EP2499881B1 - Verfahren und schaltungsanordnung zur erzeugung von led-mischlicht vorbestimmter farbe - Google Patents

Verfahren und schaltungsanordnung zur erzeugung von led-mischlicht vorbestimmter farbe Download PDF

Info

Publication number
EP2499881B1
EP2499881B1 EP10726063.0A EP10726063A EP2499881B1 EP 2499881 B1 EP2499881 B1 EP 2499881B1 EP 10726063 A EP10726063 A EP 10726063A EP 2499881 B1 EP2499881 B1 EP 2499881B1
Authority
EP
European Patent Office
Prior art keywords
led
ptc
ntc
temperature
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10726063.0A
Other languages
English (en)
French (fr)
Other versions
EP2499881A1 (de
Inventor
Istvan Bakk
Hans Hoschopf
Peter Pachler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonic Jennersdorf GmbH
Original Assignee
Tridonic Jennersdorf GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonic Jennersdorf GmbH filed Critical Tridonic Jennersdorf GmbH
Publication of EP2499881A1 publication Critical patent/EP2499881A1/de
Application granted granted Critical
Publication of EP2499881B1 publication Critical patent/EP2499881B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light

Definitions

  • the invention relates to a method and a circuit arrangement for generating mixed light of a predetermined color by mixing the longer-wavelength light emitted by at least one first LED with the shorter-wavelength light emitted by at least one second LED.
  • the boundary between the longer-wavelength and the shorter-wavelength light may be, for example, 500 nm (with respect to the peak of the spectrum).
  • white light can be obtained by mixing the light emitted by a red light LED and that of a color-converted blue light LED or UV light LED (this is, for example, a blue light or UV light-emitting LED chip with a Phosphor layer is covered, which converts the blue light or the UV light into a longer wavelength light with a correspondingly different color) are generated.
  • a color-converted blue light LED or UV light LED this is, for example, a blue light or UV light-emitting LED chip with a Phosphor layer is covered, which converts the blue light or the UV light into a longer wavelength light with a correspondingly different color
  • white light can also be generated by RGB (red, green, blue) mixture.
  • a change in temperature can be caused by the ambient temperature fluctuating or even by the fact that the LED module is heated by the operating current over time. In the latter case, a stable state is reached only after a certain warm-up time. This is usually at least 10 minutes, but can take much longer.
  • Temperature changes result in color location changes of the mixed light for the following reason: the higher the temperature in an LED module, the lower the intensity of the light emitted by the LEDs (with the same current through the LED).
  • the gradient of the intensity as a function of the temperature is decreasing or, in other words, the gradient is negative. This would not be a problem in terms of the color of the mixed light, if the negative gradient of the longer wavelength LED light and the shorter wavelength LED light would be about the same. In fact, however, the negative gradient of longer wavelength LED light is greater than the negative gradient of shorter wavelength LED light, with the result that the spectrum of the mixed light changes.
  • EP 2 471 347 A1 which is SdT according to Art. 54 (3) EPC, discloses LED lighting with compensating bypass circuits.
  • the invention has for its object to counteract the described adverse phenomenon.
  • LEDs that emit red light are representative of longer wavelength LEDs
  • blue light emitting LEDs also referred to as “blue or color converted blue LEDs”
  • the limit with respect to the peak of the spectrum between the longer-wavelength and the shorter-wavelength light may be, for example, 500 nm.
  • FIG. 1 is the natural or uncompensated course of the intensity of the light emitted by red LEDs light as a function of the temperature (the semiconductor junction) shown as a dotted curve (each with a constant current).
  • the natural course of the intensity of the intensity of the light emitted by blue LEDs is shown as a continuous drawn curve. It can be seen that both curves decrease with higher temperature, but the negative gradient of the intensity profile of the red LEDs is greater than that of the intensity profile of the blue LEDs.
  • the negative gradients of the two intensity gradients should be largely aligned. Otherwise, fluctuations in the room or ambient temperature or, after switching on, heating of the LED module to the operating temperature result in an undesired color shift of the mixed light.
  • the solution to this problem is according to the invention in a circuit compensation control (as opposed to a control) of the intensity profile of the light emitted from the red LEDs such that the negative gradient of the light emitted by the red LEDs is lowered so that it at least until Reach the operating temperature is approximately parallel to the intensity curve of the light emitted by the blue LEDs light.
  • the compensated intensity profile of the light emitted by the red LEDs is shown as a dashed curve.
  • Circuit-technical control excludes in particular a color detection by means of sensor and feedback signal.
  • the invention provides a circuit control without control with feedback signal.
  • FIG. 2 a circuit arrangement is shown with which such compensation can be achieved.
  • This circuit can be fed by a preferably regulated constant current whose amplitude of the dimming of the LED track can be adjustable, for example by specifying a desired value.
  • the circuit may, for example, be accommodated in a housing of a retrofit LED lamp.
  • the circuit arrangement includes a plurality of blue LEDs connected in series, denoted by LEDS (b), and also a plurality of red LEDs connected in series, denoted by LEDs (r).
