EP2458088B1 - Dispositif déplaçable pour la solidification d'une structure en couches de sol et procédé de la détermination d'un module d'Young à couche d'une couche supérieure de ladite structure en couches de sol - Google Patents

Dispositif déplaçable pour la solidification d'une structure en couches de sol et procédé de la détermination d'un module d'Young à couche d'une couche supérieure de ladite structure en couches de sol Download PDF

Info

Publication number
EP2458088B1
EP2458088B1 EP11008033.0A EP11008033A EP2458088B1 EP 2458088 B1 EP2458088 B1 EP 2458088B1 EP 11008033 A EP11008033 A EP 11008033A EP 2458088 B1 EP2458088 B1 EP 2458088B1
Authority
EP
European Patent Office
Prior art keywords
layer structure
load
detection means
detection
soil layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11008033.0A
Other languages
German (de)
English (en)
Other versions
EP2458088A2 (fr
EP2458088A3 (fr
Inventor
Wolfgang Wallrath
Hans-Josef Kloubert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bomag GmbH and Co OHG
Original Assignee
Bomag GmbH and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bomag GmbH and Co OHG filed Critical Bomag GmbH and Co OHG
Publication of EP2458088A2 publication Critical patent/EP2458088A2/fr
Publication of EP2458088A3 publication Critical patent/EP2458088A3/fr
Application granted granted Critical
Publication of EP2458088B1 publication Critical patent/EP2458088B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/28Vibrated rollers or rollers subjected to impacts, e.g. hammering blows
    • E01C19/288Vibrated rollers or rollers subjected to impacts, e.g. hammering blows adapted for monitoring characteristics of the material being compacted, e.g. indicating resonant frequency, measuring degree of compaction, by measuring values, detectable on the roller; using detected values to control operation of the roller, e.g. automatic adjustment of vibration responsive to such measurements
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/28Vibrated rollers or rollers subjected to impacts, e.g. hammering blows
    • E01C19/282Vibrated rollers or rollers subjected to impacts, e.g. hammering blows self-propelled, e.g. with an own traction-unit
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • E02D1/022Investigation of foundation soil in situ before construction work by investigating mechanical properties of the soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/026Improving by compacting by rolling with rollers usable only for or specially adapted for soil compaction, e.g. sheepsfoot rollers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/046Improving by compacting by tamping or vibrating, e.g. with auxiliary watering of the soil

