal reflector 3 supporting the dipoles 1 1 -12 and 21-22 by tubular metal legs 13, 14 and 23, 24 fixed on square hollow metal crosspieces 15, 16 and 25, 26.
  • the SA structure composed of the aforementioned elements is symmetrical with respect to an axis of symmetry ZZ perpendicular and central to the reflector.
  • the first dipoles 1 1 -12 are arranged symmetrically with respect to a first plane of symmetry YY-ZZ perpendicular to the reflector and parallel to the first sides of the reflector.
  • the seconds dipoles 21 -22 are arranged symmetrically with respect to a second plane of symmetry XX-ZZ perpendicular to the reflector and the first plane of symmetry YY-ZZ and parallel to the second sides of the reflector.
  • a power supply network 4 of the dipoles 1 1 -12 and a supply network 5 of the dipoles 21 -22 are included in the feet 13 and 23 and the crosspieces 15 and 25.
  • the structure is intended to operate in transmission and / or reception in a predetermined frequency band of an octave [f, 2f], included in the VHF and UHF bands, for example [100, 200] MHz or [200, 400] MHz.
  • Each dipole 1 1 -12, 21 -22 as an antenna comprises two vee arms formed by identical metal cone cones 1 1 and 12, 21 and 22 and a dielectric elbow 17, 27 between the horns.
  • the small bases of the frustoconical cones 1 1 and 12, 21 and 22 are fitted into the ends of the sleeve 17, 27.
  • the sleeves 17 and 27 are made for example of fiberglass, or any other non-conductive electrical material not degrading the performance in impedance matching of the antenna structure.
  • the sleeves consist of two half-shells having ends forming clamps around the small bases of the frustoconical cones.
  • the sleeves participate in sealing the ends of the supply networks 4 and 5 in the cones.
  • the large bases of the cones 1 1 and 12, 21 and 22 located opposite the sleeves 17, 27 are closed by thin circular plugs 18, 28.
  • the plugs can be dielectric or metal and also participate in the sealing of the networks. feeding in the cornets.
  • the horns January 1 and 12 of the first dipoles have dimensions different from those of the horns 21 and 22 of the second dipoles.
  • the horns January 1 and 12 and the ends of the feed system 4 therein are sized and oriented so that the first dipoles radiate or pick up waves with the first rectilinear polarization in the frequency band [f, 2f].
  • the horns 21 and 22 and the ends of the feed system 5 therein are dimensioned and oriented so that the second dipoles radiate or pick up waves with the second straight polarization in the band. frequency [f, 2f].
  • the horns January 1 and 12 have small bases and large bases respectively larger than those of the horns 21 and 22 and are shorter than the horns 21 and 22.
  • the ends of the tubular legs 13 and 14, 23 and 24 are welded to the horns 1 1 and 12, 21 and 23 at orifices substantially mid-length of the horns.
  • the length of the horns and feet is less than ⁇ / 4, ⁇ being the wavelength corresponding to the low operating frequency f of the band [f, 2f].
  • the length of the dielectric sleeves 17 and 27 is very small compared to the wavelength ⁇ .
  • the waves relating to each dipole 1 1 -12, 21 -22 are more confined around the narrow portions of the dipole horns connected by the sleeve 17, 27 which is transparent to the radio waves and which seals the end of the supply network included in the dipole.
  • the horns and sleeves may have a regular circular or polygonal cross section, for example hexagonal or octagonal.
  • the cones can be made by rolling or folding a metal sheet or by discretizing the frustoconical profile by means of a frustoconical sheet of metal son stretched and welded to the bases of the cones.
  • the horns, the reflector, the feet and the cross members may be for example aluminum or a light alloy so that the mass of the antennal structure is low.
  • the orientations of the horns of the dipoles in vee 1 1 -12 and 21 -22 vis-à-vis the flat reflector 3 are also different to optimize the omnidirectionality of the radiated waves or captured by the pairs of dipoles 1 1 -12 and 21 - 22 for both polarizations.
  • the obtuse angle cc1 of the bent sleeve 17 between the axes of revolution of the frustoconical cones 1 1 and 12 is greater than the obtuse angle cc2 of the bent sleeve 27 between the half-planes of an obtuse dihedral each containing the axis d a horn 21, 22 and the axis of the foot 23, 24 supporting the horn 21, 22.
  • the axes of the frustoconical cones 1 1 and 12 of each first dipole and the axes of the feet 13 and 14 supporting these horns are located on a plane perpendicular to the reflector 3 and parallel to the plane of symmetry YY-ZZ, as shown in Figure 2.
  • the large bases 18 of the horns are closer to the reflector 3 than the sleeve 17 to the top of the vee of the first dipole, as shown in Figure 3.
  • the feet 13 and 14 of each first dipole 1 1 -12 are perpendicular respectively to the axes of the horns 1 1 and 12 of the dipole and form between them an angle of 180 ° - cc1.
  • the dipole 1 1 -12 with its two feet is symmetrical with respect to the bisecting plane of the sleeve 17 perpendicular to the reflector 3.
  • the axes of the horns 1 1 and 12 of the two first dipoles and their feet 13 and 14 are thus contained in plans parallel to each other and perpendicular to the reflector.
  • the axes of the feet 23 and 24 supporting the horns 21 and 22 of each second dipole 21 -22 are perpendicular to the reflector 3 and each form with the axis of the overlying horn 21, 22 an acute angle ⁇ 2 greater than cc2 / 2, as shown in FIG. 4.
  • the axes of the horns 21 and 22 are contained in a secant plane of the reflector, and the sleeve 27 at the top of the vee of the second dipole is further from the reflector than the large bases 28 of the reflector.
  • horns 21 and 22 are inclined symmetrically with respect to the plane of symmetry XX-ZZ of the antenna structure above the reflector.
  • the distance between the sleeves 27 of the second dipoles is smaller than the distance between the plugs 28 in the large bases of the horns 21, 22 of the second dipoles oriented towards a common side of the reflector and substantially equal to the distance between the sleeves 17 of the first dipoles.
  • the spacing and the distance between the dipoles and the horn orientations make it possible to optimize the gain and the omnidirectionality of the grouping of each pair of dipoles 1 1 -12, 21 -22 over the entire frequency band of operation [f, 2 F].
  • the angled shape of the dipoles also contributes to reducing the size of the antennal structure SA.
  • the reflector 3 comprises a rigid square metal frame 31 formed by brackets and a wire mesh 32 fixed to the sides of the frame.
  • the length of the sides of the frame is at most equal to ⁇ / 2.
  • the mesh sides of the grid 32 are very small relative to the wavelength ⁇ so as to minimize the radiation towards the rear of the SA structure opposite the cones with respect to the reflector, while limiting the wind resistance and the weight of the structure.
  • the mesh pattern of the grid 32 may be of any shape.
  • the reflector is made by a solid metal surface, for example by a sheet.