  • a bypass circuit branch is connected in parallel, which consists of a transistor T and a resistor R1.
  • Parallel to the emitter-base path of the transistor T is a resistor R2.
  • the temperature-sensitive resistor PTC has a positive temperature behavior, ie its resistance increases with temperature and vice versa.
  • the temperature-sensitive resistor PTC is in heat-conducting contact with the chip or module on which at least the LEDs (r) are arranged.
  • the LEDs (b) can also be arranged on this chip or module.
  • the temperature on the chip or module due to an increase in ambient temperature or - after switching - increased by the operating heat of the LEDs, so also increases the resistance of the temperature-sensitive resistor PTC, with the result that the emitter-base voltage of the transistor decreases becomes.
  • the transistor increasingly blocks, reducing the partial current of the total current flowing across the bypass. This means that the current flowing through the LEDs (r) is increased, which then leads to the desired reduction in the negative gradient of the intensity profile of the light emitted by the LEDs (r).
  • the network for generating a control voltage for the transistor T are also designed differently and can be realized for example with a temperature-sensitive device having a negative temperature behavior.
  • a further possibility for compensating the intensity profile of the light emitted by the LEDs (r) is that the forward voltage of at least one "red” LED and / or at least one "blue” LED, optionally all LEDs of the chain, with temporarily stabilized operating current Temperature measurement ("red” and "blue” is just an example of the first or second type). By evaluating the measured forward voltage can then win a control parameter to increase the operating current.
  • FIG. 3 also shows a circuit arrangement with which the compensation described above can be achieved.
  • the circuit arrangement includes a plurality of blue LEDs connected in series, denoted by LEDs (b), and a plurality of red LEDs also connected in series, denoted by LEDs (r).
  • LEDs (r) To the LEDs (r), a bypass circuit branch is connected in parallel, but in this embodiment instead of a PTC has an NTC with a negative temperature behavior, ie its resistance decreases with temperature and vice versa.
  • the temperature-sensitive resistor NTC is in heat-conducting contact with the chip or module, on which at least the LEDs (r) are arranged.
  • the LEDs (b) can also be arranged on this chip or module.
  • the three components of the functional unit R1-NTC-R2 supply the base of the transistor T1 with temperature-dependent current and temperature-dependent voltage, wherein the resistor R1 with the parallel resistor R2 and the temperature-sensitive resistor NTC forms a voltage divider for supplying the base.
  • the resistor R2 serves to limit the current in the lower temperature range and thus deforms the current characteristic of the sidestream.
  • R1 depending on the existing voltage, a side current for supplying the transistor base and the voltage level is set.
  • the NTC causes the current in the sidestream to switch off at high temperatures. At low temperatures, the effect Current amplification of the transistor with correspondingly low currents through the side string current limiting.
  • the functional unit T1-R3-R4 represents the current control unit.
  • the transistor is intended to switch large currents. For this reason, the linear current amplification factor is an essential quantity.
  • the two resistors R5 and R6 cause the current limit at temperatures of 40 ° to 20-30 ° and consume the most power. For this reason, a low power transistor (0.5W) can be used.
  • the resistors have the disadvantage that the dimensioning may require a large area.
  • a higher power transistor can be used and the resistor either omitted entirely or the design performed such that there is no current limiting and only a portion of the power is dissipated.
  • FIG. 4 shows a further embodiment ajar FIG. 3
  • a red LED in the chain of blue LEDs is switched by swapping.
  • the compensation ratio of the compensation circuit changes, since the compensation current thus no longer concerns only the red LEDs, but also a blue LED.
  • the compensation circuit can thus be set to the desired temperature behavior such that, in addition to the resistance circuit, the properties of the NTC / PTC and the transistor amplification, the arrangement of the different colored LEDs in the LED string is changed. It depends in particular on which LEDs are present following the branch point for the compensation circuit. The aforementioned training thus follow not only LEDs of the same color on the branch point, but in the residual strand is at least one LED of the other color before.
  • a particular field of application for such a temperature-compensated circuit are again retrofit LED lamps.
  • FIG. 5 shows CIE color coordinates for different compensation currents as a function of the temperature TC at the temperature-dependent resistor NTC in 5-degree increments.
  • a typical temperature gradient of 25 degrees to 85 degrees shows that the color locus in the CIE diagram remains within a given McAdam ellipse of a defined color temperature (eg, 2700 Kelvin) as it warms.
  • the McAdam ellipse shows the tolerance range of the human eye for a given point in the CIE diagram.
  • the human eye does not perceive any color change.
  • the temperature compensation obviously also works for different compensation currents, but due to the different side current in relation to the total current, a shift in the direction of red takes place at higher currents.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Description

