EP2440749B1 - Arrangement for liquefying natural gas, and method for starting said arrangement - Google Patents

Arrangement for liquefying natural gas, and method for starting said arrangement Download PDF

Info

Publication number
EP2440749B1
EP2440749B1 EP10720633.6A EP10720633A EP2440749B1 EP 2440749 B1 EP2440749 B1 EP 2440749B1 EP 10720633 A EP10720633 A EP 10720633A EP 2440749 B1 EP2440749 B1 EP 2440749B1
Authority
EP
European Patent Office
Prior art keywords
steam
arrangement
compressor
unit
stt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10720633.6A
Other languages
German (de)
French (fr)
Other versions
EP2440749A2 (en
Inventor
Hans-Gerd Kölscheid
Klaus Peters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2440749A2 publication Critical patent/EP2440749A2/en
Application granted granted Critical
Publication of EP2440749B1 publication Critical patent/EP2440749B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/04Units comprising pumps and their driving means the pump being fluid-driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0292Stop safety or alarm devices, e.g. stop-and-go control; Disposition of check-valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0205Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a dual level SCR refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0242Waste heat recovery, e.g. from heat of compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0269Arrangement of liquefaction units or equipments fulfilling the same process step, e.g. multiple "trains" concept
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0282Steam turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0289Use of different types of prime drivers of at least two refrigerant compressors in a cascade refrigeration system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/029Mechanically coupling of different refrigerant compressors in a cascade refrigeration system to a common driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0298Safety aspects and control of the refrigerant compression system, e.g. anti-surge control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • F25J2240/82Hot exhaust gas turbine combustion engine with waste heat recovery, e.g. in a combined cycle, i.e. for generating steam used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/10Control for or during start-up and cooling down of the installation

Definitions

  • the invention relates to an arrangement for the liquefaction of natural gas with a gas turbine unit, a steam turbine unit and compressors. Furthermore, the invention relates to a method for starting such a system.
  • natural gas represents a more environmentally friendly, safer, and in some cases better available alternative to other fuels.
  • the gas has the disadvantage that transport and storage can be very expensive and more conveniently carried out in the liquid state. Accordingly, the importance of liquefied natural gas plants is also increasing.
  • Conventional natural gas liquefaction plants conventionally consist of one or two compressors or compressor casings driven by at least one gas turbine or engine.
  • These high-production LNG plants (5 to 10 MPTA) typically use so-called single-shaft gas turbines in which the gas turbine compressor and turbine of the gas turbine are mounted on a shaft train.
  • These single-shaft gas turbines are unable to independently start or run at rated speed and regularly require a starter-helper motor.
  • This starter-helper engine is also regularly used to support the gas turbine at high power requirements.
  • the operation of this engine requires high voltage power electronics, which are designed for outputs of about 40 MW in a larger system.
  • the invention has the object to provide a simplified system concept without having to accept losses in overall efficiency, so that there are reduced investment costs.
  • gas turbine unit also includes a gas turbine compressor associated therewith.
  • gas turbine units, steam turbine units and compressor units mean one or more machines of this corresponding type of machine, which may be arranged parallel or serially to each other. It is essential for the units that corresponding process fluid originates from a common stream and, after passing through the corresponding unit, again forms a common stream, possibly merging into one.
  • the invention enables the arrangement the use of the steam turbine on the one hand as a replacement for an electric starter helper motor for the gas turbine and on the other hand as a drive for a compressor of the liquefaction plant.
  • the electric starter helper motor for starting and possibly supporting the gas turbine can be saved and with this also the very complex and expensive high voltage frequency.
  • a high efficiency especially since the separation of the clutch allows separate control of the gas turbine and steam turbine.
  • Exhaust gas of the gas turbine is used to generate steam for the steam turbine.
  • the two wave trains, the first shaft train of the steam turbine and the second shaft train of the gas turbine are rigid in themselves or can not be separated by means of a switchable clutch. However, this does not exclude releasable fasteners, for example by means of bolts, in the extension of these shaft strands.
  • the switchable coupling between the first shaft train and the second shaft train enables the starting of the gas turbine according to the invention with the aid of the steam turbine.
  • the power of the fired steam generator is preferably gradually replaced by steam from the heat recovery steam generator, this preferably until the complete shutdown of the fired steam generator.
  • the fired steam generator can additionally provide steam for the steam turbine.
  • the first shaft train and / or the second shaft train may be connected to a generator for generating electricity.
  • the particular suitability of the arrangement according to the invention for the operation of a natural gas liquefaction plant is shown when the first compressor unit is in communication with a first heat exchanger of a first stage of cooling the natural gas and the second compressor unit accordingly with a second stage at a lower temperature level than the first stage.
  • the first stage of the gas liquefaction can first be brought to an operating temperature of, for example, -40 ° C., before the gas turbine is started up by means of the steam turbine.
  • the second compressor unit is formed with two compressors, a low-pressure compressor and a high-pressure compressor, wherein these are connected in series such that the Ausrittstik from the low-pressure compressor substantially the inlet pressure of the high-pressure compressor up to any pressure losses in modules arranged therebetween corresponds.
  • a gymnastics engine is not comparable to a starter-helper engine because of the relatively low engine speed in terms of power consumption.
  • FIG. 1 shows an inventive arrangement TR in a schematic process representation with a first wave train SS1 and a second wave train SS2.
  • the two shaft strands SS1, SS2 can be connected to one another by means of a switchable clutch CLU.
  • FIG. 2 shows a parallel connection of three inventive arrangements TR1, TR2, TR3. The guidance of steam ST or condensate COND is shown in both figures.
  • the inventive arrangement TR, TR1, TR2, TR3 each consists of a steam turbine STT and a first compressor unit CO1 on a common first shaft train SS1 and a gas turbine GT and a second Compressor unit CO2 on a second shaft SS2.
  • the second compressor unit CO2 consists of a low-pressure compressor COLP and a high-pressure compressor COHP.
  • the first compressor unit CO1 is shown here with only one compressor housing.
  • the not shown in detail cooling process of the liquefaction plant with the heat exchangers HEX1, HEX2 is formed in two stages, the first stage is supplied to the first heat exchanger HEX1 of the first compressor unit CO1 and the second stage of the liquefaction plant with the second heat exchanger HEX2 from the second compressor unit CO2.
  • the gas turbine GT has its own gas turbine compressor GTCO, by means of which ambient air A is sucked through an air filter AF, mixed with fuel F and burned in a combustion chamber COMB, before the resulting combustion gas CG is expanded downstream in a gas turbine turbine.
  • the gas turbine turbine GTT drives both the gas turbine compressor GTCO and the second compressor unit CO2. After expansion, the hot combustion gas CG reaches a heat recovery heat exchanger HRSG and is cooled there to generate steam before it is released through a flue gas filter FL as purified exhaust EX in the environment, used differently or stored.
  • the steam turbine STT receives live steam LST from the heat recovery steam generator HRSG and the steam ST, which has been expanded in the steam turbine STT, is precipitated in a condenser CON and recycled as condensate COND in the heat recovery steam generator HRSG for generating live steam LST.
  • the steam turbine STT is also removed by means of a tap ET bleed steam EXT.
  • Both the steam turbine STT and the gas turbine GT are kept at a low speed, for example during standstill, by means of a turn drive TD of, for example, between 100 and 150 revolutions per minute so that the shaft does not buckle during cooling.
  • a generator GE which generates electrical energy P, can be connected to the steam turbine STT.
  • auxiliary steam AUXST is provided, which comes either from parallel-operated arrangements TR or a fired steam generator AUXSTG.
  • the FIG. 2 shows this in the parallel arrangement with the fired steam generator AUXSTG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Description

