EP2437228B1 - Gefahrenmelder, Gefahrenmeldeanlage und Verfahren zum Erkennen von Leitungsfehlern - Google Patents

Gefahrenmelder, Gefahrenmeldeanlage und Verfahren zum Erkennen von Leitungsfehlern Download PDF

Info

Publication number
EP2437228B1
EP2437228B1 EP11008014.0A EP11008014A EP2437228B1 EP 2437228 B1 EP2437228 B1 EP 2437228B1 EP 11008014 A EP11008014 A EP 11008014A EP 2437228 B1 EP2437228 B1 EP 2437228B1
Authority
EP
European Patent Office
Prior art keywords
detector
voltage
terminal voltage
short
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11008014.0A
Other languages
English (en)
French (fr)
Other versions
EP2437228A2 (de
EP2437228A3 (de
Inventor
Dietmar Brendle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hekatron Vertriebs GmbH
Original Assignee
Hekatron Vertriebs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hekatron Vertriebs GmbH filed Critical Hekatron Vertriebs GmbH
Publication of EP2437228A2 publication Critical patent/EP2437228A2/de
Publication of EP2437228A3 publication Critical patent/EP2437228A3/de
Application granted granted Critical
Publication of EP2437228B1 publication Critical patent/EP2437228B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B26/00Alarm systems in which substations are interrogated in succession by a central station
    • G08B26/005Alarm systems in which substations are interrogated in succession by a central station with substations connected in series, e.g. cascade
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/12Checking intermittently signalling or alarm systems
    • G08B29/123Checking intermittently signalling or alarm systems of line circuits

Definitions

  • the invention relates to a danger detector, alarm system and method for detecting line faults such as short circuits, creeping short circuits, interruptions and creeping interruptions.
  • hazard detection systems the communication of the various system devices takes place via both wired and wireless communication channels.
  • hazard detectors and other peripheral system devices are connected via lines to a control center and to each other. The communication signals are routed via these lines.
  • the power supply of the detectors and the other peripheral devices is also provided by the control center.
  • a communication and energy supply that takes place exclusively via these lines, there is the danger that the entire communication and the operation of the detectors and other peripheral devices will collapse in the event of a line fault such as an interruption and especially in the event of a short circuit.
  • the power supply and the communication take place via both sides of the loop, whereby the function and communication capability of all detectors and peripheral devices is maintained.
  • short-circuit disconnectors are known with which a short circuit can be isolated.
  • the power supply and communication can take place via both sides of the loop.
  • Short-circuit disconnectors can be arranged at regular intervals between the detectors or integrated into each detector.
  • the control panel must know the location of the short circuit on the line to isolate the short circuit.
  • the supply voltage initially drops sharply, so that the detectors are no longer sufficient with Energy is supplied and then the KurzInstituttrenner be opened in the loop.
  • a detector loop damaged by a short-circuit must then be restarted by the control panel. This means that the open short-circuit disconnectors must be closed again in order.
  • the control center first supplies the first detector or the first detector group with energy.
  • the short-circuit switch in the detector or at the end of the group is closed in response to a command from the central unit. Now the next detector or detector group is supplied with voltage and the next short-circuit switch is closed. This takes place until the short circuit is reached.
  • the detector loop When the short-circuit is reached, the detector loop is de-energized again and the start-up procedure must start again.
  • the control center now knows the detector or short-circuit disconnector behind which the short-circuit is located and, at the next startup, does not cause the short-circuit disconnector to close before the short-circuit.
  • the first start of such a loop after the occurrence of a short shot is only for the purpose of experiencing the location of the short circuit and costs time. This time required for exploration could be avoided with automatic short-circuit disconnectors, which automatically re-open a connection switch or do not close it as soon as they automatically determine that there is a short circuit on the line section behind them.
  • Such a Kurzstrusstrenner is from the DE 695 14 445 T2 known. This recognizes too high a current in a line and disconnects it by opening a previously closed switch again.
  • One from the DE 36 24 604 A1 Known short-circuit disconnector compares the input and / or output-side terminal voltages of the short-circuit disconnector or a detector with predetermined or adjustable voltage thresholds and opens when these thresholds below a possibly previously closed switch.
  • a short-circuit disconnector is described in a detector, which opens a turn-on transistor again when a line voltage falls below a certain value for a predetermined test time.