  • Die Erfindung betrifft ein Verfahren und eine Schaltungsanordnung zur Erzeugung von Mischlicht vorbestimmter Farbe durch Mischen des von mindestens einer ersten LED emittierten längerwelligen Lichtes mit dem von mindestens einer zweiten LED emittierten kürzerwelligen Lichtes. Die Grenze zwischen dem längerwelligen und dem kürzerwelligen Licht kann bspw. bei 500nm (bzgl. des Peaks des Spektrums) liegen.
  • Es ist bekannt, Mischlicht einer vorbestimmten Farbe durch Mischen des von mindestens zwei LEDs emittierten Lichtes zu erzeugen, wobei das von der einen LED und das von der anderen LED emittierte Licht unterschiedliche Wellenlängen haben. Beispielweise kann Weißlicht durch Mischen des von einer Rotlicht-LED emittierten Lichtes und des von einer farbkonvertierten Blaulicht-LED oder UV-Licht-LED (es handelt sich dabei bspw. um einen blaues Licht oder UV-Licht erzeugenden LED-Chip, der mit einer Phosphorschicht bedeckt ist, die das blaue Licht bzw. das UV-Licht in ein längerwelliges Licht mit einer entsprechend anderen Farbe umwandelt) erzeugt werden.
  • Alternativ kann Weisslicht auch durch RGB (rot, grün, blau) Mischung erzeugt werden.
  • Dabei tritt jedoch das Problem auf, dass sich der Farbort des Mischlichtes im CIE-Diagramm mit der Temperatur ändert. Eine Temperaturänderung kann ihre Ursache darin haben, dass die Umgebungstemperatur schwankt oder aber auch darin, dass sich das LED-Modul durch den Betriebsstrom mit der Zeit erwärmt. Im letztgenannten Fall wird erst nach einer gewissen Aufwärmzeit ein stabiler Zustand erreicht. Diese beträgt in der Regel mindestens 10 Minuten, kann aber auch erheblich länger dauern.
  • Temperaturänderungen haben aus folgendem Grund Farbortänderungen des Mischlichtes zur Folge: Je höher die Temperatur in einem LED-Modul ansteigt, desto geringer ist die Intensität des von den LEDs emittierten Lichtes (bei gleichbleibendem Strom durch die LED). Der Verlauf der Intensität in Abhängigkeit von der Temperatur ist abfallend oder - mit anderen Worten - der Gradient ist negativ. Das wäre an sich in Bezug auf die Farbe des Mischlichtes noch kein Problem, wenn der negative Gradient des längerwelligen LED-Lichtes und der des kürzerwelligen LED-Lichtes in etwa gleich wären. Tatsächlich ist jedoch der negative Gradient von längerwelligem LED-Licht größer ist als der negative Gradient von kürzerwelligem LED-Licht, mit der Folge, dass sich das Spektrum des Mischlichtes verändert.
  • Somit kann es bei einer typischen Erwärmung eines LED-Moduls bspw. von Raumtemperatur auf 60°C bis 80°C zu einer Farbortverschiebung kommen, die für das menschliche Auge wahrnehmbar ist.
  • US 2007/0171159 A1 einen Treiber für farbige LEDs, bei dem eine Temperaturkompensierung in Serie zu LEDs geschaltet ist.
  • EP 2 471 347 A1 , die SdT gemäss Art. 54 (3) EPC ist, offenbart eine LED Beleuchtung mit kompensierenden Bypass-Schaltungen.
  • Der Erfindung liegt die Aufgabe zugrunde, der geschilderten nachteiligen Erscheinung entgegenzuwirken.
  • Die Aufgabe ist durch die Merkmale der unabhängigen Ansprüche gelöst. Die abhängigen Ansprüche bilden den zentralen Gedanken der Erfindung in besonders vorteilhafter Weise weiter.
  • Weitere Merkmale, Vorteile und Eigenschaften der Erfindung sollen nunmehr unter Bezugnahme auf die Figuren der begleitenden Zeichnungen erläutert werden.
  • Es zeigen:
  • Figur 1
    die Temperaturabhängigkeit der Intensität des von einer Rotlicht-Diode emittierten Lichtes und des von einer farbkonvertierten Blaulicht-LED emittierten Lichtes,
    Figur 2
    eine prinzipielle Schaltungsanordnung mit einem PTC-Widerstand zum Erzeugen von weißem Mischlicht durch Mischen des von roten LEDs und des von farbkonvertierten blauen LEDs emittierten Lichtes, und mit einem PTC-Widerstand zur Kompensation der unterschiedlichen Temperaturabhängikeit der Effizienz der beiden genannten LED-Typen.
    Figur 3
    eine Abwandlung des Ausführungsbeispiels von Figur 2, bei der anstelle des PTC-Widerstands ein NTC-Widerstand eingesetzt ist.
    Figur 4
    eine prinzipielle Schaltungsanordnung wie in Fig. 3 mit dem Unterschied, dass eine rote LED der LED-Kette LED6-10 mit einer blauen LED aus der LED_Kette LED1-5 vertauscht ist.
    Figur 5
    CIE-Koordinaten für unterschiedliche Lichtströme der Schaltungsanordnung nach Fig. 4 in Abhängigkeit der am temperaturempfindlichen NTC-Widerstand vorliegenden Temperatur
  • Nachfolgend sollen LEDs, die rotes Licht emittieren (auch als "rote LEDs" bezeichnet), stellvertretend für längerwellige LEDs stehen, während blaues Licht emittierende LEDs (auch als "blaue oder farbkonvertierte blaue LEDs" bezeichnet) stellvertretend für kürzerwellige LEDs stehen.
  • Die Grenze bzgl. des Peaks des Spektrums zwischen dem längerwelligen und dem kürzerwelligen Licht kann bspw. bei 500nm liegen.
