EP2470769B1 - Verfahren und steuergerät zum betreiben eines elektromagnetischen aktors - Google Patents

Verfahren und steuergerät zum betreiben eines elektromagnetischen aktors Download PDF

Info

Publication number
EP2470769B1
EP2470769B1 EP10739330.8A EP10739330A EP2470769B1 EP 2470769 B1 EP2470769 B1 EP 2470769B1 EP 10739330 A EP10739330 A EP 10739330A EP 2470769 B1 EP2470769 B1 EP 2470769B1
Authority
EP
European Patent Office
Prior art keywords
electromagnetic actuator
actuation
magnetic circuit
inductance
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10739330.8A
Other languages
English (en)
French (fr)
Other versions
EP2470769A1 (de
Inventor
Klaus Joos
Ruben Schlueter
Jens Neuberg
Helerson Kemmer
Holger Rapp
Haris Hamedovic
Joerg Koenig
Anh-Tuan Hoang
Bernd Wichert
Wolfgang Fischer
Silke Seuling
Achim Hirchenhein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2470769A1 publication Critical patent/EP2470769A1/de
Application granted granted Critical
Publication of EP2470769B1 publication Critical patent/EP2470769B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2031Control of the current by means of delays or monostable multivibrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2051Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using voltage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits

Definitions

  • the invention relates to a method for operating an electromagnetic actuator, in particular a fuel injection valve of an internal combustion engine of a motor vehicle, in which the electromagnetic actuator is activated during an activation process in order to influence an operating state of the actuator.
  • the invention also relates to a control device for carrying out such an operating method.
  • a method of the type mentioned is already from the DE 101 38 483 A1 known.
  • the known method provides for applying a current pulse to the electromagnetic actuator before it is activated, and for correcting the control based on a variable that characterizes the duration of the current pulse. This ensures that a control duration for several control processes with different supply voltages is constant.
  • the disadvantage of the known method is the requirement to have to provide a separate current pulse before the actual control of the electromagnetic actuator. This results in particular restrictions with regard to the minimum time intervals between successive actuation processes. In addition, the current pulses that are not themselves part of the control increase the electrical energy requirement of a corresponding circuit.
  • the DE 101 34 332 A1 discloses a device and a method for controlling a consumer, in particular for metering fuel in an internal combustion engine. At least a first control and a second control of the consumer take place. The beginning of the second activation is at a minimum distance from the end of the first activation. In certain states, a variable is recorded that characterizes the flow of current in the consumer after the consumer has been activated. The minimum distance is determined on the basis of this size.
  • the electromagnetic actuator be controlled as a function of a magnetization parameter that characterizes the magnetization current.
  • the magnetization parameter can be determined, for example, as a function of a time profile of a coil current flowing through a magnet coil of the electromagnetic actuator.
  • This variant of the invention is distinguished by its low complexity and allows the magnetization parameter considered according to the invention to be determined by a simple time measurement.
  • both the activation duration for the current activation process and / or an activation start can be specified as a function of the state of the magnetic circuit and / or the magnetization parameter.
  • Another very advantageous embodiment of the method according to the invention provides that a coil voltage applied to the magnet coil is determined at a defined point in time before the start of the control process, and that the magnetization parameter is formed as a function of this determined voltage value.
  • a formation of the magnetization parameter as a function of several of the aforementioned variables is also conceivable.
  • the state of the magnetic circuit is determined based on a model as a function of at least one control variable for the electromagnetic actuator.
  • a state of the magnetic circuit of the electromagnetic actuator can be determined particularly precisely as a function of at least one control variable for the electromagnetic actuator.
  • the state of the magnetic circuit of the electromagnetic actuator can be determined not only at the beginning of a respective control process, but also at further operating times of the electromagnetic actuator.
  • the state of the magnetic circuit can be particularly advantageous as a function of one or several previous control processes can be determined, resulting in increased precision with regard to the information characterizing the state of the magnetic circuit.
  • a control device according to patent claim 7 is specified as a further solution to the object of the present invention.
  • the fuel injector 100 has an electromagnetic actuator 10, which drives at least one component of the fuel injection valve 100, not shown here, for example a valve needle, in order to effect fuel injections.
  • the electromagnetic actuator 10 is controlled by a control device 20 assigned to it.
  • the control device 20 has a computing unit such as a microcontroller or a digital signal processor (DSP), which are suitable for executing a computer program representing the method according to the invention.
  • DSP digital signal processor
  • Figure 2 shows a simplified equivalent circuit diagram of a magnetic circuit 11 of a typical electromagnetic actuator 10 ( Figure 1 ).
  • the equivalent circuit has a resistor R_c, which represents the ohmic resistance of a primary coil of the electromagnetic actuator 10.
  • a main inductance L_h which represents an inductance of the magnet coil of the electromagnetic actuator 10, is connected in series with the ohmic resistance R_c.
  • a series circuit In parallel with the main inductance L_h, a series circuit is provided which has a leakage inductance L_ ⁇ and a further ohmic resistance R_w *.
  • the further ohmic resistance R_w * is an eddy current resistance of the electromagnetic actuator 10 translated to the side of the magnet coil.
  • the magnetizing current i_m is decisive for the generation of a magnetic force of the electromagnetic Actuator 10, which is used to move the valve needle of the fuel injector 100.
  • the eddy current i_w * contributes in a manner known per se to the electrical power loss of the electromagnetic actuator 10.
  • FIG. 13 shows a time profile of the currents described above through the magnetic circuit according to FIG Figure 2 .
  • the control voltage u is then set to a lower value.
  • the occurrence of magnetizing currents i_m that do not vanish at the beginning t_0 of the control can, for example, result from the fact that a the previous control process was ended so shortly before the beginning t_0 that the entire magnetic field of the leakage inductance L_ ⁇ has not already decayed.
  • the eddy current curve i_w * 2 that is established here is also in Figure 4 illustrated.
  • the magnetizing current i_m3 can also have an even greater value at the activation start time t_0 than is the case with the magnetizing current profile i_m2 is the case.
  • the reason for this can be, for example, a particularly short pause between two successive control processes of the electromagnetic actuator 10, so that at the control start time t_0 of the control process under consideration, a relatively large amount of energy is still stored in the magnetic field of the leakage inductance L_ ⁇ .
  • the coil current i_c3 accordingly reaches the specifiable setpoint value l_boos the earliest.
  • the corresponding eddy current curve is illustrated by the reference symbol i_w * 3.
  • a particularly simple and efficient way of obtaining information about the state of the magnetic circuit 11 of the electromagnetic actuator 10 is to determine a magnetization parameter that characterizes a magnetization current i_m that flows through the primary inductance L_h at the beginning t_0 of the control process.
  • this magnetization parameter can advantageously be used directly to modify the control of the electromagnetic actuator 10, that is to say in particular the control voltage u.
  • the temporal course of the control voltage u can be modified as a function of the magnetization parameter in such a way that, regardless of the actual value of the magnetization current i_m at the time t_0, the same operating behavior of the electromagnetic actuator 10 and thus, for example, the same injection quantity when the fuel injection valve 100 is operated ( Figure 1 ) results.
  • the magnetization parameter can be determined particularly efficiently as a function of a time profile of the coil current i_c flowing through the magnet coil of the electromagnetic actuator 10.
  • the state of the magnetic circuit 11 is determined based on a model as a function of at least one control variable for the electromagnetic actuator 10.
  • the model 200 shown can be used, which can be used, for example, by a corresponding computer program in a processing unit of the control unit 20 Figure 1 ) is implemented.
  • input variables E1, E2 are fed to the model 200.
  • the input variables E1, E2 can, for example, be parameters of the last fuel injection that are present in the control unit 20. Furthermore, the input variables E1, E2 can also include desired properties of the subsequent injection.
  • the model 200 according to the invention uses this to determine parameters for the control of the subsequent injection, which are, for example, a time profile of the control voltage u ( Figure 2 ) can act.
  • the model 200 according to the invention can be made available by making metrologically recorded operating parameters of the electromagnetic actuator 10 available, which are shown in FIG Figure 5 are symbolized by the reference symbol M, can be adapted during its operation.
  • the metrologically recorded variables M can be, for example, the control voltage u, the control current I, from which further variables can be determined, for example an opening time and / or a closing time and / or a flight duration of a movable component of the fuel injection valve 100, which during the activation of the fuel injection valve performs a ballistic trajectory.
  • the model 200 From the input variables E1, E2, M supplied to it, the model 200 according to the invention forms output variables A for controlling the electromagnetic actuator 10, which can be, for example, the time profile of the control voltage u.
  • a particularly precise control of the electromagnetic actuator 10 can be realized.
  • an activation of the electromagnetic actuator 10 can thereby advantageously be realized in which various activation processes are carried out in quick succession.
  • the pause times between the adjacent control processes are so short that the magnetic field of the leakage inductance L_ ⁇ has not already completely broken down again until a subsequent control process begins.
  • a non-vanishing magnetization current I_m results at the point in time t_0, which according to the invention is advantageously taken into account in the formation of the control variables for the subsequent control process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Magnetically Actuated Valves (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