Die Erfindung betrifft eine Anordnung zur Verflüssigung von Erdgas mit einer Gasturbineneinheit, einer Dampfturbineneinheit und Verdichtern. Ferner betrifft die Erfindung ein Verfahren zum Anfahren einer derartigen Anlage.The invention relates to an arrangement for the liquefaction of natural gas with a gas turbine unit, a steam turbine unit and compressors. Furthermore, the invention relates to a method for starting such a system.

Die Verflüssigung von Erdgas ist im Zuge der Rohstoffverknappung und gesteigerten Umweltbewusstseins von zunehmender Bedeutung. In vielen Fällen stellt Erdgas gegenüber anderen Energieträgern eine umweltfreundlichere, sicherere und teilweise besser verfügbare Alternative dar. Mit dem Gas liegt jedoch der Nachteil vor, dass Transport und Lagerung sehr aufwendig sein können und zweckmäßiger im flüssigen Zustand durchführbar sind. Dementsprechend steigt auch die Bedeutung von Anlagen zur Verflüssigung von Erdgas.The liquefaction of natural gas is becoming increasingly important in the context of scarcity of raw materials and increased environmental awareness. In many cases, natural gas represents a more environmentally friendly, safer, and in some cases better available alternative to other fuels. However, the gas has the disadvantage that transport and storage can be very expensive and more conveniently carried out in the liquid state. Accordingly, the importance of liquefied natural gas plants is also increasing.

Herkömmliche Anlagen zur Verflüssigung von Erdgas bestehen üblicher Weise aus ein oder zwei Verdichtern bzw. Verdichtergehäusen, die von mindestens einer Gasturbine oder einem Motor angetrieben werden. Bei diesen Flüssigerdgasanlagen mit einer hohen Jahresproduktion (5 bis 10 MPTA) werden normalerweise sog. Einwellengasturbinen eingesetzt, bei denen sich der Gasturbinenverdichter und die Turbine der Gasturbine auf einem Wellenstrang befinden. Diese Einwellengasturbinen sind nicht in der Lage, eigenständig zu starten bzw. auf Nenndrehzahl anzufahren und benötigen dazu regelmäßig einen Starter-Helper-Motor. Dieser Starter-Helper-Motor wird regelmäßig auch zur Unterstützung der Gasturbine bei hohen Leistungsanforderungen verwendet. Der Betrieb dieses Motors bedarf einer Hochspannungsleistungselektronik, welche auf Leistungen von etwa 40 MW in einer größeren Anlage ausgelegt ist.Conventional natural gas liquefaction plants conventionally consist of one or two compressors or compressor casings driven by at least one gas turbine or engine. These high-production LNG plants (5 to 10 MPTA) typically use so-called single-shaft gas turbines in which the gas turbine compressor and turbine of the gas turbine are mounted on a shaft train. These single-shaft gas turbines are unable to independently start or run at rated speed and regularly require a starter-helper motor. This starter-helper engine is also regularly used to support the gas turbine at high power requirements. The operation of this engine requires high voltage power electronics, which are designed for outputs of about 40 MW in a larger system.

