EP2458088B1 - Mobile device for compacting a soil layer structure and method for determining the layer-E module of a top layer in this soil layer structure - Google Patents

Mobile device for compacting a soil layer structure and method for determining the layer-E module of a top layer in this soil layer structure Download PDF

Info

Publication number
EP2458088B1
EP2458088B1 EP11008033.0A EP11008033A EP2458088B1 EP 2458088 B1 EP2458088 B1 EP 2458088B1 EP 11008033 A EP11008033 A EP 11008033A EP 2458088 B1 EP2458088 B1 EP 2458088B1
Authority
EP
European Patent Office
Prior art keywords
layer structure
load
detection means
detection
soil layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11008033.0A
Other languages
German (de)
French (fr)
Other versions
EP2458088A2 (en
EP2458088A3 (en
Inventor
Wolfgang Wallrath
Hans-Josef Kloubert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bomag GmbH and Co OHG
Original Assignee
Bomag GmbH and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bomag GmbH and Co OHG filed Critical Bomag GmbH and Co OHG
Publication of EP2458088A2 publication Critical patent/EP2458088A2/en
Publication of EP2458088A3 publication Critical patent/EP2458088A3/en
Application granted granted Critical
Publication of EP2458088B1 publication Critical patent/EP2458088B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/28Vibrated rollers or rollers subjected to impacts, e.g. hammering blows
    • E01C19/288Vibrated rollers or rollers subjected to impacts, e.g. hammering blows adapted for monitoring characteristics of the material being compacted, e.g. indicating resonant frequency, measuring degree of compaction, by measuring values, detectable on the roller; using detected values to control operation of the roller, e.g. automatic adjustment of vibration responsive to such measurements
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/28Vibrated rollers or rollers subjected to impacts, e.g. hammering blows
    • E01C19/282Vibrated rollers or rollers subjected to impacts, e.g. hammering blows self-propelled, e.g. with an own traction-unit
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • E02D1/022Investigation of foundation soil in situ before construction work by investigating mechanical properties of the soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/026Improving by compacting by rolling with rollers usable only for or specially adapted for soil compaction, e.g. sheepsfoot rollers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/046Improving by compacting by tamping or vibrating, e.g. with auxiliary watering of the soil

Definitions

  • the invention relates to a movable device for compacting a bottom layer structure, comprising at least one vibrating means, such as a vibrating roller or a vibrating plate, via which load pulses compressing the bottom layer structure in at least one load introduction region can be introduced.
  • at least one vibrating means such as a vibrating roller or a vibrating plate
  • the invention relates to a method for determining a layer E modulus of an uppermost layer of a bottom layer structure, in particular a roadway asphalt layer during a compacting operation.
  • Such devices for compaction of a bottom layer structure are known from the prior art, for example from US Pat EP 1 103 658 A2 , They exist, for example, as machine-driven rollers and in particular road rollers through which a bottom layer structure and in particular an asphalt road including its substructure can be compacted.
  • the devices and also the aforementioned road roller on a vibrating means, over the bottom layer structure compressing load pulses are introduced into the surface of the bottom layer structure.
  • the movable device moves in several steps over the compacted soil layer structure, with each crossing a further compression is achieved up to a maximum compression. After reaching the maximum compaction, further compaction of the soil layer structure is no longer necessary or even counterproductive, because it leads to a renewed loosening of the compacted soil layer structure and to an excessive load 7 of the compacting device leads. For this reason it is important to detect continuously or at certain intervals the degree of compaction of the soil layer structure.
  • FWD Fralling Weight Deflectometer
  • the stiffness of the entire road construction is determined. As the distance from the load application point increases, the influence of the deeper layers on the measured depressions increases. This means that the depression at the load application point depends on the load-bearing capacity of the entire layer structure, while the depression on the most remote pick-up is essentially determined by the load-bearing capacity of the substrate or lower layers.
  • the stiffnesses or the layer moduli are then calculated on the basis of the theory of the elastic half-space and of a multilayer model (for example of a 2-layer or 3-layer model) according to Boussinesq / Odemark.
  • the stiffness modulus at the load application point results in the so-called equivalent module, ie the modulus of elasticity of the entire bottom layer structure under the influence of all layers.
  • equivalent module ie the modulus of elasticity of the entire bottom layer structure under the influence of all layers.
  • bedding module the modulus of elasticity of the substructure.
  • the moduli of elasticity of the individual layers are then re-calculated from the measured ones Dumping or elasticity modules of the roadway determined.
  • the layer thicknesses of the bound and unbound base layers are included in the calculation.
  • a disadvantage of this method is that the determination of the layer E modules with the FWD is very time-consuming and during the measurement no further work on the soil layer structures can be made. Also, the values obtained by the FWD are available only with a time delay to a soil compaction device and in particular a road roller, so that a compression-controlled method or compaction-controlled soil compaction is only possible with difficulty.
  • a movable device for compacting a bottom layer structure with at least one vibrating means, such as a vibrating roller or a vibrating plate over which in at least one load application area the bottom layer structure compacting load pulses can be introduced wherein at least a first and a second detection means for detecting the E Modules of the bottom layer structure are provided, which are arranged at such a distance from each other on the device, that the first detection means allows detection in the load application area and at least the second detection means, a detection of the effect of the load pulse outside the load application area.
  • this object is achieved by a method for determining a layer E modulus of a layer of a base layer structure, in particular a roadway asphalt layer, with the following steps: introducing at least one load pulse across the surface of the uppermost layer of the bottom layer structure in a load introduction area; Detecting a first value of a depression depression of the soil layer structure in the load introduction region by means of a first detection means, determining the equivalent module of the soil layer structure from the detected first value of the depression depression; Detection of at least a second value of the depression trough outside the load introduction area by means of at least one second detection means; Determining the bedding modulus and the modulus E of the top layer of the bottom layer structure from the detected values of the trough, wherein the load momentum is introduced into the bottom layer structure via a vibration means, such as a vibratory roller or vibration plate, of a soil compaction machine.
  • a vibration means such as a vibratory roller or vibration plate
  • a movable device can be understood as any device which has a working means for soil compaction functioning as a vibrating means and, in particular, means which serve for mechanical compacting of the soil, in particular during construction. It is relevant here that the device is embodied such that the two detection means for detecting the modulus of elasticity or for detecting a depression depression are arranged at a distance from one another such that the first detection means in the load introduction region of the or a vibration means detects at least the second detection means outside detects this load application area.
  • “outside this load introduction area” is understood to mean any position in which the effect of the load pulse can be detected at a distance from a load introduction area.
  • the first detection means is designed such that it allows detection of a first value of a depression trough of the bottom layer structure in the load introduction region, wherein at least the second detection means is then preferably designed such that it allows detection of at least a second value of the depression trough outside the load introduction region.
  • a targeted determination of the respective layer module can then be made via the values thus detected.
  • the first detection means is preferably designed and arranged such that it allows a detection of a first value of the depression trough in the load introduction region.
  • This first value enables the calculation of the equivalent modulus of the soil layer structure, ie the modulus of elasticity of the entire soil layer structure, as it influences all deformations of the soil layer structure, from the uppermost layers to very far below. In particular, it is possible to perform this detection during the soil compacting operation.
  • the second detection means which is arranged outside the load introduction region or outside of each load introduction region, so that it only detects effects of the load pulse of the compression means, then another modulus of elasticity, namely the ballast modulus, can be determined.
  • This determination is again made by the detection of at least one value of the depression trough, namely at least the second value in the region of the second detection means. From at least this second value of the depression trough then the bedding module can be determined. Again, the detection during the soil compaction operation is possible.
  • This bedding module is almost only dependent on the substructure, since, as already mentioned, the deformation at this point is essentially determined only by the substrate and not by the uppermost layer.
  • the layer thickness of the individual layers of the bottom layer structure is used to determine the layer modulus of the top layer and, in particular, the layer modulus of the asphalt layer.
  • a subfloor-modified asphalt module it represents the rigidity of the asphalt layer much more accurately than the equivalent modulus determined in the load introduction area.
  • a control of the compaction state in particular a load capacity analysis of an asphalt road, can also be carried out during the compaction operation and in particular during the operation of a road roller or a comparable compaction means.
  • the values determined in this way can then be incorporated directly into the control processes of the road construction machine in order to achieve a particularly effective on-demand control of the machine.
  • the first and at least the second detection means preferably have at least one geophone or the like strain gauge over which reflection waves due to the introduced load pulses can be detected in the bottom layer structure, in particular. In this way, a very accurate detection of the respective values of the depression trough is possible.
  • the first and / or the second detection means to a force sensor or a similar load cell, via which the introduced force pulses can be detected and / or forwarded to a corresponding processing unit.
  • the detected force pulses are preferably stored.
  • the evaluation unit the evaluation of the detected values and the determination of the respective E-modules is preferably possible. It also preferably takes over the comparison of the determined equivalent and ballast modules and the determination of the respective resulting layer module.
  • corresponding control and regulating programs as well as processing programs are contained or storable in the processing unit. The resulting results can then be displayed in a display unit and / or supplied to further program routines, such as the result-oriented control of the vibrating means.
  • the first and at least second detection means are preferably designed so that they in the respective areas, an accurate detection of the by the load application pulses allow deformations caused. Detection may be by any of the methods and devices known in the art. So it is also possible to perform a detection of the vibration means itself and their settlement movements during the vibration process. A very simple detection of the first and at least second values is possible, for example, by means of an electro-mechanical converter designed as a geophone, which converts the ground vibrations into analog voltage signals.
  • the detection means are arranged such that a static coupling exists between the uppermost layer of the bottom layer structure and the detection means.
  • the first detection means is arranged on the device such that it permits detection in the load center of the load introduction region. In this way, a maximum value can be determined as the first value of the depression trough.
  • the first detection means is also arranged coaxially to the Lasteinleitachse the vibrating roller.
  • the first detection means on the vibrating roller or its bearing device, in particular on a vibrating drum of the vibrating roller. In this way, it is very easy to make an accurate detection of the first value in the load introduction area and, in particular, the load center of the load introduction area.
  • At least the second detection means is arranged on a static roller, in particular on its static drum.
  • a static roller is understood in the scope of the invention, such a roller, which has no independent vibration means.
  • Such a static roller can thus lead, for example, purely due to its weight to a compaction of the soil, but it can also serve merely as a driving means for the device according to the invention.
  • the term static roller also includes rubber wheels or the like driving means within the scope of the invention.
  • the arrangement of the second detection means on a further non-vibrating, ie static suspension and in particular a static roller also allows the cost-effective and very accurate detection of a second value of the depression trough.
  • all methods known from the prior art for detecting the value in the depression trough can be used.
  • At least the second detection means is arranged displaceable in its position relative to the load introduction region of the vibration means, in particular via a support frame. In this way, direct influence on the detection location of the second value of the depression trough can be taken.
  • further detection means for detecting further values of the depression trough outside the load introduction region can be arranged on such a support frame.
  • such further detection means can of course also be arranged on other components of the device, as long as they are spaced from the load introduction region.
  • the device is designed as a compactor with a vibrating roller and at least one static roller.
  • a compactor equipped with a compactor according to the invention it is then very easy to carry out soil compaction while carrying out a load capacity test and in particular detecting the carrying capacity state of the uppermost layer of the soil layer structure.
  • Fig. 1 shows a representation of an embodiment of a device 1 according to the invention for compacting a bottom layer structure.
  • the device 1 is designed here as a self-propelled road roller and in particular as a compactor 30. It comprises a vibrating means designed as a vibrating roller 6, which is connected via a bearing device 16 to a main body 34 of the compactor 30. Via a further bearing device 26, a static roller 24 is assigned, so that the roller train 30 via the two rollers 6, 24 is movable.
  • the bottom layer structure 2 can be actively compacted in the vibrating roller 6 via driven flywheel masses.
  • the vibrating roller 6 conducts load impulses P via a load introduction region 8, which essentially corresponds to the contact surface between the vibrating bandage 18 of the vibrating roller 6 and the surface 33 of the uppermost layer 32 of the bottom layer structure 2, into the ground.
  • load pulses P and causing subsidence are in Fig. 1 represented by the concentric circles 15.
  • a stiffness modulus Via the load pulses P introduced at the vibrating bandage 18 or vibration roller 6, which act as compaction or deformation forces in the bottom layer structure 2, a stiffness modulus can be determined, as is known from the prior art. This stiffness modulus corresponds to the equivalent modulus, ie an average stiffness value over the entire measurement depth of the bottom layer structure 2. Thus, both the layer E modulus of the uppermost layer 32 and the underlying bedding layers 42 have an influence on this equivalent module.
  • the detection of the first value w, which is necessary for determining the equivalent module, of the depression depression 14 takes place via a first detection means 10, which in this embodiment is arranged on the vibration roller 6 or its bearing device 16 and is statically coupled.
  • a second detection means 12 is arranged, via which a second detection value E 2 of the depression trough 14 can be determined, outside of the load introduction area 8 Fig. 1 It can be seen that the second detection means 12 is spaced from the first detection means 10 and the load introduction region 8 in such a way that it is possible to detect an E-modulus of the layers arranged below the uppermost layer 32 and in particular of the bedding layer 42. Due to the distance A, D, between the first detecting means 10 or the load introduction region 8 and the second detection means 12, the deformations at the detection site of the second value are w 2 is substantially determined by the ground and not on the asphalt layer itself. As an advantageous distance value A D has here a value of 1 m to 2.6 m, especially 1.8m exposed.
  • the asphalt layer 32 to be measured is determined, the result being a substantially subfloor-corrected asphalt module, which represents the rigidity of the asphalt layer 32 much more accurately than the equivalent module taking into account the overall bottom structure 2.
  • detection means can be carried out according to the invention a load application P with a frequency of 30 to 50 load entries per second.
  • a corresponding influence on the vibration means 4 or the vibration roller 6 can be taken here.
  • the load pulse P can be regulated to a value of 50 kN via the control means, which essentially corresponds to the wheel load of a truck and thus permits a meaningful analysis of the load capacity of the bottom layer structure 2 and in particular the top layer 32.
  • the device 1 according to the invention or the compactor 30 in such a way that it permits a reliable and reproducible examination of the bottom layer structure 2 and in particular of the uppermost soil layer 32.
  • Fig. 2 shows a schematic representation of the device 1 according to Fig. 1 with particular attention being paid to the first and second detection devices 10 and 12.
  • a geophone 11 of the first detection means 10 is arranged so as to allow detection of the reflection waves caused by the load pulses P.
  • the dynamic soil stiffness of the bottom layer structure 2 lying in the load introduction region 8 can be detected via the geophone 11 or the first detection means 10.
  • This dynamic soil stiffness can then be concluded in a known manner conclusions on the degree of compaction of the bottom layer structure 2.
  • a geophone 13 of the second detection means 12 is also arranged on the static roller 24 of the device 1. Since the static roller 24 does not initiate its own load pulses into the bottom layer structure 2, this geophone allows detection of a stiffness value dependent on the load introduction in the load introduction region 8, which is essentially due to the distance A D between the two detection means 10 and 12 or geophones 11 and 13 depends only on the bedding layer 42 and not the upper layer 32. Consequently, the soil stiffness and in particular a bedding modulus without influence of the upper layer 32 can be determined via the value w 2 of the depression curve 14 detected by the geophone 13 or the second detection means 12.
  • the first and second values w 1 , w 2 determined by the two geophones 11, 13 are transmitted as measurement results to an evaluation unit 36, which compares the two detected first and second values w 1 and w 2 or from the equivalent and Bedding modules a layer E-modulus of the top layer 32 determined.
  • the values thus obtained can then either be output to the operating personnel via a display unit 38 or directly influence the machine control of the device 1.
  • a calibration element 40 is provided, via which, for example, the load pulses P introduced into the bottom layer structure 2 can be fixed to a defined value and in particular, for example, to a value of 50 kN.
  • the vibration rate and thus the number of load pulses per second is preferably adjustable to a value between 20 and 50 times per second via such a calibration element 40.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Road Paving Machines (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