    Stand der Technik
  • Die Erfindung betrifft ein Verfahren zum Betreiben eines elektromagnetischen Aktors, insbesondere eines Kraftstoffeinspritzventils einer Brennkraftmaschine eines Kraftfahrzeugs, bei dem der elektromagnetische Aktor während eines Ansteuervorgangs angesteuert wird, um einen Betriebszustand des Aktors zu beeinflussen.
  • Die Erfindung betrifft ferner ein Steuergerät zur Durchführung eines derartigen Betriebsverfahrens.
  • Ein Verfahren der eingangs genannten Art ist bereits aus der DE 101 38 483 A1 bekannt. Zur Steigerung der Präzision bei der Ansteuerung des elektromagnetischen Aktors sieht das bekannte Verfahren vor, den elektromagnetischen Aktor vor einer Ansteuerung mit einem Stromimpuls zu beaufschlagen, und ausgehend von einer Größe, die die Dauer des Stromimpulses charakterisiert, die Ansteuerung zu korrigieren. Dadurch wird erreicht, dass eine Ansteuerdauer für mehrere Ansteuervorgänge mit unterschiedlichen Versorgungsspannungen konstant ist.
  • Nachteilig an dem bekannten Verfahren ist das Erfordernis, vor der eigentlichen Ansteuerung des elektromagnetischen Aktors einen gesonderten Stromimpuls vorsehen zu müssen. Dadurch ergeben sich insbesondere Restriktionen hinsichtlich der minimalen zeitlichen Abstände aufeinanderfolgender Ansteuervorgänge. Darüberhinaus erhöhen die selbst nicht zu der Ansteuerung gehörigen Stromimpulse den elektrischen Energiebedarf einer entsprechenden Schaltung.
  • Die DE 101 34 332 A1 offenbart eine Vorrichtung und ein Verfahren zur Steuerung eines Verbrauchers, insbesondere zur Kraftstoffzumessung in eine Brennkraftmaschine beschrieben. Es erfolgen wenigstens eine erste Ansteuerung und eine zweite Ansteuerung des Verbrauchers. Der Beginn der zweiten Ansteuerung weist einen Mindestabstand zu dem Ende der ersten Ansteuerung auf. In bestimmten Zuständen wird eine Größe erfasst, die den Stromfluss im Verbraucher nach dem Ende der Ansteuerung des Verbrauchers charakterisiert. Ausgehend von dieser Größe wird der Mindestabstand bestimmt.
  • Offenbarung der Erfindung
  • Demgemäß ist es Aufgabe der vorliegenden Erfindung, ein Verfahren und ein Steuergerät der eingangs genannten Art dahingehend zu verbessern, dass eine gesteigerte Präzision bei der Ansteuerung des elektromagnetischen Aktors gegeben ist, ohne zusätzliche Stromimpulse zu erfordern, die nicht Bestandteil der Ansteuervorgänge sind.
  • Diese Aufgabe wird mit einem Verfahren gemäß Anspruch 1 gelöst.
  • Dadurch ist erfindungsgemäß vorteilhaft eine besonders präzise Ansteuerung des elektromagnetischen Aktors möglich, weil ein das Betriebsverhalten des elektromagnetischen Aktors beeinflussendes Restmagnetfeld, das beispielsweise aus vorherigen Ansteuervorgängen resultiert, berücksichtigt und insbesondere seine Auswirkungen auf eine zukünftige Ansteuerung kompensiert werden können.
  • Erfindungsgemäß ist erkannt worden, dass insbesondere ein Magnetisierungsstrom, der zu Beginn des Ansteuervorgangs durch eine Primärinduktivität des magnetischen Kreises des elektromagnetischen Aktors fließt, das Betriebsverhalten des elektromagnetischen Aktors wesentlich beeinflusst. Erfindungsgemäß ist daher vorgeschlagen, dass die Ansteuerung des elektromagnetischen Aktors in Abhängigkeit einer Magnetisierungskenngröße erfolgt, die den Magnetisierungsstrom charakterisiert.
  • Die Magnetisierungskenngröße kann erfindungsgemäß beispielsweise in Abhängigkeit eines zeitlichen Verlaufs eines durch eine Magnetspule des elektromagnetischen Aktors fließenden Spulenstroms ermittelt werden. Insbesondere ist es vorteilhaft möglich, ein Zeitintervall zwischen dem Beginn des Ansteuervorgangs und dem Zeitpunkt zu ermitteln, zu dem der Spulenstrom einen vorgebbaren Sollwert erreicht, und die Magnetisierungskenngröße in Abhängigkeit des ermittelten Zeitintervalls zu bilden. Diese Erfindungsvariante zeichnet sich durch ihre geringe Komplexität aus und erlaubt die Ermittlung der erfindungsgemäß betrachteten Magnetisierungskenngröße durch eine einfache Zeitmessung.
  • Erfindungsgemäß kann sowohl die Ansteuerdauer für den aktuellen Ansteuervorgang und/oder ein Ansteuerbeginn in Abhängigkeit des Zustands des magnetischen Kreises und/oder der Magnetisierungskenngröße vorgegeben werden.
  • Bei einer weiteren sehr vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens ist vorgesehen, dass eine an der Magnetspule anliegende Spulenspannung zu einem definierten Zeitpunkt vor Beginn des Ansteuervorgangs ermittelt wird, und dass die Magnetisierungskenngröße in Abhängigkeit dieses ermittelten Spannungswerts gebildet wird. Eine Bildung der Magnetisierungskenngröße in Abhängigkeit mehrerer der vorstehend genannten Größen (Spulenstrom, Zeitintervall, Spulenspannung) ist ebenfalls denkbar.
  • Erfindungsgemäß ist vorgesehen, dass der Zustand des magnetischen Kreises modellbasiert in Abhängigkeit mindestens einer Ansteuergröße für den elektromagnetischen Aktor ermittelt wird.
  • Durch die Verwendung eines den elektromagnetischen Aktor repräsentierenden Modells kann in Abhängigkeit mindestens einer Ansteuergröße für den elektromagnetischen Aktor besonders präzise ein Zustand des magnetischen Kreises des elektromagnetischen Aktors ermittelt werden. Insbesondere kann unter Verwendung des erfindungsgemäßen Modells der Zustand des magnetischen Kreises des elektromagnetischen Aktors nicht nur zu Beginn eines jeweiligen Ansteuervorgangs, sondern auch zu weiteren Betriebszeiten des elektromagnetischen Aktors ermittelt werden.