Ausgehend von der vorhergehend beschriebenen Anlage liegt der Erfindung die Aufgabe zugrunde, ein vereinfachtes Anlagenkonzept bereitzustellen, ohne Einbußen im Gesamtwirkungsgrad in Kauf nehmen zu müssen, so dass sich reduzierte Investitionskosten ergeben.Starting from the previously described system, the invention has the object to provide a simplified system concept without having to accept losses in overall efficiency, so that there are reduced investment costs.

Aus der EP 1 903 189 A1 ist eine Anordnung zu Verflüssigung von Erdgas gemäß dem Oberbegriff des Anspruchs 1 bekannt. Aus der EP 0 768 449 A1 ist eine Kraftwerksanlage bekannt mit einer Anordnung zum Anfahren einer Gasturbine mittels einer Dampfturbine.From the EP 1 903 189 A1 An arrangement for liquefying natural gas according to the preamble of claim 1 is known. From the EP 0 768 449 A1 is a power plant known with an arrangement for starting a gas turbine by means of a steam turbine.

Erfindungsgemäß wird eine Anlage mit den Merkmalen des Anspruchs 1 vorgeschlagen, die weiterhin erfindungsgemäß nach einem Verfahren des Anspruchs 8 angefahren werden kann. Die jeweils rückbezogenen Unteransprüche beinhalten vorteilhafte Weiterbildungen der Erfindung.According to the invention a system with the features of claim 1 is proposed, which can also be approached according to the invention according to a method of claim 8. The respective dependent claims contain advantageous developments of the invention.

In der Terminologie der Patentanmeldung umfasst die Gasturbineneinheit auch einen dieser zugeordneten Gasturbinenverdichter. Weiterhin bedeuten Gasturbinen-Einheiten, Dampfturbinen-Einheiten und Verdichter-Einheiten eine oder mehrere Maschinen dieses entsprechenden Maschinentyps, die parallel oder seriell zueinander angeordnet sein können. Wesentlich bei den Einheiten ist, dass entsprechendes Prozessfluid einem gemeinsamen Strom entstammt und nach Durchlauf der entsprechenden Einheit auch wieder einen gemeinsamen Strom bildet, ggf. in einen solchen zusammenmündet.In the terminology of the patent application, the gas turbine unit also includes a gas turbine compressor associated therewith. Furthermore, gas turbine units, steam turbine units and compressor units mean one or more machines of this corresponding type of machine, which may be arranged parallel or serially to each other. It is essential for the units that corresponding process fluid originates from a common stream and, after passing through the corresponding unit, again forms a common stream, possibly merging into one.

Die Erfindung ermöglicht der Anordnung den Einsatz der Dampfturbine einerseits als Ersatz für einen elektrischen Starter-Helper-Motor für die Gasturbine und andererseits als Antrieb für einen Verdichter der Verflüssigungsanlage. Auf diese Weise kann der elektrische Starter-Helper-Motor zum Anfahren und ggf. zum Unterstützen der Gasturbine eingespart werden und mit diesem auch der sehr komplexe und kostspielige Hochspannungsfrequenzumrichter. Im gleichen Zuge ergibt sich ein hoher Wirkungsgrad, insbesondere da das Trennen der Kupplung eine separate Regelung der Gasturbine und Dampfturbine ermöglicht.The invention enables the arrangement the use of the steam turbine on the one hand as a replacement for an electric starter helper motor for the gas turbine and on the other hand as a drive for a compressor of the liquefaction plant. In this way, the electric starter helper motor for starting and possibly supporting the gas turbine can be saved and with this also the very complex and expensive high voltage frequency. In the same course arises a high efficiency, especially since the separation of the clutch allows separate control of the gas turbine and steam turbine.

Zusätzlich kann der Wirkungsgrad der Anordnung signifikant gesteigert werden, wenn mittels eines Abhitzekessels dasIn addition, the efficiency of the arrangement can be significantly increased when using a waste heat boiler

Abgas der Gasturbine zur Dampferzeugung für die Dampfturbine verwendet wird. Die beiden Wellenstränge, der erste Wellenstrang der Dampfturbine und der zweite Wellenstrang der Gasturbine, sind in sich starr ausgebildet bzw. nicht mittels schaltbarer Kupplung trennbar. Dies schließt lösbare Befestigungen -beispielsweise mittels Bolzen - in der Erstreckung dieser Wellenstränge jedoch nicht aus. Die schaltbare Kupplung zwischen dem ersten Wellenstrang und dem zweiten Wellenstrang ermöglicht das erfindungsgemäße Anfahren der Gasturbine mit Hilfe der Dampfturbine. Bei der Ausbildung der Erfindung mit einem Abhitzedampferzeuger wird die Leistung des befeuerten Dampferzeugers bevorzugt schrittweise durch Dampf aus dem Abhitzedampferzeuger ersetzt, dies bevorzugt bis zum völligen Abschalten des befeuerten Dampferzeugers. Bei besonderen Leistungsanforderungen kann der befeuerte Dampferzeuger zusätzlich Dampf für die Dampfturbine bereitstellen. Gegebenenfalls können der erste Wellenstrang und/oder der zweite Wellenstrang mit einem Generator zur Stromerzeugung verbunden sein.Exhaust gas of the gas turbine is used to generate steam for the steam turbine. The two wave trains, the first shaft train of the steam turbine and the second shaft train of the gas turbine, are rigid in themselves or can not be separated by means of a switchable clutch. However, this does not exclude releasable fasteners, for example by means of bolts, in the extension of these shaft strands. The switchable coupling between the first shaft train and the second shaft train enables the starting of the gas turbine according to the invention with the aid of the steam turbine. In the embodiment of the invention with a heat recovery steam generator, the power of the fired steam generator is preferably gradually replaced by steam from the heat recovery steam generator, this preferably until the complete shutdown of the fired steam generator. For special power requirements, the fired steam generator can additionally provide steam for the steam turbine. Optionally, the first shaft train and / or the second shaft train may be connected to a generator for generating electricity.