  • In Figur 1 ist der natürliche oder unkompensierte Verlauf der Intensität des von roten LEDs emittierten Lichtes in Abhängigkeit von der Temperatur (des Halbleiterübergangs) als punktierte Kurve dargestellt (jeweils bei konstantem Strom). Der natürliche Verlauf der Intensität der Intensität des von blauen LEDs emittierten Lichtes ist als durchgehend gezeichnete Kurve dargestellt. Man erkennt, dass beide Kurven mit höherer Temperatur abfallen, wobei jedoch der negative Gradient des Intensitätsverlaufes der roten LEDs größer ist als derjenige des Intensitätsverlaufes der blauen LEDs.
  • Um aus dem Licht der roten und der blauen (ggf. farbstoffkonvertierten) LED ein weißes Mischlicht erzeugen zu können, dessen Farbort im CIE-Diagramm von der Temperatur weitgehend unabhängig ist, sollten die negativen Gradienten der beiden Intensitätsverläufe weitgehend angeglichen sein. Andernfalls haben Schwankungen der Raum- oder Umgebungstemperatur oder - nach dem Einschalten - Erwärmen des LED-Moduls auf die Betriebstemperatur eine unerwünschte Farbverschiebung des Mischlichtes zur Folge.
  • Die Lösung dieses Problems besteht gemäß der Erfindung in einer schaltungstechnischen Kompensationssteuerung (im Gegensatz zu einer Regelung) des Intensitätsverlaufes des von den roten LEDs emittierten Lichtes derart, dass der negative Gradient des von den roten LEDs emittierten Lichtes abgesenkt wird, so dass er zumindest bis zum Erreichen der Betriebstemperatur etwa parallel zu der Intensitätskurve des von den blauen LEDs emittierten Lichtes verläuft. Der kompensierte Intensitätsverlauf des von den roten LEDs emittierten Lichtes ist als gestrichelte Kurve dargestellt.
  • "Schaltungstechnische Steuerung" schließt insbesondere eine Farberfassung mittels Sensor und Rückführsignal aus. Die Erfindung sieht also eine schaltungstechnische Steuerung ohne Regelung mit Rückführsignal vor.
  • In Figur 2 ist eine Schaltungsanordnung gezeigt, mit der eine solche Kompensation erreichbar ist. Diese Schaltung kann durch einen vorzugsweise geregelten Konstantstrom gespeist sein, dessen Amplitude der Dimmung der LED-Strecke einstellbar sein kann, bspw. durch Vorgabe eines Sollwerts. Die Schaltung kann bspw. in einem Gehäuse einer Retrofit LED-Lampe aufgenommen sein.
  • Die Schaltungsanordnung enthält mehrere in Serie geschaltete blaue LEDs, mit LEDS(b) bezeichnet, und mehre ebenfalls in Serie geschaltete rote LEDs, mit LEDs(r) bezeichnet. Zu den LEDs(r) ist ein Bypass-Schaltungszweig parallel geschaltet, der von einem Transistor T und einem Widerstand R1 besteht. Parallel zur Emitter-Basis-Strecke des Transistors T liegt ein Widerstand R2. Dieser bildet mit einem temperatursensitiven Widerstand PTC einen Spannungsteiler, der den Emitter des Transistors mit einer Steuerspannung versorgt. Der temperatursensitive Widerstand PTC hat ein positives Temperatur-Verhalten, d. h. sein Widerstandswert erhöht sich mit der Temperatur und umgekehrt. Der temperatursensitive Widerstand PTC ist in wärmeleitendem Kontakt mit dem Chip bzw. Modul, auf dem mindestens die LEDs(r) angeordnet sind. Auch die LEDs(b) können auf diesem Chip oder Modul angeordnet sein.
  • Wenn sich bei der Schaltungsanordnung nach Figur 1 die Temperatur auf den Chip oder Modul infolge einer Steigerung der Umgebungstemperatur oder - nach dem Einschalten - durch die Betriebswärme der LEDs erhöht, so erhöht sich auch der Widerstandswert des temperatursensitiven Widerstandes PTC, mit der Folge, dass die Emitter-Basis-Spannung des Transistors erniedrigt wird. Das Ergebnis ist, dass der Transistor zunehmend sperrt, wodurch der über den Bypass fließende Teilstrom des Gesamtstromes reduziert wird. Das bedeutet, dass der durch die LEDs(r) fließende Strom erhöht wird, was dann zu der angestrebten Reduzierung des negativen Gradienten des Intensitätsverlaufs des von den LEDs(r) emittierten Lichtes führt.
  • Es versteht sich, dass das Netzwerk zur Erzeugung einer Steuerspannung für den Transistor T auch anders gestaltet werden und beispielsweise mit einem temperatursensitiven Bauelement realisiert werden kann, das ein negatives Temperatur-Verhalten hat.
  • Eine weitere Möglichkeit zur Kompensation des Intensitätsverlaufes des von den LEDs(r) emittierten Lichts besteht darin, dass man die Vorwärtsspannung mindestens einer "roten" LED und/oder mindestens einer "blauen" LED, optional aller LEDs der Kette, bei vorübergehend stabilisiertem Betriebsstrom zur Temperaturmessung heranzieht ("Rot" und "blau" steht nur als Beispiel für den ersten bzw. zweiten Typen). Durch Auswertung der gemessenen Vorwärtsspannung kann man dann einen Steuerparameter zur Erhöhung des Betriebsstroms gewinnen.