  • EP 1197936 discloses a hazard detection system with an inspection arrangement for detecting and locating faults such as short circuits or reverse polarity of conductors.
  • the invention is therefore based on the object to provide a hazard detector, a hazard alarm system and a method for detecting line faults such as short circuits and interruptions, which bring about an improvement with respect to the disadvantages mentioned in the prior art.
  • the inventive method is used in a cable-bound hazard detection system, in the hazard alarms and other peripherals such.
  • alarm sirens interface modules or actuators, which are connected via lines to a central office and each other, and in which line sections can be separated by short-circuit disconnector of the rest of the line.
  • Short-circuit disconnectors can either be provided as separate devices, or integrated into the hazard detectors and other peripherals.
  • detector is used below, which stands for both hazard alarms and other peripheral devices with an integrated short-circuit disconnector as well as for separate short-circuit disconnectors.
  • a hazard alarm center connects in a first step a voltage source having a certain supply voltage with connecting lines.
  • a supply voltage is applied to the, next to the central detector, via the connecting lines.
  • existing energy stores are loaded in the detector and the detector is initialized.
  • a first terminal voltage is measured in this detector. Terminal voltage is the voltage between two wires of the connecting cables. The measurement of the first terminal voltage takes place during the time in which the detector loads the voltage source only with its low quiescent current. After the value of the first terminal voltage has been stored, the voltage source is charged with a defined current, the z. B.
  • a second terminal voltage is simultaneously measured. From the known current difference, the difference between the first and second Terminal voltage and the assumed maximum known starting current of one or more other detectors, a comparison voltage is determined. Subsequently, a connection switch is closed, whereby the voltage applied to the first detector is switched through to the next section of the connection lines, and thus a supply voltage is applied to a second / further detector. Immediately after closing the switch, a third terminal voltage is measured in the first detector. Subsequently, in the first detector the third terminal voltage is compared with the previously determined comparison voltage.
  • the third terminal voltage drops below the reference voltage, it is assumed that there is a short circuit or creeping short circuit and the previously closed switch is opened again. However, if the third terminal voltage is greater than or equal to the comparison voltage, then the switch remains closed and the steps described above are repeated with the newly energized detector.
  • the control panel can detect the absence of a response that an error has occurred. In this case, a short circuit is detected when the previously started detector opens its connection switch again due to a too low third terminal voltage. This may be requested by the head office from this detector. Otherwise there will be an interruption or a faulty detector. If, in the latter case, a detector which could not be addressed from a first side of a detector loop responds to questions from the control center from a second side of the detector loop, there is an interruption in the line, otherwise a faulty detector.
  • the detectors send messages by means of a current modulation via the connecting lines. It can be z. B. a zero can be represented by the quiescent current of the detector, while a one by the significantly higher modulation current, the z. B. is 20 mA higher than the quiescent current, is shown.
  • the higher modulation current is used as the load current for measuring the second terminal voltage. Therefore, according to the invention at least the measurement of the second terminal voltage during the transmission of a communication telegram by the detector takes place. The measurement of the first terminal voltage can also be done while sending a telegram.
  • the first and / or the second terminal voltage are preferably measured at a point in the telegram in which several equivalent bits follow each other, which are represented by the high current.
  • the measurement of the first and / or second terminal voltage takes place within a transmitted telegram after a change from zero to one or from one zero.
  • a short-circuit disconnector for carrying out the method described above.
  • a short-circuit disconnector according to the invention comprises: a switch for connecting or disconnecting connecting lines, a device for generating a defined electrical current, a measuring device for measuring a first, second and third terminal voltage, a memory for storing a measured value of the first and / or second terminal voltage A memory for storing the value of a maximum inrush current of one or more devices connected to a connection line, a computing unit for determining a comparison voltage and a comparison unit for comparing the third terminal voltage with the comparison voltage.
  • the invention further relates to a detector for carrying out the method described above.
  • a detector comprises a switch for connecting or disconnecting connecting lines, with which a supply voltage can be switched through to a second / further detector.
  • a detector according to the invention further comprises a device for generating an electric current of defined height, a measuring device for measuring a first, second and third terminal voltage, a memory for storing a measured value of the first and / or second terminal voltage, a memory for storing the value of a maximum inrush current one or more detectors, a computing unit for determining a comparison voltage and a comparison unit for comparing the third terminal voltage with the comparison voltage.
