EP2478079A1 - Composition lubrifiante contenant un ester - Google Patents

Composition lubrifiante contenant un ester

Info

Publication number
EP2478079A1
EP2478079A1 EP10757131A EP10757131A EP2478079A1 EP 2478079 A1 EP2478079 A1 EP 2478079A1 EP 10757131 A EP10757131 A EP 10757131A EP 10757131 A EP10757131 A EP 10757131A EP 2478079 A1 EP2478079 A1 EP 2478079A1
Authority
EP
European Patent Office
Prior art keywords
ester
diester
lubricating composition
phosphorus
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10757131A
Other languages
German (de)
English (en)
Inventor
Pamela Lann
William D. Abraham
Mark R. Baker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lubrizol Corp
Original Assignee
Lubrizol Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lubrizol Corp filed Critical Lubrizol Corp
Publication of EP2478079A1 publication Critical patent/EP2478079A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/68Esters
    • C10M129/72Esters of polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/02Well-defined hydrocarbons
    • C10M105/04Well-defined hydrocarbons aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/10Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/10Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M105/12Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms monohydroxy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/16Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen having hydroxy groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/20Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/22Carboxylic acids or their salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/10Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/12Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic compound containing atoms of elements not provided for in groups C10M141/02 - C10M141/10
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/022Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/043Ammonium or amine salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • C10M2227/061Esters derived from boron
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/36Seal compatibility, e.g. with rubber
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/76Reduction of noise, shudder, or vibrations
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition
    • C10N2060/14Chemical after-treatment of the constituents of the lubricating composition by boron or a compound containing boron

