EP2514933B1 - Hochdruckseitige Abtrennung von flüssigem Schmierstoff zur Schmierung volumetrisch arbeitender Expansionsmaschinen - Google Patents

Hochdruckseitige Abtrennung von flüssigem Schmierstoff zur Schmierung volumetrisch arbeitender Expansionsmaschinen Download PDF

Info

Publication number
EP2514933B1
EP2514933B1 EP11003288.5A EP11003288A EP2514933B1 EP 2514933 B1 EP2514933 B1 EP 2514933B1 EP 11003288 A EP11003288 A EP 11003288A EP 2514933 B1 EP2514933 B1 EP 2514933B1
Authority
EP
European Patent Office
Prior art keywords
lubricant
working medium
expansion machine
separator
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11003288.5A
Other languages
English (en)
French (fr)
Other versions
EP2514933A1 (de
Inventor
Richard Aumann
Andreas Schuster
Andreas Sichert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orcan Energy AG
Original Assignee
Orcan Energy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orcan Energy AG filed Critical Orcan Energy AG
Priority to EP11003288.5A priority Critical patent/EP2514933B1/de
Priority to US14/008,058 priority patent/US10024196B2/en
Priority to PCT/EP2012/001596 priority patent/WO2012143104A1/de
Priority to CN201280019104.6A priority patent/CN103547772B/zh
Publication of EP2514933A1 publication Critical patent/EP2514933A1/de
Application granted granted Critical
Publication of EP2514933B1 publication Critical patent/EP2514933B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/006Auxiliaries or details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/04Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/12Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/12Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type
    • F01C1/14Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F01C1/16Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member