  • the invention also relates to a hazard alarm system for carrying out the method according to the invention.
  • a hazard detection system has at least one voltage source which supplies voltage to danger detector and / or other peripheral devices via connecting lines.
  • the hazard alarm system comprises at least one short-circuit disconnector, comprising: a switch for connecting or disconnecting connection lines, means for generating a defined electric current, measuring means for measuring a first one , second and third terminal voltage, a memory for storing a measured value of the first and / or second terminal voltage, a memory for storing the value of a maximum inrush current of one or more devices connected to a connecting line, a calculating unit for determining a comparison voltage, and a comparing unit for comparing the third terminal voltage with the reference voltage.
  • a short-circuit disconnector can also be integrated in a detector.
  • the invention relates to a hazard detector with an integrated short-circuit disconnector as previously described.
  • FIG. 1 shows a hazard alarm system (1) according to the invention which z. B. may be a fire alarm system.
  • the alarm system (1) consists of a central station (2) with a first terminal (5) and a second terminal (6) and a detector line (9), starting from the first terminal (5) several danger detectors (8) via a, in This example two-wire running, connecting line (7) connects to the center.
  • the hazard detectors (8) connects the connecting line (7) and other peripheral devices such as sirens or interface modules with which z. B. devices that do not support the protocol of the detector line can be operated on the detector line, with the center.
  • hazard detectors (8) and other peripheral devices are collectively called detectors (8).
  • FIG. 1 are shown in the detectors (8)
  • Short-circuit disconnector (11) integrated.
  • the short-circuit disconnectors (11) can also monitor the connecting lines (7) as separate devices between the detectors (8).
  • FIG. 2 some details of a short circuit breaker (1) are shown while in FIG. 4 a timing diagram is shown, with which the sequence of the method according to the invention is illustrated.
  • a short-circuit disconnector (11) according to the invention is connected via terminals (3a, 3b, 4a, 4b) to the cores (3, 4) of the connecting line (7).
  • a controllable switch (12) Between the terminals 3a and 3b of the wire 3 is a controllable switch (12), with which a connection between the terminals 3a and 3b can be made and separated again.
  • each a voltmeter (14) for measuring a voltage between the terminals 3a and 4a or 3b and 4b and a respective current sink (15) for generating a load current (I 2 ) in the supply line ( 7).
  • a voltmeter (14) for measuring a voltage between the terminals 3a and 4a or 3b and 4b and a respective current sink (15) for generating a load current (I 2 ) in the supply line ( 7).
  • Short-circuit disconnector (11) are installed and all switches (12) in the short-circuit disconnectors (11) are open. If not all switches (12) should be open, it would be possible to allow them to close with a special command at a later time from the center (2).
  • the control center (2) applies a supply voltage to the connection line (7) via the first terminal (5). Thus, this voltage is applied to the terminals 3a and 4a of the first detector (8), and it flows for a short time z. B. for 5 ms, a maximum inrush of z. B 60 mA.
  • the short-circuit disconnector (11) measures a first terminal voltage (U 1 ) between the terminals at a time t 1 with the voltmeter (14) 3a and 4a is applied to the detector (8) and stores the measured value in a memory (13) for later use.
  • the first terminal voltage (U 1 ) differs from the voltage; which is applied from the control center to the connecting line (7), only by the small amount that is on the connecting line (7) falls.
  • the short-circuit disconnector (11) loads the voltage source in the first terminal (5) of the control center (2) by means of a current sink (15) with a load current (I 2 ).
  • the load current (I 2 ) generates a higher voltage drop across the connection line (7) than the quiescent current (I 1 ).
  • the second terminal voltage (U 2 ) is measured at the terminals ( 3 a, 4 a ), which is likewise stored in the memory (13) for later use.
  • the comparison value U min is reduced by an additional amount of security.
  • the short-circuit disconnector (11) After determination of the comparison value U min , the short-circuit disconnector (11) closes its switch (12) at time t s and thereafter measures a third terminal voltage (U 3 ) at time t 3 .
  • a second / further detector (8) is connected to the center, whereupon the second / further detector (8) loads the voltage source in the first terminal (5) with its inrush current.
  • the current I 3 flows at time t 3 and generates a new voltage drop via the connecting line (7) to the first detector (8).
