EP1937942B1 - Steam power plant and method for retrofitting a steam power plant - Google Patents

Steam power plant and method for retrofitting a steam power plant Download PDF

Info

Publication number
EP1937942B1
EP1937942B1 EP06807006.9A EP06807006A EP1937942B1 EP 1937942 B1 EP1937942 B1 EP 1937942B1 EP 06807006 A EP06807006 A EP 06807006A EP 1937942 B1 EP1937942 B1 EP 1937942B1
Authority
EP
European Patent Office
Prior art keywords
steam
turbine
power plant
drive shaft
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06807006.9A
Other languages
German (de)
French (fr)
Other versions
EP1937942A2 (en
Inventor
Kai Wieghardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP06807006.9A priority Critical patent/EP1937942B1/en
Priority to PL06807006T priority patent/PL1937942T3/en
Publication of EP1937942A2 publication Critical patent/EP1937942A2/en
Application granted granted Critical
Publication of EP1937942B1 publication Critical patent/EP1937942B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type

Definitions

  • the invention relates to a steam power plant with at least one steam heater for providing compressed steam, a steam heater downstream, arranged on a main drive shaft and designed for operation with high pressure and / or medium pressure steam main turbine, as well as between the steam superheater and the main turbine connected and on a Additional drive shaft arranged additional turbine.
  • the invention further relates to a method for retrofitting a steam power plant with at least one steam heater for providing compressed steam, as well as a steam turbine downstream, arranged on a main shaft and designed for operation with high pressure and / or medium pressure steam main turbine.
  • the method includes the step of retrofitting the thermal power plant with an auxiliary turbine disposed on an auxiliary drive shaft.
  • the above-mentioned main turbine designed for operation with high pressure and / or medium pressure steam can be designed as a separate high-pressure, as a separate medium-pressure or as a combined high-pressure / medium-pressure turbine.
  • High-pressure turbines are usually designed for a temperature of 520 to 600 ° C and a pressure of 120 to 300 bar.
  • medium-pressure turbines are generally designed to hold 520 to 620 ° C hot steam at a pressure of 30 to 60 bar.
  • the steam generator of the steam power plant can use various heat sources for steam generation, in particular the exhaust gas of a gas turbine. In this respect, the steam power plant can also be part of another power plant.
  • document DE 820 600 C discloses a steam power plant whose boiler receives its combustion air from an air turbine.
  • an auxiliary turbine is connected on an auxiliary drive shaft between the steam heater and the main turbine.
  • the main drive shaft is mechanically coupled to the auxiliary drive shaft for driving an electric generator in the rule.
  • An object of the invention is to improve a steam power plant of the type mentioned and a method for retrofitting a steam power plant of the type mentioned in that the performance and efficiency of the steam power plant can be further increased.
  • This object is achieved according to the invention with a generic steam power plant, in which the auxiliary turbine is designed to a relative to a rated speed of the main turbine by at least 50% higher operating speed.
  • the object is further achieved by a generic method, in which the auxiliary turbine is designed to be at a rated speed of the main turbine by at least 50% higher operating speed.
  • the steam conditions for the additional turbine which is designed in particular as a high-pressure or medium-pressure turbine, can be increased considerably.
  • the relative to the rated speed of the main turbine by at least 50% higher operating speed of the auxiliary turbine allows efficiency-enhancing operation of the auxiliary turbine with steam conditions increased temperature and increased pressure.
  • a conversion of these increased steam conditions into mechanical power can be done at the correspondingly high operating speed with increased efficiency.
  • This increases the output power of the additional turbine.
  • the vapor state advantageously has a vapor state which the main turbine is usually designed. That is, the power generated by the auxiliary turbine is available in addition to the power generated by the steam power plant prior to retrofitting with the auxiliary turbine.
  • the additional turbine is arranged on an auxiliary drive shaft, retrofitting of an existing steam power plant with the auxiliary turbine is possible without much effort.
  • the main drive shaft of the existing steam power plant does not need to be modified.
  • additional turbine only a suitable space in the steam power plant must be found and then the steam heater leaving the steam mass flow are passed through appropriate adaptation of pipelines through the auxiliary turbine to the main turbine.
  • the operating speed of the auxiliary turbine with respect to the rated speed of the main turbine twice the value.
  • the additional turbine is designed for a steam temperature of 700 to 760 ° C.
  • the steam heater is also designed to produce a steam temperature of 700 to 760 ° C.
  • the steam in the auxiliary turbine cools with appropriate expansion to 520 ° C to 620 ° C and is forwarded at this temperature to the main turbine. The said steam temperatures lead to a further improved efficiency and a further improved power output of the steam power plant.
  • the auxiliary drive shaft is coupled to a high-speed generator.
  • the thermal power plant has an electric speed converter for reducing the frequency of the AC voltage generated by the high-speed generator.
  • a Hauptgeneratör is provided on the main drive shaft.
  • the electric speed converter reduces the frequency of the AC voltage generated by the high speed generator coupled to the auxiliary drive shaft to the frequency of the AC electric current generated by the main drive shaft. This preferably has the usual mains frequency of 50 Hz.
  • the alternating current generated by the auxiliary turbine can thus be fed into the grid without further conversion effort together with the alternating current generated by the main generator.
  • the auxiliary drive shaft is coupled via a mechanical speed converter to the main drive shaft.
  • the mechanical speed converter reduces the frequency of the auxiliary drive shaft to the frequency of the main drive shaft.
  • the mechanical energy generated by the auxiliary turbine is thus transmitted to the shaft train of the main drive shaft.
  • the electrical main generator connected to the main drive shaft thus also converts the mechanical energy generated by the auxiliary turbine into electrical energy.
  • An additional generator does not have to be provided.
  • the steam heater is designed as a live steam generator, which in particular has a steam boiler.
  • a live steam generator the aforementioned high steam conditions can be efficiently generated.
  • the steam heater is designed as a reheater. With a reheater, steam that has already passed through a first turbine can be processed for feeding to the additional turbine according to the invention.
  • the steam heater, in particular the steam generator, or the Reheater compared to conventional steam heaters or reheaters additional superheater surfaces on.
  • the additional turbine is arranged close to the steam heater, in particular on a steam boiler of the steam heater. This arrangement is particularly useful for supplying super-supercritical steam conditions to the auxiliary turbine. Furthermore, the respective length of fresh steam generator and reheater lines is advantageously reduced to a minimum. The remaining lines can be carried out conventionally.
  • the main propulsion turbine are successively a reheater, another additional turbine and another main turbine, which are each designed in particular as a medium-pressure turbine, downstream, the further auxiliary turbine are arranged on the auxiliary drive shaft and the other main turbine on the main drive shaft.
  • a further mouldgrad- and increase in efficiency of the steam power plant can be achieved.
  • the expanded steam leaving the first main turbine is restored by the reheater to a high vapor state, preferably at a temperature of about 720 ° C.
  • the auxiliary drive shaft is supplied with additional power, which increases the electric power output of the electric generator coupled thereto.
  • the steam heater with additional superheater surfaces retrofitted.
  • this retrofitting is done with additional superheater surfaces in a steam generator designed as a steam generator.
  • the thus retrofitted steam heater can thus produce higher steam conditions. This in turn allows for improved operation of the retrofitted with the auxiliary turbine steam power plant.
  • the auxiliary turbine is expediently designed for a steam temperature of 700 to 760 ° C.
  • the steam power plant is retrofitted with a high-speed generator and an electric speed converter, coupled the fast-running generator to the auxiliary drive shaft, and coupled the electric speed converter to the high-speed generator for reducing the frequency of the alternating current generated by the high-speed generator.
  • the steam power plant is expediently retrofitted with a mechanical speed converter and the auxiliary drive shaft coupled to the main drive shaft via the mechanical speed converter.
  • the additional turbine is arranged near the steam heater, in particular on a steam boiler of the steam heater.
  • a further additional turbine is arranged downstream of the steam power plant and arranged downstream of a further main turbine of the additional auxiliary turbine.
  • the other main turbine and the additional auxiliary turbine are each designed as medium-pressure turbines, wherein the additional auxiliary turbine are arranged on the auxiliary drive shaft and the other main turbine on the main drive shaft.
  • Fig. 1 shows a conventional steam power plant 10 before retrofitting according to the invention
  • an inventively retrofitted steam power plant 12 and a corresponding newly produced steam power plant 12 shows.
  • the steam power plant 10 according to Fig. 1 is equipped with a serving as a steam heater fresh steam generator 14.
  • the live steam generator 14 is supplied with either low-temperature or liquid steam, which converts the live steam generator 14 into high-pressure, high-temperature steam and thus high-steam steam.
  • the live steam is then fed via a steam line 16 to a first main turbine 18 designed as a high-pressure turbine, in which it expands under the drive of a main drive shaft 20 connected to the first main turbine 18.
  • the expanded and thus cooled steam is then fed to a reheater 22, wherein a repeated heating of the steam takes place.
  • the steam is supplied via a further steam line 16 to a second main turbine 24 designed as a medium-pressure turbine.
  • the steam expands again and transmits additional torque to the main turbine drive shaft 20.
  • the steam of a low-pressure turbine 26 is supplied, in which it further expands with further transmission of torque to the main drive shaft 20.
  • a main electric generator 28 is connected to the main drive shaft 20, by means of which the mechanical energy of the main drive shaft 20 is converted into electrical energy.
  • High-pressure turbines are usually designed for a temperature of 520 to 600 ° C and a pressure of 120 to 300 bar.
  • Medium-pressure turbines are generally designed to hold 520 to 620 ° C hot steam at a pressure of 30 to 60 bar.
  • Low-pressure turbines are usually designed for 4 to 10 bar pressure.
  • a steam power plant 12 is shown after retrofitting according to the invention to increase the power and efficiency of the steam power plant.
  • Elements of the steam power plant 12, with corresponding elements of the in Fig. 1 match shown steam power plant 10 are identified by the same reference numerals. Regarding their function is based on the comments Fig. 1 directed.
  • the steam power plant 12 is compared to the steam power plant 10 initially equipped with a steam generator 14 downstream of the additional steam heater 14 'for additional heating of the live steam to about 700 ° C.
  • the function of the additional steam heater 14 ' can also be integrated into the main steam generator 14.
  • the steam generator 14 can be equipped with additional superheater surfaces for higher steam conditions or for new production of the in Fig. 2 shown steam power plant are designed from the beginning to higher steam conditions.
  • the steam power plant 12 is equipped with a arranged on an auxiliary drive shaft 32 first auxiliary turbine 30 or retrofitted.
  • the first auxiliary turbine 30 is designed as a high pressure turbine designed to receive 700 ° C hot steam.
  • the fresh steam supplied at a temperature of about 700 ° C. expands and cools down to 560 ° C. to 620 ° C.
  • the first auxiliary turbine 30 drives an additional electric generator 36 via the auxiliary drive shaft 32.
  • the expanded steam is then directed via a steam line 16 into the first main turbine 18.
  • the steam is supplied to the reheater 22 and a downstream auxiliary reheater 22 '.
  • the additional reheater 22' may also be functionally integrated into the reheater 22. This can also be accomplished here with additional superheater surfaces in the reheater 22.
  • the steam After passing through the additional reheater 22 ', the steam is at a temperature of approximately 720 ° C. and is subsequently introduced into a second auxiliary turbine 34, which is designed as a medium-pressure turbine and is designed for a steam temperature above 720 ° C.
  • the second auxiliary turbine 34 is also arranged on the auxiliary drive shaft 32.
  • the arrangement of a plurality of drive shafts according to the steam power plant 12 with the main drive shaft 20 and the auxiliary drive shaft 32 is also referred to as a multi-shaft arrangement.
  • the second auxiliary turbine 34 exerts a further torque on the auxiliary drive shaft 32.
  • the first auxiliary turbine 30 and the second auxiliary turbine 34 are designed for a speed that is twice as high as the rated speed of the main turbines 18, 24 and 26.
  • the auxiliary drive shaft 32 is at a frequency of 100 Hz relative to a drive frequency of the main drive shaft 20 powered by 50 Hz.
  • the electric auxiliary generator 36 is coupled to the main electric generator 28 via an electric speed converter, not shown in the drawing.
  • the auxiliary drive shaft 32 and the main drive shaft 20 may also be coupled by means of a mechanical speed converter (transmission). In this case, only one electrical generator is necessary to convert the mechanical energy into electrical current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Control Of Eletrric Generators (AREA)