Definitions

  • the invention relates to a movable device for compacting a bottom layer structure, comprising at least one vibrating means, such as a vibrating roller or a vibrating plate, via which load pulses compressing the bottom layer structure in at least one load introduction region can be introduced.
  • at least one vibrating means such as a vibrating roller or a vibrating plate
  • the invention relates to a method for determining a layer E modulus of an uppermost layer of a bottom layer structure, in particular a roadway asphalt layer during a compacting operation.
  • Such devices for compaction of a bottom layer structure are known from the prior art, for example from US Pat EP 1 103 658 A2 , They exist, for example, as machine-driven rollers and in particular road rollers through which a bottom layer structure and in particular an asphalt road including its substructure can be compacted.
  • the devices and also the aforementioned road roller on a vibrating means, over the bottom layer structure compressing load pulses are introduced into the surface of the bottom layer structure.
  • the movable device moves in several steps over the compacted soil layer structure, with each crossing a further compression is achieved up to a maximum compression. After reaching the maximum compaction, further compaction of the soil layer structure is no longer necessary or even counterproductive, because it leads to a renewed loosening of the compacted soil layer structure and to an excessive load 7 of the compacting device leads. For this reason it is important to detect continuously or at certain intervals the degree of compaction of the soil layer structure.
  • FWD Fralling Weight Deflectometer
  • the stiffness of the entire road construction is determined. As the distance from the load application point increases, the influence of the deeper layers on the measured depressions increases. This means that the depression at the load application point depends on the load-bearing capacity of the entire layer structure, while the depression on the most remote pick-up is essentially determined by the load-bearing capacity of the substrate or lower layers.
  • the stiffnesses or the layer moduli are then calculated on the basis of the theory of the elastic half-space and of a multilayer model (for example of a 2-layer or 3-layer model) according to Boussinesq / Odemark.
  • the stiffness modulus at the load application point results in the so-called equivalent module, ie the modulus of elasticity of the entire bottom layer structure under the influence of all layers.
  • equivalent module ie the modulus of elasticity of the entire bottom layer structure under the influence of all layers.
  • bedding module the modulus of elasticity of the substructure.
  • the moduli of elasticity of the individual layers are then re-calculated from the measured ones Dumping or elasticity modules of the roadway determined.
  • the layer thicknesses of the bound and unbound base layers are included in the calculation.
  • a disadvantage of this method is that the determination of the layer E modules with the FWD is very time-consuming and during the measurement no further work on the soil layer structures can be made. Also, the values obtained by the FWD are available only with a time delay to a soil compaction device and in particular a road roller, so that a compression-controlled method or compaction-controlled soil compaction is only possible with difficulty.
  • a movable device for compacting a bottom layer structure with at least one vibrating means, such as a vibrating roller or a vibrating plate over which in at least one load application area the bottom layer structure compacting load pulses can be introduced wherein at least a first and a second detection means for detecting the E Modules of the bottom layer structure are provided, which are arranged at such a distance from each other on the device, that the first detection means allows detection in the load application area and at least the second detection means, a detection of the effect of the load pulse outside the load application area.
  • this object is achieved by a method for determining a layer E modulus of a layer of a base layer structure, in particular a roadway asphalt layer, with the following steps: introducing at least one load pulse across the surface of the uppermost layer of the bottom layer structure in a load introduction area; Detecting a first value of a depression depression of the soil layer structure in the load introduction region by means of a first detection means, determining the equivalent module of the soil layer structure from the detected first value of the depression depression; Detection of at least a second value of the depression trough outside the load introduction area by means of at least one second detection means; Determining the bedding modulus and the modulus E of the top layer of the bottom layer structure from the detected values of the trough, wherein the load momentum is introduced into the bottom layer structure via a vibration means, such as a vibratory roller or vibration plate, of a soil compaction machine.
  • a vibration means such as a vibratory roller or vibration plate
  • a movable device can be understood as any device which has a working means for soil compaction functioning as a vibrating means and, in particular, means which serve for mechanical compacting of the soil, in particular during construction. It is relevant here that the device is embodied such that the two detection means for detecting the modulus of elasticity or for detecting a depression depression are arranged at a distance from one another such that the first detection means in the load introduction region of the or a vibration means detects at least the second detection means outside detects this load application area.
  • “outside this load introduction area” is understood to mean any position in which the effect of the load pulse can be detected at a distance from a load introduction area.
  • the first detection means is designed such that it allows detection of a first value of a depression trough of the bottom layer structure in the load introduction region, wherein at least the second detection means is then preferably designed such that it allows detection of at least a second value of the depression trough outside the load introduction region.
