EP2438302B1 - Pompe a cavite en forme de disque - Google Patents

Pompe a cavite en forme de disque Download PDF

Info

Publication number
EP2438302B1
EP2438302B1 EP09785228.9A EP09785228A EP2438302B1 EP 2438302 B1 EP2438302 B1 EP 2438302B1 EP 09785228 A EP09785228 A EP 09785228A EP 2438302 B1 EP2438302 B1 EP 2438302B1
Authority
EP
European Patent Office
Prior art keywords
flap
plate
valve
apertures
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09785228.9A
Other languages
German (de)
English (en)
Other versions
EP2438302A1 (fr
Inventor
Justin Rorke Buckland
Stuart Andrew Hatfield
James Edward Mccrone
Richard Janse Van Rensburg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technology Partnership PLC
Original Assignee
Technology Partnership PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technology Partnership PLC filed Critical Technology Partnership PLC
Publication of EP2438302A1 publication Critical patent/EP2438302A1/fr
Application granted granted Critical
Publication of EP2438302B1 publication Critical patent/EP2438302B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive

Definitions

  • the illustrative embodiments of the invention relate generally to a pump for fluid and, more specifically, to a pump having a substantially disc-shaped cavity with substantially circular end walls and a side wall and a valve for controlling the flow of fluid through the pump.
  • thermo-acoustics The generation of high amplitude pressure oscillations in closed cavities has received significant attention in the fields of thermo-acoustics and pump type compressors. Recent developments in non-linear acoustics have allowed the generation of pressure waves with higher amplitudes than previously thought possible.
  • acoustic resonance it is known to use acoustic resonance to achieve fluid pumping from defined inlets and outlets. This can be achieved using a cylindrical cavity with an acoustic driver at one end, which drives an acoustic standing wave. In such a cylindrical cavity, the acoustic pressure wave has limited amplitude. Varying cross-section cavities, such as cone, horn-cone, bulb have been used to achieve high amplitude pressure oscillations thereby significantly increasing the pumping effect. In such high amplitude waves the non-linear mechanisms with energy dissipation have been suppressed. However, high amplitude acoustic resonance has not been employed within disc-shaped cavities in which radial pressure oscillations are excited until recently. International Patent Application No.
  • PCT/GB2006/001487 published as WO 2006/111775 (the '487 Application), discloses a pump having a substantially disc-shaped cavity with a high aspect ratio, i.e., the ratio of the radius of the cavity to the height of the cavity.
  • Such a pump has a substantially cylindrical cavity comprising a side wall closed at each end by end walls.
  • the pump also comprises an actuator that drives either one of the end walls to oscillate in a direction substantially perpendicular to the surface of the driven wall.
  • the spatial profile of the motion of the driven end wall is described as being matched to the spatial profile of the fluid pressure oscillations within the cavity, a state described herein as mode-matching.
  • work done by the actuator on the fluid in the cavity adds constructively across the driven end wall surface, thereby enhancing the amplitude of the pressure oscillation in the cavity and delivering high pump efficiency.
  • a pump which is not mode-matched there may be areas of the end wall wherein the work done by the end wall on the fluid reduces rather than enhances the amplitude of the fluid pressure oscillation in the fluid within the cavity.
  • the useful work done by the actuator on the fluid is reduced and the pump becomes less efficient.
  • the efficiency of a mode-matched pump is dependent upon the interface between the driven end wall and the side wall. It is desirable to maintain the efficiency of such pump by structuring the interface so that it does not decrease or dampen the motion of the driven end wall thereby mitigating any reduction in the amplitude of the fluid pressure oscillations within the cavity.
  • Such pumps also require a valve for controlling the flow of fluid through the pump and, more specifically, a valve being capable of operating at high frequencies.
  • Conventional valves typically operate at lower frequencies below 500 Hz for a variety of applications.
  • many conventional compressors typically operate at 50 or 60 Hz.
  • Linear resonance compressors known in the art operate between 150 and 350 Hz.
  • many portable electronic devices including medical devices require pumps for delivering a positive pressure or providing a vacuum that are relatively small in size and it is advantageous for such pumps to be inaudible in operation so as to provide discrete operation.
  • such pumps must operate at very high frequencies requiring valves capable of operating at about 20 kHz and higher which are not commonly available.
  • the valve must be responsive to a high frequency oscillating pressure that can be rectified to create a net flow of fluid through the pump.
  • WO2006/111775 discloses a fluid pump having one or more actuators and a substantially cylindrical cavity, wherein axial oscillations of the end walls of the cavity cause radial oscillations of fluid pressure in the cavity.
  • WO94/19609 discloses a displacement pump whose cavity volume changes during a cycle of the pump.
  • a pump comprising: a pump body having a substantially cylindrical shape defining a cavity for containing a fluid, the cavity being formed by a side wall closed at both ends by end walls, at least one of the end walls being a driven end wall having a central portion and a peripheral portion extending radially outwardly from the central portion of the driven end wall; an actuator operatively associated with the central portion of the driven end wall to cause an oscillatory motion of the driven end wall, thereby generating displacement oscillations of the driven end wall in a direction substantially perpendicular thereto with an annular node between the centre of the driven end wall and the side wall when in use; a first aperture disposed at any location in the cavity other than at the location of the annular node and extending through the pump body; a second aperture disposed at any location in the pump body other than the location of said first aperture and extending through the pump body; and, a flap valve disposed in at least one of said first aperture and second aperture; whereby the displacement oscillations generate
  • Figures 1A to 1C show a schematic cross-section view of a first pump according to an illustrative embodiment of the inventions that provide a positive pressure, a graph of the displacement oscillations of the driven end wall of the pump, and a graph of the pressure oscillations of fluid within the cavity of pump.
  • FIG. 1A is a schematic cross-section view of a pump 10 according to an illustrative embodiment of the invention.
  • pump 10 comprises a pump body having a substantially cylindrical shape including a cylindrical wall 19 closed at one end by a base 18 and closed at the other end by a end plate 17 and a ring-shaped isolator 30 disposed between the end plate 17 and the other end of the cylindrical wall 19 of the pump body.
  • the cylindrical wall 19 and base 18 may be a single component comprising the pump body and may be mounted to other components or systems.
  • the internal surfaces of the cylindrical wall 19, the base 18, the end plate 17, and the isolator 30 form a cavity 11 within the pump 10 wherein the cavity 11 comprises a side wall 14 closed at both ends by end walls 12 and 13.
  • the end wall 13 is the internal surface of the base 18 and the side wall 14 is the inside surface of the cylindrical wall 19.
  • the end wall 12 comprises a central portion corresponding to the inside surface of the end plate 17 and a peripheral portion corresponding to the inside surface of the isolator 30.
  • the cavity 11 is substantially circular in shape, the cavity 11 may also be elliptical or other shape.
  • the base 18 and cylindrical wall 19 of the pump body may be formed from any suitable rigid material including, without limitation, metal, ceramic, glass, or plastic including, without limitation, inject-molded plastic.
  • the pump 10 also comprises a piezoelectric disc 20 operatively connected to the end plate 17 to form an actuator 40 that is operatively associated with the central portion of the end wall 12 via the end plate 17.
  • the piezoelectric disc 20 is not required to be formed of a piezoelectric material, but may be formed of any electrically active material that vibrates such as, for example, an electrostrictive or magnetostrictive material.
  • the end plate 17 preferably possesses a bending stiffness similar to the piezoelectric disc 20 and may be formed of an electrically inactive material such as a metal or ceramic.
  • the actuator 40 When the piezoelectric disc 20 is excited by an electrical current, the actuator 40 expands and contracts in a radial direction relative to the longitudinal axis of the cavity 11 causing the end plate 17 to bend, thereby inducing an axial deflection of the end wall 12 in a direction substantially perpendicular to the end wall 12.
  • the end plate 17 alternatively may also be formed from an electrically active material such as, for example, a piezoelectric, magnetostrictive, or electrostrictive material.
  • the piezoelectric disc 20 may be replaced by a device in a force-transmitting relation with the end wall 12 such as, for example, a mechanical, magnetic or electrostatic device, wherein the end wall 12 may be formed as an electrically inactive or passive layer of material driven into oscillation by such device (not shown) in the same manner as described above.
  • a device in a force-transmitting relation with the end wall 12 such as, for example, a mechanical, magnetic or electrostatic device, wherein the end wall 12 may be formed as an electrically inactive or passive layer of material driven into oscillation by such device (not shown) in the same manner as described above.
  • the pump 10 further comprises at least two apertures extending from the cavity 11 to the outside of the pump 10, wherein at least a first one of the apertures may contain a valve to control the flow of fluid through the aperture.
  • the aperture containing a valve may be located at any position in the cavity 11 where the actuator 40 generates a pressure differential as described below in more detail
  • one preferred embodiment of the pump 10 comprises an aperture with a valve located at approximately the centre of either of the end walls 12,13.
  • the pump 10 shown in Figures 1A and 1B comprises a primary aperture 16 extending from the cavity 11 through the base 18 of the pump body at about the centre of the end wall 13 and containing a valve 46.
  • the valve 46 is mounted within the primary aperture 16 and permits the flow of fluid in one direction as indicated by the arrow so that it functions as an outlet for the pump 10.
  • the second aperture 15 may be located at any position within the cavity 11 other than the location of the aperture 16 with a valve 46. In one preferred embodiment of the pump 10, the second aperture is disposed between the centre of either one of the end walls 12,13 and the side wall 14.
  • the embodiment of the pump 10 shown in Figures 1A and 1B comprises two secondary apertures 15 extending from the cavity 11 through the actuator 40 that are disposed between the centre of the end wall 12 and the side wall 14. Although the secondary apertures 15 are not valved in this embodiment of the pump 10, they may also be valved to improve performance if necessary.