Die Erfindung betrifft eine verfahrbare Vorrichtung zur Verdichtung eines Bodenschichtaufbaus, mit wenigstens einem Vibrationsmittel, wie eine Vibrationswalze oder eine Vibrationsplatte, über das in wenigstens einem Lasteinleitungsbereich den Bodenschichtaufbau verdichtende Lastimpulse einleitbar sind.The invention relates to a movable device for compacting a bottom layer structure, comprising at least one vibrating means, such as a vibrating roller or a vibrating plate, via which load pulses compressing the bottom layer structure in at least one load introduction region can be introduced.

Darüber hinaus betrifft die Erfindung ein Verfahren zur Ermittlung eines Schicht-E-Moduls einer obersten Schicht eines Bodenschichtaufbaus, insbesondere einer Fahrbahn-Asphaltschicht während eines Verdichtungsvorgangs.Moreover, the invention relates to a method for determining a layer E modulus of an uppermost layer of a bottom layer structure, in particular a roadway asphalt layer during a compacting operation.

Solche Vorrichtungen zur Verdichtung eines Bodenschichtaufbaus sind aus dem Stand der Technik bekannt, beispielsweise aus der EP 1 103 658 A2 . Es gibt sie beispielsweise als maschinell angetriebene Walzen und insbesondere Straßenwalzen, durch die ein Bodenschichtaufbau und insbesondere eine Asphaltstraße inklusive ihres Unterbaus verdichtet werden können. Dazu weisen die Vorrichtungen und auch die zuvor genannte Straßenwalze ein Vibrationsmittel auf, über das den Bodenschichtaufbau verdichtende Lastimpulse in die Oberfläche des Bodenschichtsaufbau einleitbar sind.Such devices for compaction of a bottom layer structure are known from the prior art, for example from US Pat EP 1 103 658 A2 , They exist, for example, as machine-driven rollers and in particular road rollers through which a bottom layer structure and in particular an asphalt road including its substructure can be compacted. For this purpose, the devices and also the aforementioned road roller on a vibrating means, over the bottom layer structure compressing load pulses are introduced into the surface of the bottom layer structure.

Die verfahrbare Vorrichtung bewegt sich dabei in mehreren Arbeitsschritten über den zu verdichtenden Bodenschichtaufbau, wobei bei jeder Überfahrt eine weitere Verdichtung bis hin zu einer Maximalverdichtung erzielt wird. Nach Erreichen der Maximalverdichtung ist ein weiteres Verdichten des Bodenschichtaufbaus nicht mehr nötig oder gar kontraproduktiv, weil es zu einer erneuten Auflockerung des verdichteten Bodenschichtaufbaus und zu einer übermäßigen Belastung 7 der Verdichtungsvorrichtung führt. Aus diesem Grund ist es wichtig, kontinuierlich oder in bestimmten Abständen den Verdichtungsgrad des Bodenschichtaufbaus zu detektieren.The movable device moves in several steps over the compacted soil layer structure, with each crossing a further compression is achieved up to a maximum compression. After reaching the maximum compaction, further compaction of the soil layer structure is no longer necessary or even counterproductive, because it leads to a renewed loosening of the compacted soil layer structure and to an excessive load 7 of the compacting device leads. For this reason it is important to detect continuously or at certain intervals the degree of compaction of the soil layer structure.