  • a targeted determination of the respective layer module can then be made via the values thus detected.
  • the first detection means is preferably designed and arranged such that it allows a detection of a first value of the depression trough in the load introduction region.
  • This first value enables the calculation of the equivalent modulus of the soil layer structure, ie the modulus of elasticity of the entire soil layer structure, as it influences all deformations of the soil layer structure, from the uppermost layers to very far below. In particular, it is possible to perform this detection during the soil compacting operation.
  • the second detection means which is arranged outside the load introduction region or outside of each load introduction region, so that it only detects effects of the load pulse of the compression means, then another modulus of elasticity, namely the ballast modulus, can be determined.
  • This determination is again made by the detection of at least one value of the depression trough, namely at least the second value in the region of the second detection means. From at least this second value of the depression trough then the bedding module can be determined. Again, the detection during the soil compaction operation is possible.
  • This bedding module is almost only dependent on the substructure, since, as already mentioned, the deformation at this point is essentially determined only by the substrate and not by the uppermost layer.
  • the layer thickness of the individual layers of the bottom layer structure is used to determine the layer modulus of the top layer and, in particular, the layer modulus of the asphalt layer.
  • a subfloor-modified asphalt module it represents the rigidity of the asphalt layer much more accurately than the equivalent modulus determined in the load introduction area.
  • a control of the compaction state in particular a load capacity analysis of an asphalt road, can also be carried out during the compaction operation and in particular during the operation of a road roller or a comparable compaction means.
  • the values determined in this way can then be incorporated directly into the control processes of the road construction machine in order to achieve a particularly effective on-demand control of the machine.
  • the first and at least the second detection means preferably have at least one geophone or the like strain gauge over which reflection waves due to the introduced load pulses can be detected in the bottom layer structure, in particular. In this way, a very accurate detection of the respective values of the depression trough is possible.
  • the first and / or the second detection means to a force sensor or a similar load cell, via which the introduced force pulses can be detected and / or forwarded to a corresponding processing unit.
  • the detected force pulses are preferably stored.
  • the evaluation unit the evaluation of the detected values and the determination of the respective E-modules is preferably possible. It also preferably takes over the comparison of the determined equivalent and ballast modules and the determination of the respective resulting layer module.
  • corresponding control and regulating programs as well as processing programs are contained or storable in the processing unit. The resulting results can then be displayed in a display unit and / or supplied to further program routines, such as the result-oriented control of the vibrating means.
  • the first and at least second detection means are preferably designed so that they in the respective areas, an accurate detection of the by the load application pulses allow deformations caused. Detection may be by any of the methods and devices known in the art. So it is also possible to perform a detection of the vibration means itself and their settlement movements during the vibration process. A very simple detection of the first and at least second values is possible, for example, by means of an electro-mechanical converter designed as a geophone, which converts the ground vibrations into analog voltage signals.
  • the detection means are arranged such that a static coupling exists between the uppermost layer of the bottom layer structure and the detection means.
  • the first detection means is arranged on the device such that it permits detection in the load center of the load introduction region. In this way, a maximum value can be determined as the first value of the depression trough.
  • the first detection means is also arranged coaxially to the Lasteinleitachse the vibrating roller.
  • the first detection means on the vibrating roller or its bearing device, in particular on a vibrating drum of the vibrating roller. In this way, it is very easy to make an accurate detection of the first value in the load introduction area and, in particular, the load center of the load introduction area.
  • At least the second detection means is arranged on a static roller, in particular on its static drum.
  • a static roller is understood in the scope of the invention, such a roller, which has no independent vibration means.
  • Such a static roller can thus lead, for example, purely due to its weight to a compaction of the soil, but it can also serve merely as a driving means for the device according to the invention.
  • the term static roller also includes rubber wheels or the like driving means within the scope of the invention.
  • the arrangement of the second detection means on a further non-vibrating, ie static suspension and in particular a static roller also allows the cost-effective and very accurate detection of a second value of the depression trough.
  • all methods known from the prior art for detecting the value in the depression trough can be used.
  • At least the second detection means is arranged displaceable in its position relative to the load introduction region of the vibration means, in particular via a support frame. In this way, direct influence on the detection location of the second value of the depression trough can be taken.
  • further detection means for detecting further values of the depression trough outside the load introduction region can be arranged on such a support frame.
  • such further detection means can of course also be arranged on other components of the device, as long as they are spaced from the load introduction region.