Description

Die Erfindung betrifft ein Dampfkraftwerk mit mindestens einem Dampferhitzer zum Bereitstellen von komprimiertem Dampf, einer dem Dampferhitzer nachgeschalteten, auf einer Hauptantriebswelle angeordneten und auf einen Betrieb mit Hochdruck- und/oder Mitteldruckdampf ausgelegten Hauptturbine, sowie einer zwischen den Dampfüberhitzer und die Hauptturbine geschalteten und auf einer Zusatzantriebswelle angeordneten Zusatzturbine. Die Erfindung betrifft ferner ein Verfahren zum Nachrüsten eines Dampfkraftwerks mit mindestens einem Dampferhitzer zum Bereitstellen von komprimiertem Dampf, sowie einer dem Dampferhitzer nachgeschalteten, auf einer Hauptwelle angeordneten und auf einen Betrieb mit Hochdruck- und/oder Mitteldruckdampf ausgelegten Hauptturbine. Das Verfahren umfasst den Schritt eines Nachrüstens des thermischen Kraftwerks mit einer auf einer Zusatzantriebswelle angeordneten Zusatzturbine. Die oben genannte, auf einen Betrieb mit Hochdruck- und/oder Mitteldruckdampf ausgelegte Hauptturbine kann als separate Hochdruck-, als separate Mitteldruck- oder als kombinierte Hochdruck-/Mitteldruckturbine ausgeführt sein. Hochdruckturbinen sind in der Regel auf eine Temperatur von 520 bis 600°C und einen Druck von 120 bis 300 bar ausgelegt. Mitteldruckturbinen sind dagegen in der Regel zur Aufnahme von 520 bis 620°C heißem Dampf mit einem Druck von 30 bis 60 bar konzipiert. Der Dampferzeuger des Dampfkraftwerkes kann verschiedene Wärmequellen zur Dampferzeugung nutzen, insbesondere auch das Abgas einer Gasturbine. Insofern kann das Dampfkraftwerk auch Teil eines anderen Kraftwerks sein.The invention relates to a steam power plant with at least one steam heater for providing compressed steam, a steam heater downstream, arranged on a main drive shaft and designed for operation with high pressure and / or medium pressure steam main turbine, as well as between the steam superheater and the main turbine connected and on a Additional drive shaft arranged additional turbine. The invention further relates to a method for retrofitting a steam power plant with at least one steam heater for providing compressed steam, as well as a steam turbine downstream, arranged on a main shaft and designed for operation with high pressure and / or medium pressure steam main turbine. The method includes the step of retrofitting the thermal power plant with an auxiliary turbine disposed on an auxiliary drive shaft. The above-mentioned main turbine designed for operation with high pressure and / or medium pressure steam can be designed as a separate high-pressure, as a separate medium-pressure or as a combined high-pressure / medium-pressure turbine. High-pressure turbines are usually designed for a temperature of 520 to 600 ° C and a pressure of 120 to 300 bar. By contrast, medium-pressure turbines are generally designed to hold 520 to 620 ° C hot steam at a pressure of 30 to 60 bar. The steam generator of the steam power plant can use various heat sources for steam generation, in particular the exhaust gas of a gas turbine. In this respect, the steam power plant can also be part of another power plant.