Die besondere Eignung der erfindungsgemäßen Anordnung für den Betrieb einer Erdgasverflüssigungsanlage zeigt sich, wenn die erste Verdichtereinheit mit einem ersten Wärmetauscher einer ersten Stufe des Abkühlens des Erdgases in Verbindung steht und die zweite Verdichtereinheit entsprechend mit einer zweiten Stufe auf niedrigeren Temperaturniveau als die erste Stufe. Auf diese Weise kann die erste Stufe der Gasverflüssigung zunächst auf eine Betriebstemperatur von beispielsweise -40°C gebracht werden, bevor die Gasturbine mittels der Dampfturbine angefahren wird.The particular suitability of the arrangement according to the invention for the operation of a natural gas liquefaction plant is shown when the first compressor unit is in communication with a first heat exchanger of a first stage of cooling the natural gas and the second compressor unit accordingly with a second stage at a lower temperature level than the first stage. In this way, the first stage of the gas liquefaction can first be brought to an operating temperature of, for example, -40 ° C., before the gas turbine is started up by means of the steam turbine.

Zweckmäßig ist die zweite Verdichtereinheit mit zwei Verdichtern ausgebildet ist, einem Niederdruckverdichter und einem Hochdruckverdichter, wobei diese derart in Reihe geschaltet sind, dass der Ausrittsdruck aus dem Niederdruckverdichter im Wesentlichen dem Eintrittsdruck des Hochdruckverdichters bis auf etwaige Druckverluste in dazwischen angeordneten Modulen, entspricht.Suitably, the second compressor unit is formed with two compressors, a low-pressure compressor and a high-pressure compressor, wherein these are connected in series such that the Ausrittsdruck from the low-pressure compressor substantially the inlet pressure of the high-pressure compressor up to any pressure losses in modules arranged therebetween corresponds.

Beim Starten vor dem Einkuppeln der Gasturbine an dem ersten Wellenstrang der Dampfturbine ist es zweckmäßig, wenn die Gasturbine bereits auf einer geringen Turndrehzahl (von etwa bis zu 150 Umdrehungen pro Minute) mittels eines Turnmotors gedreht wird und die Dampfturbine auf knapp unterhalb dieser Drehzahl vor dem Einkuppeln gefahren wird, so dass es nicht zu einer Überlastung der schaltbaren Kupplung kommt.When starting before the engagement of the gas turbine to the first shaft of the steam turbine, it is advantageous if the gas turbine is already rotated at a low turn speed (of about up to 150 revolutions per minute) by means of a turbo engine and the steam turbine to just below this speed before the Engaging is driven so that it does not overload the switchable clutch.

Ein Turnmotor ist wegen der verhältnismäßig niedrigen Drehzahl hinsichtlich seiner Leistungsaufnahme nicht mit einem Starter-Helper-Motor vergleichbar.A gymnastics engine is not comparable to a starter-helper engine because of the relatively low engine speed in terms of power consumption.

Im Folgenden ist die Erfindung anhand eines speziellen Ausführungsbeispiels, ohne auf dieses Beispiel beschränkt zu sein, unter Bezugnahme auf Zeichnungen näher erläutert. Es zeigen:

Figur 1
eine schematische Darstellung eines Anordnung gemäß der Erfindung,
Figur 2
eine schematische Darstellung mehrerer Anordnungen gemäß der Erfindung, die parallel zueinander betrieben werden.
In the following the invention with reference to a specific embodiment, without being limited to this example, explained in more detail with reference to drawings. Show it:
FIG. 1
a schematic representation of an arrangement according to the invention,
FIG. 2
a schematic representation of several arrangements according to the invention, which are operated in parallel.

Figur 1 zeigt eine erfindungsgemäße Anordnung TR in schematischer Verfahrensdarstellung mit einem ersten Wellenstrang SS1 und einem zweiten Wellenstrang SS2. Die beiden Wellenstränge SS1, SS2 sind mit einer schaltbaren Kupplung CLU miteinander verbindbar. Figur 2 zeigt eine Parallelschaltung dreier erfindungsgemäßer Anordnungen TR1, TR2, TR3. Die Führung von Dampf ST bzw. Kondensat COND ist in beiden Figuren dargestellt. FIG. 1 shows an inventive arrangement TR in a schematic process representation with a first wave train SS1 and a second wave train SS2. The two shaft strands SS1, SS2 can be connected to one another by means of a switchable clutch CLU. FIG. 2 shows a parallel connection of three inventive arrangements TR1, TR2, TR3. The guidance of steam ST or condensate COND is shown in both figures.