  • the antennal structure can be protected by a radome ensuring its sealing.
  • the two crosspieces 15 and 16 and the two crosspieces 25 and 26 are perpendicular to each other and arranged parallel to the sides of the frame 31 respectively on the front and rear faces of the grid 32, and have fixed ends, for example screwed, to the sides of the frame which stiffens the grid and the frame. Ends of the legs 13 and 14 are welded at orifices respectively on the hollow crosspieces 15 and 16, and ends of the feet 23 and 24 are welded at orifices respectively on the hollow crosspieces 25 and 26.
  • the sleeves 17 and 27 are located in the middle of sides of a rectangle close to a square, coaxial with the frame and
  • the antenna structure SA more compact and allows a grouping of several antenna structures by arranging their reflectors side by side, as for example according to the antenna structure groupings shown in FIGS. 5 to 7.
  • the power supply networks 4 and 5 are connected to the outputs of a directional coupler by coaxial cables whose ends are connected to coaxial connectors 41 and 51 having bases welded to the middle of the rear sides of the cross member 15 supporting one 13 of the feet of each
  • the directional coupler is replaced by a 90 ° and wideband hybrid coupler connected to the coaxial connectors 41 and 51 by the coaxial cables so that the antenna structure operates with a circular polarization.
  • the supply networks 4 and 5 are in coaxial lines having, respectively, as external conductors, the walls of the square-section crosspieces 15 and 25, circular section legs 13 and 23 of the dipoles 11 -12 and 21 -22 5 as well as frustoconical cones 1 1 and 21 and, as internal conductors, cylindrical cores made of metal, for example aluminum, centered in these crosspieces and feet by dielectric line centerers 151, 131 and 251, 231.
  • the section of the metal cores of the coaxial lines in the crosspieces 15 and 25 and the feet 13 and 23 vary regularly in order to improve the impedance matching in the frequency band [f, 2f].
  • the coaxial lines formed in the crosspieces 15 and 25 and the feet 13 and 23 may be replaced by coaxial cables combined with impedance matching means and housed inside the crosspieces.
  • the part of the supply network 4 for a first dipole 1 1 - 12 comprises from the connector 41 a coaxial line section 42 with a core passing through the centralizers 151 in the crosspiece 15, a coaxial line section 43 with a core passing through the centralizers
  • the metal mass return element 121 constitutes a
  • Coaxial line termination and may be a transverse metal disk, or evenly distributed diametrical metal wires, fixed inside the horn 12.
  • the portion of the supply network 4 for the other first dipole 1 1 -12 is identical to that described above and symmetrical thereof with respect to the plane of symmetry YY-ZZ
  • the part of the supply network 5 for a second dipole 21 - 22 comprises from the connector 51 a coaxial line section 52 with a core passing through the centralizers 251 in the crosspiece 25, a coaxial line section 53 with a core passing through the centralizers 5 231 in the foot 23 of the dipole 21 -22 and having an end opening into the horn 21 of the dipole 21 -22, a coaxial line section 54 with a core passing through a dielectric center 21 1 in the horn 21 located between the foot 23 and the sleeve 27 and a metal impedance matching washer 271 located at the junction of the horn 21 and the dielectric sleeve 27, and a bent core 55 passing through the dielectric sleeve 27 of the dipole 21 -22 and having a fixed end in the center of a metal return element 221 fixed in the vicinity of the small metal base of the other horn 22 of the dipole 21 -22.
  • the metal mass return element 221 is similar to the return element
  • the part of the supply network 5 for the other second dipole 21 -22 is identical to that described above and symmetrical thereof with respect to the plane of symmetry XX-ZZ passing through the connector 51 fixed to the crossbar 25 .
  • the metal washers 171 and 271 are respectively fixed to the small bases of the dipoles 1 1 and 21 and crossed without electrical and mechanical contact by the ends of the webs of the supply networks 4 and 5.
  • the metal washers are dimensioned to optimize the adaptation impedance of power supply networks
  • the first two dipoles 1 1 -12 are energized in phase and the two second dipoles 21 -22 are also
  • FIGS. 5 and 6 four dual polarization antenna structures SA1 to SA4 each with a pair of first dipoles 11-12 and a pair of second dipoles 21-22, such as the antenna structure SA, are grouped together to form a cubic cage CG.
  • the reflectors 3 of the antenna structures SA1 to SA4 are arranged on two pairs of parallel faces of the cubic cage.
  • the arrangement of the reflectors 3 of the antenna structures SA1 to SA4 is maintained by arrangement of rods and bars (not shown) supporting the reflectors and fixed for example at the top of a pylon.
  • Two parallel sides of the reflector frame 31 of each antenna structure may be connected to sides of the reflector frames of two other antenna structures.
  • Two parallel faces of the cubic cage CG are hollow.
  • the dipoles of the antennal structures SA1 to SA4 are outside the cage CG.
  • the edges of the cage have a length substantially equal to the half-wavelength ⁇ / 2.
  • the reflectors 3 of the structures SA1 to SA4 are placed vertically at the top of the pylon so that the hollow faces of the cage CG are horizontal, the first dipoles January 1 -12 are oriented globally vertically to radiate or pick up omnidirectionally waves with a vertical rectilinear polarization, and the second dipoles 21-22 are oriented horizontally horizontally to radiate or pick up omnidirectionally waves with horizontal linear polarization.
  • FIG. 7 shows a group of four cages CG1 to CG4 each having four antenna structures SA1 to SA4 and hollow faces stacked coaxially with their fixed edges to each other.
  • This stack of cages side by side is compact thanks to the angled shape of the dipoles and the arrangement of the dipoles not overlapping the sides of the reflectors of each antennal structure.
  • the omnidirectional character of the group of cages appears in the central annular zone lighter than the zones side of the DR diagram between the two pairs of cages CG1 -CG2 and CG3-CG4.
  • the invention also relates to any antenna structure having a single polarization having two horned dipoles January 1 -12 or 21 -22 fixed on a reflector 3 and all grouping of several antennal structures with single polarization.
  • the two second horned vee dipoles 21-22, the feet 23 and 24, the crosspieces 25 and 26 and the feed network 5 are omitted in FIGS. 1-4 when the single polarization antenna structure comprises only the first two dipoles in vee with cornets 1 1 -12.
  • the first two horned vee dipoles January 1 -12, the feet 13 and 14, the crosspieces 15 and 16 and the feed network 4 are deleted in FIGS. 1 to 4 when the single polarization antenna structure comprises only the two second dipoles in vee with cones 21 -22.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