Definitions

  • the present invention relates to volumetric expansion machines, and more particularly to methods and apparatus for lubricating the same.
  • ORC Organic Rankine Cycle
  • the working medium is brought to operating pressure by a feed pump, and it is supplied to it in an evaporator energy in the form of heat, which is provided by a combustion or a waste heat flow available.
  • the working fluid flows via a pressure tube to an expansion machine in which it is expanded to a lower pressure.
  • the expanded working medium vapor flows through a condenser, in which a heat exchange between the vaporous working medium and a cooling medium takes place, after which the condensed working medium is returned by a feed pump to the evaporator in a cyclic process.
  • volumetric expansion machines also referred to as positive displacement expansion machines, which include a working chamber and perform work during an increase in volume of that working chamber during expansion of the working medium.
  • expansion machines are realized, for example, in the form of piston expansion machines, screw expansion machines or scroller expander.
  • volumetric expansion machines are particularly used in small power class ORC systems (e.g., 1 to 500kW of electrical power).
  • ORC systems e.g., 1 to 500kW of electrical power.
  • volumetric expansion machines require lubrication by a lubricant in particular the piston or the mutually rolling profiles (flanks) of the expansion space and the bearings and the sliding walls of the working chamber. So it requires a lubrication of the bearings and the touching flanks.
  • a lubricant advantageously also results in a sealing of the working space of the expansion machine, whereby less steam is lost through overflow within the expansion machine and thus the efficiency is increased.
  • Lubrication with oil is advantageous, with oil and live steam passing through the expansion machine together, which necessitates a subsequent separation of oil and steam.
  • the lubrication can be easily realized. It gives here a soluble oil to the working medium.
  • the oil is present as finely divided droplets in the compressed vapor.
  • the high-pressure steam-oil spray is now passed through an oil separator, where oil is separated by a cyclone and the refrigerant leaves the oil separator in the direction of the vapor in the direction of the condenser.
  • the oil is now at high pressure and can be injected directly into the inlet area of the compression machine and directed to the bearings.
  • the oil is entrained with the low-pressure steam, brought to high pressure together with the steam and can then be separated again in the oil separator.
  • FIG. 1 illustrates a schematic diagram of such a lubrication system of the prior art.
  • a working medium is supplied from an evaporator 1 to an expansion machine 2.
  • the vaporous working medium is expanded and it is converted by a generator 3, the energy released into electrical energy.
  • a lubricant for example, a lubricating oil supplied.
  • the lubricant is used in the expansion machine of the bearing lubrication L and the flank lubrication F.
  • the lubricant leaves together with the relaxed working medium, the expansion machine 2.
  • the lubricant is in the form of a finely divided oil mist in the relaxed working medium and is separated in an oil separator 5 from the working fluid, so that this is supplied substantially oil-free from the oil separator 5 to a condenser 6.
  • the condensed working medium is supplied by a feed pump 7 to the evaporator 1 again.
  • the recovered oil is supplied via the oil circuit pump 4 of the expansion machine 2 again.
  • the lubrication system of the prior art has the following disadvantages. Since the lubricant (lubricating oil) is separated on the low pressure side after passing through the expansion machine 2, it is necessary to provide the oil circuit pump 4 which, since the lubricant is to be supplied to the high pressure side of the expansion machine 2, the same pressure difference as the feed pump 7 transporting the working medium has overcome, resulting in a high equipment cost with corresponding costs. In addition, a relatively large oil separator 5 is required, since the exhaust steam leaving the expansion machine 2 has a lower density, for example more than an order of magnitude lower density, compared with the expansion machine 2 which is supplied with fresh steam. This results in a large cost of materials with correspondingly high costs.
  • the cycle apparatus comprises the expansion machine, a feed pump, a lubricant separator and a working medium with a lubricant.
  • the method comprises the following steps.
  • the working medium is pressurized by means of the feed pump.
  • the pressurized working fluid is supplied by the feed pump to the lubricant separator. At least part of the lubricant is separated from the working medium with the lubricant separator. At least part of the deposited lubricant is supplied from the lubricant separator to the expansion machine.
  • the lubricant is separated from the working medium pressurized by the feed pump. In the prior art, however, this deposition is done from the expansion medium immediately leaving the working medium.
  • the provision of an oil circuit pump is unnecessary in the method according to the invention, since the deposited lubricant is present at a high pressure level.
  • the lubricant separator can be made smaller in comparison with the prior art, since the separation of the lubricant from the liquid takes place with high density instead of the exhaust steam.
  • the live steam temperature / enthalpy is not lowered undesirably by adding a relatively cold lubricant since the deposited lubricant is preferably used for lubricating the bearing of the expansion machine.
  • the suitable low temperature of the expansion machine supplied by the lubricant separator lubricant which causes an advantageous storage cooling and, secondly, the rapid startup of the thermodynamic cycle device due to the comparison with the prior art lower liquid inventory.
  • the cycle apparatus further comprises a condenser and an evaporator
  • the method according to the invention further comprises supplying the working medium from the expansion machine to the condenser, liquefying the working medium with the condenser, supplying the liquefied working medium from the condenser to the feed pump, Supplying the lubricant-depleted working medium from the lubricant separator to the evaporator, evaporating the lubricant-depleted working medium in the evaporator, and supplying the evaporated working medium to the expansion machine.
  • a portion of the lubricant remaining in the expansion machine supplied to the expansion lubricant serves to lubricate successive or sliding parts of the working chamber of the volumetric expansion machine ( edge lubrication).
  • edge lubrication the remaining portion of the lubricant has the appropriate temperature.
  • the remaining lubricant is heated in the evaporator together with the working medium and thereby does not reduce the energy content of the expansion steam supplied live steam.
  • the cycle apparatus may further comprise a food container
  • the step of supplying the liquefied working medium from the condenser to the feed pump may comprise the substeps of (i) supplying the liquefied working medium from the condenser to the food container and (ii) supplying the working medium from the food container to the feed pump.
  • a development of the last-mentioned further development comprises supplying the working medium from the food container to the feed pump simultaneous suction a low-lubricant and a lubricant-rich phase of the working medium from the food container or mixing a low-lubricant and a lubricant-rich phase of the working medium in the food container.
  • the working medium liquefied by the condenser is in the form of a suspension of working fluid and lubricant, in particular no or only a slight solution of lubricant in the working fluid takes place.
  • a minor solution is a solution of less than 15%, preferably less than 10%, most preferably less than 5% of lubricant in the working fluid. In this way, the lubricant in the lubricant separator can be well separated from the working fluid.
  • the separated lubricant can preferably flow to lubrication points of the expansion machine, in particular to a bearing of the expansion machine; wherein preferably a control of a volume flow of the lubricant to the expansion machine takes place.
  • a regulation of the volume flow can take place by means of a control valve in a line between the lubricant separator and the expansion machine.
  • a flow velocity of the working medium in the lubricant separator is reduced. This favors the phase separation of lubricant and working fluid.
  • the process according to the invention can advantageously be used for lubricating a volumetric expansion machine of an Organic Rankine Cycle (ORC) plant.
  • the working medium can be provided in the form of an organic working fluid. Fluorinated hydrocarbons can serve as a working medium, for example.
  • the working fluid is typically supplied substantially in vapor form from the evaporator to the expansion machine, the depleted working fluid may contain a proportion of lubricant in the liquid state, for example in the form of oil droplets entrained with the working fluid vapor.
  • the lubricant in the form of oil droplets may, for example, be a refrigerant oil which, in combination with a working fluid, has a miscibility gap (see also detailed description below).
  • Suitable refrigerant oils are produced, for example, based on polyalphaolefin (PAO, base fluid for lubricants, eg Rensio Synth 68 from Fuchs Europe Schmierstoffe GmbH) or alkylbenzene base (eg Rensio SP 220 from Fuchs Europe Schmierstoffe GmbH).
  • PAO polyalphaolefin
  • base fluid for lubricants eg Rensio Synth 68 from Fuchs Europe Schmierstoffe GmbH
  • alkylbenzene base eg Rensio SP 220 from Fuchs Europe Schmierstoffe GmbH
  • thermodynamic cycle device includes: a working fluid having a working fluid and a lubricant, an expansion engine, a feed pump for pressurizing the working fluid, and a lubricant separator for separating at least a portion of the lubricant from the working fluid, the cyclic processing device configured to include at least a portion of the deposited lubricant from the lubricant separator to the expansion machine.
  • thermodynamic cycle apparatus of the present invention may further comprise: a condenser for liquefying the working medium, and an evaporator for vaporizing the depleted working medium, the cycle apparatus being adapted to supply the working medium from the expander to the condenser, the depleted working medium of to deliver the lubricant separator to the evaporator, and to deliver the vaporized working fluid to the expansion machine.
  • the cycle apparatus may further comprise a food container, wherein the cycle processor is adapted to supply the liquefied working medium from the condenser to the food container and to supply the working fluid from the food container to the feed pump.
  • a suction device may be provided for aspirating at least one floating, lubricant-rich phase of the working medium in the food container or it may be provided a suction device for simultaneous extraction of a low-lubricant and a lubricant-rich phase of the working medium from the food container or it may be a mixing device for mixing a low-lubricant and a lubricant-rich phase of the working medium may be provided in the food container.
  • the cycle processing apparatus may be an organic Rankine cycle apparatus using an organic working medium
  • the expansion machine may be selected from the group consisting of a piston expansion machine, screw expansion machine, a scroll expander, a vane machine, and a root expander.
  • the lubricant separator can furthermore be designed to supply at least a portion of the deposited lubricant to the lubrication points corresponding to the expansion machine, such as bearings of the expansion machine to be lubricated.
  • a pipeline can be provided, in which the lubricant deposited in the lubricant separator is led to lubrication points of the expansion machine, in particular to a bearing of the expansion machine; and wherein the pipeline may preferably have a control valve for controlling the volume flow of the lubricant.
  • a steam power plant for example a geothermal steam power plant or a biomass combustion steam power plant, is provided which comprises the apparatus according to one of the above examples.
  • a lubrication system for a volumetric expansion machine in a thermodynamic cycle apparatus includes a lubricant separator (hereinafter exemplified by an oil separator) 10 that is cyclically disposed between a feed pump 50 and an evaporator 20.
  • the evaporator 20 produces a fully or partially vaporized working medium (live steam), which is supplied to an expansion machine 30, which is driven by the working medium and in cooperation with a generator 40, the production of electrical energy.
  • the working medium leaves the expansion machine 30 as a lubricant-working fluid spray and flows to the condenser 60.
  • a liquefaction of the working medium takes place, with no or only a slight solution of the lubricant should take place in the working fluid.
  • the liquefied working medium is preferably collected in a food container 70.
  • the feed pump 50 sucks the liquid working medium from the feed container 70, increases its pressure and conveys it into the lubricant separator 10.
  • the suspension of lubricant and working fluid is brought to live steam pressure.
  • the working fluid consists of the actual working fluid and a lubricant.
  • the separated lubricant is supplied directly from the lubricant separator 10, ie without any further pump, to the bearing of the expansion machine 30 for its lubrication and cooling.
  • the depleted of lubricant working fluid is then returned to the evaporator 20, and the cycle closes.
  • the different density of working fluid and lubricant is preferably utilized. Fittings in the lubricant separator 10 and a widening of the cross section and a concomitant reduction in the flow rate favor the phase separation.
  • the lubricant in the upper region of the lubricant separator 10 can be diverted. Since the derived lubricant is present at a high pressure level, it can be passed directly, for example via a pipeline to bearings of the expansion machine 30.
  • a part of the lubricant passes through the lubricant separator 10 and is conducted together with the working fluid to the evaporator 20. Again, the lubricant leaves the evaporator 20 liquid, but at live steam temperature. The finely divided lubricant present in the steam ensures reliable flank lubrication in the expansion machine 30.
  • Another advantage is that compared to the prior art, a smaller volume per time flows through the oil separator 10, so that it can be made relatively compact, resulting in a space savings and cost savings. Further, the pressure loss after the expansion machine 30 is reduced and thus the pressure drop across the expansion machine 30 can be increased as compared with the conventional configuration with an oil separator 10 downstream of the expansion machine 30, so that the efficiency of the expansion machine 30 can be increased.
  • a working medium which has a sufficiently large miscibility gap. This means that an oil-poor liquid phase and an oil-rich liquid phase are formed. If you go for example from a pure refrigerant and adds oil, this can be solved depending on the temperature up to a certain percentage in the working fluid. If the oil concentration is increased further, a two-phase mixture is formed which consists of an oil-poor and an oil-rich liquid phase. If you continue to add oil, then finally forms a uniform oil-rich phase.
  • the working fluid may be provided in the form of a fluorinated hydrocarbon, eg R134a, R245fa, and the lubricant in the form of a refrigerant oil.
  • Suitable refrigerant oils are produced, for example, based on polyalphaolefin (PAO, base fluid for lubricants, eg Rensio Synth 68 from Fuchs Europe Schmierstoffe GmbH) or alkylbenzene base (eg Rensio SP 220 from Fuchs Europe Schmierstoffe GmbH).
  • PAO polyalphaolefin
  • the lubricating oil will have a significantly higher boiling temperature than the working fluid, so that after passing through the Evaporator 20 is liquid in droplet form in the working steam of the working medium.
  • the food container can be extended by a suction 71, which may be, for example, a suction lance, as in FIG. 4 is shown.
  • the suction lance has, for example, one or more upper and one or more lower holes, with which the ratio of the volume flows of oil-rich and low-oil phase can be defined.
  • At the inlet openings of the suction lance exactly sets the flow rate, with the pressure losses are compensated in the intake lance. Due to the diameter of the holes and their number and arrangement, the ratio of the intake volume flows can be adjusted.
  • the two phases mix and are separated again in the lubricant separator.
  • the exemplified solid suction lance 71 in the presence of two phases, these are sucked in at a volume ratio that is set.
  • the suction device can be structurally represented in other ways. It can be sucked by a float in a mobile structure in the presence of two phases, at least the top-floating phase. It can be sucked by a switchable valve in the presence of two phases, at least the top of floating phase. It can by a Mixing wheel driven by the volume flow, the two phases are mixed, so that in the presence of two phases are sucked mixed. It can be mixed by a motor-driven mixing wheel, the two phases, so that in the presence of two phases are sucked mixed.
  • the invention relates to an apparatus and a method for separating lubricant from the liquid working medium.
  • a working oil-pairing is used, in which the oil and the working fluid dissolve only slightly. Therefore, in a lubricant separator, the oil for bearing lubrication and cooling can be discharged in an expansion machine. Since segregation can occur in the food container, it must be ensured by means of a device that in this case both phases are sucked in, which is e.g. can be realized by a suction lance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Lubricants (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