Problematisch ist hierbei jedoch, dass aufgrund des Aufbaus des Bodens aus unterschiedlichen Schichten, eine genaue Detektion der E-Module der jeweiligen Schichten, also der Schicht-E-Module, nur ungenau möglich ist, da sich die E-Module der einzelnen Schichten, insbesondere ungebundener Schichten gegenseitig beeinflussen.The problem here is, however, that due to the structure of the soil from different layers, an accurate detection of the E-modules of the respective layers, ie the layer E-modules, only inaccurately possible because the E-modules of the individual layers, in particular unbound layers influence each other.

Aus dem Stand der Technik ist ein Verfahren mit dem sogenannten "Falling Weight Deflectometer" (FWD) bekannt, bei dem durch die Ermittlung einer durch einen Lastimpuls verursachten Einsenkungsmulde über eine bestimmte Anzahl an Detektionsvorrichtungen eine relativ genaue Detektion eines Schicht-E-Moduls möglich ist. Insbesondere bei der Bewertung der Tragfähigkeit bestehender Asphaltstraßen gewinnt die Tragfähigkeitsuntersuchungen mit dem FWD mehr und mehr an Bedeutung. Mit dem FWD wird auf die Straßenoberfläche mit einer Fallmasse ein Lastimpuls aufgebracht, der zur Simulation einer Radüberrollung dient. Die kurzzeitig eintretende vertikale Verformung der Oberfläche des Bodenschichtaufbaus wird im Lastzentrum und in acht vorgegebenen Abständen vom Lastzentrum entfernt aufgenommen.From the prior art, a method with the so-called "Falling Weight Deflectometer" (FWD) is known in which a relatively accurate detection of a layer E module is possible by determining a depression caused by a load pulse over a certain number of detection devices , In particular, in assessing the load-bearing capacity of existing asphalt roads, load bearing capacity studies with the FWD are gaining more and more importance. With the FWD, a load pulse is applied to the road surface with a falling mass, which serves to simulate a wheel overrun. The short-term vertical deformation of the surface of the soil layer structure is recorded at the load center and at eight predetermined distances from the load center.

Über die gemessenen Einsenkungen der Einsenkungsmulde wird die Steifigkeit des gesamten Straßenaufbaus ermittelt. Dabei nimmt mit steigender Entfernung vom Lasteintragungspunkt der Einfluss der tieferen Schichten auf die gemessenen Einsenkungen zu. Dies bedeutet, dass die Einsenkung am Lasteintragungspunkt von der Tragfähigkeit des gesamten Schichtaufbaus abhängt, während die Einsenkung am entferntesten Aufnehmer im Wesentlichen durch die Tragfähigkeit des Untergrundes bzw. tieferer Schichten bestimmt wird. Die Berechnung der Steifigkeiten bzw. der Schicht-E-Module erfolgt dann auf der Grundlage der Theorie des elastischen Halbraumes und eines Mehrschichten-Modells (z. B. eines 2-Schichten- oder 3-Schichten-Modells) nach Boussinesq/Odemark.About the measured depressions of the depression trough the stiffness of the entire road construction is determined. As the distance from the load application point increases, the influence of the deeper layers on the measured depressions increases. This means that the depression at the load application point depends on the load-bearing capacity of the entire layer structure, while the depression on the most remote pick-up is essentially determined by the load-bearing capacity of the substrate or lower layers. The stiffnesses or the layer moduli are then calculated on the basis of the theory of the elastic half-space and of a multilayer model (for example of a 2-layer or 3-layer model) according to Boussinesq / Odemark.

Der Steifigkeitsmodul am Lasteintragungspunkt ergibt den sogenannten Äquivalent-Modul, also den E-Modul des gesamten Bodenschichtaufbaus unter dem Einfluss aller Schichten. Am weit entfernten Messpunkt ermittelt man den sogenannten Bettungs-Modul, den E-Modul des Unterbaus. Die Elastizitäts-Module der einzelnen Schichten werden dann mittels Rückrechnung aus den gemessenen Einsenkungsmulden bzw. Elastizitäts-Modulen der Fahrbahn ermittelt. Dabei gehen die Schichtdicken der gebundenen sowie ungebundenen Tragschichten in die Berechnung ein.The stiffness modulus at the load application point results in the so-called equivalent module, ie the modulus of elasticity of the entire bottom layer structure under the influence of all layers. At far away measuring point one determines the so-called bedding module, the modulus of elasticity of the substructure. The moduli of elasticity of the individual layers are then re-calculated from the measured ones Dumping or elasticity modules of the roadway determined. The layer thicknesses of the bound and unbound base layers are included in the calculation.

Nachteilig bei diesem Verfahren ist jedoch, dass die Ermittlung der Schicht-E-Module mit dem FWD sehr zeitintensiv ist und während der Messung keine weiteren Arbeiten an den Bodenschichtaufbauten vorgenommen werden können. Auch stehen die durch das FWD gewonnenen Werte nur zeitversetzt einer Bodenverdichtungsvorrichtung und insbesondere einer Straßenwalze zur Verfügung, sodass ein verdichtungsgesteuertes Verfahren bzw. die verdichtungsgesteuerte Bodenverdichtung nur schwer möglich ist.A disadvantage of this method, however, is that the determination of the layer E modules with the FWD is very time-consuming and during the measurement no further work on the soil layer structures can be made. Also, the values obtained by the FWD are available only with a time delay to a soil compaction device and in particular a road roller, so that a compression-controlled method or compaction-controlled soil compaction is only possible with difficulty.

Aufgabe der vorliegenden Erfindung ist es folglich, eine Vorrichtung zur Verdichtung eines Bodenschichtaufbaus der vorgenannten anzugeben, das die schnelle und kostengünstige Detektion bzw. Kontrolle eines Schicht-E-Moduls des Bodenschichtaufbaus und insbesondere einer obersten Schicht erlaubt.It is therefore an object of the present invention to specify a device for compacting a bottom layer structure of the abovementioned, which permits the rapid and cost-effective detection or control of a layer E modulus of the bottom layer structure and in particular of an uppermost layer.

Diese Aufgabe wird erfindungsgemäß durch eine verfahrbare Vorrichtung zur Verdichtung eines Bodenschichtaufbaus gelöst mit wenigstens einem Vibrationsmittel, wie einer Vibrationswalze oder einer Vibrationsplatte, über das in wenigstens einem Lasteinleitungsbereich den Bodenschichtaufbau verdichtende Lastimpulse einleitbar sind, wobei wenigstens ein erstes und ein zweites Detektionsmittel zur Detektion des E-Moduls des Bodenschichtaufbaus vorgesehen sind, die derart von einander beabstandet an der Vorrichtung angeordnet sind, dass das erste Detektionsmittel eine Detektion im Lasteinleitungsbereich und wenigstens das zweite Detektionsmittel eine Detektion der Auswirkung des Lastimpulses außerhalb des Lasteinleitungsbereichs erlaubt.This object is achieved by a movable device for compacting a bottom layer structure with at least one vibrating means, such as a vibrating roller or a vibrating plate over which in at least one load application area the bottom layer structure compacting load pulses can be introduced, wherein at least a first and a second detection means for detecting the E Modules of the bottom layer structure are provided, which are arranged at such a distance from each other on the device, that the first detection means allows detection in the load application area and at least the second detection means, a detection of the effect of the load pulse outside the load application area.

Verfahrensseitig wird diese Aufgabe durch ein Verfahren zur Ermittlung eines Schicht-E-Moduls einer Schicht eines Bodenschichtaufbaus, insbesondere einer Fahrbahn-Asphaltschicht, mit folgenden Schritten gelöst: Einbringen wenigstens eines Lastimpulses über die Oberfläche der obersten Schicht des Bodenschichtaufbaus in einem Lasteinleitungsbereich; Detektion eines ersten Wertes einer Einsenkungsmulde des Bodenschichtaufbaus im Lasteinleitungsbereich mittels eines ersten Detektionsmittels, Ermittlung des Äquivalent-Moduls des Bodenschichtaufbaus aus dem detektierten ersten Wert der Einsenkungsmulde; Detektion wenigstens eines zweiten Wertes der Einsenkungsmulde außerhalb des Lasteinleitungsbereiches mittels wenigstens eines zweiten Detektionsmittels; Ermittlung des Bettungs-Moduls und des Schicht-E-Moduls der obersten Schicht des Bodenschichtaufbaus aus den detektierten Werten der Einsenkungsmulde, wobei der Lastimpuls über ein Vibrationsmittel, wie eine Vibrationswalze oder Vibrationsplatte, einer Bodenverdichtungsmaschine in den Bodenschichtaufbau eingeleitet wird.In terms of the method, this object is achieved by a method for determining a layer E modulus of a layer of a base layer structure, in particular a roadway asphalt layer, with the following steps: introducing at least one load pulse across the surface of the uppermost layer of the bottom layer structure in a load introduction area; Detecting a first value of a depression depression of the soil layer structure in the load introduction region by means of a first detection means, determining the equivalent module of the soil layer structure from the detected first value of the depression depression; Detection of at least a second value of the depression trough outside the load introduction area by means of at least one second detection means; Determining the bedding modulus and the modulus E of the top layer of the bottom layer structure from the detected values of the trough, wherein the load momentum is introduced into the bottom layer structure via a vibration means, such as a vibratory roller or vibration plate, of a soil compaction machine.

Ein wesentlicher Punkt ist also, dass entsprechend zu dem zuvor beschriebenen FWD-Verfahren bei dem erfindungsgemäßen Verfahren bzw. der erfindungsgemäßen verfahrbaren Vorrichtung das zur Verdichtung eines Bodenschichtaufbaus vorgesehene Vibrationsmittel, also eine Vibrations-Walze, eine Vibrations-Platte, ein Vibrations-Stampfer etc. als Lasteinleitungsmittel zur Initiierung eines definierten Lastimpulses verwendet wird.An essential point is therefore that according to the above-described FWD method in the method according to the invention or the movable device according to the invention provided for compacting a bottom layer structure vibrating means, ie a vibrating roller, a vibrating plate, a vibrating tamper, etc. is used as load introduction means for initiating a defined load pulse.