Dokument DE 820 600 C offenbart z.B. eine Dampfkraftanlage, deren kessel seine Verbrennungsluft aus einer Luftturbine erhält.document DE 820 600 C For example, discloses a steam power plant whose boiler receives its combustion air from an air turbine.

Um eine Leistungssteigerung bei Dampfkraftwerken zu erreichen wird im Stand der Technik oftmals die Beschaufelung der Dampfturbinen zur Erhöhung des inneren Wirkungsgrades ausgetauscht. Auch wird eine Leistungserhöhung oftmals durch Abbau von Sicherheiten, d.h. in der Regel durch Erhöhung von Druck- /und Massenstrom erreicht. Bei einem weiteren im Stand der Technik bekannten Verfahren zum Nachrüsten eines Dampfkraftwerks wird eine Zusatzturbine auf einer Zusatzantriebswelle zwischen den Dampferhitzer und die Hauptturbine geschaltet. Dabei wird in der Regel die Hauptantriebswelle mit der Zusatzantriebswelle zum Antrieb eines elektrischen Generators mechanisch miteinander gekoppelt.In order to achieve an increase in performance in steam power plants, the blading of the steam turbines to increase the internal efficiency is often replaced in the prior art. Also, an increase in performance is often due to the reduction of collateral, ie usually by increasing the pressure / and reached mass flow. In another known in the prior art method for retrofitting a steam power plant, an auxiliary turbine is connected on an auxiliary drive shaft between the steam heater and the main turbine. In this case, the main drive shaft is mechanically coupled to the auxiliary drive shaft for driving an electric generator in the rule.

Eine der Erfindung zugrunde liegende Aufgabe besteht darin, ein Dampfkraftwerk der eingangs genannten Art sowie ein Verfahren zum Nachrüsten eines Dampfkraftwerks der eingangs genannten Art dahingehend zu verbessern, dass der Leistungs- und Wirkungsgrad des Dampfkraftwerks weiter gesteigert werden kann.An object of the invention is to improve a steam power plant of the type mentioned and a method for retrofitting a steam power plant of the type mentioned in that the performance and efficiency of the steam power plant can be further increased.

Diese Aufgabe ist erfindungsgemäß mit einem gattungsgemäßen Dampfkraftwerk gelöst, bei dem die Zusatzturbine auf eine gegenüber einer Nenndrehzahl der Hauptturbine um mindestens 50% höher liegende Betriebsdrehzahl ausgelegt ist. Die Aufgabe ist ferner mit einem gattungsgemäßen Verfahren gelöst, bei dem die Zusatzturbine auf eine gegenüber einer Nenndrehzahl der Hauptturbine um mindestens 50% höher liegende Betriebsdrehzahl ausgelegt ist.This object is achieved according to the invention with a generic steam power plant, in which the auxiliary turbine is designed to a relative to a rated speed of the main turbine by at least 50% higher operating speed. The object is further achieved by a generic method, in which the auxiliary turbine is designed to be at a rated speed of the main turbine by at least 50% higher operating speed.

Durch die erfindungsgemäße Lösung können die Dampfzustände für die Zusatzturbine, die insbesondere als Hochdruck- oder als Mitteldruckturbine ausgelegt ist, erheblich gesteigert werden. Die gegenüber der Nenndrehzahl der Hauptturbine um mindestens 50% höher liegende Betriebsdrehzahl der Zusatzturbine ermöglicht einen wirkungsgradsteigernden Betrieb der Zusatzturbine mit Dampfzuständen gesteigerter Temperatur und gesteigerten Drucks. Eine Umsetzung dieser gesteigerten Dampfzustände in mechanische Leistung kann bei der entsprechend hohen Betriebsdrehzahl mit gesteigertem Wirkungsgrad erfolgen. Damit wird die abgegebene Leistung der Zusatzturbine erhöht. Nach Durchlaufen der Zusatzturbine weist der Dampfzustand vorteilhafterweise einen Dampfzustand auf, auf den die Hauptturbine gewöhnlich ausgelegt ist. D.h. die von der Zusatzturbine erzeugte Leistung steht zusätzlich zu der vom Dampfkraftwerk vor der Nachrüstung mit der Zusatzturbine erzeugten Leistung zur Verfügung.By virtue of the solution according to the invention, the steam conditions for the additional turbine, which is designed in particular as a high-pressure or medium-pressure turbine, can be increased considerably. The relative to the rated speed of the main turbine by at least 50% higher operating speed of the auxiliary turbine allows efficiency-enhancing operation of the auxiliary turbine with steam conditions increased temperature and increased pressure. A conversion of these increased steam conditions into mechanical power can be done at the correspondingly high operating speed with increased efficiency. This increases the output power of the additional turbine. After passing through the auxiliary turbine, the vapor state advantageously has a vapor state which the main turbine is usually designed. That is, the power generated by the auxiliary turbine is available in addition to the power generated by the steam power plant prior to retrofitting with the auxiliary turbine.

Da die Zusatzturbine auf einer Zusatzantriebswelle angeordnet ist, ist ein Nachrüsten eines bestehenden Dampfkraftwerkes mit der Zusatzturbine ohne großen Aufwand möglich. Die Hauptantriebswelle des bestehenden Dampfkraftwerks muss dazu nicht modifiziert werden. Für die auf der Zusatzantriebswelle angeordnete Zusatzturbine muss lediglich ein geeigneter Bauraum im Dampfkraftwerk gefunden werden und daraufhin der den Dampferhitzer verlassende Dampfmassenstrom durch entsprechende Anpassung von Rohrleitungen über die Zusatzturbine zur Hauptturbine geleitet werden.Since the additional turbine is arranged on an auxiliary drive shaft, retrofitting of an existing steam power plant with the auxiliary turbine is possible without much effort. The main drive shaft of the existing steam power plant does not need to be modified. For arranged on the auxiliary drive shaft additional turbine only a suitable space in the steam power plant must be found and then the steam heater leaving the steam mass flow are passed through appropriate adaptation of pipelines through the auxiliary turbine to the main turbine.

In einer vorteilhaften Ausführungsform des erfindungsgemäßen Dampfkraftwerkes weist die Betriebsdrehzahl der Zusatzturbine gegenüber der Nenndrehzahl der Hauptturbine den doppelten Wert auf. Insbesondere beträgt die Betriebsdrehzahl der Zusatzturbine 80 bis 120 Hz, vorzugsweise 100 Hz. Da die Nenndrehzahl der Hauptturbine halb so groß ist wie die Betriebsdrehzahl der Zusatzturbine, beträgt damit in diesem Fall die Nenndrehzahl der Hauptturbine 40 bis 60 Hz, vorzugsweise 50 Hz.In an advantageous embodiment of the steam power plant according to the invention, the operating speed of the auxiliary turbine with respect to the rated speed of the main turbine twice the value. In particular, the operating speed of the auxiliary turbine 80 to 120 Hz, preferably 100 Hz. Since the rated speed of the main turbine is half the operating speed of the auxiliary turbine, so in this case, the rated speed of the main turbine 40 to 60 Hz, preferably 50 Hz.