    Gebiet der Erfindung
  • Die vorliegende Erfindung betrifft volumetrisch arbeitende Expansionsmaschinen und insbesondere Verfahren und Vorrichtungen zur Schmierung derselben.
  • Stand der Technik
  • Der Betrieb von Expansionsmaschinen, wie z.B. Dampfturbinen und beispielsweise mit Hilfe des Organic Rankine Cycle (ORC)-Verfahrens zur Erzeugung elektrischer Energie durch den Einsatz organischer Medien, beispielsweise organischer Medien mit niedriger Verdampfungstemperatur, die bei gleichen Temperaturen verglichen mit Wasser als Arbeitsmedium im allgemeinen höhere Verdampfungsdrücke aufweisen, ist im Stand der Technik bekannt. ORC-Anlagen stellen eine Realisierung des Clausius-Rankine-Kreisprozesses dar, in dem beispielsweise prinzipiell über adiabatische und isobare Zustandsänderungen eines Arbeitsmediums elektrische Energie gewonnen wird. Über Verdampfung, Expansion und anschließende Kondensation des Arbeitsmediums wird hierbei mechanische Energie gewonnen und in elektrische Energie gewandelt. Prinzipiell wird das Arbeitsmedium durch eine Speisepumpe auf Betriebsdruck gebracht, und es wird ihm in einem Verdampfer Energie in Form von Wärme, die durch eine Verbrennung oder einen Abwärmestrom zur Verfügung gestellt wird, zugeführt. Vom Verdampfer aus strömt das Arbeitsmedium über ein Druckrohr zu einer Expansionsmaschine, in der es auf einen niedrigeren Druck entspannt wird. Im Anschluss strömt der entspannte Arbeitsmediumsdampf durch einen Kondensator, in welchem ein Wärmeaustausch zwischen dem dampfförmigen Arbeitsmedium und einem Kühlmedium stattfindet, wonach das auskondensierte Arbeitsmedium durch eine Speisepumpe zu dem Verdampfer in einem Kreisprozess zurückgeführt wird.
  • Eine besondere Klasse von Expansionsmaschinen stellen volumetrisch arbeitende Expansionsmaschinen dar, die auch als Verdrängungsexpansionsmaschinen bezeichnet werden, eine Arbeitskammer umfassen und während einer Volumenzunahme dieser Arbeitskammer während der Entspannung des Arbeitsmediums Arbeit verrichten. Diese Expansionsmaschinen sind beispielsweise in Form von Kolbenexpansionsmaschinen, Schraubenexpansionsmaschinen oder Scrollexpandern realisiert. Derartige volumetrisch arbeitende Expansionsmaschinen werden insbesondere in ORC-Systemen kleiner Leistungsklasse (z.B. 1 bis 500kW elektrische Leistung) eingesetzt. Im Gegensatz zu Turbinen erfordern volumetrisch arbeitende Expansionsmaschinen jedoch eine Schmierung durch ein Schmiermittel insbesondere des Kolbens bzw. der sich aufeinander abwälzenden Profile (Flanken) des Expansionsraums sowie der Wälzlager und der gleitenden Wände der Arbeitskammer. Es bedarf also eine Schmierung der Lagerstellen und der sich berührenden Flanken. Die Verwendung eines Schmiermittels führt vorteilhafterweise auch zu einer Abdichtung des Arbeitsraums der Expansionsmaschine, wodurch weniger Dampf durch Überströmen innerhalb der Expansionsmaschine verloren geht und somit der Wirkungsgrad erhöht wird. Vorteilhaft ist die Schmierung mit Öl, wobei Öl und Frischdampf die Expansionsmaschine gemeinsam passieren, was eine nachfolgende Trennung von Öl und Dampf notwendig macht.
  • In der Kältetechnik kann die Schmierung einfach realisiert werden. Man gibt hier ein lösliches Öl zum Arbeitsmedium. Am Auslass der Kompressionsmaschine liegt das Öl als fein verteilte Tröpfchen im komprimierten Dampf vor. Der unter hohem Druck stehende Dampf-Öl-Spray wird nun durch einen Ölabscheider geleitet, wo Öl durch einen Zyklon abgeschieden wird und das Kältemittel den Ölabscheider dampfförmig in Richtung Kondensator verlässt. Das Öl liegt nun bei hohem Druck vor und kann direkt in den Einlassbereich der Kompressionsmaschine eingedüst sowie zu den Lagern geleitet werden. Das Öl wird mit dem Niederdruckdampf mitgerissen, gemeinsam mit dem Dampf auf hohen Druck gebracht und kann dann wiederum im Ölabscheider abgetrennt werden.
  • Aus dem Verfahren zur Schmierung von Kompressoren leitete sich ein Verfahren zur Schmierung von Expansionsmaschinen ab. Hierbei wird dem Arbeitsmedium Öl beigegeben. Die Trennung von Öl und Dampf findet ebenfalls am Auslass der Expansionsmaschine in einem Ölabscheider statt. Da bei der Expansion am Auslass ein geringerer Druck als am Einlass herrscht, muss das Öl durch eine Ölkreispumpe auf Frischdampfdruck gebracht werden, um das Öl am Einlass in den Frischdampf zur Flankenschmierung eindüsen zu können. Weiterhin müssen auch hier die Lagerstellen mit Öl versorgt werden. Figur 1 stellt eine Prinzipskizze eines solchen Schmiersystems des Stands der Technik dar. Ein Arbeitsmedium wird von einem Verdampfer 1 zu einer Expansionsmaschine 2 geliefert. In der Expansionsmaschine 2 wird das dampfförmige Arbeitsmedium entspannt und es wird über einen Generator 3 die freigewordene Energie in elektrische Energie gewandelt. Über eine Ölkreispumpe 4 wird der Expansionsmaschine 2 ein Schmiermittel, beispielsweise ein Schmieröl, zugeführt. Das Schmiermittel dient in der Expansionsmaschine der Lagerschmierung L und der Flankenschmierung F. Das Schmiermittel verlässt gemeinsam mit dem entspannten Arbeitsmedium die Expansionsmaschine 2. Das Schmiermittel liegt in Form eines fein verteilten Ölnebels im entspannten Arbeitsmedium vor und wird in einem Ölabscheider 5 vom Arbeitsmedium getrennt, so dass dieses im Wesentlichen ölfrei aus dem Ölabscheider 5 zu einem Kondensator 6 geliefert wird. Das kondensierte Arbeitsmedium wird durch eine Speisepumpe 7 dem Verdampfer 1 wieder zugeführt. Das rückgewonnene Öl wird über die Ölkreispumpe 4 der Expansionsmaschine 2 wieder zugeführt.
  • Das Schmiersystem des Stands der Technik weist jedoch die folgenden Nachteile auf. Da das Schmiermittel (Schmieröl) auf der Niederdruckseite nach Passieren der Expansionsmaschine 2 abgetrennt wird, ist das Vorsehen der Ölkreispumpe 4 erforderlich, die, da das Schmiermittel auf der Hochdruckseite der Expansionsmaschine 2 zuzuführen ist, die gleiche Druckdifferenz wie die das Arbeitsmedium transportierende Speisepumpe 7 zu überwinden hat, woraus ein hoher apparativer Aufwand mit entsprechenden Kosten resultiert. Zudem ist ein relativ großer Ölabscheider 5 vonnöten, da der die Expansionsmaschine 2 verlassende Abdampf eine im Vergleich zum der Expansionsmaschine 2 zugeführten Frischdampf geringere Dichte, beispielsweise um mehr als eine Größenordnung geringere Dichte, aufweist. Dadurch entsteht ein großer Materialaufwand mit entsprechend hohen Kosten. Durch das große Volumen ist eine große Füllmenge an relativ hochpreisigem Öl notwendig. Weiterhin wird die Trennung des Schmiermittels von dem Abdampf des Arbeitsmediums mithilfe von Zyklonabscheidern oder Prallplatten, stets unter signifikanter Richtungsänderung des das Schmiermittel enthaltenden Abdampfstroms, ausgeführt, wodurch, kombiniert mit den relativ großen Volumina der Abdampfströmung, Druckverluste auftreten, die zu einem auf die Expansionsmaschine 2 wirkenden Gegendruck und damit zu einer Verringerung des Wirkungsgrads derselben führen. Da das Öl auf niedrigem Druckniveau vorliegt, muss eine zusätzliche Pumpe, die Ölkreispumpe, eingesetzt werden.
  • Zudem weist der relativ große Ölabscheider 5 aufgrund der relativ großen Masse bzw. des relativ großen Volumens des Abdampfes eine gewisse Trägheit auf, die sich beim Anfahren der Anlage oder Lastwechseln unvorteilhaft auswirkt. Auch verringert das dem Frischdampf i.a. im flüssigen Zustand mit ungefähr der Temperatur des Abdampfes in den Frischdampf eingedüste Schmiermittel in unerwünschter Weise die Frischdampftemperatur und Frischdampfenthalpie, was die erzielbare Arbeit reduziert.