Dabei kann im Rahmen der Erfindung unter einer verfahrbaren Vorrichtung jede Vorrichtung verstanden werden, die ein als Vibrationsmittel fungierendes Arbeitsmittel zur Bodenverdichtung aufweist und insbesondere Mittel, die der maschinellen flächenhaften Bodenverdichtung insbesondere im Baubetrieb dienen. Relevant ist dabei, dass die Vorrichtung so ausgebildet ist, dass die beiden Detektionsmittel zur Detektion des E-Moduls bzw. zur Detektion einer Einsenkungsmulde so voneinander beabstandet angeordnet sind, dass das erste Detektionsmittel im Lasteinleitungsbereich des oder eines Vibrationsmittels detektiert während wenigstens das zweite Detektionsmittel außerhalb dieses Lasteinleitungsbereichs detektiert. Dabei wird unter "außerhalb dieses Lasteinleitungsbereichs" jede Position verstanden, bei der in einem Abstand zu einem Lasteinleitungsbereich die Auswirkung des Lastimpulses detektierbar ist.In this case, in the context of the invention, a movable device can be understood as any device which has a working means for soil compaction functioning as a vibrating means and, in particular, means which serve for mechanical compacting of the soil, in particular during construction. It is relevant here that the device is embodied such that the two detection means for detecting the modulus of elasticity or for detecting a depression depression are arranged at a distance from one another such that the first detection means in the load introduction region of the or a vibration means detects at least the second detection means outside detects this load application area. In this context, "outside this load introduction area" is understood to mean any position in which the effect of the load pulse can be detected at a distance from a load introduction area.

Wie bereits zuvor erwähnt, resultiert durch die durch das Vibrationsmittel und insbesondere durch eine Vibrations-Walze eingebrachten Lastimpulse eine Verformungs- bzw. eine Einsenkungsmulde.As already mentioned above, due to the load pulses introduced by the vibration means and in particular by a vibrating roller, a deformation or a depression depression results.

Durch die erfindungsgemäße Anordnung des ersten und wenigstens eines zweiten Detektionsmittels kann nun über eine gezielte Bestimmung der Werte dieser Einsenkungsmulde ein Rückschluss auf die einzelnen Schicht-E-Module und insbesondere ein Rückschluss auf die oberste Schicht des Bodenschichtaufbaus getroffen werden.By means of the arrangement according to the invention of the first and at least one second detection means, a conclusion on the individual layer E modules and in particular a conclusion on the topmost layer of the bottom layer structure can now be made by a specific determination of the values of this depression trough.

Vorzugsweise ist das erste Detektionsmittel derart ausgebildet, dass es eine Detektion eines ersten Wertes einer Einsenkungsmulde des Bodenschichtaufbaus im Lasteinleitungsbereich erlaubt, wobei auch wenigstens das zweite Detektionsmittel dann vorzugsweise derart ausgebildet ist, dass es eine Detektion wenigstens eines zweiten Wertes der Einsenkungsmulde außerhalb des Lasteinleitungsbereichs erlaubt. Über die so detektierten Werte kann, wie bereits zuvor erwähnt, dann eine gezielte Bestimmung des jeweiligen Schicht-Moduls vorgenommen werden.Preferably, the first detection means is designed such that it allows detection of a first value of a depression trough of the bottom layer structure in the load introduction region, wherein at least the second detection means is then preferably designed such that it allows detection of at least a second value of the depression trough outside the load introduction region. As already mentioned above, a targeted determination of the respective layer module can then be made via the values thus detected.

Das erste Detektionsmittel ist vorzugsweise so ausgebildet und angeordnet, dass es eine Detektion eines ersten Wertes der Einsenkungsmulde im Lasteinleitungsbereich erlaubt. Dieser erste Wert ermöglicht die Berechnung des Äquivalent-Moduls des Bodenschichtaufbaus, also des E-Moduls des gesamten Bodenschichtaufbaus, da in ihm sämtliche Verformungen des Bodenschichtaufbaus, von der obersten bis zu sehr weit darunter liegenden Schichten Einfluss nehmen. Insbesondere ist es möglich , diese Detektion während des Bodenverdichtungsbetriebes vorzunehmen.The first detection means is preferably designed and arranged such that it allows a detection of a first value of the depression trough in the load introduction region. This first value enables the calculation of the equivalent modulus of the soil layer structure, ie the modulus of elasticity of the entire soil layer structure, as it influences all deformations of the soil layer structure, from the uppermost layers to very far below. In particular, it is possible to perform this detection during the soil compacting operation.

Über wenigstens das zweite Detektionsmittel, das außerhalb des Lasteinleitungsbereichs bzw. außerhalb eines jeden Lasteinleitungsbereichs angeordnet ist, sodass es eben nur Auswirkungen des Lastimpulses des Verdichtungsmittels detektiert, kann dann ein weiterer E-Modul, nämlich der Bettungs-Modul bestimmt werden. Auch diese Ermittlung erfolgt wieder über die Detektion wenigstens eines Wertes der Einsenkungsmulde, nämlich wenigstens des zweiten Wertes im Bereich des zweiten Detektionsmittels. Aus wenigstens diesem zweiten Wert der Einsenkungsmulde kann dann der Bettungs-Modul bestimmt werden. Auch hier ist die Detektion während des Bodenverdichtungsbetriebes möglich.By way of at least the second detection means, which is arranged outside the load introduction region or outside of each load introduction region, so that it only detects effects of the load pulse of the compression means, then another modulus of elasticity, namely the ballast modulus, can be determined. This determination is again made by the detection of at least one value of the depression trough, namely at least the second value in the region of the second detection means. From at least this second value of the depression trough then the bedding module can be determined. Again, the detection during the soil compaction operation is possible.

Dieser Bettungs-Modul ist nahezu nur vom Unterbau abhängig, da wie bereits erwähnt, die Verformung an dieser Stelle im Wesentlichen nur vom Untergrund bestimmt wird und nicht von der obersten Schicht. Nach der Theorie des Mehrschichtenmodells wird mit den Schichtdicken der einzelnen Schichten des Bodenschichtaufbaus der Schicht-Modul der obersten Schicht und insbesondere der Schicht-Modul der Asphaltschicht ermittelt. Er stellt als ein vom Untergrundeinfluss bereinigter Asphalt-Modul wesentlich genauer die Steifigkeit der Asphaltschicht dar als der im Lasteinleitungsbereich ermittelte Äquivalent-Modul.This bedding module is almost only dependent on the substructure, since, as already mentioned, the deformation at this point is essentially determined only by the substrate and not by the uppermost layer. According to the theory of the multi-layer model, the layer thickness of the individual layers of the bottom layer structure is used to determine the layer modulus of the top layer and, in particular, the layer modulus of the asphalt layer. As a subfloor-modified asphalt module, it represents the rigidity of the asphalt layer much more accurately than the equivalent modulus determined in the load introduction area.

Durch die Ausrüstung einer Vorrichtung zur Bodenverdichtung mit den erfindungsgemäßen Detektionsmitteln kann folglich auch während des Verdichtungsbetriebes und insbesondere während des Betriebs einer Straßenwalze oder eines vergleichbaren Verdichtungsmittels eine Kontrolle des Verdichtungszustandes, insbesondere eine Tragfähigkeits-Untersuchung einer Asphaltstraße, durchgeführt werden. Die so ermittelten Werte können dann direkt in die Regelungsvorgänge der Straßenbaumaschine einfließen, um eine besonders effektive bedarfsgerechte Steuerung der Maschine zu erzielen.Consequently, by equipping a device for soil compaction with the detection means according to the invention, a control of the compaction state, in particular a load capacity analysis of an asphalt road, can also be carried out during the compaction operation and in particular during the operation of a road roller or a comparable compaction means. The values determined in this way can then be incorporated directly into the control processes of the road construction machine in order to achieve a particularly effective on-demand control of the machine.

Das erste und wenigstens das zweite Detektionsmittel weisen vorzugsweise wenigstens ein Geophon oder dergleichen Verformungsmesser auf, über das im Bodenschichtaufbau insbesondere Reflexionswellen aufgrund der eingeleiteten Lastimpulse detektierbar sind. Auf diese Weise ist eine sehr genaue Detektion der jeweiligen Werte der Einsenkungsmulde möglich.The first and at least the second detection means preferably have at least one geophone or the like strain gauge over which reflection waves due to the introduced load pulses can be detected in the bottom layer structure, in particular. In this way, a very accurate detection of the respective values of the depression trough is possible.

Vorzugsweise weisen das erste und/oder das zweite Detektionsmittel einen Kraftsensor oder eine dergleichen Kraftmessdose auf, über die die eingeleiteten Kraftimpulse detektiert und/oder zu einer entsprechenden Verarbeitungseinheit weitergeleitetet werden können.Preferably, the first and / or the second detection means to a force sensor or a similar load cell, via which the introduced force pulses can be detected and / or forwarded to a corresponding processing unit.