  • the device is designed as a compactor with a vibrating roller and at least one static roller.
  • a compactor equipped with a compactor according to the invention it is then very easy to carry out soil compaction while carrying out a load capacity test and in particular detecting the carrying capacity state of the uppermost layer of the soil layer structure.
  • Fig. 1 shows a representation of an embodiment of a device 1 according to the invention for compacting a bottom layer structure.
  • the device 1 is designed here as a self-propelled road roller and in particular as a compactor 30. It comprises a vibrating means designed as a vibrating roller 6, which is connected via a bearing device 16 to a main body 34 of the compactor 30. Via a further bearing device 26, a static roller 24 is assigned, so that the roller train 30 via the two rollers 6, 24 is movable.
  • the bottom layer structure 2 can be actively compacted in the vibrating roller 6 via driven flywheel masses.
  • the vibrating roller 6 conducts load impulses P via a load introduction region 8, which essentially corresponds to the contact surface between the vibrating bandage 18 of the vibrating roller 6 and the surface 33 of the uppermost layer 32 of the bottom layer structure 2, into the ground.
  • load pulses P and causing subsidence are in Fig. 1 represented by the concentric circles 15.
  • a stiffness modulus Via the load pulses P introduced at the vibrating bandage 18 or vibration roller 6, which act as compaction or deformation forces in the bottom layer structure 2, a stiffness modulus can be determined, as is known from the prior art. This stiffness modulus corresponds to the equivalent modulus, ie an average stiffness value over the entire measurement depth of the bottom layer structure 2. Thus, both the layer E modulus of the uppermost layer 32 and the underlying bedding layers 42 have an influence on this equivalent module.
  • the detection of the first value w, which is necessary for determining the equivalent module, of the depression depression 14 takes place via a first detection means 10, which in this embodiment is arranged on the vibration roller 6 or its bearing device 16 and is statically coupled.
  • a second detection means 12 is arranged, via which a second detection value E 2 of the depression trough 14 can be determined, outside of the load introduction area 8 Fig. 1 It can be seen that the second detection means 12 is spaced from the first detection means 10 and the load introduction region 8 in such a way that it is possible to detect an E-modulus of the layers arranged below the uppermost layer 32 and in particular of the bedding layer 42. Due to the distance A, D, between the first detecting means 10 or the load introduction region 8 and the second detection means 12, the deformations at the detection site of the second value are w 2 is substantially determined by the ground and not on the asphalt layer itself. As an advantageous distance value A D has here a value of 1 m to 2.6 m, especially 1.8m exposed.
  • the asphalt layer 32 to be measured is determined, the result being a substantially subfloor-corrected asphalt module, which represents the rigidity of the asphalt layer 32 much more accurately than the equivalent module taking into account the overall bottom structure 2.
  • detection means can be carried out according to the invention a load application P with a frequency of 30 to 50 load entries per second.
  • a corresponding influence on the vibration means 4 or the vibration roller 6 can be taken here.
  • the load pulse P can be regulated to a value of 50 kN via the control means, which essentially corresponds to the wheel load of a truck and thus permits a meaningful analysis of the load capacity of the bottom layer structure 2 and in particular the top layer 32.
  • the device 1 according to the invention or the compactor 30 in such a way that it permits a reliable and reproducible examination of the bottom layer structure 2 and in particular of the uppermost soil layer 32.
  • Fig. 2 shows a schematic representation of the device 1 according to Fig. 1 with particular attention being paid to the first and second detection devices 10 and 12.
  • a geophone 11 of the first detection means 10 is arranged so as to allow detection of the reflection waves caused by the load pulses P.
  • the dynamic soil stiffness of the bottom layer structure 2 lying in the load introduction region 8 can be detected via the geophone 11 or the first detection means 10.
  • This dynamic soil stiffness can then be concluded in a known manner conclusions on the degree of compaction of the bottom layer structure 2.
  • a geophone 13 of the second detection means 12 is also arranged on the static roller 24 of the device 1. Since the static roller 24 does not initiate its own load pulses into the bottom layer structure 2, this geophone allows detection of a stiffness value dependent on the load introduction in the load introduction region 8, which is essentially due to the distance A D between the two detection means 10 and 12 or geophones 11 and 13 depends only on the bedding layer 42 and not the upper layer 32. Consequently, the soil stiffness and in particular a bedding modulus without influence of the upper layer 32 can be determined via the value w 2 of the depression curve 14 detected by the geophone 13 or the second detection means 12.
  • the first and second values w 1 , w 2 determined by the two geophones 11, 13 are transmitted as measurement results to an evaluation unit 36, which compares the two detected first and second values w 1 and w 2 or from the equivalent and Bedding modules a layer E-modulus of the top layer 32 determined.
  • the values thus obtained can then either be output to the operating personnel via a display unit 38 or directly influence the machine control of the device 1.
  • a calibration element 40 is provided, via which, for example, the load pulses P introduced into the bottom layer structure 2 can be fixed to a defined value and in particular, for example, to a value of 50 kN.
  • the vibration rate and thus the number of load pulses per second is preferably adjustable to a value between 20 and 50 times per second via such a calibration element 40.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Road Paving Machines (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Claims (10)