Definitions

  • the invention relates to a method of lubricating a limited slip differential comprising supplying to the limited slip differential a lubricating composition containing (a) an oil of lubricating viscosity, and (b) a C4-30- diester of a dicarboxylic acid.
  • the invention further provides for the use of the C4_3o-diester of a dicarboxylic acid as a friction modifier, typically in a limited slip differential.
  • a limited slip differential in a vehicle typically employs a wet multi- plate clutch, i.e., clutch plates are immersed in a lubricant.
  • the limited slip differential typically has bevel gear or spur gear planetary systems which distribute the drive torque evenly to the two driving wheels irrespective of their rotational speed. This makes it possible for the driven wheels to roll during cornering without slip between the wheel and road surface in spite of their different rotational speed.
  • dispersants and sulphur- and/or phosphorus- containing extreme pressure agents may be used. Examples of lubricants of this type are disclosed in US Patents 4,308, 154; 5,547,586; 4,180,466; 3,825,495; and European Patent Application 0 399 764 Al .
  • EP 0 767 236 Al discloses a gear lubricant composition having a kinematic viscosity at 100 °C in the range of 4 to 32 mm 2 /s.
  • the composition contains more than 20 % by volume a hydrogenated poly-a-olefin, and less than 80 % by volume of mineral oil or synthetic ester oil or a combination thereof.
  • the examples contain 10 % by volume bis(tridecyl)-adipate.
  • the gear is described is especially a transmission for use in large vehicles equipped with manual transmissions of the synchronizer type.
  • International Publication WO 98/04658 Al discloses base stocks for synthetic gear oils for use in automotive heavy and medium duty axle gear lubricants and transmission fluid application.
  • the lubricant disclosed therein contains 1 % to 20 % by weight of an ester.
  • the ester includes diesters of C 8-13 adipates, in particular di-isodecyl adipate.
  • US Patent 4,370,247 discloses a gear or axle lubricant containing 25 to 60 mass % of at least one di-Cs-i2 alkyl ester of a dicarboxylic acid. The whole lubricant disclosed therein is reported to decrease power loss due to friction, therefore conserving fuel consumption.
  • Canadian Publication CA 2 637 401 discloses the use as a lubricant a variety of diesters derived from a dicarboxylic acid having 2 to 36 carbon atoms and a branched alcohol having 4 to 40 carbon atoms.
  • the lubricants can contain 0.1 to 100 % by weight, or 5 to 99 % by weight of the diesters.
  • a lubricating composition and method as disclosed herein is capable of providing an acceptable level of at least one of (i) lubricant thermal stability, (ii) lubricant oxidative stability, (iii) high static coefficient of friction, (iv) fuel economy, (v) deposit control, (vi) seal compatibility, (vii) cleanliness and (viii) low tendency towards noise, vibration and harshness (NVH) often manifested as chatter (i.e. an abnormal noise typically referred to as a low-frequency "growl” and "groan”, particularly during higher-speed cornering manoeuvres).
  • chatter i.e. an abnormal noise typically referred to as a low-frequency "growl" and "groan”, particularly during higher-speed cornering manoeuvres.
  • the lubricant composition and method disclosed herein may also be suitable for limited slip systems having one or more distinct plate materials.
  • the plate materials may be steel, paper, ceramic, carbon fibers and systems employing a mixture of plate types such as steel on ceramic, carbon fibers in paper, or steel on paper.
  • the plate material may be paper.
  • the invention provides a method of lubricating a limited slip differential comprising supplying to the limited slip differential a lubricating composition comprising (a) an oil of lubricating viscosity, and (b) a C4-3o-diester of a dicarboxylic acid, or mixtures thereof, wherein the dicarboxylic acid has formula HO(0)C-R 1 -C(0)OH, and R 1 may be an aliphatic group having 2 to 38, or 2 to 28 carbon atoms.
  • the number of carbon atoms present on an ester group of the C4-30- diester may contain 4 to 30 carbon atoms.
  • an "ester group” means the alcohol-derived portion of the ester, that is, R' in an ester RCOOR', in the case of a carboxylic acid RCOOH, where R' may be a hydrocarbyl group of the indicated number of carbon atoms.
  • the carboxylic acid may be have formula HO(0)C-R 1 -C(0)OH, and R 1 may be an aliphatic group having 5 to 8 carbon atoms (typically R 1 may be an alkylene group).
  • the carboxylic acid may be saturated or unsaturated.
  • the alcohol-derived portion of the ester groups of the C4-3o-diester of the carboxylic acid disclosed herein may be Cg-20, or Cio-15 , or C 13 .
  • the ester groups of the diester may be linear or branched, typically branched.
  • the invention provides a method of lubricating a limited slip differential comprising supplying to the limited slip differential a lubricating composition comprising (a) an oil of lubricating viscosity, and (b) a C4-3o-diester of adipic acid.
  • the invention provides a method of lubricating a limited slip differential comprising supplying to the limited slip differential a lubricating composition comprising (a) an oil of lubricating viscosity, (b) C4_3o-diester of a dicarboxylic acid, wherein the dicarboxylic acid has formula HO(0)C-R 1 -C(0)OH, and R 1 may be an aliphatic group having 2 to 38, or 2 to 28 carbon atoms (typically a C4-3o-diester of adipic acid), and (c) a phosphorus containing compound.
  • a lubricating composition comprising (a) an oil of lubricating viscosity, (b) C4_3o-diester of a dicarboxylic acid, wherein the dicarboxylic acid has formula HO(0)C-R 1 -C(0)OH, and R 1 may be an aliphatic group having 2 to 38, or 2 to 28 carbon atoms (typically a C4-3o
  • the invention provides a method of lubricating a limited slip differential comprising supplying to the limited slip differential a lubricating composition comprising (a) an oil of lubricating viscosity, and a friction modifier package consisting of, or, alternatively, comprising, a C4_3o-diester of a dicarboxylic acid, wherein the dicarboxylic acid has formula HO(0)C-R 1 -C(0)OH, and R 1 may be an aliphatic group having 2 to 38, or 2 to 28 carbon atoms (typically a C4-3o-diester of adipic acid), and a phosphorus containing compound.
  • the lubricating composition comprises (a) an oil of lubricating viscosity, and a friction modifier package consisting of, or, alternatively, comprising, a C4-3o-diester of adipic acid, and 0.05 wt % to 4.5 wt % of a phosphorus containing compound.
  • the invention provides a method of lubricating a limited slip differential comprising supplying to the limited slip differential a lubricating composition comprising (a) an oil of lubricating viscosity, wherein the oil of lubricating viscosity is an API Group III or API Group IV base oil, or mixtures thereof, (b) a C4-3o-diester of a dicarboxylic acid, wherein the dicarboxylic acid has formula HO(0)C-R 1 -C(0)OH, and R 1 may be an aliphatic group having 2 to 38 carbon atoms (typically a C4-3o-diester of adipic acid), and (c) a phosphorus containing compound.
  • a lubricating composition comprising (a) an oil of lubricating viscosity, wherein the oil of lubricating viscosity is an API Group III or API Group IV base oil, or mixtures thereof, (b) a C4-3o-diester of a dicarboxylic acid,
  • the lubricating compositions disclosed herein may contain 0.01 wt % to less than 1 wt %, or 0.02 wt % to 0.9 wt %, or 0.05 wt % to 0.5 wt %, or 0.1 wt % to 0.3 wt % of the C4-3o-diester of a dicarboxylic acid, wherein the dicarboxylic acid has formula HO(0)C-R 1 -C(0)OH, and R 1 may be an aliphatic group having 2 to 38 carbon atoms (typically C4-3o-diester of adipic acid).
  • the limited slip differential in one embodiment may have plate contact surfaces of steel on paper (or cellulose).
  • the invention provides for the use of a lubricating composition
  • a lubricating composition comprising (a) a C4-3o-diester of a dicarboxylic acid wherein the dicarboxylic acid has formula HO(0)C-R 1 -C(0)OH, and R 1 may be an aliphatic group having 2 to 38 carbon atoms (typically a C4_3o-diester of adipic acid), and (b) an oil of lubricating viscosity in a limited slip differential to provide an acceptable level of at least one of (i) lubricant thermal stability, (ii) lubricant oxidative stability, (iii) friction, (iv) fuel economy, (v) deposit control, (vi) seal compatibility, and (vii) chattering (abnormal noise).
  • the use provides an acceptable level of friction.