Vorteilhafterweise ist die Zusatzturbine auf eine Dampftemperatur von 700 bis 760°C ausgelegt. Das heißt, auch der Dampferhitzer ist darauf ausgelegt eine Dampftemperatur von 700 bis 760°C zu erzeugen. Vorteilhafterweise kühlt der Dampf in der Zusatzturbine unter entsprechender Expansion auf 520°C bis 620°C ab und wird mit dieser Temperatur an die Hauptturbine weitergeleitet. Die genannten Dampftemperaturen führen zu einem weiter verbesserten Wirkungsgrad sowie einer weiter verbesserten Leistungsabgabe des Dampfkraftwerks.Advantageously, the additional turbine is designed for a steam temperature of 700 to 760 ° C. This means that the steam heater is also designed to produce a steam temperature of 700 to 760 ° C. Advantageously, the steam in the auxiliary turbine cools with appropriate expansion to 520 ° C to 620 ° C and is forwarded at this temperature to the main turbine. The said steam temperatures lead to a further improved efficiency and a further improved power output of the steam power plant.

In einer zweckmäßigen Ausführungsform ist die Zusatzantriebswelle mit einem schnell laufenden Generator gekoppelt. Weiterhin weist das thermische Kraftwerk einen elektrischen Drehzahlwandler zur Herabsetzung der Frequenz der vom schnell laufenden Generator erzeugten Wechselspannung. Vorteilhafterweise ist ein Hauptgeneratör an der Hauptantriebswelle vorgesehen. Der elektrische Drehzahlwandler setzt die Frequenz der vom mit der Zusatzantriebswelle gekoppelten schnell laufenden Generator erzeugten Wechselspannung auf die Frequenz des von der Hauptantriebswelle erzeugten elektrischen Wechselstroms herab. Dieser weist vorzugsweise die übliche Netzfrequenz von 50 Hz auf. Der von der Zusatzturbine erzeugte Wechselstrom kann damit ohne weiteren Konvertïerungsaufwand zusammen mit dem vom Hauptgenerator erzeugten Wechselstrom in das Stromnetz eingespeist werden.In an advantageous embodiment, the auxiliary drive shaft is coupled to a high-speed generator. Furthermore, the thermal power plant has an electric speed converter for reducing the frequency of the AC voltage generated by the high-speed generator. Advantageously, a Hauptgeneratör is provided on the main drive shaft. The electric speed converter reduces the frequency of the AC voltage generated by the high speed generator coupled to the auxiliary drive shaft to the frequency of the AC electric current generated by the main drive shaft. This preferably has the usual mains frequency of 50 Hz. The alternating current generated by the auxiliary turbine can thus be fed into the grid without further conversion effort together with the alternating current generated by the main generator.

In einer alternativen Ausführungsform ist die Zusatzantriebswelle über einen mechanischen Drehzahlwandler mit der Hauptantriebswelle gekoppelt. Der mechanische Drehzahlwandler setzt insbesondere die Frequenz der Zusatzantriebswelle auf die Frequenz der Hauptantriebswelle herab. Die von der Zusatzturbine erzeugte mechanische Energie wird damit auf den Wellenstrang der Hauptantriebswelle übertragen. Der mit der Hauptantriebswelle verbundene elektrische Hauptgenerator wandelt damit auch die von der Zusatzturbine erzeugte mechanische Energie in elektrische Energie um. Ein zusätzlicher Generator muss damit nicht bereitgestellt werden.In an alternative embodiment, the auxiliary drive shaft is coupled via a mechanical speed converter to the main drive shaft. In particular, the mechanical speed converter reduces the frequency of the auxiliary drive shaft to the frequency of the main drive shaft. The mechanical energy generated by the auxiliary turbine is thus transmitted to the shaft train of the main drive shaft. The electrical main generator connected to the main drive shaft thus also converts the mechanical energy generated by the auxiliary turbine into electrical energy. An additional generator does not have to be provided.

Vorteilhafterweise ist der Dampferhitzer als Frischdampferzeuger ausgelegt, welcher insbesondere einen Dampfkessel aufweist. In einem Frischdampferzeuger können die vorgenannten hohen Dampfzustände effizient erzeugt werden. Alternativ ist der Dampferhitzer als Zwischenüberhitzer ausgelegt. Mit einem Zwischenüberhitzer kann Dampf, der bereits eine erste Turbine durchlaufen hat zur Zuführung an die erfindungsgemäße Zusatzturbine aufbereitet werden. Vorteilhafterweise weist der Dampferhitzer, insbesondere der Frischdampferzeuger, oder der Zwischenüberhitzer gegenüber herkömmlichen Dampferhitzern bzw. Zwischenüberhitzern zusätzliche Überhitzerflächen auf.Advantageously, the steam heater is designed as a live steam generator, which in particular has a steam boiler. In a live steam generator, the aforementioned high steam conditions can be efficiently generated. Alternatively, the steam heater is designed as a reheater. With a reheater, steam that has already passed through a first turbine can be processed for feeding to the additional turbine according to the invention. Advantageously, the steam heater, in particular the steam generator, or the Reheater compared to conventional steam heaters or reheaters additional superheater surfaces on.

Besonders vorteilhaft ist der kombinierte Einsatz derartiger Frischdampf- und Zwischenüberhitzer.Particularly advantageous is the combined use of such live steam and reheaters.

Um den Dampf der Zusatzturbine mit einer möglichst hohen Temperatur zuführen zu können, ist es vorteilhaft, wenn die Zusatzturbine nahe dem Dampferhitzer, insbesondere auf einem Dampfkessel des Dampferhitzers angeordnet ist. Diese Anordnung ist insbesondere zur Zuführung super-überkritischer Dampfzustände an die Zusatzturbine zweckmäßig. Weiterhin wird vorteilhafterweise die jeweilige Länge von Frischdampferzeuger- und Zwischenüberhitzerleitungen auf ein Mindestmaß reduziert. Die restlichen Leitungen können konventionell ausgeführt werden.In order to be able to supply the steam of the auxiliary turbine with as high a temperature as possible, it is advantageous if the additional turbine is arranged close to the steam heater, in particular on a steam boiler of the steam heater. This arrangement is particularly useful for supplying super-supercritical steam conditions to the auxiliary turbine. Furthermore, the respective length of fresh steam generator and reheater lines is advantageously reduced to a minimum. The remaining lines can be carried out conventionally.

In einer darüber hinaus zweckmäßigen Ausführungsform sind der Hauptantriebsturbine aufeinander folgend ein Zwischenüberhitzer, eine weitere Zusatzturbine und eine weitere Hauptturbine, welche insbesondere jeweils als Mitteldruckturbine ausgestaltet sind, nachgeschaltet, wobei die weitere Zusatzturbine auf der Zusatzantriebswelle und die weitere Hauptturbine auf der Hauptantriebswelle angeordnet sind. Mit dieser Anordnung kann eine weitere Leistungsgrad- und Wirkungsgradsteigerung des Dampfkraftwerks erreicht werden. Der die erste Hauptturbine verlassende expandierte Dampf wird durch den Zwischenüberhitzer wieder auf einen hohen Dampfzustand mit vorzugsweise einer Temperatur von ca. 720°C gebracht. Bei Durchlaufen der zweiten Zusatzturbine wird der Zusatzantriebswelle weitere Leistung zugeführt, was die elektrische Leistungsabgabe des daran angekoppelten elektrischen Generators erhöht. Vorteilhafterweise befindet sich auf der Hauptantriebswelle auch eine Niederdruckturbine.In a further expedient embodiment of the main propulsion turbine are successively a reheater, another additional turbine and another main turbine, which are each designed in particular as a medium-pressure turbine, downstream, the further auxiliary turbine are arranged on the auxiliary drive shaft and the other main turbine on the main drive shaft. With this arrangement, a further Leistungsgrad- and increase in efficiency of the steam power plant can be achieved. The expanded steam leaving the first main turbine is restored by the reheater to a high vapor state, preferably at a temperature of about 720 ° C. When passing through the second auxiliary turbine, the auxiliary drive shaft is supplied with additional power, which increases the electric power output of the electric generator coupled thereto. Advantageously, there is also a low-pressure turbine on the main drive shaft.