In dieser Verarbeitungseinheit werden die detektierten Kraftimpulse vorzugsweise gespeichert. Ähnliches gilt für die durch die Detektionsmittel detektierten ersten und wenigstens zweiten Werte, die ebenfalls vorzugsweise in einer entsprechenden Verarbeitungseinheit aufgenommen, verarbeitet und gespeichert werden. In dieser Auswerteeinheit ist vorzugsweise die Auswertung der detektierten Werte und die Ermittlung der jeweiligen E-Module möglich. Sie übernimmt vorzugsweise auch den Vergleich der ermittelten Äquivalent- und Bettungs-Module und die Bestimmung des jeweiligen resultierenden Schicht-Moduls. Dazu sind in der Verarbeitungseinheit vorzugsweise entsprechende Steuer- und Regelungs- sowie Verarbeitungsprogramme enthalten bzw. speicherbar. Die resultierenden Ergebnisse können dann in einer Anzeigeeinheit dargestellt und/oder weiteren Programmroutinen, wie beispielsweise der ergebnisorientierten Regelung des Vibrationsmittels zugeführt werden.In this processing unit, the detected force pulses are preferably stored. The same applies to the first and at least second values detected by the detection means, which are likewise preferably recorded, processed and stored in a corresponding processing unit. In this evaluation unit, the evaluation of the detected values and the determination of the respective E-modules is preferably possible. It also preferably takes over the comparison of the determined equivalent and ballast modules and the determination of the respective resulting layer module. For this purpose, preferably corresponding control and regulating programs as well as processing programs are contained or storable in the processing unit. The resulting results can then be displayed in a display unit and / or supplied to further program routines, such as the result-oriented control of the vibrating means.

Die ersten und wenigstens zweiten Detektionsmittel sind dabei vorzugsweise so ausgebildet, dass sie in den jeweiligen Bereichen eine genaue Detektion der durch die Lasteinleitungsimpulse verursachten Verformungen erlauben. Eine Detektion kann mit sämtlichen aus dem Stand der Technik bekannten Verfahren und Vorrichtungen erfolgen. So ist es auch möglich, eine Detektion über das Vibrationsmittel selbst und deren Setzungsbewegungen während des Vibrationsvorganges durchzuführen. Eine sehr einfache Detektion der ersten und wenigstens zweiten Werte ist beispielsweise mittels eines als Geophon ausgebildeten elektro-mechanischen Wandlers möglich, der die Bodenschwingungen in analoge Spannungssignale umwandelt.The first and at least second detection means are preferably designed so that they in the respective areas, an accurate detection of the by the load application pulses allow deformations caused. Detection may be by any of the methods and devices known in the art. So it is also possible to perform a detection of the vibration means itself and their settlement movements during the vibration process. A very simple detection of the first and at least second values is possible, for example, by means of an electro-mechanical converter designed as a geophone, which converts the ground vibrations into analog voltage signals.

Vorzugsweise sind die Detektionsmittel so angeordnet, dass zwischen der obersten Schicht des Bodenschichtaufbaus und des Detektionsmittels eine statische Kopplung existiert.Preferably, the detection means are arranged such that a static coupling exists between the uppermost layer of the bottom layer structure and the detection means.

In einer besonderen Ausführungsform ist das erste Detektionsmittel derart an der Vorrichtung angeordnet, dass es eine Detektion im Lastzentrum des Lasteinleitungsbereichs erlaubt. Auf diese Weise kann ein Maximalwert als erster Wert der Einsenkungsmulde ermittelt werden. Vorzugsweise ist das erste Detektionsmittel zudem koaxial zur Lasteinleitachse der Vibrations-Walze angeordnet.In a particular embodiment, the first detection means is arranged on the device such that it permits detection in the load center of the load introduction region. In this way, a maximum value can be determined as the first value of the depression trough. Preferably, the first detection means is also arranged coaxially to the Lasteinleitachse the vibrating roller.

Es ist möglich, das erste Detektionsmittel an der Vibrations-Walze oder deren Lagereinrichtung, insbesondere an einer vibrierenden Bandage der Vibrations-Walze anzuordnen. Auf diese Weise kann sehr einfach eine genaue Detektion des ersten Wertes im Lasteinleitungsbereich und insbesondere Lastzentrum des Lasteinleitungsbereichs vorgenommen werden.It is possible to arrange the first detection means on the vibrating roller or its bearing device, in particular on a vibrating drum of the vibrating roller. In this way, it is very easy to make an accurate detection of the first value in the load introduction area and, in particular, the load center of the load introduction area.

Vorzugsweise ist wenigstens das zweite Detektionsmittel an einer statischen Walze, insbesondere an deren statischen Bandage angeordnet. Unter statischer Walze wird im Umfang der Erfindung eine solche Walze verstanden, die über keine eigenständige Vibrationsmittel verfügt. Eine solche statische Walze kann also beispielsweise rein aufgrund ihres Gewichtes zu einer Verdichtung des Bodens führen, sie kann aber auch lediglich als Fahrmittel für die erfindungsgemäße Vorrichtung dienen. Insofern sind im Umfang der Erfindung unter dem Begriff statische Walze auch Gummiräder oder dergleichen Fahrmittel umfasst. Die Anordnung des zweiten Detektionsmittels an einem weiteren nicht vibrierenden, also statischen Fahrwerk und insbesondere einer statischen Walze erlaubt ebenfalls die kostengünstige und sehr genaue Detektion eines zweiten Wertes der Einsenkungsmulde. Auch hier können sämtliche aus dem Stand der Technik bekannte Verfahren zur Detektion des Wertes in der Einsenkungsmulde herangezogen werden.Preferably, at least the second detection means is arranged on a static roller, in particular on its static drum. Under static roller is understood in the scope of the invention, such a roller, which has no independent vibration means. Such a static roller can thus lead, for example, purely due to its weight to a compaction of the soil, but it can also serve merely as a driving means for the device according to the invention. In this respect, the term static roller also includes rubber wheels or the like driving means within the scope of the invention. The arrangement of the second detection means on a further non-vibrating, ie static suspension and in particular a static roller also allows the cost-effective and very accurate detection of a second value of the depression trough. Here too, all methods known from the prior art for detecting the value in the depression trough can be used.

Bei einer vorteilhaften Weiterbildung ist wenigstens das zweite Detektionsmittel insbesondere über einen Tragrahmen in seiner Position relativ zum Lasteinleitungsbereich des Vibrationsmittels verlagerbar angeordnet. Auf diese Weise kann direkter Einfluss auf den Detektionsort des zweiten Wertes der Einsenkungsmulde genommen werden. An einem solchen Tragrahmen können darüber hinaus weitere Detektionsmittel zur Detektion weiterer Werte der Einsenkungsmulde außerhalb des Lasteinleitungsbereichs angeordnet werden. Darüber hinaus können solche weiteren Detektionsmittel natürlich auch an anderen Bauteilen der Vorrichtung angeordnet werden, solange sie vom Lasteinleitungsbereich beabstandet sind.In an advantageous development, at least the second detection means is arranged displaceable in its position relative to the load introduction region of the vibration means, in particular via a support frame. In this way, direct influence on the detection location of the second value of the depression trough can be taken. In addition, further detection means for detecting further values of the depression trough outside the load introduction region can be arranged on such a support frame. In addition, such further detection means can of course also be arranged on other components of the device, as long as they are spaced from the load introduction region.

Vorzugsweise ist die Vorrichtung als ein Walzenzug mit einer Vibrations-Walze und wenigstens einer statischen Walze ausgebildet. Über einen erfindungsgemäß ausgerüsteten Walzenzug kann dann sehr einfach eine Bodenverdichtung bei gleichzeitiger Tragfähigkeitsuntersuchung und insbesondere der Detektion des Tragfähigkeitszustandes der obersten Schicht des Bodenschichtaufbaus vorgenommen werden.Preferably, the device is designed as a compactor with a vibrating roller and at least one static roller. By means of a compactor equipped with a compactor according to the invention, it is then very easy to carry out soil compaction while carrying out a load capacity test and in particular detecting the carrying capacity state of the uppermost layer of the soil layer structure.

Grundsätzlich ist es mittels der erfindungsgemäßen Vorrichtung und des erfindungsgemäßen Verfahrens also möglich, eine Tragfähigkeitsuntersuchung, insbesondere einer obersten Schicht eines Bodenschichtaufbaus, während eines Verdichtungsprozesses eines Bodenschichtaufbaus durchzuführen. Insofern ist also vorzugsweise eine Bodenverdichtungsmaschine, wie sie aus dem Stand der Technik bekannt ist, mit den erfindungsgemäßen Detektionsvorrichtungen und weiteren dazu nötigen Umwandlungs- und Regelungseinrichtungen ausgerüstet, um ein Verfahren ähnlich dem Verfahren der Tragfähigkeitsuntersuchung mit dem "Falling Weight Deflectometer" durchzuführen. Auch ist es in diesem Zusammenhang möglich, eine Vorrichtung anzubieten, die die nachträgliche Ausrüstung einer Bodenverdichtungsmaschine mit obigen Detektionsmitteln bzw. Mitteln zur Detektion eines Schicht-E-Moduls einer obersten Schicht eines Schichtaufbaus ermöglicht.In principle, it is thus possible, by means of the device according to the invention and the method according to the invention, to carry out a load capacity test, in particular a topmost layer of a bottom layer structure, during a compacting process of a bottom layer structure. In this respect, therefore, preferably a soil compaction machine, as is known from the prior art, equipped with the detection devices according to the invention and other necessary conversion and control devices to perform a method similar to the method of carrying capacity examination with the "Falling Weight Deflectometer". It is also possible in this connection to offer a device which makes it possible to retrofit a soil compaction machine with the above detection means or means for detecting a layer E modulus of an uppermost layer of a layer structure.

Weitere Ausführungsformen der Erfindung ergeben sich aus den abhängigen Ansprüchen.Further embodiments of the invention will become apparent from the dependent claims.

Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels beschrieben, das durch die beiliegenden Zeichnungen näher erläutert wird. Hierbei zeigen schematisch:

Fig. 1
eine Darstellung einer ersten Ausführungsform der Vorrichtung zur Verdichtung eines Bodenschichtaufbaus; und
Fig. 2
eine Darstellung der Detektionsmittelanordnung der Ausführungsform aus Fig. 1.
In the following the invention will be described with reference to an embodiment which is explained in more detail by the accompanying drawings. Here are shown schematically:
Fig. 1
a representation of a first embodiment of the device for compacting a bottom layer structure; and
Fig. 2
an illustration of the detection means arrangement of the embodiment Fig. 1 ,

Im Folgenden werden Vergleiche und gleich wirkende Bauteile dieselben Bezugsziffern verwendet, wobei zur Unterscheidung bisweilen Hochindizes ihre Anwendung finden.In the following, comparisons and like components are given the same reference numerals, sometimes with the use of high indices to distinguish them.