    • JP 2009 138684 A offenbart eine Vorrichtung zur Schmierung einer Expansionsmaschine, bei welchem ein Ölabscheider zwischen einer Arbeitspumpe und einer Expansionsmaschine angeordnet ist. Dabei scheidet der Ölabscheider Schmieröl aus dem Arbeitsmedium ab, um es über einen Ölspeichertank und Schmierölleitungen der Arbeitspumpe und der Expansionsmaschine zuzuführen.
    • WO 2006/131759 A2 offenbart eine Rankine-Maschine, wobei ein Abscheider so zwischen einem Verdampfer und der Expansionsmaschine angeordnet ist, dass die Dampfkomponente von der flüssigen Komponente des von dem Verdampfer gelieferten Arbeitsmediums getrennt wird.
    • DE 10 2008 050 137 A1 lehrt eine Einrichtung zur Nutzung von Abwärme eines Verbrennungsmotors, umfassend eine Schmiermittelversorgungseinrichtung, welche über eine Schmiermittelableitung vom Verbrennungsmotor über einen Koaleszenzabscheider zur Abscheidung des Schmiermittels versorgt wird.
  • Es besteht somit ein Bedarf dafür und es liegt somit der vorliegenden Erfindung als Aufgabe zugrunde, ein Verfahren zur Schmierung von volumetrisch arbeitenden Expansionsmaschinen bereitzustellen, in dem die oben genannten Probleme ausgeräumt oder zumindest gemildert werden.
  • Beschreibung der Erfindung
  • Die oben genannte Aufgabe wird gelöst durch ein Verfahren zur Schmierung einer Expansionsmaschine in einer thermodynamischen Kreisprozessvorrichtung gemäß Anspruch 1. Hierbei umfasst die Kreisprozessvorrichtung in dem Verfahren die Expansionsmaschine, eine Speisepumpe, einen Schmiermittelabscheider und ein Arbeitsmedium mit einem Schmiermittel. Das Verfahren umfasst die folgenden Schritte. Das Arbeitsmedium wird mittels der Speisepumpe mit Druck beaufschlagt. Das mit Druck beaufschlagte Arbeitsmedium wird von der Speisepumpe an den Schmiermittelabscheider geliefert. Zumindest ein Teil des Schmiermittels wird aus dem Arbeitsmedium mit dem Schmiermittelabscheider abgeschieden. Zumindest ein Teil des abgeschiedenen Schmiermittels wird vom Schmiermittelabscheider an die Expansionsmaschine geliefert.
  • Im Gegensatz zum Stand der Technik wird erfindungsgemäß zumindest ein Teil des Schmiermittels aus dem durch die Speisepumpe mit Druck beaufschlagten Arbeitsmedium abgeschieden. Im Stand der Technik hingegen geschieht diese Abscheidung aus dem die Expansionsmaschine unmittelbar verlassenden Arbeitsmedium. Das Vorsehen einer Ölkreispumpe erübrigt sich in dem erfindungsgemäßen Verfahren, da das abgeschiedene Schmiermittel auf einem hohen Druckniveau vorliegt. Auch kann der Schmiermittelabscheider im Vergleich zum Stand der Technik kleiner ausgebildet werden, da die Trennung des Schmiermittels aus der Flüssigkeit mit hoher Dichte statt aus dem Abdampf erfolgt. Weiterhin wird die Frischdampftemperatur/-enthalpie erfindungsgemäß nicht in unerwünschter Weise durch Hinzufügen eines relativ kalten Schmiermittels herabgesenkt, da das abgeschiedene Schmiermittel vorzugsweise zur Schmierung des Lagers der Expansionsmaschine verwendet wird. Weitere Vorteile sind zum einen die passende niedrige Temperatur des der Expansionsmaschine vom Schmiermittelabscheider zugeführten Schmiermittels, was eine vorteilhafte Lagerkühlung bewirkt und zum anderen die schnelle Inbetriebnahme der thermodynamischen Kreisprozessvorrichtung aufgrund des gegenüber dem Stand der Technik geringeren Flüssigkeitsinventars.
  • Gemäß der Erfindung umfasst die Kreisprozessvorrichtung weiterhin einen Kondensator und einen Verdampfer und das erfindungsgemäße Verfahren umfasst weiterhin das Liefern des Arbeitsmediums von der Expansionsmaschine an den Kondensator, das Verflüssigen des Arbeitsmediums mit dem Kondensator, das Liefern des verflüssigten Arbeitsmediums von dem Kondensator an die Speisepumpe, das Liefern des von Schmiermittel abgereicherten Arbeitsmediums von dem Schmiermittelabscheider an den Verdampfer, das Verdampfen des von Schmiermittel abgereicherten Arbeitsmediums in dem Verdampfer, und das Liefern des verdampften Arbeitsmediums an die Expansionsmaschine.
  • Während gemäß der Erfindung zumindest ein Teil des abgeschiedenen Schmiermittels an Schmierstellen der Expansionsmaschine geliefert wird, wie beispielsweise an ein Lager, dient erfindungsgemäß ein in dem der Expansionsmaschine zugeführten Arbeitsmedium verbleibender Anteil des Schmiermittels der Schmierung aufeinander abwälzender oder gleitender Teile der Arbeitskammer der volumetrisch arbeitenden Expansionsmaschine (Flankenschmierung). Dabei hat der verbleibende Anteil des Schmiermittels die dazu passende Temperatur. Das verbleibende Schmiermittel wird nämlich im Verdampfer zusammen mit dem Arbeitsmedium aufgeheizt und verringert dadurch nicht den Energieinhalt des der Expansionsmaschine zugeführten Frischdampfs.
  • Gemäß einer Weiterbildung kann die Kreisprozessvorrichtung weiterhin einen Speisebehälter umfassen, und der Schritt des Lieferns des verflüssigten Arbeitsmediums von dem Kondensator an die Speisepumpe kann die Teilschritte (i) Liefern des verflüssigten Arbeitsmediums von dem Kondensator an den Speisebehälter und (ii) Liefern des Arbeitsmediums vom Speisebehälter an die Speisepumpe umfassen. Auf diese Weise wird ein Sammelbehälter für das Arbeitsmedium bereitgestellt, aus dem die Speisepumpe das Arbeitsmedium und das Schmiermittel absaugen kann.
  • Eine Weiterbildung der zuletzt genannten Weiterbildung umfasst das Liefern des Arbeitsmediums vom Speisebehälter an die Speisepumpe das gleichzeitige Absaugen einer schmiermittelarmen und einer schmiermittelreichen Phase des Arbeitsmediums aus dem Speisebehälter oder ein Mischen einer schmiermittelarmen und einer schmiermittelreichen Phase des Arbeitsmediums im Speisebehälter. Dadurch können negative Folgen einer Phasentrennung der zweiphasigen Suspension aus Arbeitsmedium und Schmiermittel im Speisebehälter auf den Betrieb der Kreisprozessvorrichtung vermieden werden. Aufgrund von Dichteunterschieden kann im Speisebehälter nach längerem Stillstand oder durch eine schnelle Trenngeschwindigkeit während des Betriebs eine derartige Phasentrennung (Entmischung) erfolgen, wobei es dann beispielsweise zu Problemen bei der Inbetriebnahme kommen kann, die jedoch durch diese Weiterbildung gelöst werden.
  • Gemäß einer Weiterbildung liegt das durch den Kondensator verflüssigte Arbeitsmedium in Form einer Suspension aus Arbeitsmittel und Schmiermittel vor, wobei insbesondere keine oder nur eine geringfügige Lösung von Schmiermittel im Arbeitsmittel stattfindet. Eine geringfügige Lösung ist dabei eine Lösung von weniger als 15%, vorzugsweise von weniger als 10%, höchstvorzugsweise von weniger als 5% von Schmiermittel im Arbeitsmittel. Auf diese Weise kann das Schmiermittel im Schmiermittelabscheider gut vom Arbeitsmittel getrennt werden.
  • Das abgeschiedene Schmiermittel kann aufgrund der Druckbeaufschlagung, insbesondere direkt und/oder ohne gepumpt zu werden, vorzugsweise zu Schmierstellen der Expansionsmaschine, insbesondere zu einem Lager der Expansionsmaschine, strömen; wobei vorzugsweise eine Regelung eines Volumenstroms des Schmiermittels zur Expansionsmaschine erfolgt. Dies erübrigt eine weitere Pumpe (Ölpumpe) und reduziert somit den konstruktiven Aufwand und die Kosten. Eine Regelung des Volumenstroms kann mittels eines Regelventils in einer Leitung zwischen dem Schmiermittelabscheider und der Expansionsmaschine erfolgen.