  • Unter Verwendung des erfindungsgemäßen Modells kann der Zustand des magnetischen Kreises besonders vorteilhaft in Abhängigkeit von einem oder mehreren vorangehenden Ansteuervorgängen ermittelt werden, wodurch sich eine gesteigerte Präzision hinsichtlich der den Zustand des magnetischen Kreises charakterisierenden Informationen ergibt.
  • Als eine weitere Lösung der Aufgabe der vorliegenden Erfindung ist ein Steuergerät gemäß Patentanspruch 7 angegeben.
  • Von besonderer Bedeutung ist die Realisierung des erfindungsgemäßen Betriebsverfahrens in Form eines Computerprogramms gemäß Anspruch 8, das auf einem elektronischen oder optischen Speichermedium abgespeichert sein kann, und das von einer Steuer- und/oder Regeleinrichtung z.B. für eine Brennkraftmaschine ausführbar ist.
  • Weitere Vorteile, Merkmale und Einzelheiten ergeben sich aus der nachfolgenden Beschreibung, in der unter Bezugnahme auf die Zeichnung verschiedene Ausführungsbeispiele der Erfindung dargestellt sind. Dabei können die in den Ansprüchen und in der Beschreibung erwähnten Merkmale jeweils einzeln für sich oder in beliebiger Kombination erfindungswesentlich sein.
  • In der Zeichnung zeigt:
  • Figur 1
    Schematisch ein Kraftstoffeinspritzventil einer Brennkraftmaschine eines Kraftfahrzeugs mit einem erfindungsgemäß betriebenen elektromagnetischen Aktor,
    Figur 2
    ein vereinfachtes Ersatzschaltbild eines magnetischen Kreises des elektromagnetischen Aktors aus Figur 1,
    Figur 3 und 4
    jeweils einen zeitlichen Verlauf verschiedener Betriebsgrößen des elektromagnetischen Aktors, und
    Figur 5
    ein Funktionsdiagramm einer weiteren Ausführungsform des erfindungsgemäßen Betriebsverfahrens.
    Figur 1
    zeigt schematisch ein Kraftstoffeinspritzventil 100 einer
  • Brennkraftmaschine eines Kraftfahrzeugs. Das Kraftstoffeinspritzventil 100 verfügt über einen elektromagnetischen Aktor 10, der mindestens eine vorliegend nicht abgebildete Komponente des Kraftstoffeinspritzventils 100, beispielsweise eine Ventilnadel, antreibt, um Kraftstoffeinspritzungen zu bewirken. Der elektromagnetische Aktor 10 wird durch ein ihm zugeordnetes Steuergerät 20 angesteuert. Das Steuergerät 20 verfügt in an sich bekannter Weise über eine Recheneinheit wie beispielsweise einen Mikrocontroller oder einen digitalen Signalprozessor (DSP), die dazu geeignet sind, ein das erfindungsgemäße Verfahren repräsentierendes Computerprogramm auszuführen.
  • Figur 2 zeigt ein vereinfachtes Ersatzschaltbild eines magnetischen Kreises 11 eines typischen elektromagnetischen Aktors 10 (Figur 1).
  • Das Ersatzschaltbild weist einen Widerstand R_c auf, der den Ohmwiderstand einer Primärspule des elektromagnetischen Aktors 10 repräsentiert. In Serie zu dem Ohmwiderstand R_c ist eine Hauptinduktivität L_h geschaltet, die eine Induktivität der Magnetspule des elektromagnetischen Aktors 10 repräsentiert.
  • Parallel zu der Hauptinduktivität L_h ist eine Serienschaltung vorgesehen, die eine Streuinduktivität L_σ und einen weiteren Ohmwiderstand R_w* aufweist.
  • Bei dem weiteren Ohmwiderstand R_w* handelt es sich um einen auf die Seite der Magnetspule übersetzten Wirbelstromwiderstand des elektromagnetischen Aktors 10.
  • Bei der Beaufschlagung des elektromagnetischen Aktors 10 beziehungsweise des durch ihn realisierten magnetischen Kreises 11 mit einer Ansteuerspannung u ergibt sich entsprechend der vorstehend beschriebenen Schaltungstopologie ein Spulenstrom i_c.
  • Der Spulenstrom i_c verzweigt sich wie aus Figur 2 ersichtlich zwischen der Hauptinduktivität L_h und der Streuinduktivität L_σ zu einem Magnetisierungsstrom i_m und einem Wirbelstrom i_w* gemäß der Knotenregel: i_c + i_w* = i_m.
  • Von den vorstehend beschriebenen Strömen ist nur der Magnetisierungsstrom i_m maßgeblich für die Erzeugung einer Magnetkraft des elektromagnetischen Aktors 10, die zur Bewegung der Ventilnadel des Kraftstoffeinspritzventils 100 verwendet wird. Der Wirbelstrom i_w* trägt in an sich bekannter Weise zu der elektrischen Verlustleistung des elektromagnetischen Aktors 10 bei.
  • Insgesamt kann in dem Ersatzschaltbild gemäß Figur 2 zwischen einem Hauptstrompfad l_1 und einem Wirbelstrompfad l_w unterschieden werden, wobei sich der Wirbelstrompfad l_w über die Streuinduktivität L_σ erstreckt.
  • Figur 3 zeigt einen zeitlichen Verlauf der vorstehend beschriebenen Ströme durch den magnetischen Kreis gemäß Figur 2.
  • Hierbei wird von einem Betriebszustand des elektromagnetischen Aktors 10 ausgegangen, der dadurch gekennzeichnet ist, dass zu dem Beginn t_0 eines Ansteuervorgangs keine Energie in Form von Magnetfeldern in den Induktivitäten L_h, L_σ gespeichert ist. Diese Aussage ist gleichbedeutend damit, dass sowohl der Magnetisierungsstrom i_m wie auch der Wirbelstrom i_w* zu dem Zeitpunkt t_0 einen Wert von Null aufweist, vergleiche Figur 3.