  • the primary aperture 16 is valved so that the fluid is drawn into the cavity 11 of the pump 10 through the secondary apertures 15 and pumped out of the cavity 11 through the primary aperture 16 as indicated by the arrows to provide a positive pressure at the primary aperture 16.
  • the pump 10 of Figure 1 is shown with an alternative configuration of the primary aperture 16. More specifically, the valve 46' in the primary aperture 16' is reversed so that the fluid is drawn into the cavity 11 through the primary aperture 16' and expelled out of the cavity 11 through the secondary apertures 15 as indicated by the arrows, thereby providing suction or a source of reduced pressure at the primary aperture 16'.
  • reduced pressure generally refers to a pressure less than the ambient pressure where the pump 10 is located.
  • vacuum and negative pressure may be used to describe the reduced pressure, the actual pressure reduction may be significantly less than the pressure reduction normally associated with a complete vacuum.
  • the pressure is "negative" in the sense that it is a gauge pressure, i.e., the pressure is reduced below ambient atmospheric pressure. Unless otherwise indicated, values of pressure stated herein are gauge pressures. References to increases in reduced pressure typically refer to a decrease in absolute pressure, while decreases in reduced pressure typically refer to an increase in absolute pressure.
  • a pump 70 according to another illustrative embodiment of the invention is shown.
  • the pump 70 is substantially similar to the pump 10 of Figure 1 except that the pump body has a base 18' having an upper surface forming the end wall 13' which is frusto-conical in shape. Consequently, the height of the cavity 11 varies from the height at the side wall 14 to a smaller height between the end walls 12,13' at the centre of the end walls 12,13'.
  • the frusto-conical shape of the end wall 13' intensifies the pressure at the centre of the cavity 11 where the height of the cavity 11 is smaller relative to the pressure at the side wall 14 of the cavity 11 where the height of the cavity 11 is larger.
  • the frusto-conical cavity 11 will generally have a smaller pressure amplitude at positions away from the centre of the cavity 11: the increasing height of the cavity 11 acts to reduce the amplitude of the pressure wave.
  • the efficiency of the pump 70 it is advantageous to the efficiency of the pump 70 to reduce the amplitude of the pressure oscillations away from the centre of the cavity 11 by employing a frusto-conical cavity 11 design.
  • the height of the cavity 11 at the side wall 14 is approximately 1.0 mm tapering to a height at the centre of the end wall 13' of approximately 0.3 mm.
  • Either one of the end walls 12,13 or both of the end walls 12,13 may have a frusto-conical shape.
  • the pump 60 is substantially similar to the pump 10 of Figure 1 except that it includes a second actuator 62 that replaces the base 18 of the pump body.
  • the actuator 62 comprises a second disc 64 and a ring-shaped isolator 66 disposed between the disc 64 and the side wall 14.
  • the pump 60 also comprises a second piezoelectric disc 68 operatively connected to the disc 64 to form the actuator 62.
  • the actuator 62 is operatively associated with the end wall 13 which comprises the inside surfaces of the disc 64 and the isolator 66.
  • the second actuator 62 also generates an oscillatory motion of the end wall 13 in a direction substantially perpendicular to the end wall 13 in a manner similar to the actuator 40 with respect to the end wall 12 as described above.
  • control circuitry (not shown) is provided to coordinate the axial displacement oscillations of the actuators. It is preferable that the actuators are driven at the same frequency and approximately out-of-phase, i.e. such that the centres of the end walls 12, 13 move first towards each other and then apart.
  • the dimensions of the pumps described herein should preferably satisfy certain inequalities with respect to the relationship between the height (h) of the cavity 11 and the radius (r) of the cavity which is the distance from the longitudinal axis of the cavity 11 to the side wall 14. These equations are as follows: r / h > 1.2 ; and h 2 / r > 4 ⁇ x ⁇ 10 - 10 meters .
  • the ratio of the cavity radius to the cavity height is between about 10 and about 50 when the fluid within the cavity 11 is a gas.
  • the volume of the cavity 11 may be less than about 10 ml.
  • the ratio of h 2 /r is preferably within a range between about 10 -3 and about 10 -6 meters where the working fluid is a gas as opposed to a liquid.
  • the secondary apertures 15 are located where the amplitude of the pressure oscillations within the cavity 11 is close to zero, i.e., the "nodal" points of the pressure oscillations.
  • the radial dependence of the pressure oscillation may be approximated by a Bessel function of the first kind and the radial node of the lowest-order pressure oscillation within the cavity 11 occurs at a distance of approximately 0.63r ⁇ 0.2r from the centre of the end wall 12 or the longitudinal axis of the cavity 11.
  • the secondary apertures 15 are preferably located at a radial distance (a) from the centre of the end walls 12,13, where (a) ⁇ 0.63r ⁇ 0.2r, i.e., close to the nodal points of the pressure oscillations.
  • the pumps disclosed herein should preferably satisfy the following inequality relating the cavity radius (r) and operating frequency (f) which is the frequency at which the actuator 40 vibrates to generate the axial displacement of the end wall 12.
  • the frequency of the oscillatory motion of the actuator 40 is preferably about equal to the lowest resonant frequency of radial pressure oscillations in the cavity 11, but may be within 20% therefrom.
  • the lowest resonant frequency of radial pressure oscillations in the cavity 11 is preferably greater than 500Hz.
  • the piezoelectric disc 20 is excited to expand and contract in a radial direction against the end plate 17 which causes the actuator 40 to bend, thereby inducing an axial displacement of the driven end wall 12 in a direction substantially perpendicular to the driven end wall 12.
  • the actuator 40 is operatively associated with the central portion of the end wall 12 as described above so that the axial displacement oscillations of the actuator 40 cause axial displacement oscillations along the surface of the end wall 12 with maximum amplitudes of oscillations, i.e., anti-node displacement oscillations, at about the centre of the end wall 12.
  • Figure 1B shows one possible displacement profile illustrating the axial oscillation of the driven end wall 12 of the cavity 11.
  • the solid curved line and arrows represent the displacement of the driven end wall 12 at one point in time, and the dashed curved line represents the displacement of the driven end wall 12 one half-cycle later.
  • the displacement as shown in this figure and the other figures is exaggerated.
  • the actuator 40 is not rigidly mounted at its perimeter, but rather suspended by the isolator 30, the actuator 40 is free to oscillate about its centre of mass in its fundamental mode. In this fundamental mode, the amplitude of the displacement oscillations of the actuator 40 is substantially zero at an annular displacement node 22 located between the centre of the end wall 12 and the side wall 14.
  • the amplitudes of the displacement oscillations at other points on the end wall 12 have an amplitudes greater than zero as represented by the vertical arrows.
  • a central displacement anti-node 21 exists near the centre of the actuator 40 and a peripheral displacement anti-node 21' exists near the perimeter of the actuator 40.
  • Figure 1C shows one possible pressure oscillation profile illustrating the pressure oscillation within the cavity 11 resulting from the axial displacement oscillations shown in Figure 1B .
  • the solid curved line and arrows represent the pressure at one point in time, and the dashed curved line represents the pressure one half-cycle later.
  • the amplitude of the pressure oscillations has a central pressure anti-node 23 near the centre of the cavity 11 and a peripheral pressure anti-node 24 near the side wall 14 of the cavity 11.
  • the amplitude of the pressure oscillations is substantially zero at the annular pressure node 25 between the central pressure anti-node 23 and the peripheral pressure anti-node 24.
  • the radial dependence of the amplitude of the pressure oscillations in the cavity 11 may be approximated by a Bessel function of the first kind.
  • the pressure oscillations described above result from the radial movement of the fluid in the cavity 11, and so will be referred to as the "radial pressure oscillations" of the fluid within the cavity 11 as distinguished from the axial displacement oscillations of the actuator 40.
  • the radial dependence of the amplitude of the axial displacement oscillations of the actuator 40 should approximate a Bessel function of the first kind so as to match more closely the radial dependence of the amplitude of the desired pressure oscillations in the cavity 11 (the “mode-shape” of the pressure oscillation).
  • the mode-shape of the displacement oscillations substantially matches the mode-shape of the pressure oscillations in the cavity 11, thus achieving mode-shape matching or, more simply, mode-matching.
  • the axial displacement oscillations of the actuator 40 and the corresponding pressure oscillations in the cavity 11 have substantially the same relative phase across the full surface of the actuator 40 wherein the radial position of the annular pressure node 25 of the pressure oscillations in the cavity 11 and the radial position of the annular displacement node 22 of the axial displacement oscillations of actuator 40 are substantially coincident.
  • the radius of the actuator (r act ) should preferably be greater than the radius of the annular pressure node 25 to optimize mode-matching. Assuming again that the pressure oscillation in the cavity 11 approximates a Bessel function of the first kind, the radius of the annular pressure node 25 would be approximately 0.63 of the radius from the centre of the end wall 13 to the side wall 14, i.e., the radius of the cavity 11 (r) as shown in Figure 1A . Therefore, the radius of the actuator 40 (r act ) should preferably satisfy the following inequality: r act ⁇ 0.63 r .
  • the isolator 30 may be a flexible membrane which enables the edge of the actuator 40 to move more freely as described above by bending and stretching in response to the vibration of the actuator 40 as shown by the displacement of the peripheral displacement oscillations 21' in Figure 1B .
  • the flexible membrane overcomes the potential dampening effects of the side wall 14 on the actuator 40 by providing a low mechanical impedance support between the actuator 40 and the cylindrical wall 19 of the pump 10 thereby reducing the dampening of the axial oscillations of the peripheral displacement oscillations 21' of the actuator 40.
  • flexible membrane 31 minimizes the energy being transferred from the actuator 40 to the side wall 14, which remains substantially stationary.
  • the annular displacement node 22 will remain substantially aligned with the annular pressure node 25 so as to maintain the mode-matching condition of the pump 10.
  • the axial displacement oscillations of the driven end wall 12 continue to efficiently generate oscillations of the pressure within the cavity 11 from the central pressure anti-node 23 to the peripheral pressure anti-node 24 at the side wall 14 as shown in Figure 1C .