In einer vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens wird der Dampferhitzer mit zusätzlichen Überhitzerflächen nachgerüstet. Insbesondere geschieht diese Nachrüstung mit zusätzlichen Überhitzerflächen bei einem als Dampferhitzer ausgestalteten Dampferzeuger. Der derart nachgerüstete Dampferhitzer kann damit höhere Dampfzustände erzeugen. Dies wiederum ermöglicht einen verbesserten Betrieb des mit der Zusatzturbine nachgerüsteten Dampfkraftwerkes.In an advantageous embodiment of the method according to the invention, the steam heater with additional superheater surfaces retrofitted. In particular, this retrofitting is done with additional superheater surfaces in a steam generator designed as a steam generator. The thus retrofitted steam heater can thus produce higher steam conditions. This in turn allows for improved operation of the retrofitted with the auxiliary turbine steam power plant.

In einer weiteren vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens weist die Nenndrehzahl der Zusatzturbine gegenüber der Nenndrehzahl der Hauptturbine den doppelten Wert auf, insbesondere 80 bis 120 Hz, vorzugsweise beträgt dieser 100 Hz. Weiterhin ist die Zusatzturbine zweckmäßigerweise auf eine Dampftemperatur von 700 bis 760°C ausgelegt. Darüber hinaus wird vorteilhafterweise das Dampfkraftwerk mit einem schnell laufenden Generator sowie einem elektrischen Drehzahlwandler nachgerüstet, der schnell laufende Generator an die Zusatzantriebswelle angekoppelt, sowie der elektrische Drehzahlwandler an den schnell laufenden Generator zur Herabsetzung der Frequenz der vom schnell laufenden Generator erzeugten Wechselspannung angekoppelt. Weiterhin wird zweckmäßigerweise das Dampfkraftwerk mit einem mechanischen Drehzahlwandler nachgerüstet und die Zusatzantriebswelle mit der Hauptantriebswelle über den mechanischen Drehzahlwandler gekoppelt. In einer weiteren vorteilhaften Ausführungsform wird die Zusatzturbine nahe dem Dampferhitzer, insbesondere auf einen Dampfkessel des Dampferhitzers angeordnet. In einer darüber hinaus zweckmäßigen Ausführungsform wird eine weitere Zusatzturbine einem Zwischenüberhitzer dem Dampfkraftwerk nachgeschaltet angeordnet sowie eine weitere Hauptturbine der weiteren Zusatzturbine nachgeschaltet angeordnet. Die weitere Hauptturbine und die weitere Zusatzturbine sind jeweils als Mitteldruckturbinen ausgestaltet, wobei die weitere Zusatzturbine auf der Zusatzantriebswelle und die weitere Hauptturbine auf der Hauptantriebswelle angeordnet werden. Die bezüglich der vorteilhaften Ausführungsformen des erfindungsgemäßen Dampfkraftwerks vorstehend aufgeführten Vorteile beziehen sich auch auf die entsprechenden vorteilhaften Ausführungsformen des erfindungsgemäßen Verfahrens zum Nachrüsten eines Dampfkraftwerks.In a further advantageous embodiment of the method according to the invention, the rated speed of the auxiliary turbine relative to the rated speed of the main turbine twice the value, in particular 80 to 120 Hz, preferably this is 100 Hz. Furthermore, the auxiliary turbine is expediently designed for a steam temperature of 700 to 760 ° C. , In addition, advantageously, the steam power plant is retrofitted with a high-speed generator and an electric speed converter, coupled the fast-running generator to the auxiliary drive shaft, and coupled the electric speed converter to the high-speed generator for reducing the frequency of the alternating current generated by the high-speed generator. Furthermore, the steam power plant is expediently retrofitted with a mechanical speed converter and the auxiliary drive shaft coupled to the main drive shaft via the mechanical speed converter. In a further advantageous embodiment, the additional turbine is arranged near the steam heater, in particular on a steam boiler of the steam heater. In an embodiment which is furthermore expedient, a further additional turbine is arranged downstream of the steam power plant and arranged downstream of a further main turbine of the additional auxiliary turbine. The other main turbine and the additional auxiliary turbine are each designed as medium-pressure turbines, wherein the additional auxiliary turbine are arranged on the auxiliary drive shaft and the other main turbine on the main drive shaft. The advantages listed above with regard to the advantageous embodiments of the steam power plant according to the invention also relate to the corresponding advantageous Embodiments of the method according to the invention for retrofitting a steam power plant.

Nachfolgend wird ein Ausführungsbeispiel eines erfindungsgemäßen Dampfkraftwerks sowie ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens zum Nachrüsten eines Dampfkraftwerks anhand der beigefügten schematischen Zeichnungen näher erläutert. Es zeigt:

Fig. 1
eine schematische Ansicht eines Dampfkraftwerks vor der erfindungsgemäßen Nachrüstung, sowie
Fig. 2
eine schematische Ansicht eines erfindungsgemäß nachgerüsteten Dampfkraftwerks.
Hereinafter, an embodiment of a steam power plant according to the invention and an embodiment of the inventive method for retrofitting a steam power plant will be explained in more detail with reference to the accompanying schematic drawings. It shows:
Fig. 1
a schematic view of a steam power plant before retrofitting according to the invention, and
Fig. 2
a schematic view of a retrofitted according to the invention steam power plant.

Fig. 1 zeigt ein konventionelles Dampfkraftwerk 10 vor einer erfindungsgemäßen Nachrüstung, während Fig. 2 ein erfindungsgemäß nachgerüstetes Dampfkraftwerk 12 bzw. ein entsprechendes neu hergestelltes Dampfkraftwerk 12 zeigt. Das Dampfkraftwerk 10 gemäß Fig. 1 ist mit einem als Dampferhitzer dienenden Frischdampferzeuger 14 ausgestattet. Dem Frischdampferzeuger 14 wird entweder Dampf mit niedriger Temperatur oder Flüssigkeit zugeführt, welcher/welche der Frischdampferzeuger 14 in Dampf hohen Drucks und hoher Temperatur und damit Dampf eines hohen Dampfzustands verwandelt. Der Frischdampf wird daraufhin über eine Dampfleitung 16 einer als Hochdruckturbine ausgelegten ersten Hauptturbine 18 zugeführt, in der dieser unter Antrieb einer mit der ersten Hauptturbine 18 verbundenen Hauptantriebswelle 20 expandiert. Fig. 1 shows a conventional steam power plant 10 before retrofitting according to the invention, during Fig. 2 an inventively retrofitted steam power plant 12 and a corresponding newly produced steam power plant 12 shows. The steam power plant 10 according to Fig. 1 is equipped with a serving as a steam heater fresh steam generator 14. The live steam generator 14 is supplied with either low-temperature or liquid steam, which converts the live steam generator 14 into high-pressure, high-temperature steam and thus high-steam steam. The live steam is then fed via a steam line 16 to a first main turbine 18 designed as a high-pressure turbine, in which it expands under the drive of a main drive shaft 20 connected to the first main turbine 18.