Une structure antennaire de faible encombrement à large bande de fréquence d'au moins une octave comprend un réflecteur plat carré (3) de côté au plus égal à la moitié de la longueur d'onde λ correspondant à la fréquence basse de la bande, deux dipôles symétriques en vé (11 -12; 21 -22) associés à une polarisation rectiligne et ayant chacun deux cornets métalliques, et des pieds métalliques creux (13, 14; 23, 24) transversaux aux cornets. Les dipôles sont contenus par projection perpendiculaire au réflecteur dans le réflecteur. Les cornets et les pieds ont des longueurs inférieures à λ/4. Un réseau d'alimentation coaxial (4; 5) s'étend dans le pied (13; 23) de l'un (11; 21 ) des cornets de chaque dipôle et dans les dipôles pour alimenter en phase les dipôles. La structure antennaire peut être utilisée dans un groupe de structures antennaires à double polarisation et diagramme de rayonnement omnidirectionnel.

Description

Structure antennaire à dipôles
La présente invention concerne une structure antennaire large bande du type comprenant un dipôle à deux cornets métalliques. La structure antennaire peut être utilisée en réception pour l'interception de signaux radioélectriques, ou en émission pour la diffusion de signaux radioélectriques, notamment dans les bandes VHF et UHF.
Des structures antennaires directives ayant plusieurs dipôles sont connues. Par exemple, une telle structure antennaire à double polarisation comprend deux premiers dipôles parallèles à brins formant un ensemble directif avec une polarisation rectiligne verticale et deux seconds dipôles parallèles à brins formant un autre ensemble directif pour une polarisation rectiligne horizontale. Les brins de chaque dipôle sont colinéaires. Les quatre dipôles sont disposés suivant les côtés d'un carré et fixés par quatre pieds au-dessus d'un panneau réflecteur grillagé beaucoup plus large que le carré. La bande de fréquence de fonctionnement de cette structure antennaire est étroite, par exemple comprise entre 174 MHz et 240 MHz, et ainsi largement inférieure à une octave. Lorsque plusieurs structures antennaires sont groupées, les performances en rayonnement et gain des structures antennaires sont fortement dégradées sur une octave.
Le réflecteur a des dimensions beaucoup plus grandes que la demi-longueur d'onde associée à la fréquence basse de fonctionnement. Par exemple, le réflecteur est un carré ayant des côtés de longueur 1300 mm nettement plus grande que ladite demi-longueur d'onde λ/2 = 862 mm. Si ces structures antennaires sont groupées par exemple en cube, les dimensions du groupe cubique des structures antennaires deviennent alors trop grandes pour obtenir un diagramme omnidirectionnel pour la fréquence double de la fréquence basse de fonctionnement.
L'invention a pour objectif de fournir une structure antennaire avec deux dipôles associés à une polarisation rectiligne, adaptée à une plus large bande de fréquence de fonctionnement et d'un encombrement plus réduit pour une fréquence basse de fonctionnement prédéterminée. La structure antennaire est utilisable dans un groupe de structures antennaires présentant un diagramme de rayonnement omnidirectionnel pour toute la bande de fréquence de fonctionnement.
Pour parvenir à cet objectif, une structure antennaire selon l'invention comprenant un réflecteur plat, deux dipôles symétriques par rapport à un plan de symétrie perpendiculaire au réflecteur et un réseau d'alimentation des dipôles, est caractérisée en ce que
la longueur des côtés du réflecteur est au plus égale à la moitié de la longueur d'onde correspondant à la fréquence basse d'une bande de fréquence de fonctionnement,
chacun des dipôles a deux cornets métalliques formant un vé, des pieds métalliques creux sont fixés transversalement aux cornets et sur le réflecteur de sorte que des projections des dipôles orthogonales au réflecteur soient contenues dans le réflecteur,
les cornets et les pieds ont des longueurs inférieures au quart de la longueur d'onde, et
le réseau d'alimentation s'étend pour chaque dipôle dans le pied de l'un des cornets et dans ledit chaque dipôle entre le pied dudit un cornet et la petite base de l'autre cornet pour alimenter symétriquement les dipôles.
La structure antennaire de l'invention possède des dipôles et un réflecteur portant les dipôles ayant de petites dimensions vis-à-vis de la longueur d'onde associée à la fréquence basse de fonctionnement. Cette caractéristique associée à la forme en vé des dipôles à cornets confère un encombrement réduit à la structure antennaire et permet ainsi un groupement de plusieurs structures antennaires selon l'invention sur un pylône, tout en offrant une meilleure omnidirectionnalité des diagrammes de rayonnement sur une large bande de fréquence d'au moins une octave.
Les faibles pertes et la bonne tenue en puissance élevée des cornets des dipôles, la forme en vé, le positionnement et l'écartement des dipôles et leurs distances au réflecteur ainsi que l'orientation des cornets des dipôles, par exemple tronconiques ou pyramidaux tronqués, au-dessus du réflecteur contribuent à l'obtention de diagrammes de rayonnement et de gains contrôlés sur des bandes passantes de l'ordre de l'octave. Diverses caractéristiques de la structure antennaire énoncées ci-après en combinaison avec celles énoncées ci-dessus contribuent à l'amélioration de ces résultats.
Chaque dipôle peut comprendre un manchon coudé diélectrique fixé aux petites bases des cornets, assurant l'étanchéité d'une extrémité du réseau d'alimentation.
Selon une première réalisation, les axes des cornets de chaque dipôle et les axes des pieds des cornets peuvent être situés sur un plan perpendiculaire au réflecteur, et les grandes bases des cornets peuvent être plus proches du réflecteur que les sommets des vés formés par les dipôles.
Selon une seconde réalisation, l'axe de l'un des cornets de chaque dipôle et l'axe du pied dudit un cornet peuvent être coplanaires au demi-plan d'un dièdre obtus dont l'autre demi-plan est coplanaire à l'axe de l'autre cornet dudit chaque dipôle et l'axe du pied de l'autre cornet, et les grandes bases de deux cornets des dipôles orientées vers un côté du réflecteur peuvent être plus éloignées entre elles que les sommets des vés formés par les dipôles et peuvent être plus proches du réflecteur que les sommets des vés.
Par ailleurs, le réseau d'alimentation peut être avantageusement noyé dans la structure antennaire sans recourir à des câbles ou fils apparents et en conservant le caractère coaxial du câble alimentant la structure antennaire et serpentant par exemple dans un pylône dont le sommet supporte la structure antennaire. A cet égard, des traverses creuses métalliques parallèles peuvent être fixées à deux côtés du réflecteur et supporter chacune les pieds de deux cornets, et le réseau d'alimentation peut s'étendre depuis un connecteur fixé sur l'une des traverses entre les deux pieds supportés par ladite une traverse, jusqu'aux dipôles à travers ladite une traverse et lesdits deux pieds. Bien que le réseau d'alimentation puisse comporter des câbles coaxiaux combinés à des moyens d'adaptation d'impédance et logés à l'intérieur de ladite une traverse et desdits deux pieds, l'adaptation d'impédance des dipôles et du réseau d'alimentation avec l'impédance caractéristique du câble coaxial alimentant la structure antennaire est facilitée lorsque le réseau d'alimentation est en ligne coaxiale ayant, comme conducteur externe, les parois de ladite une traverse, desdits deux pieds et les cornets supportés par lesdits deux pieds et, comme conducteur interne, des âmes métalliques centrées dans ladite une traverse et lesdits deux pieds, et pour chaque dipôle une âme coudée traversant centralement le dipôle depuis le niveau du pied du cornet faisant office de conducteur externe jusqu'au moins un élément métallique de retour de masse fixé au voisinage de la petite base de l'autre cornet du dipôle.
L'adaptation d'impédance dans chaque dipôle peut être réalisée notamment au moyen d'une rondelle métallique d'adaptation d'impédance, faisant office d'iris au niveau de la petite base de l'un des cornets, traversée sans contact par l'âme coudée du réseau d'alimentation dans le dipôle. L'adaptation peut également se faire par des modifications successives du diamètre de l'âme métallique en différents endroits à l'intérieur des traverses métalliques.