  • the invention provides for the use of a lubricating composition
  • a lubricating composition comprising (a) an oil of lubricating viscosity, (b) a C4_3o-diester of a dicarboxylic acid wherein the dicarboxylic acid has formula HO(0)C-R 1 -C(0)OH, and R 1 may be an aliphatic group having 2 to 38 carbon atoms (typically a C4-3o-diester of adipic acid), and (c) a phosphorus containing compound in a limited slip differential to provide friction modification.
  • the present invention provides a lubricating composition and method as disclosed herein above.
  • the C4-3o-diester of a dicarboxylic acid disclosed herein may include C4-3o-diesters of glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, brassylic acid, dodecanedioic acid, thapsic acid, or mixtures thereof.
  • the C4_3o-diester of a dicarboxylic acid disclosed herein may be a C4-3o-diester of adipic acid.
  • Ester groups of the C4-3o-diester of the dicarboxylic acid disclosed herein may be Cg-20, or C 10-15 , or C 13 .
  • ester groups include butyl, 2-methylpentyl, 2-propylheptyl, 2-butyloctyl, 2-ethylhexyl, octyl, neooctyl, neoheptyl, nonyl, isooctyl, isononyl, neononyl (may also be called 3,5,5-trimethyl-l-hexyl), decyl, neodecyl, undecyl, 5-methylundecyl, dodecyl, 2-methyldodecyl, tridecyl, 5-methyltridecyl, tetradecyl, pentadecyl, hexadecyl, 2-methylhexadecyl, heptadecyl, 5-isopropylheptadecyl, 3-isopropyloctadecyl, octadecyl, nonadecyl,
  • the ester group may be a C 8 _2o-, or C 10-15 -, or C 13 - branched alkyl group, typically iso-tridecyl, or mixtures thereof.
  • the C4-3o-diester of a dicarboxylic acid disclosed herein may be derived from an esterification reaction of (i) a carboxylic acid having formula HO(0)C-R 1 -C(0)OH, wherein R 1 may be an aliphatic group having 2 to 38 carbon atoms, and (ii) an alcohol having 4 to 30 carbon atoms. Reactions of this type are known to a person skilled in the art.
  • the lubricating composition further includes a phosphorus containing compound.
  • the phosphorus containing compound may be an amine salt of a phosphoric acid ester.
  • the phosphoric acid utilised to prepare the phosphoric acid ester amine salt may be either a phosphoric acid, or a thiophosphoric acid.
  • the amine salt of a phosphorus acid ester may be present at 0 wt % to 5 wt %, or 0.01 wt % to 5 wt %, or 0.05 wt % to 4.5 wt %, or 0.1 wt % to 2 wt %, or 0.25 wt % to 1 wt % of the lubricating composition.
  • the amine salt of a phosphoric acid ester may contain ester groups each having 1 to 30, 6 to 30, 8 to 30, 10 to 24 or 12 to 20, or 16 to 20 carbon atoms, with the proviso that the amine salt of a phosphoric acid ester is soluble in an oil of lubricating viscosity or a formulated lubricant. Typically ester groups containing 4 or more carbon atoms are particularly useful.
  • ester groups include isopropyl, methyl-amyl (may also be referred to as 1 ,3-dimethyl butyl), 2-ethylhexyl, heptyl, octyl, nonyl, decyl, dodecyl, butadecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, or mixtures thereof.
  • ester groups is selected from the group consisting of isopropyl, methyl-amyl (may also be referred to as 1 ,3-dimethyl butyl), 2-ethylhexyl, heptyl, octyl, nonyl, decyl, and mixtures thereof.
  • the amines which may be suitable for use as the amine salt include primary amines, secondary amines, tertiary amines, and mixtures thereof.
  • the amines include those with at least one hydrocarbyl group, or, in certain embodiments, two or three hydrocarbyl groups.
  • the hydrocarbyl groups may contain 2 to 30 carbon atoms, or in other embodiments 8 to 26, or 10 to 20, or 13 to 19 carbon atoms.
  • Primary amines include ethylamine, propylamine, butylamine, 2-ethylhexylamine, octylamine, and dodecylamine, n-octylamine, n- decylamine, n-dodecylamine, n-tetradecylamine, n-hexadecylamine, n- octadecylamine and oleyamine.
  • fatty amines include commercially available fatty amines such as "Armeen®” amines (products available from Akzo Chemicals, Chicago, Illinois), such as Armeen C, Armeen O, Armeen OL, Armeen T, Armeen HT, Armeen S and Armeen SD, wherein the letter designation relates to the fatty group, such as coco, oleyl, tallow, soy, or stearyl groups.
  • suitable secondary amines include dimethylamine, diethylamine, dipropylamine, dibutylamine, diamylamine, dihexylamine, diheptylamine, methylethylamine, ethylbutylamine, ethylamylamine, dicocoamine and di-2-ethylhexylamine.
  • the secondary amines may be cyclic amines such as piperidine, piperazine and morpholine.
  • the amine may also be a tertiary-aliphatic primary amine.
  • the aliphatic group in this case may be an alkyl group containing 2 to 30, or 6 to 26, or 8 to 24 carbon atoms.
  • Tertiary alkyl amines include monoamines such as tert-butylamine, tert-hexylamine, 1 -methyl- 1-amino-cyclohexane, tert-octyl- amine, tert-decylamine, tertdodecylamine, tert-tetradecylamine, tert-hexadecyl- amine, tert-octadecylamine, tert-tetracosanylamine, and tert-octacosanylamine.
  • R 4 may be a linking group which is attached to the amine nitrogen. If there are multiple R 4 groups, they may be the same or different from each other. They may be an alkylene group of 1 to 4 carbon atoms such as methylene, ethylene, ethylidene, propylene (in the 1 ,2 configuration, that is, methylethylene, or in the 1 ,3 configuration, that is, trimethylene), or butylene (in the 1 ,2 configuration or any other configurations such as 1 ,4, that is, tetramethylene). They may also comprise a chain of 2 to 8 carbon atoms interrupted by one or two nitrogen or oxygen atoms within the chain. Examples of these may include -CH2CH2CH2NHCH2CH2- or -CH2CH2CH2NHCH2CH2CH2NHCH2CH2- or -CH2CH2CH2OCH2CH2- or
  • X may represent either oxygen or nitrogen.
  • the resulting group will be a carboxylic acid or an ester.
  • the resulting group will be an amide.
  • One or two R 5 groups will be attached to the X to satisfy its valence: one such group for oxygen and two such groups for nitrogen. That is, c will be 1 or 2, as the case may be. If a mixture of materials is present such that some of the X are nitrogen and some are oxygen, then c may have a fractional value between 1 and 2, but it will be either 1 or 2 for any given molecule.
  • the R 5 group or groups may independently be hydrogen, or a hydrocarbyl group of 1 to 20 carbon atoms, such as 12 to 20 carbon atoms (as described above) or a nitrogen-containing group represented by the formula -R 4 -NHR 6 , where R 4 is as defined above and R 6 is a hydrocarbyl group of 12 to 20 carbon atoms.
  • R 4 contained within the R 4 group need not be identical to any of the R 4 linking groups as used above, as is implicit from the statement that each R 4 is independently one of the groups listed.
  • Certain of the amines of the present invention may be obtained by reaction of an amine with an equivalent amount of an unsaturated ester such as methyl acrylate.
  • a generalized reaction scheme would be as follows:
  • R 2 R 3 NH may have suitable R groups provided that at least one of them is selected so as to meet the requirements of the present invention, e.g., containing a hydrocarbyl group of 12 to 22 carbon atoms.
  • R 2 R 3 NH may be a polyamine in the "Duomeen" series, available from Akzo, having a general structure such as:
  • the amine salt of a phosphorus acid ester may be a reaction product of a C 12-20 alkyl phosphoric acid with a tertiary C 1 1-22 alkyl primary amine.
  • the amine salt of a phosphorus acid ester includes an amine which is a Cl l to C14 tertiary alkyl primary amine or mixtures thereof. In one embodiment the amine salt of a phosphorus compound includes an amine which is a C14 to C18 tertiary alkyl primary amine or mixtures thereof. In one embodiment the amine salt of a phosphorus compound includes an amine which is a CI 8 to C22 tertiary alkyl primary amine or mixtures thereof.
  • the amine salt of a phosphorus acid ester includes the reaction product of octadecenyl phosphoric acid with Primene 81RTM.
  • amines may also be used in the invention.
  • a useful mixture of amines is "PrimeneTM 81R” and “PrimeneTM JMT.”
  • PrimeneTM 81R and PrimeneTM JMT are mixtures of Cl l to C 14 tertiary alkyl primary amines and CI 8 to C22 tertiary alkyl primary amines respectively.
  • the amine salt of a phosphorus acid ester is the reaction product of a C 14 to C 18 alkyl phosphoric acid with Primene 81RTM (produced and sold by Rohm & Haas) which is a mixture of CI 1 to CI 4 tertiary alkyl primary amines.