Der expandierte und damit abgekühlte Dampf wird daraufhin einem Zwischenüberhitzer 22 zugeführt, worin eine abermalige Aufheizung des Dampfes erfolgt. Daraufhin wird der Dampf über eine weitere Dampfleitung 16 einer als Mitteldruckturbine ausgelegten zweiten Hauptturbine 24 zugeführt. Daraufhin expandiert der Dampf abermals und überträgt ein zusätzliches Drehmoment auf die Hauptturbinenantriebswelle 20. Nach Verlassen der zweiten Hauptturbine 24 wird der Dampf einer Niederdruckturbine 26 zugeführt, in der dieser unter weiterer Übertragung eines Drehmoments auf die Hauptantriebswelle 20 weiter expandiert. An die Hauptantriebswelle 20 ist ein elektrischer Hauptgenerator 28 angeschlossen mittels dem die mechanische Energie der Hauptantriebswelle 20 in elektrische Energie umgewandelt wird.The expanded and thus cooled steam is then fed to a reheater 22, wherein a repeated heating of the steam takes place. Subsequently, the steam is supplied via a further steam line 16 to a second main turbine 24 designed as a medium-pressure turbine. Thereafter, the steam expands again and transmits additional torque to the main turbine drive shaft 20. Upon exiting the second main turbine 24, the steam of a low-pressure turbine 26 is supplied, in which it further expands with further transmission of torque to the main drive shaft 20. To the main drive shaft 20, a main electric generator 28 is connected by means of which the mechanical energy of the main drive shaft 20 is converted into electrical energy.

Die bei dem Dampfkraftwerk 10 nach Fig.1 verwendeten Hochdruck-, Mitteldruck- sowie Niederdruckturbinen sind auf für derartige Turbinen übliche Dampfzustände ausgelegt. Hochdruckturbinen sind in der Regel auf eine Temperatur von 520 bis 600°C und einen Druck von 120 bis 300 bar ausgelegt. Mitteldruckturbinen sind in der Regel zur Aufnahme von ebenfalls 520 bis 620°C heißem Dampf mit einem Druck von 30 bis 60 bar konzipiert. Niederdruckturbinen sind in der Regel auf 4 bis 10 bar Druck ausgelegt.The at the steam power plant 10 after Fig.1 used high-pressure, medium-pressure and low-pressure turbines are designed for conventional steam conditions for such turbines. High-pressure turbines are usually designed for a temperature of 520 to 600 ° C and a pressure of 120 to 300 bar. Medium-pressure turbines are generally designed to hold 520 to 620 ° C hot steam at a pressure of 30 to 60 bar. Low-pressure turbines are usually designed for 4 to 10 bar pressure.

In Fig. 2 ist ein Dampfkraftwerk 12 nach einer erfindungsgemäßen Nachrüstung zur Erhöhung des Leistungs- und Wirkungsgrades des Dampfkraftwerks dargestellt. Elemente des Dampfkraftwerks 12, die mit entsprechenden Elementen des in Fig. 1 dargestellten Dampfkraftwerks 10 übereinstimmen, sind mit den gleichen Bezugszeichen gekennzeichnet. Hinsichtlich deren Funktion wird auf die Ausführungen bezüglich Fig. 1 verwiesen. Das Dampfkraftwerk 12 ist gegenüber dem Dampfkraftwerk 10 zunächst mit einem dem Frischdampferzeuger 14 nachgeschalteten Zusatzdampferhitzer 14' zur zusätzlichen Erwärmung des Frischdampfs auf etwa 700°C ausgestattet. Dabei kann die Funktion des Zusatzdampferhitzers 14' auch in den Frischdampferzeuger 14 integriert sein. So kann der Dampferzeuger 14 etwa mit zusätzlichen Überhitzerflächen für höhere Dampfzustände ausgestattet werden bzw. bei Neuherstellung des in Fig. 2 gezeigten Dampfkraftwerks von Anfang an auf höhere Dampfzustände ausgelegt werden.In Fig. 2 a steam power plant 12 is shown after retrofitting according to the invention to increase the power and efficiency of the steam power plant. Elements of the steam power plant 12, with corresponding elements of the in Fig. 1 match shown steam power plant 10 are identified by the same reference numerals. Regarding their function is based on the comments Fig. 1 directed. The steam power plant 12 is compared to the steam power plant 10 initially equipped with a steam generator 14 downstream of the additional steam heater 14 'for additional heating of the live steam to about 700 ° C. In this case, the function of the additional steam heater 14 'can also be integrated into the main steam generator 14. For example, the steam generator 14 can be equipped with additional superheater surfaces for higher steam conditions or for new production of the in Fig. 2 shown steam power plant are designed from the beginning to higher steam conditions.

Weiterhin ist das Dampfkraftwerk 12 mit einer auf einer Zusatzantriebswelle 32 angeordneten ersten Zusatzturbine 30 ausgestattet bzw. nachgerüstet. Die erste Zusatzturbine 30 ist als eine zur Aufnahme von 700°C heißem Dampf ausgelegte Hochdruckturbine konzipiert. In der ersten Zusatzturbine 30 expandiert der mit einer Temperatur von etwa 700°C zugeführte Frischdampf und kühlt sich dabei auf 560°C bis 620°C ab. Dabei treibt die erste Zusatzturbine 30 über die Zusatzantriebswelle 32 einen elektrischen Zusatzgenerator 36 an. Der expandierte Dampf wird dann über eine Dampfleitung 16 in die erste Hauptturbine 18 geleitet. Nach entsprechender Expansion in der ersten Hauptturbine 18 wird der Dampf dem Zwischenüberhitzer 22 sowie einem nachgeschalteten Zusatzzwischenüberhitzer 22' zugeführt. Wie bereits bezüglich dem Frischdampferzeuger 14 und dem Zusatzdampferhitzer 14' erläutert, kann auch der Zusatzzwischenüberhitzer 22' funktional in den Zwischenüberhitzer 22 integriert sein. Dies kann auch hier mit zusätzlichen Überhitzerflächen im Zwischenüberhitzer 22 bewerkstelligt werden.Furthermore, the steam power plant 12 is equipped with a arranged on an auxiliary drive shaft 32 first auxiliary turbine 30 or retrofitted. The first auxiliary turbine 30 is designed as a high pressure turbine designed to receive 700 ° C hot steam. In the first auxiliary turbine 30, the fresh steam supplied at a temperature of about 700 ° C. expands and cools down to 560 ° C. to 620 ° C. In this case, the first auxiliary turbine 30 drives an additional electric generator 36 via the auxiliary drive shaft 32. The expanded steam is then directed via a steam line 16 into the first main turbine 18. After appropriate expansion in the first main turbine 18, the steam is supplied to the reheater 22 and a downstream auxiliary reheater 22 '. As already explained with regard to the fresh steam generator 14 and the additional steam heater 14 ', the additional reheater 22' may also be functionally integrated into the reheater 22. This can also be accomplished here with additional superheater surfaces in the reheater 22.

Nach Durchlaufen des Zusatzzwischenüberhitzers 22' weist der Dampf etwa eine Temperatur von 720°C auf und wird daraufhin in eine zweite Zusatzturbine 34, die als Mitteldruckturbine konzipiert ist und auf eine Dampftemperatur über 720°C ausgelegt ist, eingeleitet. Die zweite Zusatzturbine 34 ist ebenfalls auf der Zusatzantriebswelle 32 angeordnet. Die Anordnung mehrerer Antriebswellen gemäß dem Dampfkraftwerk 12 mit der Hauptantriebswelle 20 und der Zusatzantriebswelle 32 wird auch als Multi-Shaft-Anordnung bezeichnet. Die zweite Zusatzturbine 34 übt ein weiteres Drehmoment auf die Zusatzantriebswelle 32 aus.After passing through the additional reheater 22 ', the steam is at a temperature of approximately 720 ° C. and is subsequently introduced into a second auxiliary turbine 34, which is designed as a medium-pressure turbine and is designed for a steam temperature above 720 ° C. The second auxiliary turbine 34 is also arranged on the auxiliary drive shaft 32. The arrangement of a plurality of drive shafts according to the steam power plant 12 with the main drive shaft 20 and the auxiliary drive shaft 32 is also referred to as a multi-shaft arrangement. The second auxiliary turbine 34 exerts a further torque on the auxiliary drive shaft 32.