  • Zu Beginn t_0 der Ansteuerung gemäß Figur 3 wird durch das Steuergerät 20 (Figur 1) eine konstante Ansteuerspannung u (Figur 2), bei der es sich beispielsweise um eine sog. Boostspannung u = u_boost handeln kann, an die Klemmen des elektromagnetischen Aktors 10 angelegt, bis der Spulenstrom i_c einen vorgebbaren Sollwert l_boos erreicht hat. Anschließend wird die Ansteuerspannung u auf einen geringeren Wert eingestellt.
  • Bei dem vorstehend beschriebenen Ansteuermuster durch die Ansteuerspannung u ergeben sich die zeitlichen Verläufe der Ströme i_c, i_m, i_w* wie sie in Figur 3 abgebildet sind.
  • Sobald jedoch - einem weiteren möglichen Betriebsszenario entsprechend - zu dem Ansteuerbeginn t_0 nichtverschwindende Werte für den Magnetisierungsstrom i_m auftreten, ergibt sich ein von dem vorstehend unter Bezugnahme auf Figur 3 erläuterten Szenario abweichender Verlauf.
  • Das Auftreten von zu dem Beginn t_0 der Ansteuerung nichtverschwindenden Magnetisierungsströmen i_m kann beispielsweise daher rühren, dass ein vorangehender Ansteuervorgang zeitlich so kurz vor dem Beginn t_0 beendet worden ist, dass nicht bereits das gesamte Magnetfeld der Streuinduktivität L_σ abgeklungen ist.
  • In diesem Fall ergibt sich ein nicht verschwindender Wirbelstrom i_w* in dem Wirbelstrompfad l_w und ein entsprechender, ebenfalls nicht verschwindender, Magnetisierungsstrom i_m durch die Hauptinduktivität L_h (Figur 2), der magnetkraftbildend wirkt.
  • Die in Figur 4 abgebildeten Stromverläufe i_c1, i_m1, i_w*1 ergeben sich hierbei in einem Betriebsszenario des elektromagnetischen Aktors 10, das zu dem in Figur 3 veranschaulichten Betriebsszenario vergleichbar ist. Das bedeutet, die Stromverläufe i_c1, i_m1, i_w*1 stellen sich dann ein, wenn zu dem Zeitpunkt t_0 ein in Ruhe befindlicher elektromagnetischer Aktor 10 mit einer konstanten Ansteuerspannung u beaufschlagt wird, bis der Spulenstrom i_c1 den vorgebbaren Sollwert l_boos erreicht. Anschließend ergibt sich wie bereits beschrieben ein Abklingen der betreffenden Ströme.
  • Das erste der insgesamt drei in Figur 4 veranschaulichten Betriebsszenarien ist wie bereits vorstehend beschrieben dadurch gekennzeichnet, dass zu dem Zeitpunkt t_0 kein Magnetisierungsstrom i_m1 fließt, das heißt i_m1 = 0.
  • Sofern jedoch - einem weiteren Betriebsszenario folgend - bereits zu dem Ansteuerbeginnzeitpunkt t_0 ein nichtverschwindender Magnetisierungsstrom durch die Hauptinduktivität L_h (Figur 2) fließt, vergleiche den Stromverlauf i_m2, ist Untersuchungen der Anmelderin zufolge festzustellen, dass der entsprechende Spulenstromverlauf i_c2 bereits zu einem früheren Zeitpunkt t < t_1 den vorgebbaren Sollwert l_boos erreicht verglichen zu dem Spulenstromverlauf i_c1.
  • Der sich hierbei einstellende Wirbelstromverlauf i_w*2 ist ebenfalls in Figur 4 veranschaulicht.
  • Einem weiteren möglichen Betriebsszenario entsprechend kann der Magnetisierungsstrom i_m3 zu dem Ansteuerbeginnzeitpunkt t_0 auch einen noch größeren Wert aufweisen, als dies bei dem Magnetisierungsstromverlauf i_m2 der Fall ist. Ursache hierfür kann beispielsweise eine besonders kurze Pausenzeit zwischen zwei aufeinanderfolgenden Ansteuervorgängen des elektromagnetischen Aktors 10 sein, so dass zu dem Ansteuerbeginnzeitpunkt t_0 des vorliegend betrachteten Ansteuervorgangs noch verhältnismäßig viel Energie in dem Magnetfeld der Streuinduktivität L_σ gespeichert ist.
  • Bei diesem Betriebsszenario erreicht der Spulenstrom i_c3 dementsprechend am frühesten den vorgebbaren Sollwert l_boos.
  • Der entsprechende Wirbelstromverlauf ist durch das Bezugszeichen i_w*3 verdeutlicht.
  • Erfindungsgemäß ist vorgesehen, einen Zustand des magnetischen Kreises 11 (Figur 2) des elektromagnetischen Aktors 10 bei der Ansteuerung des elektromagnetischen Aktors 10 zu berücksichtigen, wodurch eine präzise Ansteuerung des elektromagnetischen Aktors 10 insbesondere auch in solchen Betriebszuständen möglich ist, in denen zu dem Ansteuerbeginnzeitpunkt t_0 ein nichtverschwindender Magnetisierungsstrom i_m2, i_m3 (Figur 4) vorherrscht.
  • Eine besonders einfache und effiziente Möglichkeit, Informationen über den Zustand des magnetischen Kreises 11 des elektromagnetischen Aktors 10 zu erhalten, besteht erfindungsgemäß darin, eine Magnetisierungskenngröße zu ermitteln, die einen Magnetisierungsstrom i_m charakterisiert, der zu Beginn t_0 des Ansteuervorgangs durch die Primärinduktivität L_h fließt. Diese Magnetisierungskenngröße kann erfindungsgemäß vorteilhaft direkt dazu verwendet werden, die Ansteuerung des elektromagnetischen Aktors 10, das heißt insbesondere die Ansteuerspannung u, zu modifizieren. Beispielsweise kann ganz allgemein der zeitliche Verlauf der Ansteuerspannung u so in Abhängigkeit der Magnetisierungskenngröße modifiziert werden, dass sich ungeachtet des tatsächlichen Werts des Magnetisierungsstroms i_m zu dem Zeitpunkt t_0 stets dasselbe Betriebsverhalten des elektromagnetischen Aktors 10 und damit beispielsweise dieselbe Einspritzmenge bei dem Betrieb des Kraftstoffeinspritzventils 100 (Figur 1) ergibt.
  • Besonders effizient kann die Magnetisierungskenngröße in Abhängigkeit eines zeitlichen Verlaufs des durch die Magnetspule des elektromagnetischen Aktors 10 fließenden Spulenstroms i_c ermittelt werden.