Fig. 1 zeigt eine Darstellung einer Ausführungsform einer erfindungsgemäßen Vorrichtung 1 zur Verdichtung eines Bodenschichtaufbaus. Die Vorrichtung 1 ist hier als eine selbstfahrende Straßenwalze und insbesondere als ein Walzenzug 30 ausgebildet. Sie umfasst ein als Vibrationswalze 6 ausgebildetes Vibrationsmittel, das über eine Lagereinrichtung 16 mit einem Hauptkörper 34 des Walzenzuges 30 verbunden ist. Über eine weitere Lagereinrichtung 26 ist eine statische Walze 24 zugeordnet, sodass der Walzenzug 30 über die beiden Walzen 6, 24 verfahrbar ist. Fig. 1 shows a representation of an embodiment of a device 1 according to the invention for compacting a bottom layer structure. The device 1 is designed here as a self-propelled road roller and in particular as a compactor 30. It comprises a vibrating means designed as a vibrating roller 6, which is connected via a bearing device 16 to a main body 34 of the compactor 30. Via a further bearing device 26, a static roller 24 is assigned, so that the roller train 30 via the two rollers 6, 24 is movable.

Im Gegensatz zur statischen Walze 24, bei der eine Verdichtung eines Bodenaufbaus 2 ausschließlich aufgrund ihres statischen Gewichts erfolgt, kann bei der Vibrationswalze 6 über angetriebene Schwungmassen der Bodenschichtaufbau 2 aktiv verdichtet werden.In contrast to the static roller 24, in which a compaction of a bottom structure 2 takes place solely on account of its static weight, the bottom layer structure 2 can be actively compacted in the vibrating roller 6 via driven flywheel masses.

Die Vibrationswalze 6 leitet dabei Lastimpulse P über einen Lasteinleitungsbereich 8, der im Wesentlichen der Kontaktfläche zwischen der vibrierenden Bandage 18 der Vibrationswalze 6 und der Oberfläche 33 der obersten Schicht 32 des Bodenschichtaufbaus 2 entspricht, in den Untergrund weiter. Diese durch die Lastimpulse P verursachten und Setzungen hervorrufenden Schwingungen sind in Fig. 1 durch die konzentrischen Kreise 15 dargestellt.The vibrating roller 6 conducts load impulses P via a load introduction region 8, which essentially corresponds to the contact surface between the vibrating bandage 18 of the vibrating roller 6 and the surface 33 of the uppermost layer 32 of the bottom layer structure 2, into the ground. These oscillations caused by the load pulses P and causing subsidence are in Fig. 1 represented by the concentric circles 15.

Verursacht durch die eingeleiteten Lastimpulse P und die resultierenden Schwingungen 15 kommt es ausgehend von einem Lastzentrum Z zu Setzungen im Bodenschichtaufbau 2, die hier durch die Einsenkungsmulde 14 schematisch dargestellt sind. Hierbei wird deutlich, dass die durch die Lastimpulse P verursachten Setzungen bzw. Verdichtungen mit zunehmendem Abstand A vom Lastzentrum Z bzw. einer vertikal zur Oberfläche 33 verlaufenden Lasteinleitungsachse AP abnehmen.Caused by the introduced load pulses P and the resulting vibrations 15, it comes from a load center Z to subsidence in the bottom layer structure 2, which are shown here schematically by the Einsiedungsmulde 14. It becomes clear that the settlements or densifications caused by the load pulses P decrease with increasing distance A from the load center Z or a load introduction axis A P extending vertically to the surface 33.

Über die an der vibrierenden Bandage 18 bzw. Vibrationswalze 6 eingeleiteten Lastimpulse P, die als Verdichtungs- bzw. Verformungskraft im Bodenschichtaufbau 2 wirken, kann, wie aus dem Stand der Technik bekannt, ein Steifigkeitsmodul ermittelt werden. Dieser Steifigkeitsmodul entspricht dem Äquivalentmodul, also einem mittleren Steifigkeitswert über die gesamte Messtiefe des Bodenschichtaufbaus 2 hinweg. Einfluss auf diesen Äquivalentmodul haben hier also sowohl der Schicht-E-Modul der obersten Schicht 32 als auch der darunter liegenden Bettungsschichten 42.Via the load pulses P introduced at the vibrating bandage 18 or vibration roller 6, which act as compaction or deformation forces in the bottom layer structure 2, a stiffness modulus can be determined, as is known from the prior art. This stiffness modulus corresponds to the equivalent modulus, ie an average stiffness value over the entire measurement depth of the bottom layer structure 2. Thus, both the layer E modulus of the uppermost layer 32 and the underlying bedding layers 42 have an influence on this equivalent module.

Die Detektion des zur Ermittlung des Äquivalentmoduls nötigen ersten Wertes w, der Einsenkungsmulde 14 erfolgt über ein erstes Detektionsmittel 10, das bei dieser Ausführungsform an der Vibrationswalze 6 bzw. ihrer Lagereinrichtung 16 angeordnet und statisch gekoppelt ist.The detection of the first value w, which is necessary for determining the equivalent module, of the depression depression 14 takes place via a first detection means 10, which in this embodiment is arranged on the vibration roller 6 or its bearing device 16 and is statically coupled.

An der statischen Walze 24 bzw. an deren statischer Bandage 28 bzw. deren Lagereinrichtung 26 ist ein zweites Detektionsmittel 12 angeordnet, über das ein zweiter Detektionswert E2 der Einsenkungsmulde 14 ermittelt werden kann, und zwar außerhalb des Lasteinleitungsbereichs 8. Wie in Fig. 1 erkennbar ist dabei das zweite Detektionsmittel 12 derart vom ersten Detektionsmittel 10 und dem Lasteinleitungsbereich 8 beabstandet, dass eine Detektion eines E-Moduls der unterhalb der obersten Schicht 32 angeordneten Schichten und insbesondere der Bettungsschicht 42 möglich ist. Aufgrund des Abstandes AD zwischen dem ersten Detektionsmittel 10 bzw. dem Lasteinleitungsbereich 8 und dem zweiten Detektionsmittel 12 sind die Verformungen an der Detektionsstelle des zweiten Wertes w2 im Wesentlichen vom Untergrund bestimmt und nicht von der Asphaltschicht selbst. Als vorteilhafter Abstandswert AD hat sich hier ein Wert von 1 m bis 2,6 m, insbesondere 1,8m herausgestellt.On the static roller 24 or on its static drum 28 or its bearing device 26, a second detection means 12 is arranged, via which a second detection value E 2 of the depression trough 14 can be determined, outside of the load introduction area 8 Fig. 1 It can be seen that the second detection means 12 is spaced from the first detection means 10 and the load introduction region 8 in such a way that it is possible to detect an E-modulus of the layers arranged below the uppermost layer 32 and in particular of the bedding layer 42. Due to the distance A, D, between the first detecting means 10 or the load introduction region 8 and the second detection means 12, the deformations at the detection site of the second value are w 2 is substantially determined by the ground and not on the asphalt layer itself. As an advantageous distance value A D has here a value of 1 m to 2.6 m, especially 1.8m exposed.

Über die beiden ermittelten ersten und zweiten Werte w1 und w2 und die daraus gewonnenen Äquivalent- bzw. Bettungs-Module kann nach der aus dem Stand der Technik bekannten Theorie des Mehrschichtenmodells kann dann mit den Schichtdicken der einzelnen Bodenschichten der Schicht-E-Modul der zu messenden Asphaltschicht 32 ermittelt werden, wobei das Ergebnis ein im Wesentlichen vom Untergrundeinfluss bereinigter Asphalt-Modul ist, der wesentlich genauer die Steifigkeit der Asphaltschicht 32 darstellt als der den Gesamtbodenaufbau 2 berücksichtigenden Äquivalent-Modul.By means of the two determined first and second values w 1 and w 2 and the equivalent or bedding modules obtained therefrom, it is then possible to use the layer thicknesses of the individual soil layers of the layer E modulus according to the theory of the multilayer model known from the prior art the asphalt layer 32 to be measured is determined, the result being a substantially subfloor-corrected asphalt module, which represents the rigidity of the asphalt layer 32 much more accurately than the equivalent module taking into account the overall bottom structure 2.

In Abhängigkeit der verwendeten Bauteile, Detektionsmittel kann erfindungsgemäß eine Lasteinleitung P mit einer Frequenz von 30 bis 50 Lasteintragungen pro Sekunde erfolgen. Über entsprechende Steuermittel kann hier ein entsprechender Einfluss auf das Vibrationsmittel 4 bzw. die Vibrationswalze 6 genommen werden. Auch ist es möglich über ein entsprechendes Regelungsmittel den Betrag der eingeleiteten Lastimpulse so zu regeln, dass er den geforderten Messbedingungen entspricht. So kann über das Regelungsmittel beispielsweise der Lastimpuls P auf einen Wert von 50 kN geregelt werden, was der Radlast eines Lkw im Wesentlichen entspricht und somit eine aussagekräftige Analyse der Tragfähigkeit des Bodenschichtaufbaus 2 und insbesondere der oberen Schicht 32 erlaubt. Insofern ist es also möglich, die erfindungsgemäße Vorrichtung 1 bzw. den Walzenzug 30 so anzusteuern, dass er eine zuverlässige und reproduzierbare Untersuchung des Bodenschichtaufbaus 2 und insbesondere der obersten Bodenschicht 32 erlaubt.Depending on the components used, detection means can be carried out according to the invention a load application P with a frequency of 30 to 50 load entries per second. By appropriate control means, a corresponding influence on the vibration means 4 or the vibration roller 6 can be taken here. It is also possible via a corresponding control means to regulate the amount of the introduced load pulses so that it corresponds to the required measurement conditions. Thus, for example, the load pulse P can be regulated to a value of 50 kN via the control means, which essentially corresponds to the wheel load of a truck and thus permits a meaningful analysis of the load capacity of the bottom layer structure 2 and in particular the top layer 32. In this respect, it is thus possible to control the device 1 according to the invention or the compactor 30 in such a way that it permits a reliable and reproducible examination of the bottom layer structure 2 and in particular of the uppermost soil layer 32.