  • FIG 6A shows a schematic cross-section view of the pump of Figure 3 and Figure 6B a graph of the pressure oscillations of fluid within the pump as shown in Figure 1C .
  • the valve 46' (as well as the valve 46) allows fluid to flow in only one direction as described above.
  • the valve 46' may be a check valve or any other valve that allows fluid to flow in only one direction.
  • Some valve types may regulate fluid flow by switching between an open and closed position.
  • the valves 46 and 46' must have an extremely fast response time such that they are able to open and close on a timescale significantly shorter than the timescale of the pressure variation.
  • One embodiment of the valves 46 and 46' achieve this by employing an extremely light flap valve which has low inertia and consequently is able to move rapidly in response to changes in relative pressure across the valve structure.
  • valve 110 is shown according to an illustrative embodiment.
  • the valve 110 comprises a substantially cylindrical wall 112 that is ring-shaped and closed at one end by a retention plate 114 and at the other end by a sealing plate 116.
  • the inside surface of the wall 112, the retention plate 114, and the sealing plate 116 form a cavity 115 within the valve 110.
  • the valve 110 further comprises a substantially circular flap 117 disposed between the retention plate 114 and the sealing plate 116, but adjacent the sealing plate 116.
  • the flap 117 may be disposed adjacent the retention plate 114 in an alternative embodiment as will be described in more detail below, and in this sense the flap 117 is considered to be "biased" against either one of the sealing plate 116 or the retention plate 114.
  • the peripheral portion of the flap 117 is sandwiched between the sealing plate 116 and the ring-shaped wall 112 so that the motion of the flap 117 is restrained in the plane substantially perpendicular the surface of the flap 117.
  • the motion of the flap 117 in such plane may also be restrained by the peripheral portion of the flap 117 being attached directly to either the sealing plate 116 or the wall 112, or by the flap 117 being a close fit within the ring-shaped wall 112, in an alternative embodiments.
  • the remainder of the flap 117 is sufficiently flexible and movable in a direction substantially perpendicular the surface of the flap 117, so that a force applied to either surface of the flap 117 will motivate the flap 117 between the sealing plate 116 and the retention plate 114.
  • the retention plate 114 and the sealing plate 116 both have holes 118 and 120, respectively, which extend through each plate.
  • the flap 117 also has holes 122 that are generally aligned with the holes 118 of the retention plate 114 to provide a passage through which fluid may flow as indicated by the dashed arrows 124 in Figures 6C and 8A .
  • the holes 122 in the flap 117 may also be partially aligned, i.e., having only a partial overlap, with the holes 118 in the retention plate 114.
  • the holes 118, 120, 122 are shown to be of substantially uniform size and shape, they may be of different diameters or even different shapes without limiting the scope of the invention.
  • the holes 118 and 120 form an alternating pattern across the surface of the plates as shown by the solid and dashed circles, respectively, in Figure 7D .
  • the holes 118, 120, 122 may be arranged in different patterns without effecting the operation of the valve 110 with respect to the functioning of the individual pairings of holes 118, 120, 122 as illustrated by individual sets of the dashed arrows 124.
  • the pattern of holes 118, 120, 122 may be designed to increase or decrease the number of holes to control the total flow of fluid through the valve 110 as required. For example, the number of holes 118, 120, 122 may be increased to reduce the flow resistance of the valve 110 to increase the total flow rate of the valve 110.
  • valve 110 When no force is applied to either surface of the flap 117 to overcome the bias of the flap 117, the valve 110 is in a "normally closed” position because the flap 117 is disposed adjacent the sealing plate 116 where the holes 122 of the flap are offset or not aligned with the holes 118 of the sealing plate 116. In this "normally closed” position, the flow of fluid through the sealing plate 116 is substantially blocked or covered by the non-perforated portions of the flap 117 as shown in Figures 7A and 7B .
  • valve 110 moves from the normally closed position to an "open" position over a time period, an opening time delay (T o ), allowing fluid to flow in the direction indicated by the dashed arrows 124.
  • T o opening time delay
  • a closing time delay T c
  • the flap 117 may be biased against the retention plate 114 with the holes 118, 122 aligned in a "normally open” position. In this embodiment, applying positive pressure against the flap 117 will be necessary to motivate the flap 117 into a "closed” position.
  • the operation of the valve 110 is a function of the change in direction of the differential pressure ( ⁇ P) of the fluid across the valve 110.
  • the differential pressure has been assigned a negative value (- ⁇ P) as indicated by the downward pointing arrow.
  • - ⁇ P negative value
  • the fluid pressure at the outside surface of the retention plate 114 is greater than the fluid pressure at the outside surface of the sealing plate 116.
  • This negative differential pressure (- ⁇ P) drives the flap 117 into the fully closed position as described above wherein the flap 117 is pressed against the sealing plate 116 to block the holes 120 in the sealing plate 116, thereby substantially preventing the flow of fluid through the valve 110.
  • the changing differential pressure cycles the valve 110 between closed and open positions based on the direction (i.e., positive or negative) of the differential pressure across the valve 110. It should be understood that the flap 117 could be biased against the retention plate 114 in an open position when no differential pressure is applied across the valve 110, i.e., the valve 110 would then be in a "normally open” position.
  • the valve 110 is disposed within the primary aperture 46' of the pump 10 so that fluid is drawn into the cavity 11 through the primary aperture 46' and expelled from the cavity 11 through the secondary apertures 15 as indicated by the solid arrows, thereby providing a source of reduced pressure at the primary aperture 46' of the pump 10.
  • the fluid flow through the primary aperture 46' as indicated by the solid arrow pointing upwards corresponds to the fluid flow through the holes 118, 120 of the valve 110 as indicated by the dashed arrows 124 that also point upwards.
  • the operation of the valve 110 is a function of the change in direction of the differential pressure ( ⁇ P) of the fluid across the entire surface of the retention plate 114 of the valve 110 for this embodiment of a negative pressure pump.
  • the differential pressure ( ⁇ *P) is assumed to be substantially uniform across the entire surface of the retention plate 114 because the diameter of the retention plate 114 is small relative to the wavelength of the pressure oscillations in the cavity 115 and furthermore because the valve 110 is located in the primary aperture 46' near the centre of the cavity 115 where the amplitude of the central pressure anti-node 71 is relatively constant.
  • the differential pressure across the valve 110 reverses to become a positive differential pressure (+ ⁇ P) as shown in Figures 6C and 8A , the biased flap 117 is motivated away from the sealing plate 116 against the retention plate 114 into the open position.
  • the differential pressure ( ⁇ P*) is assumed to be substantially uniform across the entire surface of the retention plate 114 because it corresponds to the central pressure anti-node 71 as described above, it therefore being a good approximation that there is no spatial variation in the pressure across the valve 110. While in practice the time-dependence of the pressure across the valve may be approximately sinusoidal, in the analysis that follows it shall be assumed that the differential pressure ( ⁇ P) between the positive differential pressure (+ ⁇ P) and negative differential pressure (- ⁇ P) values can be represented by a square wave over the positive pressure time period (t P+ ) and the negative pressure time period (t P- ) of the square wave, respectively, as shown in Figure 9A .
  • the pump 10 As differential pressure ( ⁇ P) cycles the valve 110 between the normally closed and open positions, the pump 10 provides a reduced pressure every half cycle when the valve 110 is in the open position subject to the opening time delay (T o ) and the closing time delay (T c ) as also described above and as shown in Figure 9B .
  • T o opening time delay
  • T c closing time delay
  • the retention plate 114 and the sealing plate 116 should be strong enough to withstand the fluid pressure oscillations to which they are subjected without significant mechanical deformation.
  • the retention plate 114 and the sealing plate 116 may be formed from any suitable rigid material such as glass, silicon, ceramic, or metal.
  • the holes 118, 120 in the retention plate 114 and the sealing plate 116 may be formed by any suitable process including chemical etching, laser machining, mechanical drilling, powder blasting, and stamping.
  • the retention plate 114 and the sealing plate 116 are formed from sheet steel between 100 and 200 microns thick, and the holes 118, 120 therein are formed by chemical etching.
  • the flap 117 may be formed from any lightweight material, such as a metal or polymer film.
  • the flap 117 when fluid pressure oscillations of 20 kHz or greater are present on either the retention plate side 134 or the sealing plate side 136 of the valve, the flap 117 may be formed from a thin polymer sheet between 1 micron and 20 microns in thickness.
  • the flap 117 may be formed from polyethylene terephthalate (PET) or a liquid crystal polymer film approximately 3 microns in thickness.
  • the pressure oscillation across the valve 110 is a square wave as shown in Figure 9A and that the full pressure differential is dropped across the flap 117.
  • the flap 117 should travel the distance between the retention plate 114 and the sealing plate 116, the valve gap ( v gap ) being the perpendicular distance between the two plates, within a time period less than about one quarter (25%) of the time period of the differential pressure oscillation driving the motion of the flap 117, i.e., the time period of the approximating square wave ( t pres ).
  • the mass per unit area of the flap 117 (m) is subject to the following inequality: m ⁇ P 2 ⁇ d gap ⁇ t pres 2 16 , or alternatively m ⁇ P 2 ⁇ d gap ⁇ 1 16 ⁇ f 2
  • d gap is the flap gap, i.e., the valve gap ( v gap ) minus the thickness of the flap 117
  • f is the frequency of the applied differential pressure oscillation (as illustrated in Figure 10 ).
  • P may be 15kPa
  • f may be 20kHz
  • d gap may be 25 microns, indicating that the mass per unit area of the flap 117 (m) should be less than about 60 grams per square meter.
  • the thickness of the flap 117 is subject to the following inequality: ⁇ flap ⁇ P 2 ⁇ d gap ⁇ 1 16 ⁇ f 2 ⁇ 1 ⁇ flap where ⁇ flap is the density of the flap 117 material.
  • ⁇ flap is the density of the flap 117 material.
  • the thickness of the flap 117 according to this embodiment is less than about 45 microns for the operation of a valve 110 under the above conditions.