Die erste Zusatzturbine 30 und die zweite Zusatzturbine 34 sind auf eine Drehzahl ausgelegt, die doppelt so hoch als die Nenndrehzahl der Hauptturbinen 18, 24 und 26 ist. Vorzugsweise wird die Zusatzantriebswelle 32 mit einer Frequenz von 100 Hz gegenüber einer Antriebsfrequenz der Hauptantriebswelle 20 von 50 Hz angetrieben. Bei der in Fig. 2 gezeigten Ausführungsform des Dampfkraftwerks 12 ist der elektrische Zusatzgenerator 36 mit dem elektrischen Hauptgenerator 28 über einen nicht in der Zeichnung dargestellten elektrischen Drehzahlwandler gekoppelt. In einer weiteren nicht in der Zeichnung gezeigten Ausführungsform kann die Zusatzantriebswelle 32 und die Hauptantriebswelle 20 auch mittels eines mechanischen Drehzahlwandlers (Getriebe) gekoppelt sein. In diesem Fall ist lediglich ein elektrischer Generator zur Umwandlung der mechanischen Energie in elektrischen Strom notwendig. The first auxiliary turbine 30 and the second auxiliary turbine 34 are designed for a speed that is twice as high as the rated speed of the main turbines 18, 24 and 26. Preferably, the auxiliary drive shaft 32 is at a frequency of 100 Hz relative to a drive frequency of the main drive shaft 20 powered by 50 Hz. At the in Fig. 2 shown embodiment of the steam power plant 12, the electric auxiliary generator 36 is coupled to the main electric generator 28 via an electric speed converter, not shown in the drawing. In another embodiment, not shown in the drawing, the auxiliary drive shaft 32 and the main drive shaft 20 may also be coupled by means of a mechanical speed converter (transmission). In this case, only one electrical generator is necessary to convert the mechanical energy into electrical current.

Claims (16)

  1. Steam power plant (12) with at least one steam heater (14, 14', 22, 22') for providing compressed steam,
    a main turbine (18, 24) which is connected downstream to the steam heater, arranged on a main drive shaft (20) and designed for operation with high-pressure and/or intermediate-pressure steam, and also
    a secondary turbine (30, 34) which is connected between the steam heater (14, 14', 22, 22') and the main turbine (18, 24) and arranged on a secondary drive shaft (32),
    characterized in that
    the secondary turbine (30, 34) is designed for an operating speed which compared with a nominal speed of the main turbine (18, 24) is higher by at least 50%.
  2. Steam power plant according to Claim 1,
    characterized in that
    the operating speed of the secondary turbine (30, 34), compared with the nominal speed of the main turbine (18, 24) has twice the value, being especially 80 to 120 Hz, preferably 100 Hz.
  3. Steam power plant according to either of Claims 1 or 2,
    characterized in that
    the secondary turbine (30, 34) is designed for a steam temperature of 700 to 760° C.
  4. Steam power plant according to one of the preceding claims,
    characterized in that
    the secondary drive shaft (32) is coupled to a high-speed generator (36), and also
    the steam power plant (12) has an electric variable speed gear for reducing the frequency of the alternating voltage which is generated by the high-speed generator (36).
  5. Steam power plant according to one of Claims 1 to 3,
    characterized in that
    the secondary drive shaft (32) is coupled to the main drive shaft (20) via a mechanical variable speed gear.
  6. Steam power plant according to one of the preceding claims,
    characterized in that
    the steam heater (14, 14', 22, 22') is designed as a live steam generator (14, 14') which especially has a steam boiler.
  7. Steam power plant according to one of the preceding claims,
    characterized in that
    the secondary turbine (30, 34) is arranged close to the steam heater (14, 14', 22, 22'),
    especially on a steam boiler of the steam heater (14, 14', 22, 22').
  8. Steam power plant according to one of the preceding claims,
    characterized in that
    a reheater (22, 22'), an additional secondary turbine (34) and an additional main turbine (24) which are configured in each case as an intermediate-pressure turbine, are connected in series downstream to the main turbine (18), wherein the additional secondary turbine (34) is arranged on the secondary drive shaft (32), and the additional main turbine (24) is arranged on the main drive shaft (20).
  9. Method for retrofitting a steam power plant (10) with at least one steam heater (14, 22) for providing steam, and also
    a main turbine (18, 24) which is connected downstream to the steam heater (14, 22), arranged on a main drive shaft (20) and designed for operation with high-pressure and/or intermediate-pressure steam,
    with the step of retrofitting the steam power plant (10) with a secondary turbine (30, 34) which is arranged on a secondary drive shaft (32),
    wherein the secondary turbine (30, 34) in this case is connected between the steam heater (14, 22) and the main turbine (18, 24),
    characterized in that
    the secondary turbine (30, 34) is designed for an operating speed which compared with a nominal speed of the main turbine (18, 24) is higher by at least 50%.
  10. Method according to Claim 9,
    characterized in that
    the operating speed of the secondary turbine (30, 34), compared with the nominal speed of the main turbine (18, 24), has twice the value,
    being especially 80 to 120 Hz, preferably 100 Hz.
  11. Method according to either of Claims 9 or 10,
    characterized by
    the step of retrofitting the steam heater (14, 22) with additional superheating surfaces (14', 22').
  12. Method according to one of Claims 9 to 11,
    characterized in that
    the secondary turbine (30, 34) is designed for a steam temperature of 700 to 760° C.
  13. Method according to one of Claims 9 to 12,
    characterized by
    retrofitting the steam power plant (10) with a high-speed generator (36) and also with an electric variable speed gear, coupling the high-speed generator (36) to the secondary drive shaft (32)
    and also coupling the electric variable speed gear to the high-speed generator (36) for reducing the frequency of the alternating voltage which is generated by the high-speed generator (36).
  14. Method according to one of Claims 9 to 13,
    characterized by
    retrofitting the steam power plant (10) with a mechanical variable speed gear, and coupling the secondary drive shaft (32) to the main drive shaft (20) via the mechanical variable speed gear.
  15. Method according to one of Claims 9 to 14,
    characterized in that
    the secondary turbine (30, 34) is arranged close to the steam heater (14, 22), especially on a steam boiler of the steam heater (14, 22).
  16. Method according to one of Claims 9 to 15,
    characterized by
    arranging an additional secondary turbine (34) downstream of a reheater (22) of the steam power plant, and arranging an additional main turbine (24) downstream of this additional secondary turbine, which additional turbines are especially configured in each case as an intermediate-pressure turbine,
    wherein the additional secondary turbine (34) is arranged on the secondary drive shaft (32), and the additional main turbine (24) is arranged on the main drive shaft (20).
EP06807006.9A 2005-10-17 2006-10-05 Steam power plant and method for retrofitting a steam power plant Not-in-force EP1937942B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06807006.9A EP1937942B1 (en) 2005-10-17 2006-10-05 Steam power plant and method for retrofitting a steam power plant
PL06807006T PL1937942T3 (en) 2005-10-17 2006-10-05 Steam power plant and method for retrofitting a steam power plant

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05022606A EP1775430A1 (en) 2005-10-17 2005-10-17 Steam power plant and method for retrofitting a steam power plant
PCT/EP2006/067096 WO2007045563A2 (en) 2005-10-17 2006-10-05 Steam power plant and method for retrofitting a steam power plant
EP06807006.9A EP1937942B1 (en) 2005-10-17 2006-10-05 Steam power plant and method for retrofitting a steam power plant