  1. Dispositif mobile pour le compactage d'une structure (2) de sol en couches ayant au moins un moyen de vibration (4), tel qu'un rouleau vibrant (6) ou une plaque vibrante, par l'intermédiaire duquel des impulsions de charge (P) qui compactent la structure (2) de sol en couches peuvent être introduites dans au moins une zone (8) d'introduction de charge, caractérisé par au moins un premier et un deuxième moyens de détection (10, 12) destinés à détecter le module élastique de la structure (2) de sol en couches, qui sont agencés sur le dispositif de manière à être écartés l'un de l'autre de telle sorte que le premier moyen de détection (10) permet une détection dans la zone (8) d'introduction de la charge et au moins le deuxième moyen de détection (12) permet une détection des effets des impulsions de charge à l'extérieur de la zone d'introduction de charge.
  2. Dispositif selon la revendication 1,
    caractérisé en ce que
    le premier moyen de détection (10) est configuré de telle manière qu'il permet une détection d'une première valeur w1 d'une dépression (14) dans la structure (2) de sol en couches dans la zone (8) d'introduction de charge, et
    le deuxième moyen de détection (12) est configuré de telle manière qu'il permet une détection d'une deuxième valeur w2 de la dépression (14) à l'extérieur de la zone (8) d'introduction de charge.
  3. Dispositif selon l'une quelconque des revendications précédentes,
    caractérisé en ce que le premier et/ou le deuxième moyens (10, 12) de détection possèdent chacun au moins un géophone (11, 13) au moyen duquel en particulier des ondes réfléchies résultant des impulsions de charge (P) sont détectables dans la structure (2) de sol en couches.
  4. Dispositif selon l'une quelconque des revendications précédentes,
    caractérisé en ce que le premier moyen de détection (10) est agencé sur le dispositif (1) d'une façon telle qu'il permet une détection du centre de charge (Z) de la zone (8) d'introduction de charge.
  5. Dispositif selon l'une quelconque des revendications précédentes,
    caractérisé en ce que le premier moyen de détection (10) est agencé sur le rouleau vibrant (6) ou son dispositif (16) de montage, en particulier sur un bandage vibrant (18).
  6. Dispositif selon l'une quelconque des revendications précédentes,
    caractérisé en ce qu' au moins le deuxième moyen de détection (12) est agencé sur le rouleau statique (24) ou son dispositif (26) de montage, en particulier sur son bandage statique (28).
  7. Dispositif selon l'une quelconque des revendications précédentes,
    caractérisé en ce qu'au moins le deuxième moyen de détection (12) est agencé de manière à être déplaçable, en particulier via un châssis de support (27), dans sa position en relation avec la zone (8) d'introduction de charge du moyen de vibration (4).
  8. Dispositif selon l'une quelconque des revendications précédentes,
    caractérisé en ce que le dispositif est configuré en compacteur (30) avec un rouleau vibrant (6) et au moins un rouleau statique (24).
  9. Procédé de détermination d'un module élastique d'une couche (32) d'une structure (2) de sol en couches, en particulier une couche d'asphalte d'une chaussée pendant un processus de compactage du sol, comprenant les étapes suivantes :
    - introduction d'au moins une impulsion (P) de charge dans une zone (8) d'introduction de charge via la surface (33) de la couche supérieure (32) de la structure (2) de sol en couches ;
    - détection d'une première valeur (w1) d'une dépression (14) dans la structure (2) de sol en couches dans la zone (8) d'introduction de charge au moyen d'un premier moyen de détection (10),
    - détermination du module équivalent de la structure (2) de sol en couches à partir de la première valeur détectée (w1) de la dépression (14) ;
    - détection d'une deuxième valeur (w2) de la dépression (14) à l'extérieur de la zone (8) d'introduction de charge au moyen d'un deuxième moyen de détection (12) ;
    - détermination du module de stratification de la structure (2) de sol en couches à partir de la deuxième valeur détectée (w2) de la dépression (14) ;
    - détermination du module élastique de la couche supérieure (32) de la structure (2) de sol en couches à partir des deux valeurs détectées (w1, w2) de la dépression (14) et de l'équivalent déterminé ou du module de stratification,
    caractérisé en ce que l'impulsion (P) de charge est introduite via un moyen de vibration (4), tel qu'un rouleau vibrant (6) ou une plaque vibrante, d'un engin de compactage du sol dans la structure (2) de sol en couches.
  10. Procédé selon la revendication 9,
    caractérisé en ce que la détection de la première et de la deuxième valeurs (w1, w2) est réalisée pendant un processus de compactage du sol de la structure (2) de sol en couches, en particulier pendant un nivelage de la couche supérieure (32).
EP11008033.0A 2010-11-26 2011-10-04 Dispositif déplaçable pour la solidification d'une structure en couches de sol et procédé de la détermination d'un module d'Young à couche d'une couche supérieure de ladite structure en couches de sol Active EP2458088B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010052713A DE102010052713A1 (de) 2010-11-26 2010-11-26 Verfahrbare Vorrichtung zur Verdichtung eines Bodenschichtaufbaus und Verfahren zur Ermittlung eines Schicht-E-Moduls einer obersten Schicht dieses Bodenschichtaufbaus