  • the square wave shown in Figure 9A in general overestimates the approximately sinusoidal oscillating pressure waveform across the valve 110, and further because only a proportion of the pressure difference applied across the valve 110 will act as an accelerating pressure difference on the flap 117 , the initial acceleration of the flap 117 will be lower than estimated above and the opening time delay (T o ) will in practice be higher. Therefore, the limit on flap thickness derived above is very much an upper limit, and in practice, to compensate for the decreased acceleration of the flap 17, the thickness of the flap 17 may be reduced to satisfy the inequality of Equation 5.
  • the flap 117 is thinner so that it accelerates more quickly to ensure that the opening time delay (T o ) is less than about one quarter (25%) of the time period of the differential pressure oscillation ( t pres ).
  • Minimizing the pressure drop incurred as air flows through the valve 110 is important to maximizing valve performance as it affects both the maximum flow rate and the stall pressure that are achievable. Reducing the size of the valve gap ( v gap ) between the plates or the diameter of the holes 118, 120 in the plates both increase the flow resistance and increase the pressure drop through the valve 110. According to another embodiment of the invention, the following analysis employing steady-state flow equations to approximate flow resistance through the valve 110 may be used to improve the operation of the valve 110.
  • the total pressure drop (approximately ⁇ p gap + 2* ⁇ p hole ) can be very sensitive to changes in the diameter of the holes 118, 120 and the flap gap d gap between the flap 117 and the sealing plate 116.
  • a smaller flap gap d gap which can be desirable in order to minimize the opening time delay (T o ) and the closing time delay (T c ) of the valve 110, may increase the pressure drop significantly.
  • reducing the flap gap d gap from 25 microns to 20 microns doubles the pressure loss.
  • the optimal flap gap d gap falls within an approximate range between about 5 microns and about 150 microns.
  • Figure 10 illustrates a portion of the valve 110 of Figure 7B in the normally closed position.
  • the flap 117 is subjected to stress as the flap 117 seals and blocks the hole 120 in the sealing plate 116 causing the flap 117 to deform in the shape of a dimple extending into the opening of the holes 120 as illustrated.
  • the level of stress on the flap 117 in this configuration increases with the diameter of the holes 120 in the sealing plate 116 for a given flap 117 thickness.
  • the flap 117 material will tend to fracture more easily if the diameter of the holes 120 is too large, thus leading to failure of the valve 110.
  • the hole 120 diameter may be reduced to limit the stress experienced by the flap 117 in operation to a level which is below the fatigue stress of the flap 117 material.
  • r hole is the radius of the hole 120 of the sealing plate 116
  • t is the flap 117 thickness
  • y the flap 117 deflection at the centre of the hole 120
  • ⁇ p max is the maximum pressure difference experienced by the flap 117 when sealed
  • E is the Young's Modulus of the flap 117 material
  • K 1 to K 4 are constants dependant on the details of the boundary conditions and the Poisson ratio of the flap 117.
  • equation 8 can be solved for the deformation, y, and the result then used in equation 9 to calculate stress.
  • equation 9 For values of y « t, the cubic and squared y/t terms in equations 8 and 9 respectively become small and these equations simplify to match small plate deflection theory. Simplifying these equations results in the maximum stress being proportional to the radius of the holes 120 squared and inversely proportional to the flap 117 thickness squared.
  • the flap 117 is formed from a thin polymer sheet, such as Mylar having a Poisson ratio of 0.38, and is clamped to the sealing plate 116 at the edge of the holes 120.
  • the constants K 1 to K 4 can be estimated as 6.23, 3.04, 4.68 and 1.73, respectively.
  • the deflection (y) of the flap 117 will be approximately 1 ⁇ m for a hole radius of 0.06mm, about 4 ⁇ m for a hole radius of 0.1mm, and about 8 ⁇ m for a hole radius of 0.15mm.
  • the maximum stresses under these conditions will be 16, 34 and 43MPa, respectively.
  • the maximum stress per cycle tolerated by the flap 117 should be significantly lower than the yield stress of the flap 117 material in order to reduce the possibility that the flap 117 suffers a fatigue fracture, especially at the dimple portion of the flap 117 extending into the holes 120.
  • the actual yield stress of the flap 117 material should be at least about four times greater than the stress applied to the flap 117 material (e.g., 16, 34 and 43MPa as calculated above).
  • the flap 117 material should have a yield stress as high as 150MPa to minimize the likelihood of such fractures for a maximum hole diameter in this case of approximately 200 microns.
  • Reducing the diameter of the holes 120 beyond this point may be desirable as it further reduces flap 117 stress and has no significant effect on valve flow resistance until the diameter of the holes 120 approach the same size as the flap gap d gap .
  • reduction in the diameter of the holes 120 permits the inclusions of an increased number of holes 120 per unit area of the valve 110 surface for a given sealing length (s).
  • the size of the diameter of the holes 120 may be limited, at least in part, by the manner in which the plates of the valve 110 were fabricated. For example, chemical etching limits the diameter of the holes 120 to be greater than approximately the thickness of the plates in order to achieve repeatable and controllable etching results.
  • the holes 120 in the sealing plate 116 being between about 20 microns and about 500 microns in diameter.
  • the retention plate 114 and the sealing plate 116 are formed from sheet steel about 100 microns thick, and the holes 118, 120 are about 150 microns in diameter.
  • the valve flap 117 is formed from polyethylene terephthalate (PET) and is about 3 microns thick. The valve gap ( v gap ) between the sealing plate 116 and the retention plate 114 is around 25 microns.
  • FIGS 11A and 11B illustrate yet another embodiment of the valve 110, valve 310, comprising release holes 318 extending through the retention plate 114 between the holes 118 in the retention plate 114.
  • the release holes 322 facilitate acceleration of the flap 117 away from the retention plate 114 when the differential pressure across the valve 310 changes direction, thereby further reducing the response time of the valve 310, i.e., reducing the closing time delay (T c ).
  • T c closing time delay
  • the release holes 318 expose the outside surface 317 of the flap 117 in contact with the retention plate 114 to the pressure differential acting to close the valve 310. Also, the release holes 318 reduce the distance 360 that fluid must penetrate between the retention plate 114 and the flap 117 in order to release the flap 117 from the retention plate 114 as illustrated in Figure 11B .
  • the release holes 318 may have a different diameter than the other holes 118, 120 in the valve plates.
  • the retention plate 114 acts to limit the motion of the flap 117 and to support the flap 117 in the open position while having a reduced surface contact area with the surface 317 of the flap 117.
  • FIGS 12A and 12B show two valves 110 as shown in Figure 7A wherein one valve 410 is oriented in the same position as the valve 110 of Figure 7A and the other valve 420 is inverted or reversed with the retention plate 114 on the lower side and the sealing plate 116 on the upper side.
  • the valves 410, 420 operate as described above with respect to valve 110 of Figures 7A-7C and 8A-8B , but with the air flows in opposite directions as indicated by dashed arrow 412 for the valve 410 and dashed arrow 422 for the valve 420 wherein one valve acts as an inlet valve and the other acts as an outlet valve.
  • Figure 12C shows a graph of the operating cycle of the valves 410, 420 between an open and closed position that are modulated by the square-wave cycling of the pressure differential ( ⁇ P) as illustrated by the dashed lines (see Figures 9A and 9B ).
  • the graph shows a half cycle for each of the valves 410, 420 as each one opens from the closed position.
  • the valve 410 opens as described above and shown by graph 414 with fluid flowing in the direction indicated by the arrow 412.
  • valve 420 when the differential pressure across the valve 420 is initially positive and reverses to become a negative differential pressure (- ⁇ P), the valve 420 opens as described above and shown by graph 424 with fluid flowing in the opposite direction as indicated by the arrow 422. Consequently, the combination of the valves 410, 420 function as a bi-directional valve permitting fluid flow in both directions in response to the cycling of the differential pressure ( ⁇ P).
  • the valves 410, 420 may be mounted conveniently side by side within the primary aperture 46' of the pump 10 to provide fluid flow in the direction indicated by the solid arrow in the primary aperture 46' as shown in Figure 6A for one half cycle, and then in the opposite direction (not shown) for the opposite half cycle.
  • FIGS 13 and 14 show yet another embodiment of the valves 410, 420 of Figure 12A in which two valves 510, 520 corresponding to valves 410, 420, respectively, are formed within a single structure 505.
  • the two valves 510, 520 share a common wall or dividing barrier 540 which in this case is formed as part of the wall 112, although other constructions may be possible.
  • the valve 510 opens from its normally closed position with fluid flowing in the direction indicated by the arrow 512.
  • valve 520 when the differential pressure across the valve 520 is initially positive and reverses to become a negative differential pressure (- ⁇ P), the valve 520 opens from its normally closed position with fluid flowing in the opposite direction as indicated by the arrow 522. Consequently, the combination of the valves 510, 520 function as a bi-directional valve permitting fluid flow in both directions in response to cycling of the differential pressure ( ⁇ P).
  • FIG 15 shows yet another embodiment of a bi-directional valve 555 having a similar structure as the bi-directional valve 505 of Figure 14 .
  • Bi-directional valve 551 is also formed within a single structure having two valves 510, 530 that share a common wall or dividing barrier 560 which is also formed as part of the wall 112.
  • the valve 510 operates in the same fashion as described above with the flap 117 shown in the normally closed position blocking the holes 20 as also described above.
  • the bi-directional valve 550 has a single flap 117 having a first flap portion 117a within the valve 510 and a second flap portion 117b within the valve 530.
  • the second flap portion 117b is biased against the plate 516 and comprises holes 522 that are aligned with the holes 120 of the plate 516 rather than the holes 118 of the plate 514 unlike the valves described above.
  • the valve 130 is biased by the flap portion 117b in a normally open position as distinguished from the normally closed position of the other valves described above.
  • the combination of the valves 510, 530 function as a bi-directional valve permitting fluid flow in both directions in response to the cycling of the differential pressure ( ⁇ P) with the two valves opening and closing on alternating cycles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Claims (28)