Die erfindungsgemäße Anordnung TR, TR1, TR2, TR3 besteht jeweils aus einer Dampfturbine STT und einer ersten Verdichtereinheit CO1 auf einem gemeinsamen ersten Wellenstrang SS1 und einer Gasturbine GT und einer zweiten Verdichtereinheit CO2 auf einem zweiten Wellenstrang SS2. Die zweite Verdichtereinheit CO2 besteht aus einem Niederdruckverdichter COLP und einem Hochdruckverdichter COHP. Die erste Verdichtereinheit CO1 ist hier mit nur einem Verdichtergehäuse dargestellt. Der nicht näher gezeigte Kühlprozess der Verflüssigungsanlage mit den Wärmetauschern HEX1, HEX2 ist zweistufig ausgebildet, wobei die erste Stufe mit dem ersten Wärmetauschern HEX1 von der ersten Verdichtereinheit CO1 versorgt wird und die zweite Stufe der Verflüssigungsanlage mit dem zweiten Wärmetauscher HEX2 von der zweiten Verdichtereinheit CO2.The inventive arrangement TR, TR1, TR2, TR3 each consists of a steam turbine STT and a first compressor unit CO1 on a common first shaft train SS1 and a gas turbine GT and a second Compressor unit CO2 on a second shaft SS2. The second compressor unit CO2 consists of a low-pressure compressor COLP and a high-pressure compressor COHP. The first compressor unit CO1 is shown here with only one compressor housing. The not shown in detail cooling process of the liquefaction plant with the heat exchangers HEX1, HEX2 is formed in two stages, the first stage is supplied to the first heat exchanger HEX1 of the first compressor unit CO1 and the second stage of the liquefaction plant with the second heat exchanger HEX2 from the second compressor unit CO2.

Die Gasturbine-GT weist einen eigenen Gasturbinenverdichter GTCO auf, mittels dessen Umgebungsluft A durch einen Luftfilter AF angesaugt wird, mit Brennstoff F gemischt wird und in einer Brennkammer COMB verbrannt wird, bevor das entstehende Verbrennungsgas CG stromabwärts in einer Gasturbinenturbine entspannt wird. Die Gasturbinenturbine GTT treibt sowohl den Gasturbinenverdichter GTCO als auch die zweite Verdichtereinheit CO2 an. Nach der Entspannung erreicht das heiße Verbrennungsgas CG einen Abhitzewärmetauscher HRSG und wird dort zur Dampferzeugung abgekühlt, bevor es durch einen Abgasfilter FL als gereinigtes Abgas EX in die Umgebung freigesetzt, anders eingesetzt oder gelagert wird. Die Dampfturbine STT erhält Frischdampf LST aus dem Abhitzedampferzeuger HRSG und der in der Dampfturbine STT entspannte Dampf ST wird in einem Kondensator CON niedergeschlagen und als Kondensat COND im Abhitzedampferzeuger HRSG zur Erzeugung von Frischdampf LST wieder zugeführt. Der Dampfturbine STT wird außerdem mittels einer Anzapfung ET Anzapfdampf EXT entnommen. Sowohl die Dampfturbine STT als auch die Gasturbine GT werden, beispielsweise während Stillständen, mittels eines Turnantriebes TD auf einer geringen Drehzahl gehalten von beispielsweise zwischen 100 und 150 Umdrehungen in der Minute, damit sich beim Abkühlen die Welle nicht verkrümmt. Optional kann an die Dampfturbine STT ein Generator GE angeschlossen werden, der elektrische Energie P erzeugt. Zum Anfahren der Dampfturbine STT wird Hilfsdampf AUXST bereitgestellt, der entweder aus parallel betriebenen Anordnungen TR entstammt oder einem befeuerten Dampferzeuger AUXSTG. Die Figur 2 zeigt dies in der Parallelanordnung mit dem befeuerten Dampferzeuger AUXSTG.The gas turbine GT has its own gas turbine compressor GTCO, by means of which ambient air A is sucked through an air filter AF, mixed with fuel F and burned in a combustion chamber COMB, before the resulting combustion gas CG is expanded downstream in a gas turbine turbine. The gas turbine turbine GTT drives both the gas turbine compressor GTCO and the second compressor unit CO2. After expansion, the hot combustion gas CG reaches a heat recovery heat exchanger HRSG and is cooled there to generate steam before it is released through a flue gas filter FL as purified exhaust EX in the environment, used differently or stored. The steam turbine STT receives live steam LST from the heat recovery steam generator HRSG and the steam ST, which has been expanded in the steam turbine STT, is precipitated in a condenser CON and recycled as condensate COND in the heat recovery steam generator HRSG for generating live steam LST. The steam turbine STT is also removed by means of a tap ET bleed steam EXT. Both the steam turbine STT and the gas turbine GT are kept at a low speed, for example during standstill, by means of a turn drive TD of, for example, between 100 and 150 revolutions per minute so that the shaft does not buckle during cooling. Optionally, a generator GE, which generates electrical energy P, can be connected to the steam turbine STT. To the Start of the steam turbine STT auxiliary steam AUXST is provided, which comes either from parallel-operated arrangements TR or a fired steam generator AUXSTG. The FIG. 2 shows this in the parallel arrangement with the fired steam generator AUXSTG.