Publications (3)

Publication Number Publication Date
EP2458088A2 EP2458088A2 (fr) 2012-05-30
EP2458088A3 EP2458088A3 (fr) 2016-10-05
EP2458088B1 true EP2458088B1 (fr) 2018-02-21

Family

ID=44759382

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11008033.0A Active EP2458088B1 (fr) 2010-11-26 2011-10-04 Dispositif déplaçable pour la solidification d'une structure en couches de sol et procédé de la détermination d'un module d'Young à couche d'une couche supérieure de ladite structure en couches de sol

Country Status (4)

Country Link
US (1) US8671760B2 (fr)
EP (1) EP2458088B1 (fr)
CN (1) CN102535313B (fr)
DE (1) DE102010052713A1 (fr)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012048433A1 (fr) * 2010-10-13 2012-04-19 Ammann Schweiz Ag Procédé permettant de déterminer la rigidité et/ou l'amortissement d'une zone d'un corps
DE102011088567A1 (de) * 2011-12-14 2013-06-20 Hamm Ag Vorrichtung zur Erfassung der Bewegung einer Verdichterwalze eines Bodenverdichters
US20150030392A1 (en) * 2012-04-06 2015-01-29 The Board Of Regents Of The University Of Oklahoma Method and apparatus for determining stiffness of a roadway
US9039319B2 (en) * 2013-06-28 2015-05-26 Caterpillar Paving Products Inc. Modifying compaction effort based on material compactability
US9650062B2 (en) 2013-08-26 2017-05-16 Wacker Neuson Production Americas Llc System for controlling remote operation of ground working devices
CN103669179B (zh) * 2013-11-30 2016-04-27 江苏蛟龙重工集团有限公司 一种路面夯实车
DE102014008116A1 (de) 2014-06-03 2015-12-03 Bomag Gmbh Verfahren zur schmiermittelversorgung eines getriebes, getriebeschmiereinrichtung, getriebeeinheit und baumaschine
US9534995B2 (en) * 2014-06-11 2017-01-03 Caterpillar Paving Products Inc. System and method for determining a modulus of resilience
CN104297049B (zh) * 2014-11-10 2017-07-18 西南石油大学 考虑钻柱动态振动的页岩破碎实验装置
US9845580B2 (en) 2016-04-25 2017-12-19 Caterpillar Paving Products Inc. Compaction system including articulated joint force measurement
CN107059572B (zh) * 2017-02-13 2019-01-15 嘉兴钛胺新材料科技有限公司 一种道路建设用土壤平整单元
US11408858B2 (en) 2017-02-24 2022-08-09 Brigham Young University Contact elements for acoustic excitation attached via a compliant matertal
DE102017006844B4 (de) * 2017-07-18 2019-04-11 Bomag Gmbh Bodenverdichter und Verfahren zur Bestimmung von Untergrundeigenschaften mittels eines Bodenverdichters
US20190170569A1 (en) * 2017-12-06 2019-06-06 Caterpillar Paving Products Inc. Vibration monitoring system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11460385B2 (en) * 2019-02-11 2022-10-04 Ingios Geotechnics, Inc. Compaction control system for and methods of accurately determining properties of compacted and/or existing ground materials
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US12035648B2 (en) 2020-02-06 2024-07-16 Deere & Company Predictive weed map generation and control system