Pour alléger le réflecteur et le rendre moins résistant au vent, le réflecteur peut comprendre un cadre métallique, par exemple carré, et une grille de fils métalliques fixée aux côtés du cadre.
La structure antennaire est utilisable en unitaire comme cela a été présenté ci-dessus. Cependant ses performances sont optimisées pour une utilisation en groupement afin de fournir un diagramme omnidirectionnel. Plusieurs structures antennaires selon l'invention peuvent être groupées en reliant deux côtés parallèles du réflecteur de chaque structure antennaire à des côtés des réflecteurs de deux autres structures antennaires pour former une cage polyédrique, ayant deux faces parallèles creuses, les dipôles étant positionnés à l'extérieur de la cage et orientés globalement suivant une direction commune. Par exemple, les faces parallèles creuses sont triangulaires équilatérales pour un groupe de trois structures antennaires ou sont carrées pour un groupe de quatre structures antennaires. Une structure antennaire selon l'invention peut être destinée à un fonctionnement à simple polarisation rectiligne, comme présentée ci-dessus. Cependant, elle peut être destinée à un fonctionnement à deux polarisations rectilignes croisées ou encore à polarisation circulaire ou elliptique, tout en couvrant une bande passante d'au moins une octave.
Dans ce cas, la structure antennaire comprenant un réflecteur plat carré, deux premiers dipôles symétriques par rapport à un premier plan de symétrie perpendiculaire au réflecteur, deux seconds dipôles symétriques par rapport à un second plan de symétrie perpendiculaire au réflecteur et au premier plan de symétrie, un premier réseau d'alimentation des premiers dipôles et un second réseau d'alimentation des seconds dipôles, est caractérisée en ce que
la longueur des côtés du réflecteur est au plus égale à la moitié de la longueur d'onde correspondant à la fréquence basse d'une bande de fréquence de fonctionnement,
chacun des premiers dipôles a deux cornets métalliques formant un vé et soutenus transversalement par des premiers pieds métalliques creux fixés sur le réflecteur de sorte que des projections des premiers dipôles orthogonales au réflecteur soient contenues dans le réflecteur, chacun des seconds dipôles a deux cornets métalliques formant un vé et soutenus transversalement par des seconds pieds métalliques creux fixés sur le réflecteur de sorte que des projections des seconds dipôles orthogonales au réflecteur soient contenues dans le réflecteur, les cornets et les pieds de tous les dipôles ont des longueurs inférieures au quart de la longueur d'onde,
le premier réseau d'alimentation a le premier plan de symétrie et s'étend pour chaque premier dipôle dans le pied de l'un des cornets dudit chaque premier dipôle et dans ledit chaque dipôle entre le pied dudit un cornet et la petite base de l'autre cornet dudit chaque premier dipôle, pour alimenter en phase les premiers dipôles, et
le second réseau d'alimentation a le second plan de symétrie et s'étend pour chaque second dipôle dans le pied de l'un des cornets dudit chaque second dipôle et dans ledit chaque dipôle entre le pied dudit un cornet et la petite base de l'autre cornet dudit chaque second dipôle, pour alimenter en phase les seconds dipôles.
La structure antennaire à quatre dipôles peut être telle que pour chaque premier dipôle, les axes des cornets et les axes des pieds des cornets sont situés sur un plan perpendiculaire au réflecteur, et les grandes bases des cornets sont plus proches du réflecteur que le sommet du vé formé par ledit chaque premier dipôle, et
pour chaque second dipôle, l'axe de l'un des cornets et l'axe du pied dudit un cornet sont coplanaires au demi-plan d'un dièdre obtus dont l'autre demi-plan est coplanaire à l'axe de l'autre cornet et l'axe du pied de l'autre cornet, et les grandes bases de deux cornets des seconds dipôles orientées vers un côté du réflecteur sont plus éloignées entre elles que les sommets des vés formés par les seconds dipôles et sont plus proches du réflecteur que les sommets des vés formés par les seconds dipôles.
Pour le premier réseau d'alimentation dans la structure antennaire à quatre dipôles peuvent être prévues des premières traverses creuses métalliques fixées perpendiculairement à deux côtés parallèles du réflecteur sur une face du réflecteur et supportant chacune les premiers pieds de deux cornets des premiers dipôles. Le premier réseau d'alimentation peut s'étendre alors depuis un connecteur fixé sur l'une des premières traverses entre les deux premiers pieds supportés par ladite une première traverse, jusqu'auxdits premiers dipôles à travers ladite une première traverse et lesdits deux premiers pieds. De manière similaire au premier réseau d'alimentation, il peut être prévu pour le second réseau d'alimentation des secondes traverses creuses métalliques fixées perpendiculairement à deux autres côtés parallèles du réflecteur sur une autre face du réflecteur et supportant chacune les seconds pieds de deux cornets des seconds dipôles. Le second réseau d'alimentation peut s'étendre alors depuis un connecteur fixé sur l'une des secondes traverses entre les deux seconds pieds supportés par ladite une seconde traverse, jusqu'auxdits seconds dipôles à travers ladite une seconde traverse et lesdits deux seconds pieds. D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description suivante de plusieurs réalisations préférées de l'invention, données à titre d'exemples non limitatifs, en référence aux dessins annexés correspondants dans lesquels :
- la figure 1 est une vue en perspective d'une structure antennaire à deux premiers dipoles et deux seconds dipoles pour des polarisations linéaires orthogonales, selon l'invention;
- la figure 2 est une vue de dessus de la structure antennaire montrant en détail un premier réseau d'alimentation pour les premiers dipoles et un second réseau d'alimentation pour les seconds dipoles;
- la figure 3 est une vue de la structure antennaire avec les réseaux d'alimentation, du côté de l'un des premiers dipoles;
- la figure 4 est une vue de la structure antennaire avec les réseaux d'alimentation, du côté de l'un des seconds dipoles;
- les figures 5 et 6 sont des vues en perspective et de dessus d'une cage groupant quatre structures antennaires; et
- la figure 7 est une vue en perspective d'un groupe de quatre cages selon la figure 5.
Comme montrée aux figures 1 à 4, une structure antennaire SA à double polarisation et deux paires de dipoles selon l'invention comprend deux premiers dipoles en vé à cornets 1 1 -12 pour une première polarisation rectiligne du champ électrique, deux seconds dipoles en vé à cornets 21 -22 pour une seconde polarisation rectiligne du champ électrique orthogonale à la première polarisation, et un réflecteur métallique plat carré 3 supportant les dipoles 1 1 -12 et 21 -22 par des pieds métalliques tubulaires 13, 14 et 23, 24 fixés sur des traverses creuses métalliques à section carrée 15, 16 et 25, 26. La structure SA composée des éléments précités est symétrique par rapport à un axe de symétrie ZZ perpendiculaire et central au réflecteur. Les premiers dipoles 1 1 -12 sont disposés symétriquement par rapport à un premier plan de symétrie YY-ZZ perpendiculaire au réflecteur et parallèle à des premiers côtés du réflecteur. Les seconds dipôles 21 -22 sont disposés symétriquement par rapport à un second plan de symétrie XX-ZZ perpendiculaire au réflecteur et au premier plan de symétrie YY-ZZ et parallèle aux seconds côtés du réflecteur. Un réseau d'alimentation 4 des dipôles 1 1 -12 et un réseau d'alimentation 5 des dipôles 21 -22 sont inclus dans les pieds 13 et 23 et les traverses 15 et 25. La structure est destinée à fonctionner en émission et/ou réception dans une bande de fréquence prédéterminée d'une octave [f, 2f], comprise dans les bandes VHF et UHF, comme par exemple [100, 200] MHz ou [200, 400] MHz.