Die Anordnung TR, TR1, TR2, TR3 wird jeweils folgendermaßen hochgefahren:

  • In dem befeuerten Dampferzeuger AUXSTG wird Dampf ST zum Hochfahren der Dampfturbine STT mit der ersten Verdichtereinheit CO1 erzeugt. Zu diesem Zeitpunkt ist der erste Wellenstrang SS1 nicht mit dem zweiten Wellenstrang, SS2, auf dem sich die Gasturbine GT und die zweite Verdichtereinheit CO2 befinden, gekoppelt. Der zweite Wellenstrang SS2 wird mittels des Drehantriebes TD langsam mit einer Turndrehzahl zwischen 100 und 150 Umdrehungen in der Minute gedreht. Mittels des Hilfsdampfs AUXST wird die Dampfturbine der ersten Verdichtereinheit CO1 langsam unter Berücksichtigung der notwendigen Haltepunkte auf Betriebsdrehzahl gefahren. Mit Erreichen der Betriebsdrehzahl und der Betriebstemperatur wird der erste Wärmetauscher HEX, der mit der ersten Verdichtereinheit CO1 in Verbindung steht, auf die dem Verflüssigungsprozess angepassten Prozesserfordernisse in der Temperatur abgesenkt. Anschließend wird die Drehzahl des ersten Wellenstrangs SS1 unterhalb der Turndrehzahl des zweiten Wellenstrangs SS2 herabgesetzt und die Kupplung CLU eingekuppelt. Die vorgewärmte Dampfturbine fährt nun den gesamten Wellenstrang auf Betriebsdrehzahl, wobei die Gasturbine GT gezündet wird. Sobald die Gasturbine GT genügend Leistung erzeugt, um die zweite Verdichtereinheit CO2 anzutreiben, wird die Drehzahl des ersten Wellenstrangs geringfügig unter die Drehzahl des zweiten Wellenstranges abgesenkt und die Kupplung CLU ausgekoppelt, so dass beide Stränge getrennt voneinander geregelt werden können. Schrittweise wird der für die Dampfturbine STT benötigte Dampf von dem befeuerten Dampferzeuger AUXSTG auf den Dampf ST von dem Abhitzedampferzeuger HRSG umgestellt.
The arrangement TR, TR1, TR2, TR3 is started up in each case as follows:
  • In the fired steam generator AUXSTG steam ST is generated to start the steam turbine STT with the first compressor unit CO1. At this time, the first shaft train SS1 is not coupled to the second shaft train, SS2, on which the gas turbine GT and the second compressor unit CO2 are located. The second shaft train SS2 is slowly rotated by means of the rotary drive TD with a turn speed between 100 and 150 revolutions per minute. By means of the auxiliary steam AUXST the steam turbine of the first compressor unit CO1 is slowly driven to operating speed taking into account the necessary stopping points. Upon reaching the operating speed and the operating temperature of the first heat exchanger HEX, which is in communication with the first compressor unit CO1, lowered to the liquefaction process requirements adapted to the temperature. Subsequently, the rotational speed of the first shaft strand SS1 is reduced below the turn speed of the second shaft strand SS2 and the clutch CLU is engaged. The preheated steam turbine drives now the entire shaft train to operating speed, the gas turbine GT is ignited. As soon as the gas turbine GT generates sufficient power to drive the second compressor unit CO2, the speed of the first shaft train is lowered slightly below the speed of the second shaft train and the clutch CLU is decoupled, so that both strands can be controlled separately. Gradually, the steam needed for the steam turbine STT is fired from the one Steam generator AUXSTG switched to the steam ST of the heat recovery steam generator HRSG.

Claims (13)

  1. Arrangement (TR) for liquefying natural gas, with
    - a gas turbine unit (GT) comprising a gas turbine compressor (GTCO),
    - a steam turbine unit (STT),
    - a first compressor unit (CO1) for liquefying the natural gas,
    - a second compressor unit (CO2), the steam turbine unit (STT) and the first compressor unit (CO1) having a common, rigidly joined-together first shaft assembly (SS1) and the gas turbine unit (GT) and the second compressor unit (CO2) having a common rigidly joined-together second shaft assembly (SS2),
    characterized in that
    the arrangement further comprises - a shiftable clutch (CLU) and
    - a fired steam generator (AUXSTG) for supplying the steam turbine unit (SST) with steam (ST),
    wherein the first shaft assembly (SS1) and the second shaft assembly (SS2) can be connected and disconnected to and from each other by means of the clutch (CLU).
  2. Arrangement (TR) according to Claim 1, the second shaft assembly (SS2) not having an electric starter-helper motor.
  3. Arrangement (TR) according to Claim 1 or 2, the first compressor unit (CO1) being connected to a first heat exchanger (HEX1), by means of which the natural gas is cooled down to a first temperature.
  4. Arrangement (TR) according to at least the preceding Claim 3, the second compressor unit (CO2) being connected to a second heat exchanger (HEX2), by means of which the natural gas is cooled down to a second temperature, which is lower than the first temperature.
  5. Arrangement (TR) according to at least one of the preceding claims, the second compressor unit (CO2) having a low-pressure compressor (COLP) and a high-pressure compressor (COHP) and compressed process gas being conducted from the low-pressure compressor (COLP) into the high-pressure compressor (COHP).
  6. Arrangement (TR) according to at least one of the preceding claims, a generator (GE) being in connection with the steam turbine (STT) to generate power.
  7. Arrangement (TR) according to at least one of the preceding claims, a waste heat recovery steam generator (HRSG) being provided, generating steam (ST) for the steam turbine (STT) by means of combustion gas (CG) from the gas turbine (GT).
  8. Method for starting an arrangement for liquefying natural gas,
    which arrangement has:
    - a gas turbine unit (GT) comprising a gas turbine compressor (GTCO),
    - a steam turbine unit (STT),
    - a first compressor unit (C01),
    - a clutch (CLU),
    - a fired steam generator (AUXSTG) for supplying the steam turbine unit (STT) with steam (ST) and
    - a second compressor unit (CO2),
    wherein the steam turbine unit (STT) and the first compressor unit (CG1) have a common, rigidly joined-together first shaft assembly (SS1) and wherein the gas turbine unit (GT) has a second shaft assembly (SS2),
    wherein the first shaft assembly (SS1) and the second shaft assembly (SS2) can be connected and disconnected to and from each other by means of the clutch (CLU),
    which method comprises the following steps:
    - generating steam (ST) in the fired steam generator (AUXSTG),
    - starting the steam turbine (ST) to operating speed,
    - operating the first compressor (CO1) until a first heat exchanger (HEX1) for cooling down the natural gas has reached a first operating temperature,
    - engaging the clutch (CLU) and igniting the gas turbine (GT).
  9. Method according to the preceding Patent Claim 8, a changeover to supplying the steam turbine (STT) with steam (ST) from a waste heat recovery steam generator (HRSG) that is operated with combustion gas (CG) of the gas turbine (GT) instead of from the fired steam generator (AUXSTG) taking place step by step after the ignition of the gas turbine (GT).
  10. Method according to at least Claim 8 or 9, the gas turbine (GT) being turned at a turning speed by means of a turning drive (TD) before the engagement of the clutch.
  11. Method according to Claim 8, 9 or 10, the speed of the steam turbine (STT) being lowered before the engagement of the clutch.
  12. Method according to at least the preceding Claim 11, the lowering of the speed of the steam turbine (STT) before the engagement of the clutch taking place to below the turning speed.
  13. Method according to one of the preceding Claims 8 to 12, the clutch (CLU) disconnecting the first shaft assembly (SS1) from the second shaft assembly (SS2) once the two shaft assemblies (SS1, SS2) have reached the operating speed.
EP10720633.6A 2009-06-09 2010-06-01 Arrangement for liquefying natural gas, and method for starting said arrangement Not-in-force EP2440749B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009024407 2009-06-09
PCT/EP2010/057640 WO2010142574A2 (en) 2009-06-09 2010-06-01 Arrangement for liquefying natural gas, and method for starting said arrangement