  • Gemäß einer anderen Weiterbildung wird eine Strömungsgeschwindigkeit des Arbeitsmediums in dem Schmiermittelabscheider reduziert. Dies begünstigt die Phasentrennung von Schmiermittel und Arbeitsmittel.
  • Das erfindungsgemäße Verfahren kann vorteilhafterweise zur Schmierung einer volmetrisch arbeitenden Expansionsmaschine einer Organic Rankine Cycle (ORC) - Anlage eingesetzt werden. Somit kann das Arbeitsmedium in Form eines organischen Arbeitsmittels bereitgestellt werden. Fluorierte Kohlenwasserstoffe können beispielsweise als Arbeitsmittel dienen. Während das Arbeitsmittel typischerweise im wesentlichen dampfförmig von dem Verdampfer zu der Expansionsmaschine geliefert wird, kann das abgereicherte Arbeitsmedium einen Anteil von Schmiermittel im flüssigen Zustand, beispielsweise in Form von Öltröpfchen, enthalten, die mit dem Dampf des Arbeitsmittels mitgerissen werden. Das Schmiermittel in Form von Öltröpfchen kann beispielsweise ein Kältemittelöl sein, welches in Kombination mit einem Arbeitmittel eine Mischungslücke aufweist (siehe auch detaillierte Beschreibung unten). Geeignete Kältemittelöle sind z.B. auf Polyalphaolefin-Basis (PAO, Basisflüssigkeit für Schmierstoffe, z.B. Rensio Synth 68 von Fuchs Europe Schmierstoffe GmbH) oder Alkylbenzol-Basis (z.B. Rensio SP 220 von Fuchs Europe Schmierstoffe GmbH) hergestellt.
  • Die oben genannte Aufgabe wird auch durch eine thermodynamische Kreisprozessvorrichtung gemäß Anspruch 8 gelöst. Die Kreisprozessvorrichtung umfasst: ein Arbeitsmedium mit einem Arbeitsmittel und einem Schmiermittel, eine Expansionsmaschine, eine Speisepumpe zum Druckbeaufschlagen des Arbeitsmediums, und ein Schmiermittelabscheider zum Abscheiden zumindest eines Teils des Schmiermittels aus dem Arbeitsmedium, wobei die Kreisprozessvorrichtung dazu ausgebildet ist, zumindest einen Teil des abgeschiedenen Schmiermittels vom Schmiermittelabscheider an die Expansionsmaschine zu liefern. Vorteile der erfindungsgemäßen Kreisprozessvorrichtung und deren Weiterbildungen sind analog zu dem erfindungsgemäßen Verfahren und dessen Weiterbildungen.
    Die erfindungsgemäße thermodynamische Kreisprozessvorrichtung kann weiterhin umfassen: einen Kondensator zum Verflüssigen des Arbeitsmediums, und einen Verdampfer zum Verdampfen des von Schmiermittel abgereicherten Arbeitsmediums, wobei die Kreisprozessvorrichtung dazu ausgebildet ist, das Arbeitsmedium von der Expansionsmaschine an den Kondensator zu liefern, das von Schmiermittel abgereicherte Arbeitsmedium von dem Schmiermittelabscheider an den Verdampfer zu liefern, und das verdampfte Arbeitsmedium an die Expansionsmaschine zu liefern.
    Die Kreisprozessvorrichtung kann weiterhin einen Speisebehälter umfassen, wobei die Kreisprozessvorrichtung dazu ausgebildet ist, das verflüssigte Arbeitsmedium von dem Kondensator an den Speisebehälter zu liefern und das Arbeitsmedium vom Speisebehälter an die Speisepumpe zu liefern.
    Weiterhin kann eine Absaugvorrichtung zum Absaugen zumindest einer oben schwimmenden, schmiermittelreichen Phase des Arbeitsmediums in dem Speisebehälter vorgesehen sein oder es kann eine Absaugvorrichtung zum gleichzeitigen Absaugen einer schmiermittelarmen und einer schmiermittelreichen Phase des Arbeitsmediums aus dem Speisebehälter vorgesehen sein oder es kann eine Mischvorrichtung zum Mischen einer schmiermittelarmen und einer schmiermittelreichen Phase des Arbeitsmediums im Speisebehälter vorgesehen sein.
  • Die Kreisprozessvorrichtung kann eine Organic-Rankine-Cycle-Vorrichtung sein, in der ein organisches Arbeitsmedium Verwendung findet, und die Expansionsmaschine kann aus der Gruppe ausgewählt werden, die aus einer Kolbenexpansionsmaschine, Schraubenexpansionsmaschine, einem Scrollexpander, einer Flügelzellenmaschine und einem Rootsexpander besteht.
  • Der Schmiermittelabscheider kann weiterhin dazu ausgebildet sein, zumindest einen Teil des abgeschiedenen Schmiermittels der Expansionsmaschine entsprechenden Schmierstellen, wie zu schmierenden Lagern der Expansionsmaschine, zuzuführen. Insbesondere kann gemäß einer Weiterbildung eine Rohrleitung vorgesehen sein, in der das in dem Schmiermittelabscheider abgeschiedene Schmiermittel zu Schmierstellen der Expansionsmaschine, insbesondere zu einem Lager der Expansionsmaschine, geleitet wird; und wobei die Rohrleitung vorzugsweise ein Regelventil zur Volumenstromregelung des Schmiermittels aufweisen kann.
  • Weiterhin wird ein Dampfkraftwerk, beispielsweise ein Geothermie-Dampfkraftwerk oder ein Biomasseverbrennungs-Dampfkraftwerk, bereitgestellt, das die Vorrichtung gemäß einem der obigen Beispiele umfasst.
  • Weitere Merkmale und beispielhafte Ausführungsformen sowie Vorteile der vorliegenden Erfindung werden nachfolgend anhand der Zeichnungen näher erläutert. Es versteht sich, dass die Ausführungsformen nicht den Bereich der vorliegenden Erfindung erschöpfen. Es versteht sich weiterhin, dass einige oder sämtliche der im Weiteren beschriebenen Merkmale auch auf andere Weise miteinander kombiniert werden können.
  • Zeichnungen
    • Figur 1 stellt ein Schmiersystem für eine volumetrische Expansionsmaschine gemäß dem Stand der Technik dar.
    • Figur 2 veranschaulicht beispielhaft ein Schmiersystem für eine volumetrische Expansionsmaschine gemäß der vorliegenden Erfindung.
    • Figur 3 stellt unterschiedliche Zustände des Arbeitsmediums im Speisebehälter schematisch dar.
    • Figur 4 veranschaulicht einen Speisebehälter mit Absauglanze zu gleichzeitigen Entnahme von ölreicher und ölarmer Phase.
    Ausführungsformen
  • Wie es in Figur 2 gezeigt ist, umfasst eine Schmiersystem für eine volumetrische Expansionsmaschine in einer thermodynamischen Kreisprozessvorrichtung gemäß einem Beispiel für die vorliegende Erfindung einen Schmiermittelabscheider (im Weiteren beispielhaft einen Ölabscheider) 10, der im Kreisprozess zwischen einer Speisepumpe 50 und einem Verdampfer 20 angeordnet ist. Der Verdampfer 20 erzeugt ein vollständig oder teilweise verdampftes Arbeitsmedium (Frischdampf), welches an eine Expansionsmaschine 30 geliefert wird, die durch das Arbeitsmedium angetrieben wird und in Zusammenwirken mit einem Generator 40 der Gewinnung elektrischer Energie dient. Das Arbeitmedium verlässt die Expansionsmaschine 30 als Schmierstoff-Arbeitsmittel-Spray und strömt zum Kondensator 60. Im Kondensator 60 erfolgt eine Verflüssigung des Arbeitsmediums, wobei keine oder nur eine geringfügige Lösung vom Schmiermittel im Arbeitsmittel stattfinden sollte. Das verflüssigte Arbeitsmedium wird vorzugsweise in einem Speisebehälter 70 gesammelt. Die Speisepumpe 50 saugt das flüssige Arbeitsmedium aus dem Speisebehälter 70, erhöht dessen Druck und befördert es in den Schmiermittelabscheider 10. Die Suspension aus Schmiermittel und Arbeitsmittel wird auf Frischdampfdruck gebracht. Das Arbeitsmedium besteht aus dem eigentlichen Arbeitsmittel und einem Schmiermittel. Das abgeschiedene Schmiermittel wird vom Schmiermittelabscheider 10 direkt, also ohne weitere Pumpe, an das Lager der Expansionsmaschine 30 zu dessen Schmierung und Kühlung geliefert. Das von Schmiermittel abgereicherte Arbeitsmedium wird dann wieder dem Verdampfer 20 zugeführt, und der Kreisprozess schließt sich.