  • Figur 3 zeigt ebenfalls eine Schaltungsanordnung, mit der die oben beschriebene Kompensation erreichbar ist. Die Schaltungsanordnung enthält mehrere in Serie geschaltete blaue LEDs, mit LEDs(b) bezeichnet, und mehrere ebenfalls in Serie geschaltete rote LEDs, mit LEDs(r) bezeichnet. Zu den LEDs(r) ist ein Bypass-Schaltungszweig parallel geschaltet, der aber in dieser Ausführungsform statt eines PTC einen NTC mit einem negativen Temperatur-Verhalten aufweist, d.h. sein Widerstandswert senkt sich mit der Temperatur und umgekehrt. Auch in dieser Ausführungsform befindet sich der temperatursensitive Widerstand NTC in wärmeleitendem Kontakt mit dem Chip bzw. Modul, auf dem mindestens die LEDs(r) angeordnet sind. Auch die LEDs(b) können auf diesem Chip oder Modul angeordnet sein.
  • Die drei Bauteile der Funktionseinheit R1-NTC-R2 versorgen die Basis des Transistors T1 mit temperaturabhängigem Strom und temperaturabhängiger Spannung, wobei der Widerstand R1 mit dem parallel geschalten Widerstand R2 und dem temperatursensitiven Widerstand NTC einen Spannungsteiler zur Versorgung der Basis bildet.
  • Der Widerstand R2 dient dazu, den Strom im tieferen Temperaturbereich zu begrenzen und deformiert so die Stromkennlinie des Seitenstrangs. Mit R1 wird in Abhängigkeit der vorhandenen Spannung ein Seitenstrom zur Versorgung der Transistorbasis und das Spannungslevel eingestellt. Der NTC bewirkt bei hohen Temperaturen das Abschalten des Stroms im Seitenstrang. Bei niederen Temperaturen wirkt die Stromverstärkung des Transistors bei entsprechend geringen Strömen durch den Seitenstrang strombegrenzend.
  • Die Funktionseinheit T1-R3-R4 stellt die Stromregeleinheit dar. Der Transistor soll große Ströme schalten. Aus diesem Grund stellt der lineare Stromverstärkungsfaktor eine wesentliche Größe dar.
  • Die beiden Widerstände R5 und R6 verursachen bei Temperaturen von 40° bis 20-30° die Strombegrenzung und verbrauchen die meiste Leistung. Aus diesem Grund kann ein Transistor mit geringer Leistung (0,5 W) eingesetzt werden.
  • Die Widerstände haben aber den Nachteil, dass die Dimensionierung ggf. eine große Fläche benötigt. Alternativ kann ein Transistor mit höherer Leistung eingesetzt werden und der Widerstand entweder komplett weggelassen werden oder die Auslegung derart durchgeführt werden, dass keine Strombegrenzung stattfindet und nur ein Teil der Leistung abgetragen wird.
  • Figur 4 zeigt ein weiteres Ausführungsbeispiel angelehnt an Figur 3, wobei jedoch in der LED-Kette eine rote LED in die Kette der blauen LEDs durch Vertauschen geschaltet ist.
  • Somit ändert sich das Kompensationsverhältnis der Kompensationsschaltung, da der Kompensationsstrom somit nicht mehr nur noch die roten LEDs betrifft, sondern auch eine blaue LED.
  • Es kann somit die Kompensationsschaltung dadurch auf das gewünschte Temperaturverhalten eingestellt werden, dass neben der Widerstandbeschaltung, den Eigenschaften des NTC/PTC und der Transistorverstärkung auch die Anordnung der unterschiedlich farbigen LEDs in dem LED-Strang verändert wird. Dabei kommt es insbesondere darauf an, welche LEDs folgend auf den Abzweigungspunkt für die Kompensationsschaltung vorliegen. Der genannten Weiterbildung folgen also auf den Abzweigungspunkt nicht nur LEDs gleicher Farbe, sondern in dem Reststrang liegt wenigstens eine LED der jeweils anderen Farbe vor.
  • Ein besonderes Anwendungsgebiet für eine derartige temperaturkompensierte Schaltung sind wiederum Retrofit-LED-Lampen.
  • Figur 5 zeigt CIE-Farbkoordinaten für unterschiedliche Kompensationsströme in Abhängigkeit der Temperatur TC am temperaturabhängigen Widerstand NTC in 5-Grad-Schritten. Bei einem typischen Temperaturverlauf von 25 Grad bis 85 Grad zeigt sich, dass der Farbort im CIE-Diagramm im Zuge der Erwärmung innerhalb einer vorgegebenen McAdam-Ellipse einer definierten Farbtemperatur (beispielsweise 2700 Kelvin) bleibt.
  • Die McAdam-Ellipse zeigt den Toleranzbereich des menschlichen Auges für einen vorgegebenen Punkt im CIE-Diagramm. Weil also durch die Kompensationsschaltung der Farbort innerhalb einer McAdam-Ellipse gehalten werden kann, nimmt das menschliche Auge keine Farbänderung wahr.
  • Um diesen Effekt zu erzielen, ist es notwendig, den Kompensationsstrom durch Dimensionierung der Widerstände und/oder Stromverstärkerleistung des Transistors Tl im Kompensationszweig einzustellen und andererseits die LED-Anordnung (Verteilung der roten bzw. der blauen LEDs) wie in Fig. 4 gezeigt entsprechend einzustellen.
  • Die Temperaturkompensation funktioniert offensichtlich auch für unterschiedliche Kompensationsströme, wobei jedoch wegen des unterschiedlichen Seitenstroms in Relation zum Gesamtstrom eine Verschiebung Richtung rot bei höheren Strömen stattfindet.
  • Die Kompensation ist bei niederen Temperaturen bis 60° sogar besser als in der Konstellation nach Fig. 3 mit unvertauschten LEDs, aber danach tritt ein sehr starker Shift auf und die Kompensation ist nicht mehr ausreichend. Um hier entgegenzuwirken müsste ein steilerer Abfall bis 75° auf annähernd 0mA Seitenstrom erreicht werden.