  • Besonders einfach kann dies dadurch bewerkstelligt werden, dass ein Zeitintervall t_mess zwischen dem Beginn t_0 des Ansteuervorgangs und dem Zeitpunkt t_1 ermittelt wird, zu dem der Spulenstrom i_c1 den vorgebbaren Sollwert l_mess erreicht. Die zur Modifizierung der Ansteuergröße u verwendete Magnetisierungskenngröße kann schließlich in Abhängigkeit des ermittelten Zeitintervalls t_mess gebildet werden. Besonders vorteilhaft ist es, den Sollwert l_mess gleich dem Sollwert l_boos zu wählen, da dann das Ende der Boostphase mit konstanter Spannung u-boos auch den Zeitpunkt t_1 markiert.
  • Entsprechend den vorstehend unter Bezugnahme auf Figur 4 beschriebenen Abhängigkeiten zwischen dem Zeitpunkt t_1 des Erreichens des Sollwerts l_boos für den Spulenstrom i_c und dem zugehörigen Wert des Magnetisierungsstroms i_m zu dem Zeitpunkt t_0 werden für die verschiedenen Betriebsszenarien gemäß Figur 4 unterschiedliche Zeitintervalle t_mess erhalten. Beispielsweise erreicht der Spulenstrom i_c3 am frühesten ab dem Ansteuerzeitpunkt t_0 den vorgebbaren Sollwert l_boos, weil zu dem Zeitpunkt t_0 bereits ein verhältnismäßig großer Magnetisierungsstrom i_m3 geflossen ist. Dementsprechend ergibt sich für dieses dritte Betriebsszenario das kleinste Zeitintervall.
  • Aus dem vorstehend beschriebenen zeitlichen Verhalten des Spulenstroms i_c, der beispielsweise durch das Steuergerät 20 (Figur 1) in an sich bekannter Weise messtechnisch erfasst werden kann, kann erfindungsgemäß ein Vorgabewert für die Ansteuerdauer für den aktuellen Ansteuervorgang und/oder einen Ansteuerbeginn beispielsweise einer zukünftigen Ansteuerung in Abhängigkeit des Zustands des magnetischen Kreises vorgegeben werden.
  • Eine weitere vorteilhafte Methode, den Zustand des magnetischen Kreises zu Beginn der Ansteuerung zu bestimmen, besteht darin, die Spannung u unmittelbar vor Anlegen der Boostspannung zu ermitteln. Dies funktioniert besonders gut dann, wenn vor Beginn der Ansteuerung der Spulenstrom i_c = 0 ist. In diesem Fall gilt gemäß des Kirchhoff'schen Gesetzes i_m = i_w*. Daraus folgt aber sofort, dass gilt: di _ m dt = R _ w * i _ m 1 L _ σ + L _ h
    Figure imgb0001
  • Für die Spannung u gilt dann: u = L _ h di _ m dt + R _ c i _ c = i _ c = 0 L _ h di _ m dt = R _ w * i _ m L _ h L _ σ + L _ h ,
    Figure imgb0002
    u ist also proportional zu i_m.
  • Bei einer weiteren sehr vorteilhaften Ausführungsform des erfindungsgemäßen Betriebsverfahrens wird der Zustand des magnetischen Kreises 11 modellbasiert in Abhängigkeit mindestens einer Ansteuergröße für den elektromagnetischen Aktor 10 ermittelt.
  • Hierzu kann das in Figur 5 abgebildete Modell 200 verwendet werden, das beispielsweise durch ein entsprechendes Computerprogramm in einer Recheneinheit des Steuergeräts 20 (Figur 1) implementiert ist.
  • Dem Modell 200 werden erfindungsgemäß Eingangsgrößen E1, E2 zugeführt. Bei den Eingangsgrößen E1, E2 kann es sich beispielsweise um Parameter der letzten Kraftstoffeinspritzung handeln, die in dem Steuergerät 20 vorliegen. Ferner können die Eingangsgrößen E1, E2 auch gewünschte Eigenschaften der folgenden Einspritzung umfassen.
  • Das erfindungsgemäße Modell 200 ermittelt hieraus Parameter für die Ansteuerung der nachfolgenden Einspritzung, bei denen es sich beispielsweise um einen zeitlichen Verlauf der Ansteuerspannung u (Figur 2) handeln kann. Das erfindungsgemäße Modell 200 kann durch die Zurverfügungstellung messtechnisch erfasster Betriebsparameter des elektromagnetischen Aktors 10, die in Figur 5 durch das Bezugszeichen M symbolisiert sind, während seines Betriebs adaptiert werden. Damit kann das erfindungsgemäße Modell 200 individuell an das spezielle Kraftstoffeinspritzventil 100 (Figur 1) angepasst werden.
  • Bei den messtechnisch erfassten Größen M kann es sich beispielsweise um die Ansteuerspannung u, den Ansteuerstrom l handeln, aus denen weitere Größen ermittelt werden können, beispielsweise ein Öffnungszeitpunkt und/oder ein Schließzeitpunkt und/oder eine Flugdauer einer beweglichen Komponente des Kraftstoffeinspritzventils 100, die während der Ansteuerung des Kraftstoffeinspritzventils eine ballistische Trajektorie vollführt.
  • Das erfindungsgemäße Modell 200 bildet aus dem ihm zugeführten Eingangsgrößen E1, E2, M Ausgangsgrößen A zur Ansteuerung des elektromagnetischen Aktors 10, bei denen es sich beispielsweise um den zeitlichen Verlauf der Ansteuerspannung u handeln kann.
  • Durch die erfindungsgemäße Berücksichtigung des Magnetisierungsstroms zu dem Beginn t_0 des Ansteuervorgangs ist eine besonders präzise Ansteuerung des elektromagnetischen Aktors 10 realisierbar. Beispielsweise kann dadurch vorteilhaft eine Ansteuerung des elektromagnetischen Aktors 10 realisiert werden, bei der in kurzer Folge verschiedene Ansteuervorgänge durchgeführt werden. Die Pausenzeiten zwischen den benachbarten Ansteuervorgängen sind dabei so gering, dass sich das Magnetfeld der Streuinduktivität L_σ nicht bereits wieder vollständig abgebaut hat, bis ein nachfolgender Ansteuervorgang beginnt. Dementsprechend ergibt sich ein nichtverschwindender Magnetisierungsstrom l_m zu dem Zeitpunkt t_0, der erfindungsgemäß vorteilhaft bei der Bildung der Ansteuergrößen für den nachfolgenden Ansteuervorgang berücksichtigt wird.