  • Während im Stand der Technik, wie es oben mit Bezug auf Figur 1 beschrieben ist, eine Abscheidung des Schmiermittels aus dem Abdampfstrom - also niederdruckseitig - erfolgt, wird erfindungsgemäß zumindest ein Teil des Schmiermittels hochdruckseitig aus dem mit Schmiermittel versetzten Arbeitsmedium abgeschieden. Bei der Trennung des Schmiermittels vom Arbeitsmittel wird bevorzugt die unterschiedliche Dichte von Arbeitsmittel und Schmiermittel ausgenutzt. Einbauten im Schmiermittelabscheider 10 sowie eine Aufweitung des Querschnitts und eine damit einhergehende Reduktion der Strömungsgeschwindigkeit begünstigen die Phasentrennung. In der Regel kann das Schmiermittel im oberen Bereich des Schmiermittelabscheiders 10 abgeleitet werden. Da das abgeleitete Schmiermittel auf einem hohen Druckniveau vorliegt, kann es direkt z.B. über eine Rohrleitung an Lagerstellen der Expansionsmaschine 30 geleitet werden.
  • Aufgrund der geringfügigen Löslichkeit von Öl im Arbeitsmittel passiert ein Teil des Schmiermittels den Schmiermittelabscheider 10 und wird gemeinsam mit dem Arbeitsmittel zum Verdampfer 20 geleitet. Auch hier verlässt das Schmiermittel den Verdampfer 20 flüssig, jedoch auf Frischdampftemperatur. Das fein verteilte im Dampf vorliegende Schmiermittel sorgt für eine sichere Flankenschmierung in der Expansionsmaschine 30.
  • Folgende Vorteile der Erfindung sind zu nennen. Da eine Flüssigkeit mit hoher Dichte getrennt wird, ergibt sich eine kompakte Bauweise des Schmiermittelabscheiders 10. Es ergeben sich nur geringe Druckverluste. Das Schmiermittel (Öl) hat die für die jeweilige Verwendung passende Temperatur. Heißes Öl wird für die Flankenschmierung eingesetzt, und kühles Öl wird für die Lagerschmierung und -kühlung eingesetzt. Aufgrund des gegenüber dem Stand der Technik reduzierten Flüssigkeitsinventars ergibt sich eine schnellere Inbetriebnahme der Kreisprozessvorrichtung. Da gemäß dem beschriebenen Beispiel das in dem Ölabscheider 10 abgeschiedene Schmieröl unter hohem Druck steht, so dass es frei durch den Druck verursacht zu der Expansionsmaschine 30 strömen kann, besteht keine Notwendigkeit für das Bereitstellen einer weiteren Pumpeinrichtung für das Schmiermittel. Es kann jedoch in vorteilhafter Weise ein Druckreduzierventil (Regelventil) zwischen Ölabscheider und Expansionsmaschine eingesetzt werden, um etwa die bei unterschiedlichen Betriebspunkten auftretenden Volumenstromschwankungen des Schmiermittels auszuregeln.
  • Ein weiterer Vorteil ist, dass im Vergleich zum Stand der Technik ein geringeres Volumen pro Zeit durch den Ölabscheider 10 fließt, so dass dieser vergleichsweise kompakt ausgebildet werden kann, woraus sich eine Raumersparnis und Kostenersparnis ergeben. Weiterhin wird der Druckverlust nach der Expansionsmaschine 30 verringert und es kann so das Druckgefälle über die Expansionsmaschine 30 im Vergleich zur herkömmlichen Konfiguration mit einem der Expansionsmaschine 30 nachgeordneten Ölabscheider 10 vergrößert werden, so dass der Wirkungsgrad der Expansionsmaschine 30 erhöht werden kann.
  • Bei der konstruktiven Umsetzung der Erfindung ist ein Arbeitsmedium zu verwenden, das eine ausreichend große Mischungslücke aufweist. Das bedeutet, dass sich eine ölarme flüssige Phase und eine ölreiche flüssige Phase herausbilden. Geht man z.B. von einem reinen Kältemittel aus und fügt Öl hinzu, so kann dies abhängig von der Temperatur bis zu einem gewissen Prozentsatz im Arbeitsmittel gelöst werden. Steigert man die Ölkonzentration weiter, so bildet sich eine zweiphasige Mischung aus, die aus einer ölarmen und einer ölreichen flüssigen Phase besteht. Gibt man weiter Öl hinzu, so bildet sich schließlich eine einheitliche ölreiche Phase.
  • Beispielsweise kann das Arbeitsmittel in Form eines fluorierten Kohlenwasserstoffes, z.B. R134a, R245fa, und das Schmiermittel in Form eines Kältemittelöls bereitgestellt werden. Geeignete Kältemittelöle sind z.B. auf Polyalphaolefin-Basis (PAO, Basisflüssigkeit für Schmierstoffe, z.B. Rensio Synth 68 von Fuchs Europe Schmierstoffe GmbH) oder Alkylbenzol-Basis (z.B. Rensio SP 220 von Fuchs Europe Schmierstoffe GmbH) hergestellt. Das Schmieröl wird i.a. eine gegenüber dem Arbeitsmedium deutlich erhöhte Siedetemperatur aufweisen, so dass es nach dem Durchgang durch den Verdampfer 20 flüssig in Tröpfchenform in dem Arbeitsdampf des Arbeitsmediums vorliegt.
  • Die Inbetriebnahme eines Systems, in dem sich die zweiphasige Mischung aufgrund der Dichteunterschiede im Speisebehälter 70 z.B. nach längerem Stillstand oder auch aufgrund einer schnellen Trenngeschwindigkeit im Betrieb getrennt hat, ist jedoch problematisch. Im rechten Teil der Figur 3 ist eine solche Phasentrennung (Entmischung) im Speisebehälter 70 schematisch dargestellt, wobei M1 die ölarme Phase und M2 die ölreiche Phase bezeichnet, wohingegen im linken Teil der Figur 3 die zweiphasige Mischung M1+M2 während des Betriebs dargestellt ist. Bei einem konventionellen Speisebehälter, wie er in Kälteanlagen oder auch in ORC-Anlagen zum Einsatz kommt, wird das Arbeitsmedium am Boden abgezogen, somit würde im Falle einer Phasentrennung nur die ölarme Phase M1 zur Speisepumpe gelangen. Um dieses Problem zu lösen, kann der Speisebehälter um eine Absaugeinrichtung 71 erweitert werden, was z.B. eine Absauglanze sein kann, wie es in Figur 4 dargestellt ist. Die Absauglanze besitzt beispielsweise eine oder mehrere obere und eine oder mehrere untere Bohrungen, mit denen das Verhältnis der Volumenströme von ölreicher und ölarmer Phase definiert werden kann. An den Einlassöffnungen der Absauglanze stellt sich jeweils genau die Strömungsgeschwindigkeit ein, mit der der Druckverluste in der Ansauglanze ausgeglichen sind. Durch den Durchmesser der Bohrungen sowie deren Anzahl und Anordnung kann das Verhältnis der angesaugten Volumenströme eingestellt werden. Im unteren zur Speisepumpe führenden Rohrteil der Absauglanze mischen sich die beiden Phasen und werden im Schmiermittelabscheider wieder voneinander getrennt. Bei der beispielhaft genannten festen Absauglanze 71 werden bei Vorhandensein von zwei Phasen diese mit einem sich einstellenden Volumenverhältnis angesaugt.
  • Die Absaugeinrichtung kann jedoch konstruktiv auch auf andere Weise dargestellt werden. Es kann durch einen Schwimmer in einem beweglichen Aufbau bei Vorhandensein von zwei Phasen zumindest die obenauf schwimmende Phase abgesaugt werden. Es kann durch ein schaltbares Ventil bei Vorhandensein von zwei Phasen zumindest die obenauf schwimmende Phase abgesaugt werden. Es können durch ein durch den Volumenstrom angetriebenes Mischrad die beiden Phasen gemischt werden, so dass bei Vorhandensein von zwei Phasen diese gemischt angesaugt werden. Es können durch ein motorisch angetriebenes Mischrad die beiden Phasen gemischt werden, so dass bei Vorhandensein von zwei Phasen diese gemischt angesaugt werden.
  • Zusammenfassend betrifft die Erfindung eine Vorrichtung und ein Verfahren zur Abtrennung von Schmiermittel aus dem flüssigen Arbeitsmedium. Aus diesem Grund wird eine Arbeitsmittel-Öl-Paarung eingesetzt, bei der sich das Öl und das Arbeitsmittel nur geringfügig ineinander lösen. Deshalb kann in einem Schmiermittelabscheider das Öl für die Lagerschmierung und -kühlung in einer Expansionsmaschine abgeführt werden. Da es im Speisebehälter zu einer Entmischung kommen kann, muss durch eine Vorrichtung sichergestellt werden, dass in diesem Fall beide Phasen angesaugt werden, was z.B. durch eine Absauglanze realisiert werden kann.