Claims (10)

  1. Verfahren zum Betreiben einer LED-Strecke, die mit wenigstens zwei LED-Typen (LED(b), LED(r); LED1-5, LED6-10) unterschiedlichen Spektrums in einer Serienschaltung weisses Mischlicht erzeugt,
    wobei die Farbortwanderung des weissen Mischlichts, die durch die unterschiedlichen negativen Gradienten der Temperaturabhängigkeiten der Intensität der wenigstens zwei unterschiedlichen LED-Typen (LED(b), LED(r); LED1-5, LED6-10) verursacht wird, mittels einer Kompensation der unterschiedlichen negativen Gradienten der Temperaturabhängigkeiten der Intensität reduziert wird,
    dadurch gekennzeichnet,
    dass die Farbortwanderung durch einen passiven und parallel zu wenigstens einem Teil der LED-Strecke geschalteten Bypass-Schaltungszweig (R1, R2, T, PTC; R1-R6, T1, NTC) reduziert wird.
  2. Betriebsschaltung für eine LED-Strecke, die zur Erzeugung von weissem Mischlicht wenigstens zwei LED-Typen (LED(b), LED(r); LED1-5, LED6-10) unterschiedlichen Spektrums in einer Serienschaltung aufweist,
    aufweisend eine Kompensationsschaltung zur Verringerung der Farbortwanderung des weissen Mischlichts, die durch die unterschiedlichen negativen Gradienten der Temperaturabhängigkeiten der Intensität der wenigstes zwei unterschiedlichen LED-Typen (LED(b), LED(r); LED1-5, LED6-10) verursacht wird,
    dadurch gekennzeichnet,
    dass die Kompensationsschaltung einen passiven und parallel zu wenigstens einem Teil der LED-Strecke geschalteten Bypass-Schaltungszweig (R1, R2, T, PTC; R1-R6, T1, NTC) aufweist.
  3. Betriebsschaltung nach Anspruch 2
    wobei der Bypass-Schaltungszweig (R1, R2, T, PTC; R1-R6, T1, NTC) ein passives temperaturabhängiges Bauteil (PTC; NTC) aufweist.
  4. Betriebsschaltung nach Anspruch 3,
    bei dem das passive temperaturabhängige Bauteil (PTC; NTC) ein PTC- und/oder ein NTC-Widerstand ist.
  5. Betriebsschaltung nach Anspruch 2,
    dadurch gekennzeichnet,
    dass der PTC-Widerstand und/oder der NTC-Widerstand Teil eines Netzwerkes (R1, R2, PTC; R1-R6, NTC) zur Steuerung eines Transistors (T; T1) ist, dessen Basis-Emitter-Strecke im Bypass-Schaltungszweig (R1, R2, T, PTC; R1-R6, T1, NTC) liegt.
  6. Betriebsschaltung nach einem der Ansprüche 2 bis 5,
    wobei der Bypass-Schaltungszweig (R1, R2, T, PTC; R1-R6, T1, NTC) zu einem Teil der LED-Strecke parallel geschaltet ist, der nur einen Typ an LEDs (LED(r)) enthält, oder der mehrere unterschiedliche LED-Typen (LED(r), LED(b)) enthält.
  7. Betriebsschaltung nach einem der Ansprüche 2 bis 6,
    dadurch gekennzeichnet,
    dass ein erster LED-Typ (LED(r)) eine rote, amberfarbene, orange, oder infraorange LED ist.
  8. Betriebsschaltung nach einem der Ansprüche 2 bis 7,
    dadurch gekennzeichnet,
    dass ein zweiter LED-Typ (LED(b)) eine Blaulicht-LED oder UV-Licht LED ist.
  9. LED-Modul,
    aufweisend eine Betriebsschaltung nach einem der Ansprüche 2 bis 8, und eine von dieser versorgte LED-Strecke.
  10. LED-Lampe, insbesondere für Weisslicht, insbesondere Retrofit LED-Lampe, aufweisend wenigstens ein LED-Modul nach Anspruch 9.
EP10726063.0A 2009-11-09 2010-06-16 Verfahren und schaltungsanordnung zur erzeugung von led-mischlicht vorbestimmter farbe Active EP2499881B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009052390A DE102009052390A1 (de) 2009-11-09 2009-11-09 Verfahren und Schaltungsanordnung zur Erzeugung von LED-Mischlicht vorbestimmter Farbe
PCT/EP2010/058479 WO2011054547A1 (de) 2009-11-09 2010-06-16 Verfahren und schaltungsanordnung zur erzeugung von led-mischlicht vorbestimmter farbe