Claims (9)

  1. Verfahren zum Betreiben eines elektromagnetischen Aktors (10), insbesondere eines Kraftstoffeinspritzventils (100) einer Brennkraftmaschine eines Kraftfahrzeugs, bei dem der elektromagnetische Aktor (10) während eines Ansteuervorgangs angesteuert wird, um einen Betriebszustand des Aktors (10) zu beeinflussen, wobei ein, zu Beginn des Ansteuervorgangs vorliegendes Restmangnetfeld, eines magnetischen Kreises (11) des elektromagnetischen Aktors (10) bei der Ansteuerung des elektromagnetischen Aktors (10) berücksichtigt wird, wobei die Ansteueurung in Abhängigkeit einer Magnetisierungskenngröße erfolgt, die einen Magnetisierungsstrom (i_m) charakterisiert, der zu Beginn (t_0) des Ansteuervorgangs durch eine Primärinduktivität (L_h) des magnetischen Kreises (11) des elektromagnetischen Aktors (10) fließt, wobei die Magnetisierungskenngröße modellbasiert ermittelt wird, dadurch gekennzeichnet, dass der magnetische Kreis (11) des elektromagnetischen Aktors (10) mit einem Widerstand (R_c), der den Ohmwiderstand der Primärspule des elektromagnetischen Aktors (10) repräsentiert, in Serie mit einer Hauptinduktivität (L_h), die eine Induktivität der Magnetspule des elektromagnetischen Aktors (10) repräsentiert, modelliert wird, wobei eine Serienschaltung, die eine Streuinduktivität (L_σ) und einen weiteren Ohmwiderstand (R_w*) aufweist, parallel zu der Hauptinduktivität (L_h) vorgesehen ist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Magnetisierungskenngröße in Abhängigkeit eines zeitlichen Verlaufs eines durch eine Magnetspule des elektromagnetischen Aktors (10) fließenden Spulenstroms (i_c) ermittelt wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass ein Zeitintervall (t_mess) zwischen dem Beginn (t_0) des Ansteuervorgangs und dem Zeitpunkt (t_1) ermittelt wird, zu dem der Spulenstrom (i_c) einen vorgebbaren Sollwert (l_mess) erreicht, und dass die Magnetisierungskenngröße in Abhängigkeit des ermittelten Zeitintervalls (t_mess) gebildet wird.
  4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass eine Ansteuerdauer für den aktuellen Ansteuervorgang und/oder ein Ansteuerbeginn in Abhängigkeit des Zustands des magnetischen Kreises (11) und/oder der Magnetisierungskenngröße vorgegeben wird.
  5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Zustand des magnetischen Kreises (11) modellbasiert in Abhängigkeit mindestens einer Ansteuergröße für den elektromagnetischen Aktor (10) ermittelt wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der Zustand des magnetischen Kreises (11) zu Beginn eines zukünftigen Ansteuervorgangs in Abhängigkeit von einem oder mehreren vorangehenden Ansteuervorgängen ermittelt wird.
  7. Steuergerät (20) zum Betreiben eines elektromagnetischen Aktors (10), insbesondere eines Kraftstoffeinspritzventils (100) einer Brennkraftmaschine eines Kraftfahrzeugs, bei dem der elektromagnetische Aktor (10) während eines Ansteuervorgangs ansteuerbar ist, um einen Betriebszustand des Aktors (10) zu beeinflussen, wobei ein, zu Beginn des Ansteuervorgangs vorliegendes Restmagnetfeld eines magnetischen Kreises (11) des elektromagnetischen Aktors (10) bei der Ansteuerung des elektromagnetischen Aktors (10) berücksichtigt wird, wobei die Ansteueurung in Abhängigkeit einer Magnetisierungskenngröße erfolgt, die einen Magnetisierungsstrom (i_m) charakterisiert, der zu Beginn (t_0) des Ansteuervorgangs durch eine Primärinduktivität (L_h) des magnetischen Kreises (11) des elektromagnetischen Aktors (10) fließt, wobei die Magnetisierungskenngröße modellbasiert ermittelt wird, dadurch gekennzeichnet, dass der magnetische Kreis (11) des elektromagnetischen Aktors (10) mit einem Widerstand (R_c), der den Ohmwiderstand der Primärspule des elektromagnetischen Aktors (10) repräsentiert, in Serie mit einer Hauptinduktivität (L_h), die eine Induktivität der Magnetspule des elektromagnetischen Aktors (10) repräsentiert, modelliert wird, wobei eine Serienschaltung, die eine Streuinduktivität (L_σ) und einen weiteren Ohmwiderstand (R_w*) aufweist, parallel zu der Hauptinduktivität (L_h) vorgesehen ist.
  8. Computerprogramm mit Programmcodemitteln, um alle Schritte des Verfahrens nach einem der Ansprüche 1 bis 6 durchzuführen, wenn das Computerprogramm auf einem Computer oder einer entsprechenden Recheneinheit in einem Steuergerät (20) gemäß Anspruch 7 ausgeführt wird.
  9. Computerprogrammprodukt mit Programmcodemitteln, die auf einem computerlesbaren Datenträger gespeichert sind, um alle Schritte des Verfahrens nach einem der Ansprüche 1 bis 6 durchzuführen, wenn das Computerprogramm auf einem Computer oder einer entsprechenden Recheneinheit in einem Steuergerät (20) gemäß Anspruch 7 ausgeführt wird.
EP10739330.8A 2009-08-24 2010-07-23 Verfahren und steuergerät zum betreiben eines elektromagnetischen aktors Active EP2470769B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009028829 2009-08-24
DE102010000872A DE102010000872A1 (de) 2009-08-24 2010-01-13 Verfahren und Steuergerät zum Betreiben eines elektromagnetischen Aktors
PCT/EP2010/060691 WO2011023476A1 (de) 2009-08-24 2010-07-23 Verfahren und steuergerät zum betreiben eines elektromagnetischen aktors