Chaque dipôle 1 1 -12, 21 -22 en tant qu'antenne comprend deux bras en vé formés par des cornets tronconiques métalliques identiques 1 1 et 12, 21 et 22 et un manchon coudé diélectrique 17, 27 entre les cornets. Les petites bases des cornets tronconiques 1 1 et 12, 21 et 22 sont emmanchées dans les extrémités du manchon 17, 27. Les manchons 17 et 27 sont réalisés par exemple en fibre de verre, ou en tout autre matériau non conducteur électrique ne dégradant pas les performances en adaptation d'impédance de la structure antennaire. Selon la réalisation illustrée, les manchons sont constitués de deux demi-coquilles ayant des extrémités formant des colliers de serrage autour des petites bases des cornets tronconiques. Les manchons participent à l'étanchéité des extrémités des réseaux d'alimentation 4 et 5 dans les cornets. Les grandes bases des cornets 1 1 et 12, 21 et 22 situées à l'opposé des manchons 17, 27 sont fermées par des bouchons circulaires minces 18, 28. Les bouchons peuvent être diélectriques ou métalliques et participent également à l'étanchéité des réseaux d'alimentation dans les cornets.
Les cornets 1 1 et 12 des premiers dipôles ont des dimensions différentes de celles des cornets 21 et 22 des seconds dipôles. Les cornets 1 1 et 12 et les extrémités du système d'alimentation 4 dans ceux-ci sont dimensionnés et orientés pour que les premiers dipôles rayonnent ou captent des ondes avec la première polarisation rectiligne dans la bande de fréquence [f, 2f]. Les cornets 21 et 22 et les extrémités du système d'alimentation 5 dans ceux-ci sont dimensionnés et orientés pour que les seconds dipôles rayonnent ou captent des ondes avec la seconde polarisation rectiligne dans la bande de fréquence [f, 2f]. Les cornets 1 1 et 12 ont des petites bases et des grandes bases respectivement plus larges que celles des cornets 21 et 22 et sont plus courts que les cornets 21 et 22. Des extrémités des pieds tubulaires 13 et 14, 23 et 24 sont soudées aux cornets 1 1 et 12, 21 et 23 au niveau d'orifices sensiblement à mi-longueur des cornets. La longueur des cornets et des pieds est inférieure à λ/4, λ étant la longueur d'onde correspondant à la fréquence basse de fonctionnement f de la bande [f, 2f]. La longueur des manchons diélectriques 17 et 27 est très petite par rapport à la longueur d'onde λ. Aux fréquences hautes de la bande [f, 2f], les ondes relatives à chaque dipôle 1 1 -12, 21 -22 sont davantage confinées autour des portions étroites des cornets du dipôle reliées par le manchon 17, 27 qui est transparent aux ondes radioélectriques et qui assure l'étanchéité de l'extrémité du réseau d'alimentation incluse dans le dipôle.
Les cornets et les manchons peuvent avoir une section transversale circulaire ou polygonale régulière, par exemple hexagonale ou octogonale. Les cornets peuvent être réalisés par roulage ou pliage d'une feuille métallique ou par discrétisation du profil tronconique au moyen d'une nappe tronconique de fils métalliques tendus et soudés aux bases des cornets. Les cornets, le réflecteur, les pieds et les traverses peuvent être par exemple en aluminium ou en un alliage léger afin que la masse de la structure antennaire soit faible.
Les orientations des cornets des dipôles en vé 1 1 -12 et 21 -22 vis-à-vis du réflecteur plat 3 sont aussi différentes pour optimiser l'omnidirectionnalité des ondes rayonnées ou captées par les paires de dipôles 1 1 -12 et 21 -22 pour les deux polarisations. L'angle obtus cc1 du manchon coudé 17 entre les axes de révolution des cornets tronconiques 1 1 et 12 est plus grand que l'angle obtus cc2 du manchon coudé 27 entre les demi-plans d'un dièdre obtus contenant chacun l'axe d'un cornet 21 , 22 et l'axe du pied 23, 24 soutenant le cornet 21 , 22. Les axes des cornets tronconiques 1 1 et 12 de chaque premier dipôle et les axes des pieds 13 et 14 soutenant ces cornets sont situés sur un plan perpendiculaire au réflecteur 3 et parallèle au plan de symétrie YY-ZZ, comme montré à la figure 2. Les grandes bases 18 des cornets sont plus proches du réflecteur 3 que le manchon 17 au sommet du vé du premier dipôle, comme montré à la figure 3. Les pieds 13 et 14 de chaque premier dipôle 1 1 -12 sont perpendiculaires respectivement aux axes des cornets 1 1 et 12 du dipôle et forment entre eux un angle de 180° - cc1 . Le dipôle 1 1 -12 avec ses deux pieds est symétrique par rapport au plan bissecteur du manchon 17 perpendiculaire au réflecteur 3. Les axes des cornets 1 1 et 12 des deux premiers dipôles et de leurs pieds 13 et 14 sont ainsi contenus dans des plans parallèles entre eux et perpendiculaires au réflecteur. Les axes des pieds 23 et 24 soutenant les cornets 21 et 22 de chaque second dipôle 21 -22 sont perpendiculaires au réflecteur 3 et forment chacun avec l'axe du cornet sus-jacent 21 , 22 un angle aigu β2 supérieur à cc2/2, comme montré à la figure 4. Pour chaque second dipôle, les axes des cornets 21 et 22 sont contenus dans un plan sécant du réflecteur, et le manchon 27 au sommet du vé du second dipôle est plus éloigné du réflecteur que les grandes bases 28 des cornets 21 et 22. Les plans axiaux des deux seconds dipôles 21 -22 sont inclinés symétriquement par rapport au plan de symétrie XX-ZZ de la structure antennaire au-dessus du réflecteur. La distance entre les manchons 27 des seconds dipôles est plus petite que la distance entre les bouchons 28 dans les grandes bases des cornets 21 , 22 des seconds dipôles orientées vers un côté commun du réflecteur et sensiblement égale à la distance entre les manchons 17 des premiers dipôles. L'écartement et la distance entre les dipôles et les orientations des cornets permettent d'optimiser le gain et l'omnidirectionnalité du groupement de chaque paire de dipôles 1 1 -12, 21 -22 sur toute la bande de fréquence de fonctionnement [f, 2f]. La forme coudée des dipôles contribue aussi à réduire l'encombrement de la structure antennaire SA.
Le réflecteur 3 comprend un cadre rigide carré métallique 31 formé par des cornières et une grille de fils métalliques 32 fixée aux côtés du cadre. La longueur des côtés du cadre est au plus égale à λ/2. Les côtés des mailles de la grille 32 sont très petits par rapport à la longueur d'onde λ de manière à réduire au maximum le rayonnement vers l'arrière de la structure SA à l'opposé des cornets par rapport au réflecteur, tout en limitant la résistance au vent et le poids de la structure. Le motif des mailles de la grille 32 peut être de forme quelconque. En variante, le réflecteur est réalisé par une surface métallique pleine, par exemple par une tôle. La structure antennaire peut être protégée par un radôme assurant son étanchéité.
5 Les deux traverses 15 et 16 et les deux traverses 25 et 26 sont perpendiculaires entre elles et disposées parallèlement aux côtés du cadre 31 respectivement sur les faces avant et arrière de la grille 32, et ont des extrémités fixées, par exemple vissées, aux côtés du cadre ce qui rigidifie la grille et le cadre. Des extrémités des pieds 13 et 14 sont î o soudées au niveau d'orifices respectivement sur les traverses creuses 15 et 16, et des extrémités des pieds 23 et 24 sont soudées au niveau d'orifices respectivement sur les traverses creuses 25 et 26. En vue de dessus, comme montré à la figure 2, les manchons 17 et 27 sont situés au milieu de côtés d'un rectangle proche d'un carré, coaxial au cadre et
15 ayant des côtés parallèles aux côtés du cadre 31 et plus petits que ceux-ci de sorte que les projections de tous les dipôles 1 1 -12 et 21 -22 et de tous les pieds 13, 14 et 23, 24 orthogonalement au plan du réflecteur 3 soient contenues dans le cadre 31 . Cette disposition des dipôles ne débordant pas des côtés du réflecteur et la forme coudée
20 des dipôles rend plus compacte la structure antennaire SA et permet un groupement de plusieurs structures antennaires en disposant leurs réflecteurs côte à côte, comme par exemple selon les groupements de structures antennaires montrés aux figures 5 à 7.
Les réseaux d'alimentation 4 et 5 des dipôles sont maintenant
25 décrits en référence aux figures 2, 3 et 4. Les réseaux d'alimentation 4 et 5 sont reliés aux sorties d'un coupleur directif par des câbles coaxiaux dont des extrémités sont connectées à des connecteurs coaxiaux 41 et 51 ayant des embases soudées au milieu des côtés arrière de la traverse 15 supportant l'un 13 des pieds de chaque