  1. Pompe (10) comportant:
    un corps de pompe de forme essentiellement cylindrique qui définit une cavité (11) servant à contenir un fluide, la cavité étant formée par une paroi latérale (14) fermée aux deux extrémités par des parois d'extrémité (12, 13), au moins l'une des parois d'extrémité étant une paroi d'extrémité commandée (12) qui comporte une partie centrale et une partie périphérique s'étendant radialement vers l'extérieur à partir de la partie centrale de la paroi d'extrémité commandée;
    un organe de commande (40) associé opérationnellement à la partie centrale de la paroi d'extrémité commandée pour faire osciller la paroi d'extrémité commandée, produisant ainsi des oscillations de déplacement de la paroi d'extrémité commandée dans une direction essentiellement perpendiculaire à elle, un noeud annulaire étant formé entre le centre de la paroi d'extrémité commandée et la paroi latérale en cours d'usage;
    une première ouverture (16) disposée n'importe où dans le corps de pompe sauf à l'endroit où se trouve le noeud annulaire, et s'étendant à travers le corps de pompe;
    une deuxième ouverture (14) disposée n'importe où dans le corps de pompe sauf à l'endroit où se trouve la première ouverture, et s'étendant à travers le corps de pompe; et
    une soupape à clapet (46) disposée dans au moins la première ouverture ou bien la deuxième ouverture;
    et il en résulte que les oscillations de déplacement produisent des oscillations de pression radiale correspondantes du fluide à l'intérieur de la cavité du corps de pompe, ce qui a pour effet de faire circuler le fluide à travers les première et deuxième ouvertures en cours d'usage; caractérisée en ce qu'un isolateur (30) est associé opérationnellement à la partie périphérique de la paroi d'extrémité commandée afin de réduire l'amortissement des oscillations de déplacement; et en ce que
    la soupape à clapet comporte:
    une première plaque (116) ayant des ouvertures (120) qui s'étendent de manière généralement perpendiculaire à travers la première plaque;
    une deuxième plaque ayant des premières ouvertures qui s'étendent de manière généralement perpendiculaire à travers la deuxième plaque (114), les premières ouvertures (118) se trouvant essentiellement décalées par rapport aux ouvertures de la première plaque;
    une pièce d'écartement (112) disposée entre la première plaque et la deuxième plaque de manière à former une cavité (115) entre elles qui se trouve en communication fluide avec les ouvertures de la première plaque et les premières ouvertures de la deuxième plaque; et
    un clapet (117) disposé et pouvant être déplacé entre la première plaque et la deuxième plaque, le clapet ayant des ouvertures (122) essentiellement décalées par rapport aux ouvertures de la première plaque (116) et essentiellement alignées sur les premières ouvertures de la deuxième plaque (114) ;
    ceci ayant pour effet de faire déplacer le clapet (117) entre les première et deuxième plaques en réponse au changement de direction de la pression différentielle du fluide qui est exercée à travers la soupape à clapet.
  2. Pompe (10) selon la revendication 1, caractérisée en ce que la deuxième plaque (114) comprend des deuxièmes ouvertures (318) qui s'étendent de manière généralement perpendiculaire à travers la deuxième plaque (114) et qui sont espacées entre les premières ouvertures de cette deuxième plaque, caractérisée en ce que les deuxièmes ouvertures sont décalées par rapport aux ouvertures du clapet (117).
  3. Pompe (10) selon la revendication 1, caractérisée en ce que le clapet (117) est disposé à côté de la première plaque (116) ou bien de la deuxième plaque (114) dans une première position lorsque la pression différentielle est essentiellement égale à zéro, et en ce qu'il peut être déplacé pour se mettre dans une deuxième position de l'autre plaque, lorsqu'une pression différentielle est appliquée, ceci ayant pour effet de faire déplacer le clapet de la première position à la deuxième position en réponse au changement de direction de la pression différentielle du fluide qui est exercée à travers la soupape à clapet, puis de le ramener à la première position en réponse à l'inversion de direction de la pression différentielle du fluide.
  4. Pompe (10) selon la revendication 3, caractérisée en ce que le clapet (117)) est disposé à côté de la deuxième plaque (114) en position normalement ouverte, ceci ayant pour effet de faire circuler le fluide à travers la soupape à clapet lorsque le clapet se trouve dans la première position, et de faire interrompre le débit de fluide par la soupape à clapet lorsque le clapet se trouve dans la deuxième position.
  5. Pompe (10) selon la revendication 3, caractérisée en ce que le clapet (117)) est disposé à côté de la première plaque (116) en position normalement fermée, ceci ayant pour effet de faire interrompre le débit de fluide par la soupape à clapet lorsque le clapet se trouve dans la première position, et de faire circuler le fluide à travers la soupape à clapet lorsque le clapet se trouve dans la deuxième position.
  6. Pompe (10) selon la revendication 4 et la revendication 5, caractérisée en ce que la deuxième plaque (114) comprend par ailleurs des deuxièmes ouvertures (318) qui s'étendent de manière généralement perpendiculaire à travers la deuxième plaque et qui sont espacées entre les premières ouvertures de la deuxième plaque, et il en résulte que les deuxièmes ouvertures se trouvent décalées par rapport aux ouvertures du clapet lorsque celui-ci se trouve dans la deuxième position.
  7. Pompe (10) selon la revendication 1, caractérisée en ce que les première (116) et deuxième (114) plaques sont réalisées à partir d'un matériau essentiellement rigide sélectionné dans le groupe composé de métal, de matière plastique, de silicium et de verre.
  8. Pompe (10) selon la revendication 7, caractérisée en ce que le métal est de l'acier d'une épaisseur comprise entre environ 100 microns et environ 200 microns.
  9. Pompe (10) selon la revendication 1, caractérisée en ce que le clapet (117) et l'une ou l'autre des première (116) et deuxième (114) plaques sont séparés d'une distance comprise entre environ 5 microns et environ 150 microns lorsque le clapet est disposé à côté de l'autre plaque.
  10. Pompe (10) selon la revendication 9, caractérisée en ce que le clapet (117) est réalisé à partir d'un polymère ayant une épaisseur d'environ 3 microns, et en ce que la distance entre le clapet et l'une ou l'autre des première et deuxième plaques est comprise entre environ 15 microns et environ 50 microns lorsque le clapet est disposé à côté de l'autre plaque.
  11. Pompe (10) selon la revendication 10, caractérisée en ce que le clapet (117) est réalisé à partir d'un matériau léger sélectionné dans le groupe comportant un polymère et un métal.
  12. Pompe (10) selon la revendication 11, caractérisée en ce que le matériau léger est un polymère ayant une épaisseur inférieure à environ 20 microns.
  13. Pompe (10) selon la revendication 12, caractérisée en ce que le polymère est du téréphtalate de polyéthylène ou bien une pellicule de cristal liquide ayant une épaisseur d'environ 3 microns.
  14. Pompe (10) selon la revendication 1, caractérisée en ce que les ouvertures (120) dans la première plaque sont d'un diamètre inférieur à environ 500 microns.
  15. Pompe (10) selon la revendication 1, caractérisée en ce que le clapet (117) est réalisé à partir d'un polymère ayant une épaisseur d'environ 3 microns et en ce que les ouvertures dans la première plaque sont d'un diamètre inférieur à environ 150 microns.
  16. Pompe (10) selon la revendication 1, caractérisée en ce que la première plaque (116) et la deuxième (114) plaque sont réalisées en acier ayant une épaisseur d'environ 100 microns, en ce que les ouvertures (120) dans la première plaque, les premières ouvertures (118) dans la deuxième plaque, et les ouvertures (122) dans le clapet (117) sont d'un diamètre d'environ 150 microns, et en ce que le clapet est réalisé à partir d'une pellicule de polymère ayant une épaisseur d'environ 3 microns.
  17. Pompe (10) selon la revendication 1, caractérisée en ce que les première (116) et deuxième (114) plaques, la pièce d'écartement (112) et le clapet (117) constituent une première partie (410) de soupape, et en ce que la soupape à clapet constitue par ailleurs une deuxième partie (420) de soupape comportant :