Fig. 2 zeigt eine schematische Darstellung der Vorrichtung 1 gemäß Fig. 1, wobei ein besonderes Augenmerk auf die ersten und zweiten Detektionsvorrichtungen 10 und 12 gelegt wird. Fig. 2 shows a schematic representation of the device 1 according to Fig. 1 with particular attention being paid to the first and second detection devices 10 and 12.

Erkennbar ist, dass an der Vibrationswalze 6 der Vorrichtung 1 ein Geophon 11 des erstens Detektionsmittels 10 so angeordnet ist, dass es eine Detektion der Reflexionswellen erlaubt, die durch die Lastimpulse P verursacht werden. Über das Geophon 11 bzw. das erste Detektionsmittel 10 ist insofern also, wie aus dem Stand der Technik bekannt, die dynamische Bodensteifigkeit des im Lasteinleitungsbereich 8 liegenden Bodenschichtaufbaus 2 detektierbar. Über diese dynamische Bodensteifigkeit lassen sich dann in bekannter Weise Rückschlüsse auf den Verdichtungsgrad des Bodenschichtaufbaus 2 schließen.It can be seen that on the vibration roller 6 of the device 1, a geophone 11 of the first detection means 10 is arranged so as to allow detection of the reflection waves caused by the load pulses P. Thus, as is known from the prior art, the dynamic soil stiffness of the bottom layer structure 2 lying in the load introduction region 8 can be detected via the geophone 11 or the first detection means 10. About this dynamic soil stiffness can then be concluded in a known manner conclusions on the degree of compaction of the bottom layer structure 2.

An der statischen Walze 24 der Vorrichtung 1 ist ebenfalls ein Geophon 13, diesmal ein Geophon 13 des zweiten Detektionsmittels 12 angeordnet. Da die statische Walze 24 keine eigenen Lastimpulse in den Bodenschichtaufbau 2 einleitet, erlaubt dieses Geophon eine Detektion eines von der Lasteinleitung im Lasteinleitungsbereich 8 abhängigen Steifigkeitswertes, der aufgrund des Abstandes AD zwischen den beiden Detektionsmitteln 10 und 12 bzw. Geophonen 11 und 13 im Wesentlichen nur von der Bettungsschicht 42 und nicht der oberen Schicht 32 abhängt. Über den durch das Geophon 13 bzw. das zweite Detektionsmittel 12 detektierten Wert w2 der Einsenkungskurve 14 lassen sich folglich die Bodensteifigkeit und insbesondere ein Bettungs-Modul ohne Einfluss der oberen Schicht 32 bestimmen.On the static roller 24 of the device 1, a geophone 13, this time a geophone 13 of the second detection means 12 is also arranged. Since the static roller 24 does not initiate its own load pulses into the bottom layer structure 2, this geophone allows detection of a stiffness value dependent on the load introduction in the load introduction region 8, which is essentially due to the distance A D between the two detection means 10 and 12 or geophones 11 and 13 depends only on the bedding layer 42 and not the upper layer 32. Consequently, the soil stiffness and in particular a bedding modulus without influence of the upper layer 32 can be determined via the value w 2 of the depression curve 14 detected by the geophone 13 or the second detection means 12.

Die von den beiden Geophonen 11, 13 ermittelten ersten und zweiten Werte w1, w2 werden als Messergebnisse an eine Auswerteeinheit 36 übermittelt, die die beiden detektierten ersten und zweiten Werte w1 und w2 gegenüberstellt bzw. aus den daraus ermittelbaren Äquivalent- und Bettungs-Modulen einen Schicht-E-Modul der obersten Schicht 32 ermittelt. Die so erhaltenen Werte können dann entweder über eine Anzeigeeinheit 38 an das Bedienpersonal ausgegeben werden oder direkt auf die Maschinensteuerung der Vorrichtung 1 Einfluss nehmen.The first and second values w 1 , w 2 determined by the two geophones 11, 13 are transmitted as measurement results to an evaluation unit 36, which compares the two detected first and second values w 1 and w 2 or from the equivalent and Bedding modules a layer E-modulus of the top layer 32 determined. The values thus obtained can then either be output to the operating personnel via a display unit 38 or directly influence the machine control of the device 1.

Darüber hinaus ist in Fig. 2 ein Kalibrierelement 40 vorgesehen, über das beispielsweise die in den Bodenschichtaufbau 2 eingeleiteten Lastimpulse P auf einen festgelegten Wert und insbesondere beispielsweise auf einen Wert von 50 kN festlegbar sind. Auch ist über ein solches Kalibrierelement 40 die Vibrationsgeschwindigkeit und somit die Anzahl der Lastimpulse pro Sekunde vorzugsweise auf einen Wert zwischen 20 und 50 mal pro Sekunde einstellbar.In addition, in Fig. 2 a calibration element 40 is provided, via which, for example, the load pulses P introduced into the bottom layer structure 2 can be fixed to a defined value and in particular, for example, to a value of 50 kN. Also, the vibration rate and thus the number of load pulses per second is preferably adjustable to a value between 20 and 50 times per second via such a calibration element 40.

Ebenfalls dargestellt ist in Fig. 2 ein Tragrahmen 27, über den das zweite Detektionsmittel 12 in seiner Position relativ zum Lasteinleitungsbereich 8 des Vibrationsmittels 4 bzw. der Vibrationswalze 6 (vorzugsweise im Wesentlichen parallel zur Bodenoberfläche 32) verlagerbar angeordnet ist. Über den Tragrahmen 27 ist folglich der Abstand AD zwischen den beiden Messpunkten der Werte w1 und w2 veränderbar.Also shown in Fig. 2 a support frame 27, via which the second detection means 12 in its position relative to the load introduction region 8 of the vibrating means 4 and the vibrating roller 6 (preferably substantially parallel to the bottom surface 32) is arranged displaceably. Consequently, the distance A D between the two measuring points of the values w 1 and w 2 can be changed via the supporting frame 27.

Claims (10)

  1. A mobile device for compacting a soil layer structure (2), having at least one vibration means (4), such as a vibration roller (6) or vibration plate, via which load impulses (P) that compact the soil layer structure (2) can be introduced in at least one load introduction area (8),
    characterized by at least a first and a second detection means (10, 12) for detecting the elastic modulus of the soil layer structure (2), which are arranged on the device so as to be spaced apart from one another in such a way that the first detection means (10) permits a detection in the load introduction area (8) and at least the second detection means (12) permits a detection of the effects of the load impulses outside the load introduction area.
  2. The device according to claim 1,
    characterized in that the first detection means (10) is configured in such a way that it permits a detection of a first value w1 of a depression (14) in the soil layer structure (2) in the load introduction area (8), and
    the second detection means (12) is configured in such a way that it permits a detection of a second value w2 of the depression (14) outside the load introduction area (8).
  3. The device according to one of the preceding claims,
    characterized in that the first and/or the second detection means (10, 12) each have at least one geophone (11, 13) by means of which in particular reflected waves resulting from the load impulses (P) are detectable in the soil layer structure (2).
  4. The device according to one of the preceding claims,
    characterized in that the first detection means (10) is arranged on the device (1) in such a way that it permits a detection in the load center (Z) of the load introduction area (8).
  5. The device according to one of the preceding claims,
    characterized in that the first detection means (10) is arranged on the vibration roller (6) or its mounting device (16), in particular on a vibrating drum (18).
  6. The device according to one of the preceding claims,
    characterized in that at least the second detection means (12) is arranged on a static roller (24) or its mounting device (26), in particular on its static drum (28).
  7. The device according to one of the preceding claims 1,
    characterized in that at least the second detection means (12) is arranged so as to be displaceable, in particular via a support frame (27), in its position relative to the load introduction area (8) of the vibration means (4).
  8. The device according to one of the preceding claims,
    characterized in that the device is configured as a compactor (30) with a vibration roller (6) and at least one static roller (24).
  9. A method for determining an elastic modulus of a layer (32) of a soil layer structure (2), in particular a roadway asphalt layer during a soil compaction procedure, comprising the following steps:
    - introducing at least one load impulse (P) in a load introduction area (8) via the surface (33) of the uppermost layer (32) of the soil layer structure (2);
    - detecting a first value (w1) of a depression (14) of the soil layer structure (2) in the load introduction area (8) by means of a first detection means (10),
    - determining the equivalent modulus of the soil layer structure (2) from the detected first value (w1) of the depression (14);
    - detecting a second value (w2) of the depression (14) outside the load introduction area (8) by means of a second detection means (12),
    - determining the stratification modulus of the soil layer structure (2) from the detected second value (w2) of the depression (14);
    - determining the elastic modulus of the uppermost layer (32) of the soil layer structure (2) from the two detected values (w1, w2) of the depression (14) and the determined equivalent or stratification modulus,
    characterized in that the load impulse (P) is introduced via a vibration means (4), such as a vibration roller (6) or vibration plate, of a soil compaction machine into the soil layer structure (2).
  10. The method according to claim 9,
    characterized in that the detection of the first and second values (w1, w2) is performed during a soil compaction procedure of the soil layer structure (2), in particular during a levelling of the uppermost layer (32).
EP11008033.0A 2010-11-26 2011-10-04 Mobile device for compacting a soil layer structure and method for determining the layer-E module of a top layer in this soil layer structure Active EP2458088B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010052713A DE102010052713A1 (en) 2010-11-26 2010-11-26 A traveling soil compacting device and method for detecting a layer E modulus of a topmost layer of said bottom layer structure