Claims (13)

  1. Verfahren zur Schmierung einer Expansionsmaschine in einer thermodynamischen Kreisprozessvorrichtung, wobei die Kreisprozessvorrichtung die Expansionsmaschine (30), eine Speisepumpe (50), einen Schmiermittelabscheider (10), einen Verdampfer (20), einen Kondensator (60) und ein Arbeitsmedium mit einem Arbeitsmittel und einem Schmiermittel umfasst, und wobei das Verfahren die Schritte umfasst:
    Druckbeaufschlagen des Arbeitsmediums mit der Speisepumpe (50);
    Liefern des druckbeaufschlagten Arbeitsmediums von der Speisepumpe (50) an den Schmiermittelabscheider (10);
    Abscheiden von Schmiermittel aus dem Arbeitsmedium mit dem Schmiermittelabscheider (10);
    Liefern zumindest eines Teils des abgeschiedenen Schmiermittels vom Schmiermittelabscheider (10) an die Expansionsmaschine (30);
    Liefern des von Schmiermittel abgereicherten Arbeitsmediums von dem Schmiermittelabscheider (10) an den Verdampfer (20);
    Verdampfen des von Schmiermittel abgereicherten Arbeitsmediums in dem Verdampfer (20);
    Liefern des verdampften Arbeitsmediums an die Expansionsmaschine (30);
    Liefern des Arbeitsmediums von der Expansionsmaschine (30) an den Kondensator (60);
    Verflüssigen des Arbeitsmediums mit dem Kondensator (60); und
    Liefern des verflüssigten Arbeitsmediums von dem Kondensator (60) an die Speisepumpe (50);
    dadurch gekennzeichnet, dass
    mit dem Schmiermittelabscheider (10) lediglich ein Teil des Schmiermittels aus dem Arbeitsmedium abgeschieden wird, sodass das in dem abgereicherten Arbeitsmedium verbleibende Schmiermittel aufeinander abwälzende oder gleitende Teile der Arbeitskammer der Expansionsmaschine (30) schmiert.
  2. Das Verfahren gemäß Anspruch 1, wobei die Kreisprozessvorrichtung weiterhin einen Speisebehälter (70) umfasst, und wobei der Schritt des Lieferns des verflüssigten Arbeitsmediums von dem Kondensator (60) an die Speisepumpe (50) die Teilschritte (i) Liefern des verflüssigten Arbeitsmediums von dem Kondensator (60) an den Speisebehälter (70) und (ii) Liefern des Arbeitsmediums vom Speisebehälter (70) an die Speisepumpe (50) umfasst.
  3. Das Verfahren gemäß Anspruch 2, in dem das Liefern des Arbeitsmediums vom Speisebehälter (70) an die Speisepumpe (50) das gleichzeitige Absaugen einer schmiermittelarmen und einer schmiermittelreichen Phase des Arbeitsmediums aus dem Speisebehälter (70) oder ein Mischen einer schmiermittelarmen und einer schmiermittelreichen Phase des Arbeitsmediums im Speisebehälter (70) umfasst.
  4. Das Verfahren gemäß einem der vorhergehenden Ansprüche, in dem das durch den Kondensator (60) verflüssigte Arbeitsmedium in Form einer Suspension aus Arbeitsmittel und Schmiermittel vorliegt, insbesondere wobei keine oder nur eine geringfügige Lösung von weniger als 15%, vorzugsweise von weniger als 10%, höchstvorzugsweise von weniger als 5% Schmiermittel im Arbeitsmittel stattfindet.
  5. Das Verfahren gemäß einem der vorhergehenden Ansprüche, in dem das abgeschiedene Schmiermittel aufgrund der Druckbeaufschlagung, insbesondere direkt und/oder ohne gepumpt zu werden, zu Schmierstellen der Expansionsmaschine (30), insbesondere zu einem Lager der Expansionsmaschine (30), strömt, und wobei vorzugsweise eine Regelung eines Volumenstroms des Schmiermittels zur Expansionsmaschine (30) erfolgt.
  6. Das Verfahren gemäß einem der vorhergehenden Ansprüche, mit dem weiteren Schritt: Reduzieren einer Strömungsgeschwindigkeit des Arbeitsmediums in dem Schmiermittelabscheider (10).
  7. Das Verfahren gemäß einem der vorhergehenden Ansprüche, in dem das Arbeitsmittel in Form eines organischen Arbeitsmittels bereitgestellt wird, wobei das Arbeitsmittel insbesondere einen fluorierten Kohlenwasserstoff umfasst oder daraus besteht und/oder das Schmiermittel insbesondere ein Kältemittelöl umfasst oder daraus besteht.
  8. Thermodynamische Kreisprozessvorrichtung, umfassend:
    eine Speisepumpe (50), die dazu ausgebildet ist, ein Arbeitsmedium mit Druck zu beaufschlagen;
    einen Schmiermittelabscheider (10), der dazu ausgebildet ist, im Arbeitsmedium enthaltenes Schmiermittel aus dem Arbeitsmedium abzuscheiden;
    einen Verdampfer (20), der dazu ausgebildet ist, das von Schmiermittel abgereicherte Arbeitsmedium zu verdampfen;
    eine Expansionsmaschine (30); und
    einen Kondensator (60), der dazu ausgebildet ist, das Arbeitsmedium zu verflüssigen;
    wobei die Kreisprozessvorrichtung dazu ausgebildet ist:
    zumindest einen Teil des abgeschiedenen Schmiermittels vom Schmiermittelabscheider (10) an die Expansionsmaschine (30) zu liefern;
    das von Schmiermittel abgereicherte Arbeitsmedium von dem Schmiermittelabscheider (10) an den Verdampfer (20) zu liefern;
    das von Schmiermittel abgereicherte Arbeitsmedium von dem Verdampfer (20) an die Expansionsmaschine (30) zu liefern; und
    das Arbeitsmedium von der Expansionsmaschine (30) an den Kondensator (60) zu liefern;
    dadurch gekennzeichnet, dass
    der Schmiermittelabscheider (10) dazu ausgebildet ist, lediglich einen Teil des Schmiermittels aus dem Arbeitsmedium abzuscheiden, in der Art, dass in dem an den Verdampfer (20) gelieferten Arbeitsmedium nach Abscheiden des einen Teils des Schmiermittels eine Menge an Schmiermittel verbleibt, so dass eine Schmierung aufeinander abwälzender oder gleitender Teile der Arbeitskammer der Expansionsmaschine (30) erreicht werden kann.
  9. Die Kreisprozessvorrichtung gemäß Anspruch 8, in der die Kreisprozessvorrichtung weiterhin einen Speisebehälter (70) umfasst, und wobei die Kreisprozessvorrichtung dazu ausgebildet ist, das verflüssigte Arbeitsmedium von dem Kondensator (60) an den Speisebehälter (70) zu liefern und das Arbeitsmedium vom Speisebehälter (70) an die Speisepumpe (50) zu liefern.
  10. Die Kreisprozessvorrichtung gemäß Anspruch 9, wobei eine Absaugvorrichtung zum Absaugen zumindest einer oben schwimmenden, schmiermittelreichen Phase des Arbeitsmediums in dem Speisebehälter (70) vorgesehen ist oder wobei eine Absaugvorrichtung (71), insbesondere eine Absauglanze, mit einer Vielzahl von Bohrungen vorgesehen ist, die derart angeordnet sind, dass gleichzeitig die oben schwimmende, schmiermittelreiche Phase und eine darunter liegende schmiermittelarme Phase des Arbeitsmediums aus dem Speisebehälter (70) abgesaugt werden können, oder wobei eine Mischvorrichtung zum Mischen einer schmiermittelarmen und einer schmiermittelreichen Phase des Arbeitsmediums im Speisebehälter (70) vorgesehen ist.
  11. Die Kreisprozessvorrichtung gemäß einem der Ansprüche 8 bis 10, in der die Kreisprozessvorrichtung eine Organic-Rankine-Cycle-Vorrichtung ist und/oder in der die Expansionsmaschine (30) aus der Gruppe ausgewählt wird, die aus einer Kolbenexpansionsmaschine, Schraubenexpansionsmaschine, einem Scrollexpander, einer Flügelzellenmaschine und einem Rootsexpander besteht.
  12. Die Vorrichtung gemäß einem der Ansprüche 8 bis 11, weiterhin eine Rohrleitung umfassend, in der das in dem Schmiermittelabscheider (10) abgeschiedene Schmiermittel zu Schmierstellen der Expansionsmaschine (30), insbesondere zu einem Lager der Expansionsmaschine (30), geleitet wird, und wobei die Rohrleitung vorzugsweise ein Regelventil zur Volumenstromregelung des Schmiermittels aufweist.
  13. Dampfkraftwerk, das die Vorrichtung gemäß einem der Ansprüche 8 bis 12 umfasst.
EP11003288.5A 2011-04-19 2011-04-19 Hochdruckseitige Abtrennung von flüssigem Schmierstoff zur Schmierung volumetrisch arbeitender Expansionsmaschinen Active EP2514933B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11003288.5A EP2514933B1 (de) 2011-04-19 2011-04-19 Hochdruckseitige Abtrennung von flüssigem Schmierstoff zur Schmierung volumetrisch arbeitender Expansionsmaschinen
US14/008,058 US10024196B2 (en) 2011-04-19 2012-04-12 High-pressure side separation of liquid lubricant for lubricating volumetrically working expansion machines
PCT/EP2012/001596 WO2012143104A1 (de) 2011-04-19 2012-04-12 Hochdruckseitige abtrennung von flüssigem schmierstoff zur schmierung volumetrisch arbeitender expansionsmaschinen
CN201280019104.6A CN103547772B (zh) 2011-04-19 2012-04-12 用于润滑测定体积地工作的膨胀机的流体润滑材料的高压侧分离的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11003288.5A EP2514933B1 (de) 2011-04-19 2011-04-19 Hochdruckseitige Abtrennung von flüssigem Schmierstoff zur Schmierung volumetrisch arbeitender Expansionsmaschinen