Publications (2)

Publication Number Publication Date
EP2499881A1 EP2499881A1 (de) 2012-09-19
EP2499881B1 true EP2499881B1 (de) 2019-01-09

Family

ID=42735199

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10726063.0A Active EP2499881B1 (de) 2009-11-09 2010-06-16 Verfahren und schaltungsanordnung zur erzeugung von led-mischlicht vorbestimmter farbe

Country Status (5)

Country Link
US (1) US9137871B2 (de)
EP (1) EP2499881B1 (de)
CN (1) CN102668699B (de)
DE (1) DE102009052390A1 (de)
WO (1) WO2011054547A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021412A1 (ja) * 2011-08-05 2013-02-14 三菱電機株式会社 Led点灯装置
DE102012203746A1 (de) * 2011-12-23 2013-06-27 Tridonic Gmbh & Co. Kg Verfahren und Schaltungsanordnung zur Erzeugung von weissem Licht mittels LEDS
AT13765U1 (de) * 2012-01-13 2014-08-15 Tridonic Gmbh & Co Kg Schaltungsanordnung für led
US8878443B2 (en) * 2012-04-11 2014-11-04 Osram Sylvania Inc. Color correlated temperature correction for LED strings
JP6056213B2 (ja) * 2012-06-26 2017-01-11 東芝ライテック株式会社 発光モジュール及び照明装置
US20140021884A1 (en) * 2012-07-18 2014-01-23 Dialight Corporation High ambient temperature led luminaire with thermal compensation circuitry
CZ2012672A3 (cs) * 2012-10-02 2014-06-04 Rieter Cz S.R.O. Způsob generování světelného záření a zapojení svítivé diody zdroje záření v optickém snímači pro sledování lineárního textilního materiálu
DE102012219902A1 (de) * 2012-10-31 2014-04-30 Tridonic Jennersdorf Gmbh Verfahren und Schaltungsanordnung zum Erzeugen von dimmbarem LED-Mischlicht
US9271368B2 (en) * 2012-12-07 2016-02-23 Bridgelux, Inc. Method and apparatus for providing a passive color control scheme using blue and red emitters
US9237625B1 (en) * 2012-12-18 2016-01-12 Universal Lighting Technologies, Inc. Driver circuit with a common interface for negative temperature coefficient resistor and bi-metallic strip temperature sensing
CN105973470B (zh) * 2016-04-27 2017-11-17 浙江大学 一种多色led实现色度限制的光谱匹配方法
CN105934020B (zh) * 2016-04-27 2018-05-04 浙江大学 一种多色led匹配光谱和照度的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004047498A1 (en) * 2002-11-19 2004-06-03 Dan Friis Lighting body or source of light based on light-emitting diodes
US20070171159A1 (en) * 2006-01-24 2007-07-26 Samsung Electro-Mechanics Co., Ltd. Color LED driver
WO2011037774A1 (en) * 2009-09-24 2011-03-31 Cree, Inc. Solid state lighting apparatus with compensation bypass circuits and methods of operation thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19728763B4 (de) 1997-07-07 2007-10-31 Reitter & Schefenacker Gmbh & Co. Kg Schaltungseinrichtung zum Schutz von strombetriebenen Leuchtmitteln, insbesondere von LEDs, zu Signal- oder Beleuchtungszwecken
DE10040155A1 (de) * 2000-08-17 2002-03-07 Westiform Holding Ag Niederwan Leuchtreklame
US6787999B2 (en) * 2002-10-03 2004-09-07 Gelcore, Llc LED-based modular lamp
DE10329367B4 (de) * 2003-03-28 2015-09-03 Osram Opto Semiconductors Gmbh LED-Array, LED-Modul sowie Verwendung des LED-Moduls in einer Signalanlage
US7286123B2 (en) * 2005-12-13 2007-10-23 System General Corp. LED driver circuit having temperature compensation
JP2009083590A (ja) * 2007-09-28 2009-04-23 Toyoda Gosei Co Ltd 車載用のled照明装置
EP2066149A3 (de) * 2007-11-27 2009-08-19 Stefan Ruppel LED-Flachleuchte mit wärmeableitender Platine insbesondere für Möbel
DE102008057347A1 (de) * 2008-11-14 2010-05-20 Osram Opto Semiconductors Gmbh Optoelektronische Vorrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004047498A1 (en) * 2002-11-19 2004-06-03 Dan Friis Lighting body or source of light based on light-emitting diodes
US20070171159A1 (en) * 2006-01-24 2007-07-26 Samsung Electro-Mechanics Co., Ltd. Color LED driver
WO2011037774A1 (en) * 2009-09-24 2011-03-31 Cree, Inc. Solid state lighting apparatus with compensation bypass circuits and methods of operation thereof
EP2471347A1 (de) * 2009-09-24 2012-07-04 Cree, Inc. Festkörperbeleuchtungsvorrichtung mit kompensations-bypass-schaltungen und betriebsverfahren dafür