30 premier dipôle et de la traverse 25 supportant l'un 23 des pieds de chaque second dipôle. En variante, le coupleur directif est remplacé par un coupleur hybride à 90° et large bande connecté aux connecteurs coaxiaux 41 et 51 par les câbles coaxiaux pour que la structure antennaire fonctionne avec une polarisation circulaire. A partir des connecteurs 41 et 51 , les réseaux d'alimentation 4 et 5 sont en lignes coaxiales ayant respectivement, comme conducteurs externes, les parois des traverses à section carrée 15 et 25, des pieds à section circulaire 13 et 23 des dipôles 1 1 -12 et 21 -22 5 ainsi que des cornets tronconiques 1 1 et 21 et, comme conducteurs internes, des âmes cylindriques métalliques, par exemple en aluminium, centrées dans ces traverses et pieds par des centreurs de ligne diélectriques 151 , 131 et 251 , 231 . La section des âmes métalliques des lignes coaxiales dans les traverses 15 et 25 et les î o pieds 13 et 23 varient régulièrement afin d'améliorer l'adaptation d'impédance dans la bande de fréquence [f, 2f]. En variante, les lignes coaxiales formées dans les traverses 15 et 25 et les pieds 13 et 23 peuvent être remplacées par des câbles coaxiaux combinés à des moyens d'adaptation d'impédance et logés à l'intérieur des traverses
15 15 et 25 et des pieds 13 et 23.
La partie du réseau d'alimentation 4 pour un premier dipôle 1 1 - 12 comprend depuis le connecteur 41 un tronçon de ligne coaxiale 42 avec une âme traversant les centreurs 151 dans la traverse 15, un tronçon de ligne coaxiale 43 avec une âme traversant les centreurs
20 131 dans le pied 13 du dipôle 1 1 -12 et ayant une extrémité débouchant dans le cornet 1 1 du dipôle 1 1 -12, un tronçon de ligne coaxiale 44 avec une âme traversant un centreur diélectrique 1 1 1 dans le cornet 1 1 situé entre le pied 13 et le manchon 17, une rondelle métallique d'adaptation d'impédance 171 située à la jonction du cornet 1 1 et du
25 manchon diélectrique 17, et une âme coudée 45 traversant centralement le manchon diélectrique 17 du dipôle 1 1 -12 et ayant une extrémité fixée au centre d'un élément métallique de retour de masse 121 fixé au voisinage de la petite base de l'autre cornet 12 du dipôle 1 1 -12. L'élément métallique de retour de masse 121 constitue une
30 terminaison de ligne coaxiale et peut être un disque métallique transversal, ou des fils métalliques diamétraux régulièrement répartis, fixés à l'intérieur du cornet 12. La partie du réseau d'alimentation 4 pour l'autre premier dipôle 1 1 -12 est identique à celui décrit ci-dessus et symétrique de celui-ci par rapport au plan de symétrie YY-ZZ
35 passant par le connecteur 41 fixé à la traverse 15. La partie du réseau d'alimentation 5 pour un second dipôle 21 - 22 comprend depuis le connecteur 51 un tronçon de ligne coaxiale 52 avec une âme traversant les centreurs 251 dans la traverse 25, un tronçon de ligne coaxiale 53 avec une âme traversant les centreurs 5 231 dans le pied 23 du dipôle 21 -22 et ayant une extrémité débouchant dans le cornet 21 du dipôle 21 -22, un tronçon de ligne coaxiale 54 avec une âme traversant un centreur diélectrique 21 1 dans le cornet 21 situé entre le pied 23 et le manchon 27 et une rondelle métallique d'adaptation d'impédance 271 située à la jonction du cornet 21 et du î o manchon diélectrique 27, et une âme coudée 55 traversant le manchon diélectrique 27 du dipôle 21 -22 et ayant une extrémité fixée au centre d'un élément métallique de retour de masse 221 fixé au voisinage de la petite base métallique de l'autre cornet 22 du dipôle 21 -22. L'élément métallique de retour de masse 221 est similaire à l'élément de retour
15 de masse 121 et constitue une terminaison de ligne coaxiale. La partie du réseau d'alimentation 5 pour l'autre second dipôle 21 -22 est identique à celui décrit ci-dessus et symétrique de celui-ci par rapport au plan de symétrie XX-ZZ passant par le connecteur 51 fixé à la traverse 25.
20 Les rondelles métalliques 171 et 271 sont respectivement fixées aux petites bases des dipôles 1 1 et 21 et traversées sans contact électrique et mécanique par les extrémités des âmes des réseaux d'alimentation 4 et 5. Les rondelles métalliques sont dimensionnées pour optimiser l'adaptation d'impédance des réseaux d'alimentation en
25 supplément de l'adaptation d'impédance par les diverses sections des âmes des tronçons de ligne coaxiale dans les pieds 13 et 23 et les traverses 15 et 25. Les diamètres des trous dans les rondelles métalliques 171 et 271 pour le libre passage des âmes extrêmes des réseaux d'alimentation sont aussi déterminés pour une modification
30 significative de l'impédance complexe des dipôles sur l'ensemble de la bande de fréquence prédéterminée [f, 2f].
Compte tenu de la symétrie des réseaux d'alimentation 4 et 5 pour chacune des deux polarisations, les deux premiers dipôles 1 1 -12 sont alimentés en phase et les deux seconds dipôles 21 -22 sont aussi
35 alimentés en phase. Comme montré aux figures 5 et 6, quatre structures antennaires à double polarisation SA1 à SA4 chacune avec une paire de premiers dipoles 1 1 -12 et une paire de seconds dipoles 21 -22, telles que la structure antennaire SA, sont groupées pour former une cage cubique CG. Les réflecteurs 3 des structures antennaires SA1 à SA4 sont disposés sur deux paires de faces parallèles de la cage cubique. La disposition des réflecteurs 3 des structures antennaires SA1 à SA4 est maintenue par agencement de tiges et de barres (non représentées) supportant les réflecteurs et fixé par exemple au sommet d'un pylône. Deux côtés parallèles du cadre 31 du réflecteur de chaque structure antennaire peuvent être reliés à des côtés des cadres des réflecteurs de deux autres structures antennaires. Deux faces parallèles de la cage cubique CG sont creuses. Les dipoles des structures antennaires SA1 à SA4 sont à l'extérieur de la cage CG. Les arêtes de la cage ont une longueur sensiblement égale à la demi-longueur d'onde λ/2. Par exemple, les réflecteurs 3 des structures SA1 à SA4 sont mis verticalement au sommet du pylône de sorte que les faces creuses de la cage CG sont horizontales, les premiers dipoles 1 1 -12 sont orientés globalement verticalement pour rayonner ou capter omnidirectionnellement des ondes avec une polarisation rectiligne verticale, et les seconds dipoles 21 -22 sont orientés globalement horizontalement pour rayonner ou capter omnidirectionnellement des ondes avec une polarisation rectiligne horizontale.
La figure 7 montre un groupement de quatre cages CG1 à CG4 ayant chacune quatre structures antennaires SA1 à SA4 et des faces creuses empilées coaxialement avec leurs arêtes fixées les unes aux autres. Cet empilage de cages côte à côte est compact grâce à la forme coudée des dipoles et à la disposition des dipoles ne débordant pas des côtés des réflecteurs de chaque structure antennaire. A la figure 7 est également montré un diagramme de rayonnement typique DR du groupement des cages orthogonal à l'axe de symétrie commun aux cages. Le caractère omnidirectionnel du groupement des cages apparaît dans la zone annulaire centrale plus claire que les zones latérales du diagramme DR entre les deux paires de cages CG1 -CG2 et CG3-CG4.
Bien que les réalisations décrites ci-dessus soient relatives à 5 des structures antennaires à double polarisation, l'invention concerne également toute structure antennaire à simple polarisation ayant deux dipôles à cornets 1 1 -12 ou 21 -22 fixés sur un réflecteur 3 et tout groupement de plusieurs structures antennaires à simple polarisation.
Les deux seconds dipôles en vé à cornets 21 -22, les pieds 23 et î o 24, les traverses 25 et 26 et le réseau d'alimentation 5 sont supprimés dans les figures 1 à 4 lorsque la structure antennaire à simple polarisation ne comprend que les deux premiers dipôles en vé à cornets 1 1 -12.
Les deux premiers dipôles en vé à cornets 1 1 -12, les pieds 13 et 15 14, les traverses 15 et 16 et le réseau d'alimentation 4 sont supprimés dans les figures 1 à 4 lorsque la structure antennaire à simple polarisation ne comprend que les deux seconds dipôles en vé à cornets 21 -22.