Publications (2)

Publication Number Publication Date
EP2514933A1 EP2514933A1 (de) 2012-10-24
EP2514933B1 true EP2514933B1 (de) 2017-03-15

Family

ID=44243547

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11003288.5A Active EP2514933B1 (de) 2011-04-19 2011-04-19 Hochdruckseitige Abtrennung von flüssigem Schmierstoff zur Schmierung volumetrisch arbeitender Expansionsmaschinen

Country Status (4)

Country Link
US (1) US10024196B2 (de)
EP (1) EP2514933B1 (de)
CN (1) CN103547772B (de)
WO (1) WO2012143104A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2520771B1 (de) * 2011-05-03 2016-08-10 Orcan Energy AG Verfahren und Vorrichtung zur schnellen Ölerwärmung für ölgeschmierte Expansionsmaschinen
JP5715111B2 (ja) 2012-12-12 2015-05-07 株式会社神戸製鋼所 発電装置及び発電システム
US9752485B2 (en) * 2013-01-03 2017-09-05 Eaton Corporation Exhaust gas energy recovery system
EP3032048A1 (de) * 2014-12-09 2016-06-15 Eaton Corporation Organisches rankinezyklussystem mit einem schmiermittelkreislauf
FR3029561B1 (fr) * 2014-12-09 2016-12-23 Exoes Machine de detente a pistons
CN105673108A (zh) * 2016-04-01 2016-06-15 上海开山能源装备有限公司 喷油orc膨胀机***
CN105673105A (zh) * 2016-04-01 2016-06-15 上海开山能源装备有限公司 带组合工质输送机构的有机朗肯循环膨胀机***
CN105673106A (zh) * 2016-04-01 2016-06-15 上海开山能源装备有限公司 带组合冷凝器的有机朗肯循环膨胀机***
JP6815911B2 (ja) * 2017-03-22 2021-01-20 株式会社神戸製鋼所 熱エネルギー回収装置
JP6763848B2 (ja) * 2017-12-04 2020-09-30 株式会社神戸製鋼所 熱エネルギー回収装置
CN111535889B (zh) * 2020-05-07 2021-01-05 江苏科瑞德智控自动化科技有限公司 一种低品质余热高效利用***

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3292366A (en) * 1965-07-16 1966-12-20 United Aircraft Corp Power generating system using thiophene as a working fluid
JPS5848733B2 (ja) * 1976-08-11 1983-10-31 株式会社日立製作所 廃熱利用小型発電プラント
FI86464C (fi) * 1990-09-26 1992-08-25 High Speed Tech Ltd Oy Foerfarande foer att saekra lagersmoerjning i en hermetisk hoegshastighetsmaskin.
US20040144093A1 (en) * 2003-01-28 2004-07-29 Hanna William Thompson Lubrication management of a pump for a micro combined heat and power system
EP1896698A2 (de) * 2005-06-10 2008-03-12 City University Expansionsvorrichtungsschmierung in dampfkraftanlagen
GB0511864D0 (en) * 2005-06-10 2005-07-20 Univ City Expander lubrication in vapour power systems
JP2009138684A (ja) * 2007-12-07 2009-06-25 Panasonic Corp ランキンサイクル装置
DE102008050137A1 (de) * 2008-10-04 2010-04-08 Daimler Ag Abwärmenutzungsvorrichtung zur Nutzung von Abwärme eines Verbrennungsmotors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20160290172A1 (en) 2016-10-06
CN103547772A (zh) 2014-01-29
CN103547772B (zh) 2016-03-16
US10024196B2 (en) 2018-07-17
EP2514933A1 (de) 2012-10-24
WO2012143104A1 (de) 2012-10-26

Similar Documents

Publication Publication Date Title
EP2514933B1 (de) Hochdruckseitige Abtrennung von flüssigem Schmierstoff zur Schmierung volumetrisch arbeitender Expansionsmaschinen
EP2476869B1 (de) Schmierung volumetrisch arbeitender Expansionsmaschinen
EP2520771B1 (de) Verfahren und Vorrichtung zur schnellen Ölerwärmung für ölgeschmierte Expansionsmaschinen
WO2011128360A1 (de) Verbrennungsmotor
DE102014206023B4 (de) System für einen thermodynamischen Kreisprozess, Anordnung mit einer Brennkraftmaschine und einem System, Verfahren zum Schmieren einer Expansionseinrichtung in einem System für einen thermodynamischen Kreisprozess, und Kraftfahrzeug
EP1706599B1 (de) Verfahren und anlage zur umwandlung von anfallender wärmeenergie in mechanische energie
EP0085994A2 (de) Betreiben einer Wärmepumpe oder Kältemaschine
DE102008013545B4 (de) Vorrichtung und Verfahren zur Abwärmenutzung mittels eines ORC-Prozesses
DE102010011737B4 (de) Verfahren und Vorrichtung zur Energieumwandlung
DE102011012644A1 (de) Kälteanlage
EP2746543B1 (de) Schmierung von Expansionsmaschinen
DE102012024031B4 (de) Vorrichtung und Verfahren zum Umwandeln von thermischer Energie mit einer Expansionseinrichtung
DE102019217671A1 (de) Kühlsystem und Verfahren zum Betreiben eines Kühlsystems
DE102012004801B4 (de) Anordnung für eine Wärmepumpe mit Schraubenverdichter
WO2015121116A1 (de) Kraftwärmemaschine und verfahren zum betreiben einer kraftwärmemaschine
DE102006006129A1 (de) Verfahren zum Betreiben eines Schraubenmotors sowie Schraubenmotor
WO2011085914A2 (de) Einrichtung zur bereitstellung von heizwärme oder zur erzeugung von klimakälte und einrichtung zur bereitstellung von elektroenergie, sowie verfahren zur bereitstellung von heizenergie, verfahren zur erzeugung von kälteenergie und verfahren zur erzeugung von bewegungsenergie und/ oder elektroenergie
DE112018006447T5 (de) Ölpumpensteuervorrichtung, Steuerverfahren, Steuerprogramm und Turbokühler
WO2014173641A1 (de) Verfahren und vorrichtung zum kühlen eines motors
DE102017215698A1 (de) Kühlsystem für ein Turbinenlager
DE102012006142B4 (de) Dampfkraftanlage für ein Kraftfahrzeug oder eine stationäre Einrichtung
WO2013060447A1 (de) Abwärmenutzungsvorrichtung
WO2024068688A1 (de) Wärmekraftmaschine und verfahren zum betreiben einer wärmekraftmaschine
DE3304022A1 (de) Verfahren zur kuehlung und/oder spaltabdichtung und schmierung von schraubenmaschinen oder sonstiger gasfoerdernder verdraengermaschinen
WO2024017531A1 (de) Kompressionskältemaschine, system aus kompressionskältemaschinen und verfahren zum betreiben einer kompressionskältemaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ORCAN ENERGY GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ORCAN ENERGY AG

17Q First examination report despatched

Effective date: 20151013

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F01C 1/02 20060101ALN20160905BHEP

Ipc: F04C 29/02 20060101ALI20160905BHEP

Ipc: F01C 1/16 20060101ALN20160905BHEP

Ipc: F01C 1/344 20060101ALN20160905BHEP

Ipc: F01C 21/04 20060101ALI20160905BHEP

Ipc: F01C 1/12 20060101ALN20160905BHEP

Ipc: F01K 25/10 20060101AFI20160905BHEP

INTG Intention to grant announced

Effective date: 20160926

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 875823

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011011819

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170315

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170315

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170615

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170315

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170616

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170315

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170315

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170615

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170315

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170315

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170315

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170315

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170315

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170715

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170315

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170717

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170315

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011011819

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170315

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170315

26N No opposition filed

Effective date: 20171218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170419

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170315

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170419

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 875823

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170315

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230425

Year of fee payment: 13

Ref country code: DE

Payment date: 20230425

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 13