  • the amine salt of a phosphate hydrocarbon ester may be prepared as is described in US Patent 6,468,946, wherein column 10, lines 15 to 63 describes phosphoric acid esters formed by reaction of phosphorus compounds, followed by reaction with an amine to form an amine salt of a phosphate hydrocarbon ester.
  • the reaction of a phosphating agent with alcohol(s) may be represented as follows:
  • ROH represent an alcohol (such as monools or polyols or hydroxy- containing carboxylic compounds or mixtures thereof).
  • ROH represent an alcohol (such as monools or polyols or hydroxy- containing carboxylic compounds or mixtures thereof).
  • the residual phosphoric acidic functionality may be reacted at least in part with an amine.
  • Examples of the amine salt of a phosphorus acid ester include the reaction product(s) of isopropyl, methyl-amyl (1 ,3-dimethylbutyl or mixtures thereof), 2-ethylhexyl, heptyl, octyl, nonyl or decyl dithiophosphoric acids with ethylene diamine, morpholine, or Primene 81RTM, and mixtures thereof.
  • Examples of the amine salt of a phosphorus acid ester include the reaction product(s) of tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl or eicosyl dithiophosphoric acids with ethylenedi amine, morpholine, or Primene 81RTM, and mixtures thereof.
  • the amine salt of a phosphorus acid ester includes the reaction product of octadecenyl dithiophosphoric acid with Primene 81RTM.
  • the amine salt of a phosphorus compound may be an amine salt of (i) a hydroxy-substituted di- ester of phosphoric acid, (ii) a phosphorylated hydroxy-substituted di- or tri- ester of phosphoric acid, or (iii) or mixtures thereof.
  • a more detailed description of this type of compound is described in International Publication WO 2008/094759.
  • the amine salt of a phosphoric acid is a compound described in US Patent 3,197,405.
  • the amine salt of a phosphorus compound other than those disclosed above may be prepared by any one of examples 1 to 25 of US Patent 3, 197,405.
  • the amine salt of a phosphorus compound other than those disclosed above is a reaction product prepared from a dithiophosphoric acid is reacting with an epoxide or a glycol. This reaction product is further reacted with a phosphorus acid, anhydride, or lower ester (where "lower” signifies 1 to 8, or 1 to 6, or 1 to 4, or 1 to 2 carbon atoms in the alcohol-derived portion of the ester).
  • the epoxide includes an aliphatic epoxide or a styrene oxide.
  • epoxides examples include ethylene oxide, propylene oxide, butene oxide, octene oxide, dodecene oxide, styrene oxide and the like. In one embodiment the epoxide is propylene oxide.
  • the glycols include aliphatic glycols having 1 to 12, or 2 to 6, or 2 to 3 carbon atoms.
  • the dithiophosphoric acids, glycols, epoxides, inorganic phosphorus reagents and methods of reacting the same are described in U.S. Patent numbers 3, 197,405 and 3,544,465. The resulting acids are then salted with amines.
  • An example of suitable dithiophosphoric acid based product is prepared by adding phosphorus pentoxide (about 64 grams) at 58 °C over a period of 45 minutes to 514 grams of hydroxypropyl 0,0-di(l ,3- dimethylbutyl)phosphorodithioate (prepared by reacting di(l ,3-dimethylbutyl)- phosphorodithioic acid with 1.3 moles of propylene oxide at 25 °C). The mixture is heated at 75 °C for 2.5 hours, mixed with a diatomaceous earth and filtered at 70 °C. The filtrate contains 1 1.8% by weight phosphorus, 15.2% by weight sulphur, and an acid number of 87 (bromophenol blue).
  • the lubricating composition comprises an oil of lubricating viscosity.
  • oils include natural and synthetic oils, oil derived from hydro cracking, hydrogenation, and hydrofinishing, unrefined, refined, re-refined oils or mixtures thereof.
  • a more detailed description of unrefined, refined and re-refined oils is provided in International Publication WO2008/147704, paragraphs [0054] to [0056].
  • a more detailed description of natural and synthetic lubricating oils is described in paragraphs [0058] to [0059] respectively of WO2008/ 147704.
  • Synthetic oils may also be produced by Fischer- Tropsch reactions and typically may be hydroisomerised Fischer- Tropsch hydrocarbons or waxes.
  • oils may be prepared by a Fischer-Tropsch gas-to-liquid synthetic procedure as well as other gas-to-liquid oils.
  • Oils of lubricating viscosity may also be defined as specified in April 2008 version of "Appendix E - API Base Oil Interchangeability Guidelines for Passenger Car Motor Oils and Diesel Engine Oils", section 1.3 Sub-heading 1.3. "Base Stock Categories”.
  • the oil of lubricating viscosity may be an API Group II, Group III or Group IV base oil.
  • the oil of lubricating viscosity may be an API Group III (typically including hydrocracked/hydroisomerized base oil), or API Group IV base oil or mixtures thereof.
  • the amount of the oil of lubricating viscosity present is typically the balance remaining after subtracting from 100 wt % the sum of the amount of the compound of the invention and the other performance additives.
  • the lubricating composition may be in the form of a concentrate and/or a fully formulated lubricant. If the lubricating composition of the invention (comprising the additives disclosed herein) is in the form of a concentrate which may be combined with additional oil to form, in whole or in part, a finished lubricant), the ratio of the of these additives to the oil of lubricating viscosity and/or to diluent oil include the ranges of 1 :99 to 99: 1 by weight, or 10:90 to 80:20 by weight.
  • the composition of the invention optionally further includes at least one other performance additive.
  • the other performance additives include dispersants, metal deactivators, detergents, viscosity modifiers, extreme pressure agents (typically boron- and/or sulphur- and/or phosphorus- containing), antiwear agents, antioxidants (such as hindered phenols, aminic antioxidants or molybdenum compounds), corrosion inhibitors, foam inhibitors, demulsifiers, pour point depressants, seal swelling agents, friction modifiers and mixtures thereof.
  • the total combined amount of the other performance additives (excluding the viscosity modifiers) present on an oil free basis may include ranges of 0 wt % to 25 wt %, or 0.01 wt % to 20 wt %, or 0.1 wt % to 15 wt % or 0.5 wt % to 10 wt %, or 1 to 5 wt % of the composition. Although one or more of the other performance additives may be present, it is common for the other performance additives to be present in different amounts relative to each other.
  • the lubricating composition is free of molybdenum- containing additives.
  • the lubricating composition further includes one or more viscosity modifiers.
  • the viscosity modifier may be present in an amount of 0.5 wt % to 70 wt %, 1 wt % to 60 wt %, or 5 wt % to 50 wt %, or 10 wt % to 50 wt % of the lubricating composition.
  • Viscosity modifiers include (a) polymethacrylates, (b) esterified copolymers of (i) a vinyl aromatic monomer and (ii) an unsaturated carboxylic acid, anhydride, or derivatives thereof, (c) esterified interpolymers of (i) an alpha-olefin; and (ii) an unsaturated carboxylic acid, anhydride, or derivatives thereof, or (d) hydrogenated copolymers of styrene-butadiene, (e) ethylene- propylene copolymers, (f) polyisobutenes, (g) hydrogenated styrene-isoprene polymers, (h) hydrogenated isoprene polymers, or (i) mixtures thereof.
  • the viscosity modifier includes (a) a polymethacrylate, (b) an esterified copolymer of (i) a vinyl aromatic monomer; and (ii) an unsaturated carboxylic acid, anhydride, or derivatives thereof, (c) an esterified interpolymer of (i) an alpha-olefin; and (ii) an unsaturated carboxylic acid, anhydride, or derivatives thereof, or (d) mixtures thereof.
  • Extreme pressure agents include compounds containing boron and/or sulphur and/or phosphorus.
  • the extreme pressure agent may be present in the lubricating composition at 0 wt % to 20 wt %, or 0.05 wt % to 10 wt %, or 0.1 wt % to 8 wt % of the lubricating composition.
  • the extreme pressure agent is a sulphur- containing compound.
  • the sulphur-containing compound may be a sulphurised olefin, a polysulphide, or mixtures thereof.
  • the sulphurised olefin examples include a sulphurised olefin derived from propylene, isobutylene, pentene; an organic sulphide and/or polysulphide including benzyldisulphide; bis-(chlorobenzyl) disulphide; dibutyl tetrasulphide; di-tertiary butyl polysulphide; and sulphurised methyl ester of oleic acid, a sulphurised alkylphenol, a sulphurised dipentene, a sulphurised terpene, a sulphurised Diels- Alder adduct, an alkyl sulphenyl N'N- dialkyl dithiocarbamates; or mixtures thereof.