Claims

REVENDICATIONS
1 - Structure antennaire comprenant un réflecteur plat (3), deux dipôles (1 1 -12; ou 21 -22) symétriques par rapport à un plan de symétrie (YY-ZZ; ou XX-ZZ) perpendiculaire au réflecteur et un réseau d'alimentation (4; ou 5) des dipôles, caractérisée en ce que
la longueur des côtés du réflecteur (3) est au plus égale à la moitié de la longueur d'onde correspondant à la fréquence basse d'une bande de fréquence de fonctionnement,
chacun des dipôles (1 1 -12; ou 21 -22) a deux cornets métalliques formant un vé,
des pieds métalliques creux (13, 14; ou 23, 24) sont fixés transversalement aux cornets et sur le réflecteur de sorte que des projections des dipôles orthogonales au réflecteur soient contenues dans le réflecteur,
les cornets et les pieds ont des longueurs inférieures au quart de la longueur d'onde, et
le réseau d'alimentation (4; ou 5) s'étend pour chaque dipôle dans le pied (13; ou 23) de l'un (1 1 ; ou 21 ) des cornets et dans ledit chaque dipôle entre le pied dudit un cornet et la petite base de l'autre cornet (12; ou 22) pour alimenter symétriquement les dipôles.
2 - Structure antennaire selon la revendication 1 , dans laquelle chaque dipôle comprend un manchon coudé diélectrique (17; ou 27) fixé aux petites bases des cornets (1 1 , 12; ou 21 , 22).
3 - Structure antennaire selon la revendication 1 ou 2, dans laquelle les axes des cornets (1 1 , 12) de chaque dipôle et les axes des pieds (13, 14) des cornets sont situés sur un plan perpendiculaire au réflecteur (3), et les grandes bases (18) des cornets sont plus proches du réflecteur (3) que les sommets (17) des vés formés par les dipôles.
4 - Structure antennaire selon l'une des revendications 1 ou 2, dans laquelle l'axe de l'un (21 ) des cornets de chaque dipôle et l'axe du pied (23) dudit un cornet (21 ) sont coplanaires au demi-plan d'un dièdre obtus dont l'autre demi-plan est coplanaire à l'axe de l'autre cornet (22) et l'axe du pied (24) de l'autre cornet (22) dudit chaque dipôle, et les grandes bases (28) de deux cornets des dipôles orientées vers un côté du réflecteur sont plus éloignées entre elles que les sommets (17) des vés formés par les dipôles et sont plus proches du réflecteur (3) que les sommets (17) des vés.
5 - Structure antennaire selon l'une des revendications 1 à 4, comprenant des traverses creuses métalliques parallèles (15, 16; ou 25, 26) fixées à deux côtés du réflecteur (3) et supportant chacune les pieds (13, 14; ou 23, 24) de deux cornets, et le réseau d'alimentation (4; ou 5) s'étend depuis un connecteur (41 ; ou 51 ) fixé sur l'une (15; ou 25) des traverses entre les deux pieds (13; ou 23) supportés par ladite une traverse, jusqu'aux dipôles à travers ladite une traverse et lesdits deux pieds.
6 - Structure antennaire selon la revendication 5, dans laquelle le réseau d'alimentation (4; ou 5) est en ligne coaxiale ayant, comme conducteur externe, les parois de ladite une traverse (15; ou 25) et desdits deux pieds (13; ou 23) et, comme conducteur interne, des âmes métalliques (42, 43; ou 52, 53) centrées dans ladite une traverse, lesdits deux pieds et les cornets supportés par lesdits deux pieds, et pour chaque dipôle (1 1 -12; ou 21 -22) une âme coudée (44, 45; ou 54, 55) traversant centralement le dipôle depuis le niveau du pied (13; ou 23) du cornet (1 1 ; ou 21 ) faisant office de conducteur externe jusqu'au moins un élément métallique de retour de masse (121 ; ou 221 ) fixé au voisinage de la petite base de l'autre cornet (12; ou 22) du dipôle.
7 - Structure antennaire selon la revendication 6, dans laquelle chaque dipôle (1 1 -12; ou 21 -22) comprend une rondelle métallique d'adaptation d'impédance (171 ; ou 271 ) traversée sans contact par l'âme coudée (44, 45; ou 54, 55).
8 - Groupe de plusieurs structures antennaires (SA1 -SA4) selon l'une des revendications 1 à 7, dans lequel deux côtés parallèles du réflecteur (3) de chaque structure antennaire (SA1 ) sont reliés à des côtés des réflecteurs de deux autres structures antennaires (SA2, SA3) pour former une cage polyédrique (CG) ayant deux faces parallèles creuses, et les dipoles (1 1 -12; ou 21 -22) sont positionnés à l'extérieur de la cage et orientés globalement suivant une direction commune.
9 - Structure antennaire comprenant un réflecteur plat carré (3), deux premiers dipoles (1 1 -12) symétriques par rapport à un premier plan de symétrie (YY-ZZ) perpendiculaire au réflecteur, deux seconds dipoles (21 -22) symétriques par rapport à un second plan de symétrie (XX-ZZ) perpendiculaire au réflecteur et au premier plan de symétrie, un premier réseau d'alimentation (4) des premiers dipoles et un second réseau d'alimentation (5) des seconds dipoles, caractérisée en ce que la longueur des côtés du réflecteur (3) est au plus égale à la moitié de la longueur d'onde correspondant à la fréquence basse d'une bande de fréquence de fonctionnement,
chacun des premiers dipoles (1 1 -12) a deux cornets métalliques formant un vé et soutenus transversalement par des premiers pieds métalliques creux (13, 14) fixés sur le réflecteur de sorte que des projections des premiers dipoles orthogonales au réflecteur soient contenues dans le réflecteur,
chacun des seconds dipoles (21 -22) a deux cornets métalliques formant un vé et soutenus transversalement par des seconds pieds métalliques creux (23, 24) fixés sur le réflecteur de sorte que des projections des seconds dipoles orthogonales au réflecteur soient contenues dans le réflecteur,
les cornets et les pieds de tous les dipoles ont des longueurs inférieures au quart de la longueur d'onde,
le premier réseau d'alimentation (4) a le premier plan de symétrie (YY-ZZ) et s'étend pour chaque premier dipôle dans le pied (13) de l'un (1 1 ) des cornets dudit chaque premier dipôle et dans ledit chaque dipôle entre le pied dudit un cornet et la petite base de l'autre cornet (12) dudit chaque premier dipôle, pour alimenter en phase les premiers dipoles, et le second réseau d'alimentation (5) a le second plan de symétrie (XX-ZZ) et s'étend pour chaque second dipôle dans le pied (23) de l'un
(21 ) des cornets dudit chaque second dipôle et dans ledit chaque dipôle entre le pied dudit un cornet et la petite base de l'autre cornet
(22) dudit chaque second dipôle, pour alimenter en phase les seconds dipôles.
10 - Structure antennaire selon la revendication 9, dans laquelle pour chaque premier dipôle, les axes des cornets (1 1 , 12) et les axes des pieds (13, 14) des cornets sont situés sur un plan perpendiculaire au réflecteur (3), et les grandes bases (18) des cornets sont plus proches du réflecteur (3) que le sommet du vé (17) formé par ledit chaque premier dipôle, et
pour chaque second dipôle, l'axe de l'un (21 ) des cornets et l'axe du pied (23) dudit un cornet (21 ) sont coplanaires au demi-plan d'un dièdre obtus dont l'autre demi-plan est coplanaire à l'axe de l'autre cornet (22) et l'axe du pied (24) de l'autre cornet (22), et les grandes bases (28) de deux cornets des seconds dipôles orientées vers un côté du réflecteur sont plus éloignées entre elles que les sommets des vés (27) formés par les seconds dipôles et sont plus proches du réflecteur (3) que les sommets des vés formés par les seconds dipôles.
1 1 - Structure antennaire selon la revendication 9 ou 10, comprenant
des premières traverses creuses métalliques (15, 16) fixées perpendiculairement à deux côtés parallèles du réflecteur (3) sur une face du réflecteur et supportant chacune les premiers pieds (13) de deux cornets (1 1 ) des premiers dipôles, le premier réseau d'alimentation (4) s'étendant depuis un connecteur (41 ) fixé sur l'une (15) des premières traverses entre les deux premiers pieds (13) supportés par ladite une première traverse, jusqu'auxdits premiers dipôles (21 -22) à travers ladite une première traverse et lesdits deux premiers pieds, et
des secondes traverses creuses métalliques (25, 26) fixées perpendiculairement à deux autres côtés parallèles du réflecteur (3) sur une autre face du réflecteur et supportant chacune les seconds pieds (23) de deux cornets (21 ) des seconds dipôles, le second réseau d'alimentation (5) s'étendant depuis un connecteur (51 ) fixé sur l'une (25) des secondes traverses entre les deux seconds pieds (23) supportés par ladite une seconde traverse, jusqu'auxdits seconds dipôles (21 -22) à travers ladite une seconde traverse et lesdits deux seconds pieds.
EP11706290.1A 2010-03-04 2011-03-04 Structure antennaire à dipôles Active EP2543111B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1051557A FR2957194B1 (fr) 2010-03-04 2010-03-04 Structure antennaire a dipoles
PCT/EP2011/053318 WO2011107597A1 (fr) 2010-03-04 2011-03-04 Structure antennaire à dipôles