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
CN111472243B (zh) * 2020-04-22 2021-12-10 重庆交通大学 一种路基路面结构综合动态模量的测试方法
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11871697B2 (en) 2020-10-09 2024-01-16 Deere & Company Crop moisture map generation and control system
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US12013245B2 (en) 2020-10-09 2024-06-18 Deere & Company Predictive map generation and control system
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
CN114674737B (zh) * 2022-04-02 2023-06-16 西南交通大学 路基填料压实特性分析装置及其方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3553903A (en) * 1967-07-31 1971-01-12 Goodyear Tire & Rubber Control system for a tire grinding machine
SE401736B (sv) * 1976-08-18 1978-05-22 Konsult Och Utveckling Ab Kuab Apparat for anbringande av en belastning och uppmetning av sambandet mellan belastningen och deformationen
US5025150A (en) * 1988-10-14 1991-06-18 Mk-Ferguson Company Site survey method and apparatus
DE19529115A1 (de) * 1995-08-08 1997-03-06 Wacker Werke Kg Vibrationsmechanismus, insbesondere zur Verwendung zur Verdichtung von Böden
US5719338A (en) * 1995-10-24 1998-02-17 Ingersoll-Rand Company Method and apparatus for providing an indication of compaction in a vibration compaction vehicle
WO1998017865A1 (fr) * 1996-10-21 1998-04-30 Ammann Verdichtung Ag Procede pour mesurer des grandeurs mecaniques d'un sol et de compactage dudit sol, et dispositif de mesure ou de compactage de sol
US5952561A (en) * 1997-03-19 1999-09-14 Iowa State University Research Foundation, Inc. Real time asphalt pavement quality sensor using a differential approach
CN2302499Y (zh) * 1997-05-05 1998-12-30 南京理工大学 便携式激光路面弯沉检测仪
US6244102B1 (en) * 1998-09-18 2001-06-12 Dynasens Ltd. Method and system for examination and optimal compaction of soil enbankments
CN2364456Y (zh) * 1999-03-12 2000-02-16 哈尔滨东北道路研究所 道路压实智能检测仪
DE19956943B4 (de) 1999-11-26 2020-03-19 Bomag Gmbh Vorrichtung zur Kontrolle der Verdichtung bei Vibrationsverdichtungsgeräten
CN1332098A (zh) * 2001-07-06 2002-01-23 杨济安 车载压实度检测装置
CN1152260C (zh) * 2001-12-19 2004-06-02 河北工业大学 智能化道路机载压实检测仪
EP1516961B1 (fr) * 2003-09-19 2013-12-25 Ammann Aufbereitung AG Méthode de détermination de la rigidité du sol et dispositif de compactage de sol
CN100447337C (zh) * 2005-06-13 2008-12-31 郑州大学 落锤式弯沉仪及探地雷达在道路施工过程中的应用
US7938595B2 (en) * 2007-04-30 2011-05-10 Caterpillar Paving Products Inc. Surface compactor and method of operating a surface compactor
EP2148005A1 (fr) * 2008-07-24 2010-01-27 Ammann Czech Republic, a.s. Rouleau vibratoire tandem

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2458088A2 (fr) 2012-05-30
EP2458088A3 (fr) 2016-10-05
US20120134746A1 (en) 2012-05-31
CN102535313A (zh) 2012-07-04
CN102535313B (zh) 2014-12-24
DE102010052713A1 (de) 2012-05-31
US8671760B2 (en) 2014-03-18