    une première plaque (116) ayant des ouvertures (120) qui s'étendent de manière généralement perpendiculaire à travers la première plaque;
    une deuxième plaque (114) ayant des premières ouvertures (118) qui s'étendent de manière généralement perpendiculaire à travers la deuxième plaque, les premières ouvertures se trouvant essentiellement décalées par rapport aux ouvertures de la première plaque;
    une pièce d'écartement (112) disposée entre la première plaque et la deuxième plaque de manière à former une cavité entre elles qui se trouve en communicatiion fluide avec les ouvertures de la première plaque et les premières ouvertures de la deuxième plaque; et
    un clapet (117) disposé et pouvant être déplacé entre la première plaque et la deuxième plaque, le clapet ayant des ouvertures (122) essentiellement décalées par rapport aux ouvertures de la première plaque et essentiellement alignées sur les premières ouvertures de la deuxième plaque;
    ceci ayant pour effet de faire déplacer le clapet entre les première et deuxième plaques en réponse au changement de direction de la pression différentielle du fluide qui est exercée à travers la soupape à clapet; et
    caractérisée en ce que les première (410) et deuxième (420) parties de soupape sont orientées par rapport à la pression différentielle de manière à permettre la circulation du fluide à travers les deux parties de soupape dans des sens opposés en réponse au cyclage de la pression différentielle du fluide à travers la soupape.
  18. Pompe (10) selon la revendication 17, caractérisée en ce que le clapet (117) de chaque partie de soupape est disposé à côté de la première plaque ou de la deuxième plaque dans une première position lorsque la pression différentielle est essentiellement égale à zéro, et en ce qu'il peut être déplacé pour se mettre dans une deuxième position de l'autre plaque, lorsqu'une pression différentielle est appliquée, ceci ayant pour effet de faire déplacer chacun des clapets de la première position à la deuxième position en réponse au changement de direction de la pression différentielle du fluide qui est exercée à travers la soupape à clapet, puis de le ramener à la première position en réponse à l'inversion de direction de la pression différentielle du fluide.
  19. Pompe (10) selon la revendication 17, caractérisée en ce que les première (410) et deuxième (420) parties de soupape sont orientées dans des sens opposés par rapport à la pression différentielle, et en ce que le clapet de chaque partie de soupape est disposé à côté de la deuxième plaque en position normalement ouverte, ceci ayant pour effet de faire circuler le fluide à travers chacune des parties de soupape lorsque les clapets se trouvent dans la première position et de faire interrompre la circulation du fluide par ces parties de soupape lorsque les clapets se trouvent dans la deuxième position.
  20. Pompe (10) selon la revendication 17, caractérisée en ce que les première (410) et deuxième (420) parties de soupape sont orientées dans des sens opposés par rapport à la pression différentielle, et en ce que le clapet de chaque partie de soupape est disposé à côté de la première plaque en position normalement fermée, ceci ayant pour effet de faire interrompre la circulation du fluide par ces parties de soupape lorsque les clapets en question se trouvent dans la première position, et de faire circuler le fluide à travers ces parties de soupape lorsque les clapets se trouvent dans la deuxième position.
  21. Pompe (10) selon la revendication 17, caractérisée en ce que les première (410) et deuxième (420) parties de soupape sont orientées dans des sens opposés par rapport à la pression différentielle, en ce que le clapet de la première partie de soupape est disposé à côté de la première plaque en position normalement fermée, ceci ayant pour effet de faire interrompre la circulation du fluide par la première partie de soupape lorsque le clapet en question se trouve dans la première position, et de faire circuler le fluide à travers la première partie de soupape lorsque le clapet se trouve dans la deuxième position, et en ce que le clapet de la deuxième partie de soupape est disposé à côté de la deuxième plaque en position normalement ouverte, ceci ayant pour effet de faire circuler le fluide à travers la deuxième partie de soupape lorsque le clapet se trouve dans la première position, de faire interrompre la circulation du fluide par la deuxième partie de soupape lorsque le clapet se trouve dans la deuxième position.
  22. Pompe (10) selon la revendication 1, caractérisée en ce que le mouvement oscillant produit des oscillations de pression radiale du fluide à l'intérieur de la cavité, ceci ayant pour effet de faire circuler le fluide à travers la première ouverture et la deuxième ouverture.
  23. Pompe (10) selon la revendication 22, caractérisée en ce que la fréquence de résonance la plus basse des oscillations de pression radiale est supérieure à environ 500 Hz.
  24. Pompe (10) selon la revendication 22, caractérisée en ce que la fréquence du mouvement oscillant est approximativement égale à la fréquence de résonance la plus basse des oscillations de pression radiale.
  25. Pompe (10) selon la revendication 22, caractérisée en ce que la fréquence du mouvement oscillant se trouve à moins de 20% de la fréquence de résonance la plus basse des oscillations de pression radiale.
  26. Pompe (10) selon la revendication 22, caractérisée en ce que le mouvement oscillant est adapté au mode des oscillations de pression radiale.
  27. Pompe (10) selon la revendication 1, caractérisée en ce que la soupape à clapet est une soupape bidirectionnelle servant à contrôler la circulation du fluide dans deux sens, la soupape bidirectionnelle comportant au moins deux parties de soupape (410, 420) qui contrôlent la circulation du fluide, chacune des parties de soupape comprenant:
    une première plaque (116) ayant des ouvertures (120) qui s'étendent de manière généralement perpendiculaire à travers la première plaque;
    une deuxième plaque (114) ayant des ouvertures (118) qui s'étendent de manière généralement perpendiculaire à travers la deuxième plaque, les premières ouvertures se trouvant essentiellement décalées par rapport aux ouvertures de la première plaque;
    une pièce d'écartement (112) disposée entre la première plaque et la deuxième plaque de manière à former une cavité entre elles qui se trouve en communicatiion fluide avec les ouvertures de la première plaque et les ouvertures de la deuxième plaque; et
    un clapet (117) disposé et pouvant être déplacé entre la première plaque et la deuxième plaque, le clapet ayant des ouvertures (122) essentiellement décalées par rapport aux ouvertures de la première plaque et essentiellement alignées sur les ouvertures de la deuxième plaque;
    ceci ayant pour effet de faire déplacer le clapet entre les première et deuxième plaques en réponse au changement de direction de la pression différentielle du fluide qui est exercée à travers la soupape à clapet; et
    caractérisée en ce que les première et deuxième parties de soupape sont orientées par rapport à la pression différentielle de manière à permettre la circulation du fluide à travers les deux parties de la soupape dans des sens opposés en réponse au cyclage de la pression différentielle du fluide à travers la soupape.
  28. Pompe (10) selon la revendication 27, caractérisée en ce que le clapet (117) de chaque partie de soupape (410, 420) est disposé à côté de la première plaque ou de la deuxième plaque dans une première position lorsque la pression différentielle est essentiellement égale à zéro, et en ce qu'il peut être déplacé vers l'autre plaque dans une deuxième position lorsqu'une pression différentielle est appliquée, ceci ayant pour effet de faire déplacer chacun des clapets de la première position à la deuxième position en réponse au changement de direction de la pression différentielle du fluide qui est exercée à travers la soupape, puis de ramener le clapet à la première position en réponse à l'inversion de direction de la pression différentielle du fluide.
EP09785228.9A 2009-06-03 2009-06-03 Pompe a cavite en forme de disque Active EP2438302B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/GB2009/050615 WO2010139918A1 (fr) 2009-06-03 2009-06-03 Pompe a cavite en forme de disque