  • the short-circuit disconnector (11) compares the third terminal voltage (U 3 ) with the comparison value (U min ).
  • the second / further detector (8) remains connected to the center and can communicate with this after a start time.
  • the newly connected second / further detector (8) then takes on the further start of the detector line (9) the function of the previous first detector.
  • the control panel (2) detects at this stage that the second / further detector is not responding to their requests, the control panel (2) concludes that there is a line or detector error and sets the startup procedure at the second terminal (6). continued.
  • the second / further detector finally reaches the center (2) via the second terminal (6) at a later time and can communicate with it, then there is an interruption in the connection line (7) between the first and the second / further detector ( 8) before, otherwise, it is assumed that the second / further detector (8) is defective.
  • the center continues the startup process on the second terminal (6).
  • the first detector (8) may notify the center, upon request, that there is a short circuit in the line section following it.
  • terminal voltages (U 1 , U 2 , U 3 ) By measuring terminal voltages (U 1 , U 2 , U 3 ), it is possible to dispense with a measuring resistor between the terminals 3 a and 3 b or 4 a and 4 b, which is necessary for current measurement, and which measures the resistance of the connecting line (7) between the control center and other detectors (8). Thus, longer detector lines (9) with additional participants (8) are possible, as in a short-circuit detection by means of a current measurement.
  • the search for line faults is carried out at the start of the detector line (9) in the same manner as described for the starting from the first terminal (5).
  • FIG. 3 another embodiment of a short-circuit disconnector (11) is described. Unlike the in FIG. 2 shown short-circuit disconnector (11), the short-circuit disconnector (11) shown here, two connection switches (12), which are attached directly to the terminals 3a and 3b and are bridged by a respective diode (16). For this, this embodiment has only ever a voltmeter (14) and a current sink (15). When using this embodiment of the short-circuit disconnector (11), the voltage drop across the diodes must be taken into account when determining the comparison value. The diodes are used to supply voltage to the first or after the second or further detector (8), while the switches (12) in the respective detector (8) are still closed.
  • the communication transmitter (15) of a detector (8) or a separate short-circuit disconnector (11) serves as a current sink (15) for generating the load current (I 2 ).
  • the measurement of the first and second terminal voltage (U 1 , U 2 ) takes place at a time during which the detector (8) or a separate short-circuit disconnector (11) sends a telegram to the control center.
  • the telegram starts at time t M , where, as shown, the bit sequence 101010 is transmitted.
  • the measurement of the first and the second terminal voltage (U 1 , U 2 ) is preferably carried out at the end of a bit sequence, each having the same values. For example, the first terminal voltage (U 1 ) at the end of a sequence of three times 0 and the second terminal voltage (U 2 ) at the end of a bit sequence with three times 1 measured.
  • the first terminal voltage (U 1 ) is measured after a change from 1 to 0 and the second terminal voltage (U 2 ) after a change from 0 to 1.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Keying Circuit Devices (AREA)
  • Emergency Alarm Devices (AREA)

Description

    Technisches Gebiet
  • Die Erfindung betrifft einen Gefahrenmelder, Gefahrenmeldeanlage und Verfahren zum Erkennen von Leitungsfehlern wie Kurzschlüsse, schleichende Kurzschlüsse, Unterbrüche und schleichende Unterbrüche.
  • Stand der Technik
  • In Gefahrenmeldesystemen erfolgt die Kommunikation der verschiedenen Systemgeräte sowohl über leitungsgebundene als auch drahtlose Kommunikationskanäle. In leitungsgebundenen Gefahrenmeldeanlagen sind Gefahrenmelder und andere periphere Systemgeräte über Leitungen mit einer Zentrale und untereinander verbunden. Über diese Leitungen werden die Kommunikationssignale geführt. Häufig erfolgt darüber auch die Energieversorgung der Melder und der weiteren Peripheriegeräte durch die Zentrale. Bei einer ausschließlich über diese Leitungen erfolgenden Kommunikation und Energieversorgung besteht die Gefahr, dass bei einem Leitungsfehler wie einem Unterbruch und besonders bei einem Kurzschluss die gesamte Kommunikation und der Betrieb der Melder sowie weiterer Peripheriegeräte zusammenbrechen. Um einen derartigen Ausfall zu umgehen ist es bekannt die Leitungen, ausgehend von einer Zentrale, in einer Schleife zu verlegen, die wieder in der Zentrale endet. Dadurch können z. B. bei einem Unterbruch in der Leitung die Energieversorgung und die Kommunikation über beide Seiten der Schleife erfolgen, wodurch die Funktion und Kommunikationsfähigkeit aller Melder und Peripheriegeräte erhalten bleibt.