Similar Documents

Publication Publication Date Title
EP2458088B1 (fr) Dispositif déplaçable pour la solidification d'une structure en couches de sol et procédé de la détermination d'un module d'Young à couche d'une couche supérieure de ladite structure en couches de sol
DE102017006844B4 (de) Bodenverdichter und Verfahren zur Bestimmung von Untergrundeigenschaften mittels eines Bodenverdichters
EP3631087B1 (fr) Procédé et dispositif destinés à comprimer un ballast
EP1516961B1 (fr) Méthode de détermination de la rigidité du sol et dispositif de compactage de sol
EP2927372B1 (fr) Engin automobile et procédé de commande d'un engin automobile
DE102006008266B4 (de) Verfahren und Vorrichtung zum Messen von Bodenparametern mittels Verdichtungsmaschinen
DE102015007369A1 (de) System und verfahren zum bestimmen eines elastizitätsmoduls
DE112015004191T5 (de) System und Verfahren zum Validieren der Verdichtung einer Arbeits- bzw. Baustelle
EP3176324B1 (fr) Procédé de détermination d'un état de compactage d'un sous-sol
EP2276659B1 (fr) Système de mesure de charges dans le contact roue-rail de véhicules ferroviaires
EP3870760B1 (fr) Procédé et machine pour stabiliser une voie ferrée
DE10028949A1 (de) Verfahren und Vorrichtung zur Bestimmung des Verdichtungsgrades bei der Bodenverdichtung
DE102010060843B4 (de) Verfahren und Vorrichtung zum Messen von Bodenparametern mittels Verdichtungsmaschinen
DE102005040318A1 (de) Verdichtungsanzeige durch effektiven Walzenradius
DE2737099C2 (fr)
DE60303303T2 (de) Fallgewichtverdichtung
WO2002016702A1 (fr) Procede pour determiner la resistance aux seismes de batiments
DE69905484T2 (de) Verfahren und vorrichtung zur messung der tragfähigkeit eines unterbaus
DE102016124106A1 (de) Einstellung des verdichtungsaufwands unter verwendung von vibrationssensoren
DE60304313T2 (de) Messung der Verdichtung von körnigen Materialschichten
DE3707648C2 (de) Verfahren und Vorrichtung zum Bestimmen des Verdichtungsgrads beim Verdichten eines Untergrundes mittels einer Vibrationswalze
DE102009053297A1 (de) Verfahren zur Bestimmung der vibrationstechnischen Eigenschaften von Unterlagsplatten in einer Umlaufanlage zur Herstellung von Betonwaren mittels Vibrationsverdichtung und Vorrichtung zur zerstörungsfreien Messung dynamischer Eigenschaften einer Unterlagsplatte
AT524860B1 (de) Vorrichtung und Verfahren zum Verdichten eines Gleisbettes
DE2052250A1 (de) Verfahren zur kontinuierlichen Be Stimmung des Verdichtungseffektes von Ruttelwalzen, Rutteiplatten und Boden Schwingverdichtern wahrend der Ver dichtungsarbeit
DE102021121451A1 (de) Verfahren zur Qualitätsprüfung des Materials von grobkörnigen Böden, insbesondere von Sportböden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: E01C 19/30 20060101ALI20160830BHEP

Ipc: E01C 19/28 20060101AFI20160830BHEP

17P Request for examination filed

Effective date: 20170331

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170929

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 971855

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011013738

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HEPP WENGER RYFFEL AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180221

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180522

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011013738

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181004

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181004

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 971855

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180221

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180621

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011013738

Country of ref document: DE

Representative=s name: ZIMMERMANN & PARTNER PATENTANWAELTE MBB, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20230922

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231023

Year of fee payment: 13

Ref country code: DE

Payment date: 20231018

Year of fee payment: 13

Ref country code: CH

Payment date: 20231101

Year of fee payment: 13

Ref country code: BG

Payment date: 20231019

Year of fee payment: 13