Publications (2)

Publication Number Publication Date
EP1937942A2 EP1937942A2 (en) 2008-07-02
EP1937942B1 true EP1937942B1 (en) 2016-09-14

Family

ID=36513498

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05022606A Withdrawn EP1775430A1 (en) 2005-10-17 2005-10-17 Steam power plant and method for retrofitting a steam power plant
EP06807006.9A Not-in-force EP1937942B1 (en) 2005-10-17 2006-10-05 Steam power plant and method for retrofitting a steam power plant

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP05022606A Withdrawn EP1775430A1 (en) 2005-10-17 2005-10-17 Steam power plant and method for retrofitting a steam power plant

Country Status (6)

Country Link
US (1) US7975483B2 (en)
EP (2) EP1775430A1 (en)
JP (1) JP4833293B2 (en)
CN (1) CN101292075B (en)
PL (1) PL1937942T3 (en)
WO (1) WO2007045563A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101042058B (en) * 2007-04-27 2011-12-07 冯伟忠 Novel steam-electric generating set
ES2304118B1 (en) * 2008-02-25 2009-07-29 Sener Grupo De Ingenieria, S.A PROCEDURE FOR GENERATING ENERGY THROUGH THERMAL CYCLES WITH HIGH PRESSURE VAPOR AND MODERATED TEMPERATURE.
CN105587351B (en) * 2008-03-25 2018-12-21 通用电器技术有限公司 Power station plant and its operation method
EP2147896A1 (en) * 2008-07-22 2010-01-27 Uhde GmbH Low energy process for the production of ammonia or methanol
US8794913B2 (en) 2008-08-11 2014-08-05 Mitsubishi Heavy Industries, Ltd. Steam turbine facility
EP2180149B1 (en) * 2008-08-11 2016-12-21 Mitsubishi Hitachi Power Systems, Ltd. Steam turbine equipment
EP2685055A1 (en) * 2012-07-12 2014-01-15 Siemens Aktiengesellschaft Method for supporting a network frequency
JP2014239604A (en) * 2013-06-07 2014-12-18 株式会社神戸製鋼所 Generating set
EP3262284B1 (en) * 2015-02-24 2019-01-02 Siemens Aktiengesellschaft Combined cycle power plant having supercritical steam turbine

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1971818A (en) * 1931-09-11 1934-08-28 Gen Electric Frequency and load control of alternating current systems
US2467092A (en) * 1944-12-16 1949-04-12 Comb Eng Superheater Inc Steam power plant
US2504640A (en) * 1948-07-03 1950-04-18 Westinghouse Electric Corp Reheat turbine control
US2540691A (en) * 1948-08-19 1951-02-06 Westinghouse Electric Corp Valve control of reheat turbine installation
DE820600C (en) * 1950-05-21 1951-11-12 Grosskraftwerk Mannheim A G Steam power plant whose boiler receives its combustion air from an air turbine
FR1511106A (en) * 1966-12-15 1968-01-26 Steinmueller Gmbh L & C Method of controlling steam temperatures in the operating processes of steam engines having one or more intermediate superheaters
US4007596A (en) * 1975-04-24 1977-02-15 Westinghouse Electric Corporation Dual turbine power plant and method of operating such plant, especially one having an HTGR steam supply
JPH03189333A (en) * 1989-12-18 1991-08-19 Jinichi Nishiwaki Water cooling type gas turbine unit
JPH04171202A (en) * 1990-11-06 1992-06-18 Toshiba Corp Steam turbine power generating plant
JP3279740B2 (en) * 1993-07-23 2002-04-30 株式会社日立製作所 Power plant water supply equipment
JP3315800B2 (en) * 1994-02-22 2002-08-19 株式会社日立製作所 Steam turbine power plant and steam turbine
JP3977546B2 (en) * 1999-03-25 2007-09-19 株式会社東芝 Steam turbine power generation equipment
JP3095745B1 (en) * 1999-09-09 2000-10-10 三菱重工業株式会社 Ultra high temperature power generation system
JP2002221007A (en) * 2001-01-23 2002-08-09 Toshiba Corp Thermal power generation plant
JP2002247759A (en) * 2001-02-21 2002-08-30 Toshiba Eng Co Ltd Power supply and high-frequency power supply
EP1445429A1 (en) * 2003-02-07 2004-08-11 Elsam Engineering A/S A steam turbine system

Also Published As

Publication number Publication date
JP4833293B2 (en) 2011-12-07
JP2009511810A (en) 2009-03-19
CN101292075B (en) 2011-09-28
US20090229267A1 (en) 2009-09-17
EP1775430A1 (en) 2007-04-18
CN101292075A (en) 2008-10-22
PL1937942T3 (en) 2017-04-28
WO2007045563A2 (en) 2007-04-26
US7975483B2 (en) 2011-07-12
EP1937942A2 (en) 2008-07-02
WO2007045563A3 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
EP1937942B1 (en) Steam power plant and method for retrofitting a steam power plant
EP1795725B1 (en) Gas turbine with controlled air cooling
EP2808500A1 (en) Heat pump cycle with a first thermal fluid energy machine and a second thermal fluid energy machine
DE102010042792A1 (en) System for generating mechanical and / or electrical energy
WO2009030471A2 (en) Device for converting energy, cogeneration of heat and power having such a device and method for operating an orc plant
EP1377730B1 (en) Steam power plant provided with a retrofit kit and method for retrofitting a steam power plant
EP1854964A1 (en) Use of the steam turbine for primary frequency control in power generating plants
EP2288791A1 (en) Operation of a gas and a steam turbine system by means of a frequency converter
EP1904731B1 (en) Combined gas and steam turbine installation and method of operating same
WO2008107406A2 (en) Combined power plant and method for starting up a combined power plant
EP2811124A1 (en) Energy storage device for preheating feedwater
DE69812811T2 (en) Method and arrangement for combined cycle power plants
WO2008031810A2 (en) Compressor plant
EP2802757B1 (en) Gas power plant
DE102012110579B4 (en) Plant and process for generating process steam
WO2010088980A1 (en) Internal combustion engine system having exhaust gas energy recapture for floating devices
DE102016214447B4 (en) Power plant with phase change material heat storage and method for operating a power plant with phase change material heat storage
DE602005003913T2 (en) Combined cycle power plant with steam turbine and gas turbine groups
EP3983656B1 (en) Pressurisation of exhaust gases from a turbine power plant
CH699321A1 (en) Power station for the selective operation in electricity network with different power frequency.
EP2700790A1 (en) Power plant assembly comprising a gas turbine, a generator and a steam turbine, and method for operating the same
DE102013223661B4 (en) Method and device for energy conversion
DE202007016668U1 (en) Power generation plant according to the ORC principle
EP2101043A1 (en) Method for warming a steam turbine
DE102004041275A1 (en) Steam turbine arrangement, has high, medium and low pressure steam cylinders provided along combined shaft that is impelled with rated speed, and another high-pressure cylinder provided on separate shaft that is connected to compressor unit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080228

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160419

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 829245

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006015158

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161215

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170114

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170116

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006015158

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

26N No opposition filed

Effective date: 20170615

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161005

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161214

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161005

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161031

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 829245

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180103

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20061005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20181001

Year of fee payment: 13

Ref country code: DE

Payment date: 20181217

Year of fee payment: 13

Ref country code: CZ

Payment date: 20181003

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20181029

Year of fee payment: 13

Ref country code: FR

Payment date: 20181018

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006015158

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191005

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191005