Publications (2)

Publication Number Publication Date
EP2470769A1 EP2470769A1 (de) 2012-07-04
EP2470769B1 true EP2470769B1 (de) 2021-07-07

Family

ID=43525295

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10739330.8A Active EP2470769B1 (de) 2009-08-24 2010-07-23 Verfahren und steuergerät zum betreiben eines elektromagnetischen aktors

Country Status (4)

Country Link
EP (1) EP2470769B1 (de)
CN (1) CN102472189B (de)
DE (1) DE102010000872A1 (de)
WO (1) WO2011023476A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012205573B4 (de) * 2012-04-04 2019-06-06 Continental Automotive Gmbh Bestimmen des zeitlichen Bewegungsverhaltens eines Kraftstoffinjektors basierend auf einer Auswertung des zeitlichen Verlaufs von verschiedenen elektrischen Messgrößen
DE102013221298A1 (de) 2012-10-22 2014-04-24 Robert Bosch Gmbh Verfahren zum Abgleichen eines Sensorelements zur Erfassung mindestens einer Eigenschaft eines Messgases in einem Messgasraum
DE102012024862B3 (de) * 2012-12-19 2013-07-04 Audi Ag Aktor, Kraftfahrzeug mit einem derartigen Aktor und Verfahren zum Betreiben eines Aktors
DE102015209566B3 (de) * 2015-05-26 2016-06-16 Continental Automotive Gmbh Ansteuerung von Kraftstoffinjektoren bei Mehrfacheinspritzungen