Publications (2)

Publication Number Publication Date
EP2438302A1 EP2438302A1 (fr) 2012-04-11
EP2438302B1 true EP2438302B1 (fr) 2015-09-23

Family

ID=41110662

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09785228.9A Active EP2438302B1 (fr) 2009-06-03 2009-06-03 Pompe a cavite en forme de disque

Country Status (10)

Country Link
EP (1) EP2438302B1 (fr)
JP (1) JP5623515B2 (fr)
CN (1) CN102459899B (fr)
AU (2) AU2009347422B2 (fr)
BR (1) BRPI0924510B8 (fr)
CA (1) CA2764334C (fr)
MX (1) MX2011012974A (fr)
RU (1) RU2511832C2 (fr)
SG (1) SG176225A1 (fr)
WO (1) WO2010139918A1 (fr)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10660994B2 (en) 2012-03-12 2020-05-26 Smith & Nephew Plc Reduced pressure apparatus and methods
USD898925S1 (en) 2018-09-13 2020-10-13 Smith & Nephew Plc Medical dressing
US10898388B2 (en) 2015-04-27 2021-01-26 Smith & Nephew Plc Reduced pressure apparatuses and methods
US11096831B2 (en) 2016-05-03 2021-08-24 Smith & Nephew Plc Negative pressure wound therapy device activation and control
US11116669B2 (en) 2016-08-25 2021-09-14 Smith & Nephew Plc Absorbent negative pressure wound therapy dressing
US11123471B2 (en) 2017-03-08 2021-09-21 Smith & Nephew Plc Negative pressure wound therapy device control in presence of fault condition
US11160915B2 (en) 2017-05-09 2021-11-02 Smith & Nephew Plc Redundant controls for negative pressure wound therapy systems
US11173240B2 (en) 2016-05-03 2021-11-16 Smith & Nephew Plc Optimizing power transfer to negative pressure sources in negative pressure therapy systems
US11285047B2 (en) 2016-04-26 2022-03-29 Smith & Nephew Plc Wound dressings and methods of use with integrated negative pressure source having a fluid ingress inhibition component
US11305047B2 (en) 2016-05-03 2022-04-19 Smith & Nephew Plc Systems and methods for driving negative pressure sources in negative pressure therapy systems
US11497653B2 (en) 2017-11-01 2022-11-15 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
US11554203B2 (en) 2017-11-01 2023-01-17 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
US11564845B2 (en) 2017-09-13 2023-01-31 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
US11564847B2 (en) 2016-09-30 2023-01-31 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
US11701265B2 (en) 2017-09-13 2023-07-18 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
US11707564B2 (en) 2017-11-01 2023-07-25 Smith & Nephew Plc Safe operation of integrated negative pressure wound treatment apparatuses
US11723809B2 (en) 2016-03-07 2023-08-15 Smith & Nephew Plc Wound treatment apparatuses and methods with negative pressure source integrated into wound dressing
US12005181B2 (en) 2016-12-12 2024-06-11 Smith & Nephew Plc Pressure wound therapy status indication via external device
US12005182B2 (en) 2019-05-31 2024-06-11 T.J.Smith And Nephew, Limited Systems and methods for extending operational time of negative pressure wound treatment apparatuses

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2648803C (fr) 2006-04-14 2017-06-20 Deka Products Limited Partnership Systemes, dispositifs et procedes de pompage de fluide, echange de chaleur, detection thermique, et detection de conductivite
US10537671B2 (en) 2006-04-14 2020-01-21 Deka Products Limited Partnership Automated control mechanisms in a hemodialysis apparatus
US7967022B2 (en) 2007-02-27 2011-06-28 Deka Products Limited Partnership Cassette system integrated apparatus
KR102228428B1 (ko) 2007-02-27 2021-03-16 데카 프로덕츠 리미티드 파트너쉽 혈액투석 시스템
US8042563B2 (en) 2007-02-27 2011-10-25 Deka Products Limited Partnership Cassette system integrated apparatus
US8371829B2 (en) * 2010-02-03 2013-02-12 Kci Licensing, Inc. Fluid disc pump with square-wave driver
US8646479B2 (en) * 2010-02-03 2014-02-11 Kci Licensing, Inc. Singulation of valves
GB201101870D0 (en) 2011-02-03 2011-03-23 The Technology Partnership Plc Pump
EP3346131B1 (fr) 2011-10-11 2022-04-27 Murata Manufacturing Co., Ltd. Appareil de commande de fluides et procédé de réglage d'appareil de commande de fluides
GB201120887D0 (en) 2011-12-06 2012-01-18 The Technology Partnership Plc Acoustic sensor
AU2013216984A1 (en) * 2012-02-10 2014-07-24 Kci Licensing, Inc. Systems and methods for electrochemical detection in a disc pump
AU2013216967A1 (en) * 2012-02-10 2014-08-28 Kci Licensing, Inc. Systems and methods for monitoring reduced pressure supplied by a disc pump system
GB201202346D0 (en) 2012-02-10 2012-03-28 The Technology Partnership Plc Disc pump with advanced actuator
US9051931B2 (en) 2012-02-10 2015-06-09 Kci Licensing, Inc. Systems and methods for regulating the temperature of a disc pump system
JP6183862B2 (ja) * 2012-03-07 2017-08-23 ケーシーアイ ライセンシング インコーポレイテッド 改良アクチュエータを備えるディスクポンプ
JP6237877B2 (ja) * 2014-02-21 2017-11-29 株式会社村田製作所 ブロア
WO2015133283A1 (fr) * 2014-03-07 2015-09-11 株式会社村田製作所 Soufflante
WO2016009870A1 (fr) 2014-07-16 2016-01-21 株式会社村田製作所 Dispositif de commande de fluide
DE112015004836T5 (de) * 2014-10-23 2017-08-10 Murata Manufacturing Co., Ltd. Ventil und fluidsteuerungsvorrichtung
WO2016121717A1 (fr) * 2015-01-28 2016-08-04 株式会社村田製作所 Vanne et dispositif de commande de fluide
CN108138759B (zh) 2015-10-05 2020-02-21 株式会社村田制作所 流体控制装置、减压装置以及加压装置
JP6269907B1 (ja) * 2016-07-29 2018-01-31 株式会社村田製作所 バルブ、気体制御装置
US10634130B2 (en) * 2016-09-07 2020-04-28 Sung Won Moon Compact voice coil driven high flow fluid pumps and methods
WO2018221287A1 (fr) 2017-05-31 2018-12-06 株式会社村田製作所 Soupape et dispositif de commande de fluide
DE212018000220U1 (de) * 2017-06-13 2020-01-08 Murata Manufacturing Co., Ltd. Ventil und Fluidsteuerungsvorrichtung
CN109505766B (zh) * 2017-09-15 2020-10-27 研能科技股份有限公司 气体输送装置
TWI646261B (zh) * 2017-09-15 2019-01-01 研能科技股份有限公司 氣體輸送裝置
CN109505759B (zh) * 2017-09-15 2021-02-23 研能科技股份有限公司 气体输送装置
CN109505760B (zh) * 2017-09-15 2021-04-06 研能科技股份有限公司 气体输送装置
TWI683960B (zh) * 2017-09-15 2020-02-01 研能科技股份有限公司 氣體輸送裝置
TWI652408B (zh) 2017-09-15 2019-03-01 研能科技股份有限公司 氣體輸送裝置
CN109505765B (zh) * 2017-09-15 2020-09-01 研能科技股份有限公司 气体输送装置
TWI656283B (zh) * 2017-09-15 2019-04-11 研能科技股份有限公司 氣體輸送裝置
CN109505764B (zh) * 2017-09-15 2021-04-06 研能科技股份有限公司 气体输送装置
TWI689665B (zh) 2017-09-15 2020-04-01 研能科技股份有限公司 氣體輸送裝置
GB2582485B (en) * 2018-02-16 2022-08-17 Murata Manufacturing Co Fluid control apparatus
JP6908175B2 (ja) * 2018-02-16 2021-07-21 株式会社村田製作所 流体制御装置
JP7355753B2 (ja) 2018-03-30 2023-10-03 デカ・プロダクツ・リミテッド・パートナーシップ 液体ポンピングカセットおよび関連する圧力分配マニホールドおよび関連する方法
CN112204255B (zh) 2018-05-29 2022-08-30 株式会社村田制作所 流体控制装置
GB2575829B (en) * 2018-07-24 2020-11-25 Ttp Ventus Ltd Fluid pump assembly
GB2577710B (en) 2018-10-03 2022-12-14 Lee Ventus Ltd Methods and devices for driving a piezoelectric pump
GB2576796B (en) 2018-12-07 2020-10-07 Ttp Ventus Ltd Improved valve
WO2020128426A1 (fr) 2018-12-07 2020-06-25 Ttp Ventus Ltd. Vanne améliorée
EP3722625A1 (fr) 2019-04-08 2020-10-14 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO Dispositif et procédé d'adhésif configurable
JP7120196B2 (ja) 2019-09-30 2022-08-17 株式会社村田製作所 流体制御装置
GB2597942B (en) 2020-08-10 2022-08-03 Ttp Ventus Ltd Pump for microfluidic device
CN112303298B (zh) * 2020-10-30 2022-11-01 汉得利(常州)电子股份有限公司 一种单向阀及具有单向阀的微型空气泵
TWI827957B (zh) * 2021-07-23 2024-01-01 研能科技股份有限公司 氣體傳輸裝置
GB2622575A (en) 2022-09-11 2024-03-27 Bioliberty Ltd Soft robotic assistive device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1100425A1 (ru) * 1982-11-12 1984-06-30 Предприятие П/Я М-5727 Электропневматический нагнетатель
CH680009A5 (en) * 1989-06-14 1992-05-29 Westonbridge Int Ltd Micro-pump-for injection of medication dose
SE508435C2 (sv) * 1993-02-23 1998-10-05 Erik Stemme Förträngningspump av membranpumptyp
DE4429592A1 (de) * 1994-08-20 1996-02-22 Eastman Kodak Co Tintendruckkopf mit integrierter Pumpe
US5828394A (en) * 1995-09-20 1998-10-27 The Board Of Trustees Of The Leland Stanford Junior University Fluid drop ejector and method
US6114620A (en) * 1999-05-04 2000-09-05 Neokismet, L.L.C. Pre-equilibrium chemical reaction energy converter
CN1269637C (zh) * 2000-09-18 2006-08-16 帕尔技术有限责任公司 一种压电致动器和使用压电致动器的泵
GB0508194D0 (en) * 2005-04-22 2005-06-01 The Technology Partnership Plc Pump
JP2007046551A (ja) * 2005-08-10 2007-02-22 Alps Electric Co Ltd 圧電ポンプ
US8360751B2 (en) * 2006-09-11 2013-01-29 Suncor Energy Inc. Discharge pressure actuated pump