Publications (2)

Publication Number Publication Date
EP2440749A2 EP2440749A2 (en) 2012-04-18
EP2440749B1 true EP2440749B1 (en) 2016-12-14

Family

ID=43309272

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10720633.6A Not-in-force EP2440749B1 (en) 2009-06-09 2010-06-01 Arrangement for liquefying natural gas, and method for starting said arrangement

Country Status (4)

Country Link
US (1) US9926934B2 (en)
EP (1) EP2440749B1 (en)
CN (1) CN102498267B (en)
WO (1) WO2010142574A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9309810B2 (en) 2012-12-14 2016-04-12 Electro-Motive Diesel, Inc. System for converting gaseous fuel into liquid fuel
US10436074B2 (en) * 2013-01-24 2019-10-08 Tascosa Advanced Service, Inc. Combined brayton/rankine cycle gas and steam turbine generating system operated in two closed loops
US10731501B2 (en) * 2016-04-22 2020-08-04 Hamilton Sundstrand Corporation Environmental control system utilizing a motor assist and an enhanced compressor
DE102016217886A1 (en) 2016-09-19 2018-03-22 Siemens Aktiengesellschaft Plant and process with a thermal power plant and a process compressor
WO2019011326A1 (en) * 2017-07-14 2019-01-17 上海电气电站设备有限公司 Steam turbine quick start warming system, pre-warming system and warming method therefor
CN108278156A (en) * 2018-01-17 2018-07-13 中国科学院工程热物理研究所 Fresh air cooling heating and power generation system
WO2020228986A1 (en) * 2019-05-13 2020-11-19 Nuovo Pignone Tecnologie - S.R.L. Compressor train with combined gas turbine and steam turbine cycle
RU2734127C1 (en) * 2019-12-26 2020-10-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Manoeuvrable combined heat and power plant with steam drive of compressor
US11703278B2 (en) * 2020-06-19 2023-07-18 Mitsubishi Heavy Industries Compressor Corporation Liquefied natural gas compression system