  • the sulphurised olefin includes a sulphurised olefin derived from propylene, isobutylene, pentene or mixture
  • the extreme pressure agent sulphur-containing compound includes a dimercaptothiadiazole or derivative, or mixtures thereof.
  • dimercaptothiadiazole include compounds such as 2,5-dimercapto-l ,3,4-thiadiazole or a hydrocarbyl-substituted 2,5-dimercapto- 1,3,4-thiadiazole, or oligomers thereof.
  • the oligomers of hydrocarbyl-substituted 2,5-dimercapto-l ,3,4-thiadiazole typically form by forming a sulphur-sulphur bond between 2,5-dimercapto-l,3,4-thiadiazole units to form derivatives or oligomers of two or more of said thiadiazole units.
  • Suitable 2,5-dimercapto-l,3,4-thiadiazole derived compounds include for example 2,5-bis(tert-nonyldithio)-l ,3,4-thiadiazole or 2-tert-nonyldithio-5-mercapto-l ,3,4-thiadiazole.
  • the number of carbon atoms on the hydrocarbyl substituents of the hydrocarbyl-substituted 2,5-dimercapto-l ,3,4-thiadiazole typically include 1 to 30, or 2 to 20, or 3 to 16.
  • the dimercaptothiadiazole may be a thiadiazole- functionalised dispersant.
  • a detailed description of the thiadiazole- functionalised dispersant is described is paragraphs [0028] to [0052] of International Publication WO 2008/014315.
  • the thiadiazole-functionalised dispersant may be prepared by a method including heating, reacting or complexing a thiadiazole compound with a dispersant substrate.
  • the thiadiazole compound may be covalently bonded, salted, complexed or otherwise solubilised with a dispersant, or mixtures thereof.
  • the relative amounts of the dispersant substrate and the thiadiazole used to prepare the thiadiazole-functionalised dispersant may vary. In one embodiment the thiadiazole compound is present at 0.1 to 10 parts by weight relative to 100 parts by weight of the dispersant substrate. In different embodiments the thiadiazole compound is present at greater than 0.1 to 9, or greater than 0.1 to less than 5, or 0.2 to less than 5: to 100 parts by weight of the dispersant substrate.
  • the relative amounts of the thiadiazole compound to the dispersant substrate may also be expressed as (0.1-10): 100, or (>0.1-9): 100, (such as (>0.5-9):100), or (0.1 to less than 5): 100, or (0.2 to less than 5): 100.
  • the dispersant substrate is present at 0.1 to 10 parts by weight relative to 1 part by weight of the thiadiazole compound. In different embodiments the dispersant substrate is present at greater than 0.1 to 9, or greater than 0.1 to less than 5, or about 0.2 to less than 5: to 1 part by weight of the thiadiazole compound.
  • the relative amounts of the dispersant substrate to the thiadiazole compound may also be expressed as (0.1-10):1, or (>0.1-9):1, (such as (>0.5-9): l), or (0.1 to less than 5): 1, or (0.2 to less than 5): 1.
  • the thiadiazole-functionalised dispersant may be derived from a substrate that includes a succinimide dispersant (for example, N-substituted long chain alkenyl succinimides, typically a polyisobutylene succinimide), a Mannich dispersant, an ester-containing dispersant, a condensation product of a fatty hydrocarbyl monocarboxylic acylating agent with an amine or ammonia, an alkyl amino phenol dispersant, a hydrocarbyl-amine dispersant, a polyether dispersant, a polyetheramine dispersant, a viscosity modifier containing dispersant functionality (for example polymeric viscosity index modifiers (VMs) containing dispersant functionality), or mixtures thereof.
  • the dispersant substrate includes a succinimide dispersant, an ester-containing dispersant or a Mannich dispersant.
  • the extreme pressure agent includes a boron- containing compound.
  • the boron-containing compound includes a borate ester (which in some embodiments may also be referred to as a borated epoxide), a borated alcohol, a borated dispersant, a borated phospholipid or mixtures thereof.
  • the boron-containing compound may be a borate ester or a borated alcohol.
  • the borate ester may be prepared by the reaction of a boron compound and at least one compound selected from epoxy compounds, halohydrin compounds, epihalohydrin compounds, alcohols and mixtures thereof.
  • the alcohols include dihydric alcohols, trihydric alcohols or higher alcohols, with the proviso for one embodiment that hydroxyl groups are on adjacent carbon atoms, i.e., vicinal.
  • Boron compounds suitable for preparing the borate ester include the various forms selected from the group consisting of boric acid (including metaboric acid, HB0 2 , orthoboric acid, H3BO3, and tetraboric acid, H 2 B 4 0y), boric oxide, boron trioxide and alkyl borates.
  • the borate ester may also be prepared from boron halides.
  • suitable borate ester compounds include tripropyl borate, tributyl borate, tripentyl borate, trihexyl borate, triheptyl borate, trioctyl borate, trinonyl borate and tridecyl borate.
  • the borate ester compounds include tributyl borate, tri-2-ethylhexyl borate or mixtures thereof.
  • the boron-containing compound is a borated dispersant, typically derived from an N-substituted long chain alkenyl succinimide.
  • the borated dispersant includes a polyisobutylene succinimide. Borated dispersants are described in more detail in US Patents 3,087,936; and Patent 3,254,025.
  • the borated dispersant may be used in combination with a sulphur-containing compound or a borate ester.
  • the extreme pressure agent is other than a borated dispersant.
  • the number average molecular weight of the hydrocarbon from which the long chain alkenyl group was derived includes ranges of 350 to 5000, or 500 to 3000, or 550 to 1500.
  • the long chain alkenyl group may have a number average molecular weight of 550, or 750, or 950 to 1000.
  • the N-substituted long chain alkenyl succinimides are borated using a variety of agents including boric acid (for example, metaboric acid, HB0 2 , orthoboric acid, H 3 B0 3 , and tetraboric acid, H 2 B 4 0 7 ), boric oxide, boron trioxide, and alkyl borates.
  • boric acid for example, metaboric acid, HB0 2 , orthoboric acid, H 3 B0 3 , and tetraboric acid, H 2 B 4 0 7
  • boric oxide for example, metaboric acid, HB0 2 , orthoboric acid, H 3 B0 3 , and tetraboric acid, H 2 B 4 0 7
  • boric oxide for example, metaboric acid, HB0 2 , orthoboric acid, H 3 B0 3 , and tetraboric acid, H 2 B 4 0 7
  • boric oxide for example, metaboric acid, HB0 2
  • the borated dispersant may be prepared by blending the boron compound and the N-substituted long chain alkenyl succinimides and heating them at a suitable temperature, such as, 80 °C to 250 °C, or 90 °C to 230 °C, or 100 °C to 210 °C, until the desired reaction has occurred.
  • the molar ratio of the boron compounds to the N-substituted long chain alkenyl succinimides may have ranges including 10: 1 to 1 :4, or 4: 1 to 1 :3; or the molar ratio of the boron compounds to the N-substituted long chain alkenyl succinimides may be 1 :2.
  • the ratio of moles B : moles N (that is, atoms of B : atoms of N) in the borated dispersant may be 0.25 : 1 to 10: 1 or 0.33 : 1 to 4: 1 or 0.2: 1 to 1.5 : 1 , or 0.25 : 1 to 1.3 : 1 or 0.8: 1 to 1.2: 1 or about 0.5 : 1
  • An inert liquid may be used in performing the reaction.
  • the liquid may include toluene, xylene, chlorobenzene, dimethylformamide or mixtures thereof.
  • the lubricating composition further includes a borated phospholipid.
  • the borated phospholipid may be derived from boronation of a phospholipid (for example boronation may be carried out with boric acid).
  • Phospholipids and lecithins are described in detail in Encyclopedia of Chemcial Technology, Kirk and Othmer, 3rd Edition, in “Fats and Fatty Oils", Volume 9, pages 795-831 and in “Lecithins", Volume 14, pages 250-269.
  • the phospholipid may be any lipid containing a phosphoric acid, such as lecithin or cephalin, or derivatives thereof.
  • phospholipids include phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylethanolamme, phosphotidic acid and mixtures thereof.
  • the phospholipids may be glycerophospholipids, glycero derivatives of the above list of phospholipids. Typically, the glycerophospholipids have one or two acyl, alkyl or alkenyl groups on a glycerol residue.
  • the alkyl or alkenyl groups may contain 8 to 30, or 8 to 25, or 12 to 24 carbon atoms.
  • suitable alkyl or alkenyl groups include octyl, dodecyl, hexadecyl, octadecyl, docosanyl, octenyl, dodecenyl, hexadecenyl and octadecenyl.
  • the phospholipid is lecithin, or derivatives thereof.