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11129931B2 (en) 2012-03-12 2021-09-28 Smith & Nephew Plc Reduced pressure apparatus and methods
US11903798B2 (en) 2012-03-12 2024-02-20 Smith & Nephew Plc Reduced pressure apparatus and methods
US10660994B2 (en) 2012-03-12 2020-05-26 Smith & Nephew Plc Reduced pressure apparatus and methods
US10898388B2 (en) 2015-04-27 2021-01-26 Smith & Nephew Plc Reduced pressure apparatuses and methods
US11723809B2 (en) 2016-03-07 2023-08-15 Smith & Nephew Plc Wound treatment apparatuses and methods with negative pressure source integrated into wound dressing
US11285047B2 (en) 2016-04-26 2022-03-29 Smith & Nephew Plc Wound dressings and methods of use with integrated negative pressure source having a fluid ingress inhibition component
US11896465B2 (en) 2016-05-03 2024-02-13 Smith & Nephew Plc Negative pressure wound therapy device activation and control
US11096831B2 (en) 2016-05-03 2021-08-24 Smith & Nephew Plc Negative pressure wound therapy device activation and control
US11305047B2 (en) 2016-05-03 2022-04-19 Smith & Nephew Plc Systems and methods for driving negative pressure sources in negative pressure therapy systems
US11173240B2 (en) 2016-05-03 2021-11-16 Smith & Nephew Plc Optimizing power transfer to negative pressure sources in negative pressure therapy systems
US11116669B2 (en) 2016-08-25 2021-09-14 Smith & Nephew Plc Absorbent negative pressure wound therapy dressing
US11648152B2 (en) 2016-08-25 2023-05-16 Smith & Nephew Plc Absorbent negative pressure wound therapy dressing
US11564847B2 (en) 2016-09-30 2023-01-31 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
US12005181B2 (en) 2016-12-12 2024-06-11 Smith & Nephew Plc Pressure wound therapy status indication via external device
US11123471B2 (en) 2017-03-08 2021-09-21 Smith & Nephew Plc Negative pressure wound therapy device control in presence of fault condition
US11160915B2 (en) 2017-05-09 2021-11-02 Smith & Nephew Plc Redundant controls for negative pressure wound therapy systems
US11564845B2 (en) 2017-09-13 2023-01-31 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
US11701265B2 (en) 2017-09-13 2023-07-18 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
US11707564B2 (en) 2017-11-01 2023-07-25 Smith & Nephew Plc Safe operation of integrated negative pressure wound treatment apparatuses
US11992392B2 (en) 2017-11-01 2024-05-28 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
US11554203B2 (en) 2017-11-01 2023-01-17 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
US11497653B2 (en) 2017-11-01 2022-11-15 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
USD999914S1 (en) 2018-09-13 2023-09-26 Smith & Nephew Plc Medical dressing
USD898925S1 (en) 2018-09-13 2020-10-13 Smith & Nephew Plc Medical dressing
US12005182B2 (en) 2019-05-31 2024-06-11 T.J.Smith And Nephew, Limited Systems and methods for extending operational time of negative pressure wound treatment apparatuses

Also Published As

Publication number Publication date
SG176225A1 (en) 2011-12-29
BRPI0924510B8 (pt) 2022-08-02
CN102459899A (zh) 2012-05-16
CN102459899B (zh) 2016-05-11
MX2011012974A (es) 2012-01-20
JP5623515B2 (ja) 2014-11-12
BRPI0924510A2 (pt) 2020-05-26
CA2764334C (fr) 2016-11-22
AU2009347422B2 (en) 2015-11-26
AU2016200869B2 (en) 2017-06-08
CA2764334A1 (fr) 2010-12-09
RU2011153727A (ru) 2013-07-27
EP2438302A1 (fr) 2012-04-11
BRPI0924510B1 (pt) 2020-11-24
JP2012528981A (ja) 2012-11-15
RU2511832C2 (ru) 2014-04-10
AU2009347422A1 (en) 2011-12-15
WO2010139918A1 (fr) 2010-12-09
AU2016200869A1 (en) 2016-02-25

Similar Documents

Publication Publication Date Title
EP2438302B1 (fr) Pompe a cavite en forme de disque
US8297947B2 (en) Fluid disc pump
EP2758666B1 (fr) Pompe à double cavité
US10502199B2 (en) Systems and methods for supplying reduced pressure using a disc pump with electrostatic actuation
EP2438301B1 (fr) Pompe a disques
EP2438335B1 (fr) Soupape
EP2861869B1 (fr) Soupape de pompe à membrane dotée d'un clapet de soupape améliorant les performances
EP2888478B1 (fr) Systèmes et procédés de réglage de la fréquence de résonance d'une cavité d'une pompe à disque
EP2812574B1 (fr) Systèmes et procédés de contrôle d'une pression réduite fournie par un système de pompe à membrane
US8821134B2 (en) Fluid disc pump

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20131023

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150416

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 751407

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009033830

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151224

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 751407

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160123

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160125

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009033830

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160603

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602009033830

Country of ref document: DE

Owner name: TTP VENTUS LIMITED, ROYSTON, GB

Free format text: FORMER OWNER: THE TECHNOLOGY PARTNERSHIP PLC, MELBOURN, ROYSTON, HERTFORDSHIRE, GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20210715 AND 20210721

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230412

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230413

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240328

Year of fee payment: 16