Publications (2)

Publication Number Publication Date
EP2543111A1 true EP2543111A1 (fr) 2013-01-09
EP2543111B1 EP2543111B1 (fr) 2014-05-07

Family

ID=42983647

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11706290.1A Active EP2543111B1 (fr) 2010-03-04 2011-03-04 Structure antennaire à dipôles

Country Status (3)

Country Link
EP (1) EP2543111B1 (fr)
FR (1) FR2957194B1 (fr)
WO (1) WO2011107597A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108461905A (zh) * 2018-03-16 2018-08-28 成都锦江电子***工程有限公司 开放套筒振子天线
CN109301503B (zh) * 2018-11-12 2024-01-30 深圳市安拓浦科技有限公司 一种小型集成天线
CN110233335B (zh) * 2019-05-09 2020-09-04 哈尔滨工业大学 基于人工磁导体的宽带小型化低剖面双极化天线
CN110752438B (zh) * 2019-11-05 2022-04-19 中信科移动通信技术股份有限公司 双极化fad辐射单元
CN112563732B (zh) * 2020-12-01 2021-12-31 中国人民解放军63923部队 一种uhf-s双频段抛物面天线改造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19823749C2 (de) * 1998-05-27 2002-07-11 Kathrein Werke Kg Dualpolarisierte Mehrbereichsantenne
DE19860121A1 (de) * 1998-12-23 2000-07-13 Kathrein Werke Kg Dualpolarisierter Dipolstrahler
US6275181B1 (en) * 1999-04-19 2001-08-14 Advantest Corporation Radio hologram observation apparatus and method therefor
CN101425626B (zh) * 2007-10-30 2013-10-16 京信通信***(中国)有限公司 宽频带环状双极化辐射单元及线阵天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011107597A1 *

Also Published As

Publication number Publication date
FR2957194B1 (fr) 2012-03-02
FR2957194A1 (fr) 2011-09-09
WO2011107597A1 (fr) 2011-09-09
EP2543111B1 (fr) 2014-05-07

Similar Documents

Publication Publication Date Title
EP2156511A1 (fr) Antenne volumique omnidirectionnelle
EP3646409B1 (fr) Structure antennaire colinéaire à accès indépendants
EP2543111B1 (fr) Structure antennaire à dipôles
FR2960710A1 (fr) Element rayonnant a double polarisation d'antenne multibande
CA2812722C (fr) Antenne de grande dimension a ondes de surface et a large bande
FR2652453A1 (fr) Antenne coaxiale a fentes du type a alimentation a ondes progressives.
FR2911725A1 (fr) Antenne ou element d'antenne ultra-large bande.
FR2655204A1 (fr) Antenne-reseau d'alimentation de guides d'onde.
FR2863111A1 (fr) Antenne en reseau multi-bande a double polarisation
EP1690317B1 (fr) Antenne en reseau multi-bande a double polarisation
FR2482789A1 (fr) Perfectionnements apportes aux antennes constituees d'elements coaxiaux
WO2006125925A1 (fr) Antenne monopole
EP1516393B1 (fr) Dispositif rayonnant bi-bande a double polarisation
EP2449629B1 (fr) Systeme antennaire compacte omnidirectionnel et large bande comportant deux acces emission et reception separes fortement decouples
EP0352160A1 (fr) Antenne omnidirectionnelle, notamment pour l'émission de signaux de radiodiffusion ou de télévision dans la bande des ondes décimétriques, et système rayonnant formé d'un groupement de ces antennes
FR2836601A1 (fr) Antenne monopolaire ou dipolaire a large bande
EP2880712B1 (fr) Procédé de découplage électromagnétique entre une antenne et son mât de support et mât de support correspondant
EP2226896B1 (fr) Antenne omnidirectionnelle multibande
WO2004006386A1 (fr) Dispositif rayonnant bi-bande a polarisations coplanaires
WO2023117192A1 (fr) Dispositif antennaire à deux réseaux de dipôles et systeme de communication associe
FR2501422A1 (fr) Antenne monocone
BE467303A (fr)
FR2996686A1 (fr) Procede et dispositif de decouplage electromagnetique entre deux systemes d'antennes montes sur un mat de support
EP0831550A1 (fr) Antenne-réseau polyvalente
FR3043261A1 (fr) Antenne biconique omnidirectionnelle tres large bande, ensemble antenne cable coaxial la comprenant et ensemble d'emission associe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120814

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PALUD, SEBASTIEN

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131008

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 667307

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011006788

Country of ref document: DE

Effective date: 20140618

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 667307

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140507

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140507

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140808

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140907

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011006788

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011006788

Country of ref document: DE

Effective date: 20150210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011006788

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150304

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151001

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150304

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150304

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110304

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240220

Year of fee payment: 14