  • Phospholipids may be prepared synthetically or derived from natural sources. Synthetic phospholipids may be prepared by methods known to those in the art. Naturally derived phospholipids are often extracted by procedures known to those in the art. Phospholipids may be derived from animal or vegetable sources. A useful phospholipid is derived from sunflower seeds. The phospholipid typically contains 35 % to 60 % phosphatidylcholine, 20 % to 35 % phosphatidylinositol, 1 % to 25 % phosphatidic acid, and 10 % to 25 % phosphatidylethanolamme, wherein the percentages are by weight based on the total phospholipids.
  • the fatty acid content may be 20 wt % to 30 wt % by weight palmitic acid, 2 wt % to 10 wt % stearic acid, 15 wt % to 25 wt % oleic acid, and 40 wt % to 55 wt % linoleic acid.
  • Friction modifiers may include fatty amines, esters such as borated glycerol esters, fatty phosphites, fatty acid amides, fatty epoxides, borated fatty epoxides, alkoxylated fatty amines, borated alkoxylated fatty amines, metal salts of fatty acids, or fatty imidazolines, condensation products of carboxylic acids and polyalkylene-polyamines.
  • the lubricating composition may contain phosphorus- or sulphur- containing antiwear agents other than compounds described as an extreme pressure agent of the amine salt of a phosphoric acid ester described above.
  • the antiwear agent may include a non-ionic phosphorus compound (typically compounds having phosphorus atoms with an oxidation state of +3 or +5), a metal dialkyldithiophosphate (typically zinc dialkyldithiophosphates), a metal mono- or di- alkylphosphate (typically zinc phosphates), or mixtures thereof.
  • a non-ionic phosphorus compound typically compounds having phosphorus atoms with an oxidation state of +3 or +5
  • a metal dialkyldithiophosphate typically zinc dialkyldithiophosphates
  • a metal mono- or di- alkylphosphate typically zinc phosphates
  • the non-ionic phosphorus compound includes a phosphite ester, a phosphate ester, or mixtures thereof.
  • a more detailed description of the non- ionic phosphorus compound include column 9, line 48 to column 1 1 , line 8 of US 6, 103,673.
  • the lubricating composition of the invention further includes a dispersant.
  • the dispersant may be a succinimide dispersant (for example N-substituted long chain alkenyl succinimides), a Mannich dispersant, an ester-containing dispersant, a condensation product of a fatty hydrocarbyl monocarboxylic acylating agent with an amine or ammonia, an alkyl amino phenol dispersant, a hydrocarbyl-amine dispersant, a polyether dispersant or a poly ether amine dispersant.
  • succinimide dispersant for example N-substituted long chain alkenyl succinimides
  • Mannich dispersant for example N-substituted long chain alkenyl succinimides
  • an ester-containing dispersant for example N-substituted long chain alkenyl succinimides
  • the succinimide dispersant includes a polyisobutylene-substituted succinimide, wherein the polyisobutylene from which the dispersant is derived may have a number average molecular weight of 400 to 5000, or 950 to 1600.
  • Suitable ester-containing dispersants are typically high molecular weight esters. These materials are described in more detail in U.S. Patent 3,381 ,022.
  • the dispersant includes a borated dispersant.
  • the borated dispersant includes a succinimide dispersant including a polyisobutylene succinimide, wherein the polyisobutylene from which the dispersant is derived may have a number average molecular weight of 400 to 5000. Borated dispersants are described in more detail above within the extreme pressure agent description.
  • Dispersant viscosity modifiers include functionalised polyolefins, for example, ethylene-propylene copolymers that have been functionalized with the reaction product of maleic anhydride and an amine, a polymethacrylate functionalised with an amine, or esterified styrene- maleic anhydride copolymers reacted with an amine may also be used in the composition of the invention.
  • functionalised polyolefins for example, ethylene-propylene copolymers that have been functionalized with the reaction product of maleic anhydride and an amine, a polymethacrylate functionalised with an amine, or esterified styrene- maleic anhydride copolymers reacted with an amine may also be used in the composition of the invention.
  • Corrosion inhibitors include l-amino-2-propanol, octylamine octanoate, condensation products of dodecenyl succinic acid or anhydride and/or a fatty acid such as oleic acid with a polyamine.
  • Metal deactivators include derivatives of benzotriazoles (typically tolyltriazole), 1 ,2,4-triazoles, benzimidazoles, 2-alkyldithiobenzimidazoles or 2-alkyldithiobenzothiazoles.
  • the metal deactivators may also be described as corrosion inhibitors.
  • Foam inhibitors include copolymers of ethyl acrylate and 2- ethylhexyl acrylate and optionally vinyl acetate.
  • Demulsifiers include trialkyl phosphates, and various polymers and copolymers of ethylene glycol, ethylene oxide, propylene oxide, or mixtures thereof.
  • Pour point depressants including esters of maleic anhydride-styrene, polymethacrylates, polyacrylates or polyacrylamides.
  • Seal swell agents including Exxon Necton-37TM (FN 1380) and Exxon Mineral Seal OilTM (FN 3200).
  • the limited slip differential typically incorporates a self-contained lubricant supply isolated from the lubricant disposed in the differential housing or carrier.
  • the self-contained lubricant of the limited slip differential is generally different from the lubricant supplied to a manual transmission or an automatic transmission fluid. In both the manual and automatic transmission systems not comprising a limited slip differential one lubricant is sufficient to lubricate all of the transmission constituents.
  • An axle gear may have any one of a number of different types of differential.
  • a differential typically has three major functions. The first function is to transmit engine power to the wheels. The second function is act as the final gear reduction in the vehicle, slowing the rotational speed from the transmission to the wheels. The third function is to transmit the power to the wheels while allowing them to rotate at different speeds.
  • a number of differentials are known and include an open differential, a clutch-type limited slip differential, a viscous coupling differential, a torque sensing differential (such as those sold under the trademark Torsen® by JTEKT Torsen North America Inc) and a locking differential. All of these differentials may be generically referred to as axle gears.
  • Axle gears typically require a lubricant.
  • the lubricant formulation is dependent on the type of axle gear, and the operating conditions of the axle gear.
  • an open differential axle gear is believed to require antiwear and/or extreme pressure additives.
  • a limited slip differential typically requires a friction modifier because in addition to an open differential (known from many axle fluids), a spring pack and a clutch pack are typically present.
  • the clutch pack may contain one or more reaction plates (often made from steel) and one or more friction plates.
  • the friction plates are known, and may be made from a number of materials including paper (or cellulose), carbon, graphite, steel and a composite.
  • the lubricating composition suitable for the limited slip differential may have a sulphur content in the range of 0.3 wt % to 5 wt %, or 0.5 wt % to 5 wt %, or 0.5 wt % to 3 wt % or 0.8 wt % to 2.5 wt %, or 1 wt % to 2 wt %.
  • the lubricating composition suitable for the limited slip differential may be a fully formulated fluid.
  • the lubricating composition suitable for the limited slip differential may be a top treat concentrate (that is, a concentrate suitable to be added to an existing lubricant formulation as a top treat).
  • the concentrate may be added at 0.2 wt % to 10 wt %, or 0.5 wt % to 7 wt % relative to the amount of lubricant in a limited slip differential.
  • hydrocarbyl substituent or “hydrocarbyl group” is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of the molecule and having predominantly hydrocarbon character.
  • hydrocarbyl groups include: hydrocarbon substituents, including aliphatic, alicyclic, and aromatic substituents; substituted hydrocarbon substituents, that is, substituents containing non-hydrocarbon groups which, in the context of this invention, do not alter the predominantly hydrocarbon nature of the substituent; and hetero substituents, that is, substituents which similarly have a predominantly hydrocarbon character but contain other than carbon in a ring or chain.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Lubricants (AREA)