  • Für den Fall eines Kurzschlusses, sind Kurzschlusstrenner bekannt mit denen ein Kurzschluss isoliert werden kann. Damit kann wie bei einem Unterbruch die Energieversorgung und Kommunikation über beide Seiten der Schleife erfolgen. Kurzschlusstrenner können in regelmäßigen Abständen zwischen den Meldern angeordnet oder in jeden Melder integriert sein. Bei Kurzschlusstrennern, die von der Zentrale durch einen Befehl gesteuert werden, muss die Zentrale den Ort des Kurzschlusses auf der Leitung kennen, um den Kurzschluss isolieren zu können.
  • Beim Auftreten eines Kurzschlusses in einer Melderschleife sinkt zunächst die Versorgungsspannung stark ab, so dass die Melder nicht mehr ausreichend mit Energie versorgt und darauf folgend die Kurzschlusstrenner in der Schleife geöffnet werden. Eine durch einen Kurzschluss beschädigte Melderschleife muss dann von der Zentrale erneut aufgestartet werden. Das heißt, die geöffneten Kurzschlusstrenner müssen der Reihe nach wieder geschlossen werden. Dazu versorgt die Zentrale zunächst den ersten Melder bzw. die erste Meldergruppe mit Energie. Sobald der erste Melder bzw. die Meldergruppe wieder funktionsbereit ist, wird der Kurzschlussschalter im Melder bzw. am Ende der Gruppe auf einen Befehl der Zentrale hin geschlossen. Nun wird der nächste Melder bzw. Meldergruppe mit Spannung versorgt und der nächste Kurzschlussschalter geschlossen. Dies erfolgt solange bis der Kurzschluss, erreicht wird. Beim Erreichen des Kurzschlusses, wird die Melderschleife wieder spannungslos und der Aufstartvorgang muss von vorne beginnen. Jedoch kennt die Zentrale nun den Melder bzw. Kurzschlusstrenner hinter dem der Kurzschluss liegt und veranlasst beim nächsten Aufstarten das Schließen des Kurzschlusstrenners, der vor dem Kurzschluss liegt, nicht mehr. Das erste Aufstarten einer solchen Schleife nach dem Auftreten eines Kurzschusses dient nur dem Zweck, den Ort des Kurzschlusses zu erfahren und kostet Zeit. Diese zur Erkundung nötige Zeit ließe sich mit automatischen Kurzschlusstrennern vermeiden, die einen Verbindungsschalter automatisch wieder öffnen oder gar nicht schließen, sobald sie selbsttätig fest stellen, dass auf dem hinter ihnen liegenden Leitungsabschnitt ein Kurzschluss liegt.
  • Ein solcher Kurzschlusstrenner ist aus der DE 695 14 445 T2 bekannt. Dieser erkennt einen zu hohen Strom in einer Leitung und trennt diese durch öffnen eines zuvor geschlossenen Schalters wieder auf. Ein aus der DE 36 24 604 A1 bekannter, Kurzschlusstrenner vergleicht die eingangs- und/oder ausgangseitigen Klemmenspannungen des Kurzschlusstrenners bzw. eines Melders mit vorgegebenen bzw. einstellbaren Spannungsschwellen und öffnet beim Unterschreiten dieser Schwellen einen ggf. zuvor geschlossenen Schalter. Ebenso wird in der EP 0 347 806 A1 ein Kurzschlusstrenner in einem Melder beschrieben, der einen Durchschaltetransistor wieder öffnet, wenn eine Linienspannung einen bestimmten Wert für eine vorgegebene Prüfzeit unterschreitet.
  • Die aus der DE 695 14 445 T2 , der EP 0 347 806 A1 und der DE 36 24 604 A1 bekannten Kurzschlusstrenner sind jedoch ständig aktiv und benötigen daher viel Strom. Außerdem werden deren Vergleichswerte fest vorgegeben und können nicht automatisch an die Einbauposition der Melder innerhalb einer Schleife angepasst werden, was dazu führt, dass schleichende Kurzschlüsse nur sehr eingeschränkt erkannt werden können.