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1055675B (it) * 1975-11-12 1982-01-11 Fiat Spa Procedimento e dispositivo di stabilizzazione della portata degli iniettori elettromagnetici mediante rilevamento del tempo di apertura definito tra due soglie di correnti prefissat
DE19533452B4 (de) * 1995-09-09 2005-02-17 Fev Motorentechnik Gmbh Verfahren zur Anpassung einer Steuerung für einen elektromagnetischen Aktuator
DE10134332A1 (de) * 2001-07-14 2003-01-23 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung eines Verbrauchers
DE10138483A1 (de) 2001-08-04 2003-02-13 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung eines elektromagnetischen Verbrauchers
US6923161B2 (en) * 2002-03-28 2005-08-02 Siemens Vdo Automotive Corporation Fuel injection timer and current regulator
DE102007026947B4 (de) * 2007-06-12 2009-06-10 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben eines Einspritzventils
DE102007045779A1 (de) * 2007-09-25 2009-04-09 Continental Automotive Gmbh Verfahren zur Ansteuerung eines Magnetventils und zugehörige Vorrichtung
EP2083159A1 (de) * 2008-01-28 2009-07-29 GM Global Technology Operations, Inc. Verfahren zum Betreiben von Magnetspulen-Einspritzventilen für Verbrennungsmotoren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN102472189A (zh) 2012-05-23
EP2470769A1 (de) 2012-07-04
CN102472189B (zh) 2014-11-05
DE102010000872A1 (de) 2011-03-03
WO2011023476A1 (de) 2011-03-03

Similar Documents

Publication Publication Date Title
DE102011005672B4 (de) Verfahren, Vorrichtung und Computerprogramm zur elektrischen Ansteuerung eines Aktuators zur Bestimmung des Zeitpunkts eines Ankeranschlags
EP2422066B1 (de) Verfahren zum betreiben eines einspritzventils
DE102013207842B4 (de) Verfahren und Vorrichtung zur Ermittlung eines Referenz-Stromverlaufs für einen Kraftstoffinjektor zur Ermittlung des Zeitpunkts eines vorbestimmten Öffnungszustandes des Kraftstoffinjektors
DE102012205573B4 (de) Bestimmen des zeitlichen Bewegungsverhaltens eines Kraftstoffinjektors basierend auf einer Auswertung des zeitlichen Verlaufs von verschiedenen elektrischen Messgrößen
WO2011003704A1 (de) BESTIMMUNG DES SCHLIEßZEITPUNKTS EINES KRAFTSTOFFEINSPRITZVENTILS BASIEREND AUF EINER AUSWERTUNG DER ANSTEUERSPANNUNG
DE102013214412B4 (de) Ermittlung des Zeitpunkts eines vorbestimmten Öffnungszustandes eines Kraftstoffinjektors
DE102011087418B4 (de) Bestimmung des Öffnungsverhaltens eines Kraftstoffinjektors mittels einer elektrischen Test-Erregung ohne eine magnetische Sättigung
DE102010014825A1 (de) Verfahren zum Betrieb eines Einspritzsystems und ein Einspritzsystem, welches ein Einspritzventil und eine Steuervorrichtung aufweist
DE102013205518B4 (de) Ermittlung des Zeitpunkts eines vorbestimmten Öffnungszustandes eines Kraftstoffinjektors
WO2017063824A1 (de) Erkennen eines vorbestimmten öffnungszustandes eines einen magnetspulenantrieb aufweisenden kraftstoffinjektors
EP2470769B1 (de) Verfahren und steuergerät zum betreiben eines elektromagnetischen aktors
EP1423594A1 (de) Verfahren und vorrichtung zum ansteuern piezobetriebener kraftstoff-einspritzventile
DE102014223066A1 (de) Verfahren und Steuereinheit zur Erkennung eines Ankeranschlags eines elektromechanischen Aktuators
DE602004003815T2 (de) Verfahren zur steuerung des betriebes eines solenoiden
DE102009044969A1 (de) Bestimmung des Ausschaltzeitpunkts eines Magnetventils
DE102014208753B4 (de) Ermittlung von Parameterwerten für einen Kraftstoffinjektor
DE102016204054B3 (de) Ermitteln der Remanenz eines Kraftstoffinjektors
DE102012218327B4 (de) Verfahren und Vorrichtung zum Bestimmen der Wicklungstemperatur eines Injektors
DE102015212135B3 (de) Präzise Bestimmung des elektrischen Widerstands eines Kraftstoffinjektors mit Magnetspulenantrieb
DE102018207417A1 (de) Bestimmung einer Kenngröße eines magnetischen Schaltventils
DE102015212739A1 (de) Vereinfachte Ansteuerung eines Kraftstoffinjektors
DE102012200275B4 (de) Ermitteln eines Bewegungsverhaltens eines Kraftstoffinjektors basierend auf dem Bewegungsverhalten in einem eine Mehrfacheinspritzung aufweisenden modifizierten Betriebszustand
DE102009054589A1 (de) Verfahren und Steuergerät zum Betreiben eines Ventils
DE102017204477A1 (de) Verfahren und Motorsteuerung zum Gleichstellen des zeitlichen Öffnungsverhaltens von Kraftstoffinjektoren
DE102016203432A1 (de) Verfahren zum Bestimmen mindestens einer Eigenschaft eines Kraftstoffs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120326

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20141110

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

RIC1 Information provided on ipc code assigned before grant

Ipc: H01F 7/18 20060101ALN20201026BHEP

Ipc: F02D 41/28 20060101ALI20201026BHEP

Ipc: F02D 41/20 20060101AFI20201026BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/28 20060101ALI20201105BHEP

Ipc: H01F 7/18 20060101ALN20201105BHEP

Ipc: F02D 41/20 20060101AFI20201105BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/20 20060101AFI20201109BHEP

Ipc: F02D 41/28 20060101ALI20201109BHEP

Ipc: H01F 7/18 20060101ALN20201109BHEP

INTG Intention to grant announced

Effective date: 20201210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1408812

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010016942

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211007

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211007

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211108

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211008

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010016942

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210723

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

26N No opposition filed

Effective date: 20220408

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210723

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211007

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210907

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1408812

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210723

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220927

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100723

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010016942

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240201