Publications (3)

Publication Number Publication Date
EP2458088A2 EP2458088A2 (en) 2012-05-30
EP2458088A3 EP2458088A3 (en) 2016-10-05
EP2458088B1 true EP2458088B1 (en) 2018-02-21

Family

ID=44759382

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11008033.0A Active EP2458088B1 (en) 2010-11-26 2011-10-04 Mobile device for compacting a soil layer structure and method for determining the layer-E module of a top layer in this soil layer structure

Country Status (4)

Country Link
US (1) US8671760B2 (en)
EP (1) EP2458088B1 (en)
CN (1) CN102535313B (en)
DE (1) DE102010052713A1 (en)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2627826T3 (en) * 2010-10-13 2015-03-31 Ammann Schweiz Ag Method for determinig the rigidity and/or the damping of the region of a solidity
DE102011088567A1 (en) * 2011-12-14 2013-06-20 Hamm Ag Device for detecting the movement of a compactor roller of a soil compactor
CN104364445A (en) * 2012-04-06 2015-02-18 俄克拉何马大学董事会 Method and apparatus for determining stiffness of a roadway
US9039319B2 (en) 2013-06-28 2015-05-26 Caterpillar Paving Products Inc. Modifying compaction effort based on material compactability
US9650062B2 (en) 2013-08-26 2017-05-16 Wacker Neuson Production Americas Llc System for controlling remote operation of ground working devices
CN103669179B (en) * 2013-11-30 2016-04-27 江苏蛟龙重工集团有限公司 A kind of road surface compacting car
DE102014008116A1 (en) 2014-06-03 2015-12-03 Bomag Gmbh METHOD FOR THE LUBRICANT SUPPLY OF A GEARBOX, GEAR LUBRICATION DEVICE, GEAR UNIT AND CONSTRUCTION MACHINE
US9534995B2 (en) * 2014-06-11 2017-01-03 Caterpillar Paving Products Inc. System and method for determining a modulus of resilience
CN104297049B (en) * 2014-11-10 2017-07-18 西南石油大学 Consider the shale crushing experiment device of drill string dynamic vibration
US9845580B2 (en) 2016-04-25 2017-12-19 Caterpillar Paving Products Inc. Compaction system including articulated joint force measurement
CN107059572B (en) * 2017-02-13 2019-01-15 嘉兴钛胺新材料科技有限公司 A kind of road construction land smoothing unit
WO2018157091A1 (en) 2017-02-24 2018-08-30 Brigham Young University Contact elements for acoustic excitation attached via compliant material
DE102017006844B4 (en) * 2017-07-18 2019-04-11 Bomag Gmbh Soil compactor and method for determining substrate properties by means of a soil compactor
US20190170569A1 (en) * 2017-12-06 2019-06-06 Caterpillar Paving Products Inc. Vibration monitoring system
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11460385B2 (en) * 2019-02-11 2022-10-04 Ingios Geotechnics, Inc. Compaction control system for and methods of accurately determining properties of compacted and/or existing ground materials
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
CN111472243B (en) * 2020-04-22 2021-12-10 重庆交通大学 Method for testing comprehensive dynamic modulus of roadbed and pavement structure
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US12013245B2 (en) 2020-10-09 2024-06-18 Deere & Company Predictive map generation and control system
US11871697B2 (en) 2020-10-09 2024-01-16 Deere & Company Crop moisture map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
CN114674737B (en) * 2022-04-02 2023-06-16 西南交通大学 Roadbed filler compaction characteristic analysis device and method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3553903A (en) * 1967-07-31 1971-01-12 Goodyear Tire & Rubber Control system for a tire grinding machine
SE401736B (en) * 1976-08-18 1978-05-22 Konsult Och Utveckling Ab Kuab APPLIANCE FOR APPLYING A LOAD AND MEASURING THE RELATIONSHIP BETWEEN THE LOAD AND DEFORMATION
US5025150A (en) * 1988-10-14 1991-06-18 Mk-Ferguson Company Site survey method and apparatus
DE19529115A1 (en) * 1995-08-08 1997-03-06 Wacker Werke Kg Vibration mechanism, particularly for use in soil compaction
US5719338A (en) * 1995-10-24 1998-02-17 Ingersoll-Rand Company Method and apparatus for providing an indication of compaction in a vibration compaction vehicle
ATE195157T1 (en) * 1996-10-21 2000-08-15 Ammann Verdichtung Ag METHOD FOR MEASURING MECHANICAL DATA OF A SOIL AS WELL AS ITS COMPACTION AND MEASURING OR SOIL COMPACTION DEVICE
US5952561A (en) * 1997-03-19 1999-09-14 Iowa State University Research Foundation, Inc. Real time asphalt pavement quality sensor using a differential approach
CN2302499Y (en) * 1997-05-05 1998-12-30 南京理工大学 Portable laser pavement deflection detecting instrument
US6244102B1 (en) * 1998-09-18 2001-06-12 Dynasens Ltd. Method and system for examination and optimal compaction of soil enbankments
CN2364456Y (en) * 1999-03-12 2000-02-16 哈尔滨东北道路研究所 Intelligent road compacting tester
DE19956943B4 (en) * 1999-11-26 2020-03-19 Bomag Gmbh Device for controlling the compaction in vibration compaction devices
CN1332098A (en) * 2001-07-06 2002-01-23 杨济安 Vehicle loaded densification degree detector
CN1152260C (en) * 2001-12-19 2004-06-02 河北工业大学 intelligent comaction detector mounted on road roller
EP1516961B1 (en) * 2003-09-19 2013-12-25 Ammann Aufbereitung AG Method for determining soil rigidity and soil compaction device
CN100447337C (en) * 2005-06-13 2008-12-31 郑州大学 Application technology of falling weight deflectometer and ground penetrating radar in pavement construction
US7938595B2 (en) * 2007-04-30 2011-05-10 Caterpillar Paving Products Inc. Surface compactor and method of operating a surface compactor
EP2148005A1 (en) * 2008-07-24 2010-01-27 Ammann Czech Republic, a.s. Tandem vibratory roller

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20120134746A1 (en) 2012-05-31
EP2458088A2 (en) 2012-05-30
EP2458088A3 (en) 2016-10-05
CN102535313B (en) 2014-12-24
DE102010052713A1 (en) 2012-05-31
CN102535313A (en) 2012-07-04
US8671760B2 (en) 2014-03-18

Similar Documents

Publication Publication Date Title
EP2458088B1 (en) Mobile device for compacting a soil layer structure and method for determining the layer-E module of a top layer in this soil layer structure
DE102017006844B4 (en) Soil compactor and method for determining substrate properties by means of a soil compactor
EP3631087B1 (en) Method and device for compressing a track ballast bed
EP1516961B1 (en) Method for determining soil rigidity and soil compaction device
EP2927372B1 (en) Self-propelled construction machine and method for controlling the same
DE102006008266B4 (en) Method and device for measuring soil parameters by means of compaction machines
DE102016124875A1 (en) Compaction measurement using nearby sensors
DE102015007369A1 (en) SYSTEM AND METHOD FOR DETERMINING AN ELASTIC MODULE
EP3176324B1 (en) Method for determining the compaction of a substrate
DE112015004191T5 (en) System and method for validating the compaction of a work or construction site
EP2276659B1 (en) System for measuring loads during wheel/rail contact of rail vehicles
EP3517687B1 (en) Method for compaction detection and control when compacting soil using deep vibrator
EP3870760B1 (en) Method and machine for stabilizing a track
DE10028949A1 (en) Method and device for determining the degree of compaction in soil compaction
DE102010060843B4 (en) Method and device for measuring soil parameters by means of compaction machines
DE2737099C2 (en)
DE60303303T2 (en) FALL WEIGHT COMPRESSION
EP1182300A1 (en) Method for assessing the seismic safeness of constructions
DE102016124106A1 (en) ADJUSTMENT OF COMPACTION EXPERIENCE USING VIBRATION SENSORS
DE60304313T2 (en) Measurement of the compaction of granular material layers
AT524860B1 (en) Device and method for compacting a track bed
DE2052250A1 (en) Process for the continuous determination of the compaction effect of vibrating rollers, Rutteiplatten and soil vibrating compactors during the compaction work
DE102021121451A1 (en) Process for quality testing of the material of coarse-grained floors, especially sports floors
WO2022078698A1 (en) Method and system for ascertaining a vibration transmission in the region of a track
DD222970A1 (en) METHOD AND DEVICE FOR DETERMINING THE OPTIMAL COMPACTION OF CONCRETE MEASURE BY SURFACE VIBRATION

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: E01C 19/30 20060101ALI20160830BHEP

Ipc: E01C 19/28 20060101AFI20160830BHEP

17P Request for examination filed

Effective date: 20170331

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170929

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 971855

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011013738

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HEPP WENGER RYFFEL AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180221

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180522

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011013738

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181004

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181004

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 971855

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180221

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180621

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011013738

Country of ref document: DE

Representative=s name: ZIMMERMANN & PARTNER PATENTANWAELTE MBB, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20230922

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231023

Year of fee payment: 13

Ref country code: DE

Payment date: 20231018

Year of fee payment: 13

Ref country code: CH

Payment date: 20231101

Year of fee payment: 13

Ref country code: BG

Payment date: 20231019

Year of fee payment: 13