Abstract

La présente invention concerne un procédé de lubrification d'un différentiel à glissement limité comprenant une étape consistant à apporter au niveau d'un différentiel à glissement limité une composition lubrifiante contenant (a) une huile lubrifiante et (b) un diester en C4-C30 d'un acide dicarboxylique. L'invention concerne, en outre, l'utilisation d'un diester en C4-C30 d'un acide dicarboxylique en tant qu'agent modificateur du frottement, généralement dans un différentiel à glissement limité.
EP10757131A 2009-09-16 2010-09-14 Composition lubrifiante contenant un ester Withdrawn EP2478079A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US24289609P 2009-09-16 2009-09-16
PCT/US2010/048692 WO2011034829A1 (fr) 2009-09-16 2010-09-14 Composition lubrifiante contenant un ester

Publications (1)

Publication Number Publication Date
EP2478079A1 true EP2478079A1 (fr) 2012-07-25

Family

ID=42941884

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10757131A Withdrawn EP2478079A1 (fr) 2009-09-16 2010-09-14 Composition lubrifiante contenant un ester

Country Status (8)

Country Link
US (1) US20120208731A1 (fr)
EP (1) EP2478079A1 (fr)
JP (1) JP5561882B2 (fr)
KR (1) KR20120093211A (fr)
CN (1) CN102597190A (fr)
AU (1) AU2010295801A1 (fr)
CA (1) CA2774273A1 (fr)
WO (1) WO2011034829A1 (fr)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5733585B2 (ja) * 2010-02-19 2015-06-10 インフィニューム インターナショナル リミテッド ホウ化清浄剤の使用により高い動的摩擦係数を与える湿式摩擦クラッチ−潤滑剤系
WO2012128788A1 (fr) 2011-03-24 2012-09-27 Elevance Renewable Sciences, Inc. Monomères et polymères fonctionnalisés
US9315748B2 (en) 2011-04-07 2016-04-19 Elevance Renewable Sciences, Inc. Cold flow additives
JP5685481B2 (ja) * 2011-04-25 2015-03-18 株式会社Adeka 潤滑油添加剤組成物および潤滑油添加剤組成物の保存安定性を向上させる方法
US9012385B2 (en) 2012-02-29 2015-04-21 Elevance Renewable Sciences, Inc. Terpene derived compounds
ES2739228T3 (es) * 2012-11-19 2020-01-29 Basf Se Uso de poliésteres como lubricantes
DE202013012619U1 (de) * 2012-11-19 2018-01-09 Basf Se Schmierstoffzusammensetzung, die Polyester umfasst
US20140274832A1 (en) 2013-03-12 2014-09-18 Elevance Renewable Sciences, Inc. Maleinized ester derivatives
US20150057204A1 (en) 2013-03-12 2015-02-26 Elevance Renewable Sciences, Inc. Maleanized Ester Derivatives
EP2997117B1 (fr) 2013-05-14 2019-01-30 Basf Se Utilisation d'un ester
ES2620009T3 (es) * 2014-04-22 2017-06-27 Basf Se Composición lubricante que comprende un éster de una mezcla de alcoholes C17
JP6392055B2 (ja) * 2014-09-26 2018-09-19 三井化学株式会社 潤滑油組成物
US20180355270A1 (en) * 2015-03-30 2018-12-13 Basf Se Lubricants leading to better equipment cleanliness
WO2017079016A1 (fr) * 2015-11-06 2017-05-11 The Lubrizol Corporation Lubrifiant à haut taux de pyrophosphate
US11072758B2 (en) * 2015-11-06 2021-07-27 Lubrizol Corporation Lubricant composition containing an antiwear agent
WO2017217299A1 (fr) * 2016-06-14 2017-12-21 日油株式会社 Composition d'huile lubrifiante
WO2018017449A1 (fr) 2016-07-20 2018-01-25 The Lubrizol Corporation Sels d'amines de phosphate d'alkyle utilisables dans des lubrifiants
CN109715766B (zh) * 2016-07-20 2022-06-28 路博润公司 用于润滑剂中的烷基磷酸酯胺盐
US20200216774A1 (en) * 2017-08-16 2020-07-09 The Lubrizol Corporation Lubricating composition for a hybrid electric vehicle transmission
JP2019119838A (ja) * 2018-01-11 2019-07-22 Emgルブリカンツ合同会社 潤滑油組成物
US10640723B2 (en) * 2018-03-16 2020-05-05 Afton Chemical Corporation Lubricants containing amine salt of acid phosphate and hydrocarbyl borate
FR3083244B1 (fr) * 2018-07-02 2020-07-17 Total Marketing Services Composition pour refroidir et lubrifier un systeme de propulsion d'un vehicule electrique ou hybride
US11085006B2 (en) * 2019-07-12 2021-08-10 Afton Chemical Corporation Lubricants for electric and hybrid vehicle applications
US11326123B1 (en) 2020-12-01 2022-05-10 Afton Chemical Corporation Durable lubricating fluids for electric vehicles
US11634655B2 (en) 2021-03-30 2023-04-25 Afton Chemical Corporation Engine oils with improved viscometric performance
US11814599B2 (en) * 2022-03-31 2023-11-14 Afton Chemical Corporation Durable magnet wires and lubricating fluids for electric and hybrid vehicle applications
US11912955B1 (en) 2022-10-28 2024-02-27 Afton Chemical Corporation Lubricating compositions for reduced low temperature valve train wear
US11939551B1 (en) 2023-06-27 2024-03-26 Afton Chemical Corporation Lubricating fluid for an electric motor system