Also Published As

Publication number Publication date
EP2499881A1 (de) 2012-09-19
CN102668699A (zh) 2012-09-12
CN102668699B (zh) 2015-09-02
US9137871B2 (en) 2015-09-15
WO2011054547A1 (de) 2011-05-12
DE102009052390A1 (de) 2011-05-12
US20120248995A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
EP2499881B1 (de) Verfahren und schaltungsanordnung zur erzeugung von led-mischlicht vorbestimmter farbe
DE602004010477T2 (de) Verfahren und Treiberschaltung zur Steuerung von LEDs
DE60309359T2 (de) Methode und Schaltungsanordnung zur Regelung einer LED
DE102004008896B4 (de) Apparat zur Steuerung von Leuchtdioden
AT516515B1 (de) Schaltung zum betrieb von leuchtdioden (leds)
DE102013207245B4 (de) Ansteuerung von Halbleiterleuchtelementen sowie Lampe, Leuchte oder Leuchtsystem mit einer solchen Ansteuerung
EP2668821B1 (de) Leuchtmodul zur abstrahlung von mischlicht
DE102014100033B4 (de) LED-Treiberschaltung
DE112009002082T5 (de) Leistungsfaktorkorrektur in und Dimmen von Festkörper-Beleuchtungseinrichtungen
DE102012200711A1 (de) LED Dimmer-Modul
DE102010008275B4 (de) Vorrichtung zur Energieversorgung von mehreren LED-Einheiten
DE112015004032T5 (de) Led-dentallichtquelle mit veränderlicher chromatizität und verfahren
DE102012203746A1 (de) Verfahren und Schaltungsanordnung zur Erzeugung von weissem Licht mittels LEDS
EP1185147B1 (de) Spannungsversorgung von LED's für Beleuchtungszwecke
DE102006026938A1 (de) LED Lichtquelle mit konstanter Intensität während der Betriebsdauer
DE102008018236A1 (de) Schaltung zur Kompensation von thermischen Schwankungen, Leuchte, Leuchtmodul und Verfahren zu deren Betrieb
DE10013208A1 (de) Ansteuerung von Leuchtdioden (LED`s)
EP2554019B1 (de) Optoelektronische vorrichtung
WO2013149890A1 (de) Led-leuchtvorrichtung mit minzefarbenen und bernsteinfarbenen leuchtdioden
DE102010046300A1 (de) Beleuchtungsmodul
DE102012205461A1 (de) Led-chip mit temperaturabhängiger wellenlänge
DE102011016802B4 (de) Steuerungsvorrichtung für LED-Beleuchtungseinrichtungen
EP2796003A1 (de) Verfahren und schaltungsanordnung zur dimmbaren erzeugung von licht mittels leds, mit farbtemperatur - regelung
DE19814745A1 (de) Schaltung für eine LED-Leuchte
DE102014206434A1 (de) Ansteuerung von Halbleiterleuchtelementen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120504

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20141110

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181102

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1088953

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010015706

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190109

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502010015706

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190409

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190509

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190409

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190509

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010015706

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20190626

Year of fee payment: 10

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502010015706

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045000000

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

26N No opposition filed

Effective date: 20191010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190616

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200626

Year of fee payment: 11

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1088953

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100616

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010015706

Country of ref document: DE

Owner name: TRIDONIC GMBH & CO KG, AT

Free format text: FORMER OWNER: TRIDONIC JENNERSDORF GMBH, JENNERSDORF, AT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220621

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230627

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230616