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH76249A (en) 1914-03-27 1914-11-16 Conrad Kohler Gas turbine system in which the waste heat from the hot combustion gases is used to operate a steam turbine
US1880066A (en) * 1930-11-06 1932-09-27 Universal Gear Shift Corp Gear shifting mechanism
US2550844A (en) * 1946-06-14 1951-05-01 Daniel V Meiller Natural gas storage
GB1168081A (en) 1966-02-18 1969-10-22 Ass Elect Ind Improvements relating to Gas Turbine Plants
US3964891A (en) * 1972-09-01 1976-06-22 Heinrich Krieger Process and arrangement for cooling fluids
DE2852078A1 (en) 1978-12-01 1980-06-12 Linde Ag METHOD AND DEVICE FOR COOLING NATURAL GAS
DE3316070A1 (en) 1983-05-03 1984-11-08 Rudolf Dr. 6800 Mannheim Wieser Gas turbine unit
DE3907217A1 (en) 1989-03-07 1990-09-13 Steinmueller Gmbh L & C METHOD FOR OPERATING A COMBINED GAS TURBINE / STEAM TURBINE PROCESS
US5042246A (en) * 1989-11-06 1991-08-27 General Electric Company Control system for single shaft combined cycle gas and steam turbine unit
DE4426354C2 (en) * 1994-07-25 2003-03-06 Alstom KombiAnlage
DE19537637A1 (en) 1995-10-10 1997-04-17 Asea Brown Boveri Process for operating a power plant
DE69633794T2 (en) * 1996-06-26 2005-10-27 Hitachi, Ltd. KOMBIKRAFTWERK IN EINWELLENANORDNUNG
DE19757588A1 (en) 1996-12-24 1998-07-02 Hitachi Ltd Electricity generating system with gas turbine and energy storage
US6474069B1 (en) 2000-10-18 2002-11-05 General Electric Company Gas turbine having combined cycle power augmentation
DE10056231B4 (en) * 2000-11-13 2012-02-23 Alstom Technology Ltd. Method for operating a combined cycle power plant
JP3716244B2 (en) * 2002-09-19 2005-11-16 三菱重工業株式会社 Operation control apparatus and operation control method for single-shaft combined plant provided with clutch.
CA2539298C (en) 2003-11-06 2010-04-13 Exxonmobil Upstream Research Company Method for efficient, nonsynchronous lng production
EP1591628A1 (en) * 2004-04-30 2005-11-02 Siemens Aktiengesellschaft Combined power plant and cooling method therefor
DE102004039019A1 (en) 2004-08-11 2006-02-23 Airbus Deutschland Gmbh Compressed air generating system for starting gas turbine e.g. aircraft engine has hydrogen/oxygen steam generator that produces steam that is fed into gas turbine for gas turbine to reach sufficiently high rotary speed
JP4581563B2 (en) 2004-08-31 2010-11-17 株式会社日立製作所 Combined cycle power generation facilities, steam power generation facilities
EP1903189A1 (en) 2006-09-15 2008-03-26 Siemens Aktiengesellschaft LNG-System in combination with gas- and steam-turbines
EP2072609A1 (en) 2007-04-27 2009-06-24 Hitachi Ltd. Natural gas liquefaction plant, and power supply system, controller and operating method thereof

Also Published As

Publication number Publication date
WO2010142574A2 (en) 2010-12-16
US9926934B2 (en) 2018-03-27
CN102498267A (en) 2012-06-13
CN102498267B (en) 2015-11-25
US20120131950A1 (en) 2012-05-31
EP2440749A2 (en) 2012-04-18
WO2010142574A3 (en) 2012-02-16

Similar Documents

Publication Publication Date Title
EP2440749B1 (en) Arrangement for liquefying natural gas, and method for starting said arrangement
DE3853074T2 (en) RETROFITTING SINGLE CIRCUIT GAS TURBINES FOR AIR STORAGE OPERATION.
EP1914407B1 (en) Method for operating a gas turbine plant
DE102009003406A1 (en) Method and system for supporting a modification of a combined cycle working fluid and its combustion
EP2366062B1 (en) Method for stabilization of the network frequency of an electrical power network
DE3411444A1 (en) GAS TURBINE POWER PLANT WITH AIR STORAGE AND METHOD FOR OPERATING THE SAME
EP1795725A1 (en) Gas turbine with cooling air cooling
DE4210541A1 (en) Process for operating a gas turbine group
EP2061954B1 (en) Lng-system in combination with gas- and steam-turbines
EP1937942B1 (en) Steam power plant and method for retrofitting a steam power plant
WO2012031309A1 (en) Electric power station
EP2592241A1 (en) Method for operating a gas and steam turbine facility for frequency support
EP0758045B1 (en) Starting process for a single shaft combined power plant
EP1377730B1 (en) Steam power plant provided with a retrofit kit and method for retrofitting a steam power plant
EP1904731B1 (en) Combined gas and steam turbine installation and method of operating same
DE112006002028B4 (en) Process for operating a gas turbine and gas turbine for carrying out the process
EP1286030B1 (en) Gas and air turbine powerplant
CH630441A5 (en) AIR STORAGE GAS TURBINE POWER PLANT AND METHOD FOR OPERATING IT.
EP2393708B1 (en) Internal combustion engine system having exhaust gas energy recapture for floating devices
DE2263051A1 (en) GAS TURBINE SYSTEM WITH UPSTANDING AIR STORAGE
EP0995891B1 (en) Turbomachine and method for its operation
WO2021160367A1 (en) Repowering steam turbine facility, and facility
DE967201C (en) System for generating compressed air
DE102018209054A1 (en) Power generating device for generating electrical power and power grid with such a power generating device
DE102012223818A1 (en) Gas and steam turbine system for internal combustion engine, has waste heat steam generator that supplies exhaust gas to engine whose amount of heat content of exhaust gas at maximum power is less than generator maximum thermal output

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111111

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502010012880

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F01K0013020000

Ipc: F25J0001000000

RIC1 Information provided on ipc code assigned before grant

Ipc: F01K 13/02 20060101ALI20151127BHEP

Ipc: F04D 25/06 20060101ALI20151127BHEP

Ipc: F04D 25/02 20060101ALI20151127BHEP

Ipc: F25J 1/02 20060101ALI20151127BHEP

Ipc: F04D 27/02 20060101ALI20151127BHEP

Ipc: F04D 25/04 20060101ALI20151127BHEP

Ipc: F25J 1/00 20060101AFI20151127BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160711

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 853968

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010012880

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170314

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170414

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170314

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170414

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010012880

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 853968

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180614

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180820

Year of fee payment: 9

Ref country code: IT

Payment date: 20180627

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180910

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010012880

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214