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1248643B (de) 1959-03-30 1967-08-31 The Lubrizol Corporation, Cleveland, Ohio (V. St. A.) Verfahren zur Herstellung von öllöslichen aeylierten Aminen
US3087936A (en) 1961-08-18 1963-04-30 Lubrizol Corp Reaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound
US3197405A (en) 1962-07-09 1965-07-27 Lubrizol Corp Phosphorus-and nitrogen-containing compositions and process for preparing the same
US3381022A (en) 1963-04-23 1968-04-30 Lubrizol Corp Polymerized olefin substituted succinic acid esters
US3544465A (en) 1968-06-03 1970-12-01 Mobil Oil Corp Esters of phosphorodithioates
US3825495A (en) 1971-02-19 1974-07-23 Sun Research Development Lubricant for controlled-slip differential
US4180466A (en) 1971-02-19 1979-12-25 Sun Ventures, Inc. Method of lubrication of a controlled-slip differential
US4234435A (en) 1979-02-23 1980-11-18 The Lubrizol Corporation Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation
US4308154A (en) 1979-05-31 1981-12-29 The Lubrizol Corporation Mixed metal salts and lubricants and functional fluids containing them
GB2081300A (en) 1980-07-29 1982-02-17 Exxon Research Engineering Co Gear or axle oils
JPH0730346B2 (ja) * 1986-09-08 1995-04-05 出光興産株式会社 潤滑油組成物
JPH0730345B2 (ja) * 1986-09-08 1995-04-05 出光興産株式会社 潤滑油組成物
US5064546A (en) * 1987-04-11 1991-11-12 Idemitsu Kosan Co., Ltd. Lubricating oil composition
GB8911732D0 (en) 1989-05-22 1989-07-05 Ethyl Petroleum Additives Ltd Lubricant compositions
ATE169665T1 (de) 1991-04-18 1998-08-15 Lubrizol Corp Reaktionsprodukt einer borhaltigen verbindung mit einem phospholipid sowie schmiermittel und wässrige flüssigkeiten, die dieses enthalten
JP2859083B2 (ja) * 1993-05-25 1999-02-17 出光興産株式会社 自動車リミテッドスリップデファレンシャル用潤滑油組成物
US5441656A (en) * 1994-02-10 1995-08-15 Ethyl Petroleum Additives, Inc. Automatic transmission fluids and additives therefor
US5547586A (en) 1994-05-02 1996-08-20 Rossmark Medical Publishers, Inc. Method and apparatus for the desalination of salt containing water
US5891786A (en) * 1995-01-12 1999-04-06 Ethyl Corporation Substantially metal free synthetic power transmission fluids having enhanced performance capabilities
GB9520295D0 (en) 1995-10-04 1995-12-06 Ethyl Petroleum Additives Ltd Friction modification of synthetic gear oils
AU3654897A (en) 1996-07-25 1998-02-20 Henkel Corporation Base stocks for transmission/gear lubricants
EP0949319A3 (fr) * 1998-04-08 2001-03-21 Nippon Mitsubishi Oil Corporation Fluide de traction
WO2000001790A1 (fr) 1998-07-06 2000-01-13 The Lubrizol Corporation Composes phosphores mixtes et lubrifiants contenant ces composes
US6103673A (en) 1998-09-14 2000-08-15 The Lubrizol Corporation Compositions containing friction modifiers for continuously variable transmissions
JP4409474B2 (ja) * 2005-04-22 2010-02-03 日立粉末冶金株式会社 焼結含油軸受
US20070042916A1 (en) * 2005-06-30 2007-02-22 Iyer Ramnath N Methods for improved power transmission performance and compositions therefor
US20070000745A1 (en) * 2005-06-30 2007-01-04 Cameron Timothy M Methods for improved power transmission performance
DE102006001768A1 (de) 2006-01-12 2007-07-19 Cognis Ip Management Gmbh Verwendung von Estern mit verzweigten Alkylgruppen als Schmiermittel
AU2007279288B2 (en) 2006-07-27 2011-09-22 The Lubrizol Corporation Method of lubricating and lubricating compositions thereof
US8703678B2 (en) * 2006-10-06 2014-04-22 Idemitsu Kosan Co., Ltd. Grease
JP2008169366A (ja) * 2006-12-14 2008-07-24 Kyowa Hakko Chemical Co Ltd 油類用添加剤およびこれを含有する潤滑油
US20080182770A1 (en) 2007-01-26 2008-07-31 The Lubrizol Corporation Antiwear Agent and Lubricating Compositions Thereof
KR101496484B1 (ko) 2007-05-24 2015-03-09 더루우브리졸코오포레이션 하이드록시폴리카르복시산 유도체 및 몰리브덴 화합물을 기반으로 하는 무회분 내마모제를 함유하는 윤활 조성물
US8445417B2 (en) * 2007-12-06 2013-05-21 The Lubrizol Corporation Lubricating composition containing borated phospholipid
US8703669B2 (en) * 2008-03-11 2014-04-22 Afton Chemical Corporation Ultra-low sulfur clutch-only transmission fluids
DE102009001301A1 (de) * 2008-03-11 2009-09-24 Volkswagen Ag Verfahren zum Schmieren einer Komponente nur für die Kupplung eines automatischen Getriebes, welche Schmierung erfordert

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011034829A1 *

Also Published As

Publication number Publication date
CN102597190A (zh) 2012-07-18
KR20120093211A (ko) 2012-08-22
WO2011034829A1 (fr) 2011-03-24
CA2774273A1 (fr) 2011-03-24
JP2013505329A (ja) 2013-02-14
AU2010295801A1 (en) 2012-04-05
US20120208731A1 (en) 2012-08-16
JP5561882B2 (ja) 2014-07-30

Similar Documents

Publication Publication Date Title
US20120208731A1 (en) Lubricating Composition Containing an Ester
JP5455170B2 (ja) ヒドロキシカルボン酸から誘導される化合物を含む潤滑組成物
EP2430133B1 (fr) Methode de lubrification avec une composition lubrifiante contenant un dérivé de l'acide malique
EP2576740B1 (fr) Composition lubrifiante
AU2009307693B2 (en) Lubricating composition containing metal carboxylate
EP2240560B1 (fr) Procédé de lubrification d'un différentiel à verrouillage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120405

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130328

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131008