  • Dokument EP 1197936 offenbart eine Gefahrenmeldeanlage mit einer Prüfungsanordnung zur Erkennung und Lokalisierung von Fehlern wie Kurzschlüsse oder Verpolung von Leitern.
  • Aufgabe der Erfindung
  • Der Erfindung liegt daher die Aufgabe zugrunde, einen Gefahrenmelder, eine Gefahrenmeldeanlage und ein Verfahren zum Erkennen von Leitungsfehlern wie Kurzschlüssen und Unterbrüchen anzugeben, welche eine Verbesserung bzgl. der im Stand der Technik angeführten Nachteile bewirken.
  • Beschreibung der Erfindung
  • Die Lösung der Aufgabe erfolgt, nach dem Oberbegriff und den Merkmalen der Ansprüche 1, und 5 und wird im Folgenden näher beschrieben. Vorteilhafte Weiterentwicklungen finden sich in den Unteransprüchen.
  • Das erfindungsgemäße Verfahren findet Anwendung in einem leitungsgebundenen Gefahrenmeldesystem, bei dem Gefahrenmelder und andere Peripheriegeräte wie z. B. Alarmsirenen, Schnittstellenmodule oder Aktoren, die über Leitungen mit einer Zentrale und untereinander verbunden sind, und bei dem Leitungsabschnitte durch Kurzschlusstrenner von dem Rest der Leitung abgetrennt werden können. Kurzschlusstrenner können dabei entweder als separate Geräte vorgesehen werden, oder in die Gefahrenmelder und andere Peripheriegeräte integriert sein. Der Einfachheit halber wird im Folgenden der Begriff Melder verwendet, der sowohl für Gefahrenmelder und andere Peripheriegeräte mit einem integrierten Kurzschlusstrenner als auch für separate Kurzschlusstrenner steht.
  • In dem erfindungsgemäßen Verfahren zum Erkennen von Leitungsfehlern in einer Gefahrenmeldeanlage verbindet eine Gefahrenmeldezentrale in einem ersten Schritt eine Spannungsquelle, die eine bestimmte Versorgungsspannung aufweist, mit Verbindungsleitungen. Dadurch wird eine Versorgungsspannung an den, der Zentrale nächsten Melder, über die Verbindungsleitungen angelegt. Daraufhin werden in dem Melder vorhandene Energiespeicher geladen und der Melder wird initialisiert. Während dem Initialisieren oder danach wird eine erste Klemmenspannung in diesem Melder gemessen. Dabei steht Klemmenspannung für die Spannung zwischen zwei Adern der Verbindungsleitungen. Die Messung der ersten Klemmenspannung erfolgt während der Zeit, in welcher der Melder die Spannungsquelle nur mit seinem geringen Ruhestrom belastet. Nachdem der Wert der ersten Klemmenspannung gespeichert wurde, wird die Spannungsquelle mit einem definierten Strom belastet, der z. B. 20 mA höher liegt als der Ruhestrom des Melders. Während der Belastung der Spannungsquelle mit dem erhöhten definierten Strom wird gleichzeitig eine zweite Klemmenspannung gemessen. Aus der bekannten Stromdifferenz, der Differenz aus der ersten und zweiten Klemmenspannung und dem als bekannt angenommenen maximalen Anschaltstrom eines oder mehrerer weiterer Melder wird eine Vergleichsspannung ermittelt. Darauf folgend wird ein Verbindungsschalter geschlossen, wodurch die am ersten Melder anliegende Spannung an den nächsten Abschnitt der Verbindungsleitungen durchgeschaltet wird, und somit eine Versorgungsspannung an einen zweiten/weiteren Melder angelegt wird. Unmittelbar nach dem Schließen des Schalters wird im ersten Melder eine dritte Klemmenspannung gemessen. Anschließend wird im ersten Melder die dritte Klemmenspannung mit der zuvor ermittelten Vergleichsspannung verglichen. Wenn die dritte Klemmenspannung die Vergleichsspannung unterschreitet, wird angenommen, dass ein Kurzschluss oder schleichender Kurzschluss vorliegt und der zuvor geschlossene Schalter wird wieder geöffnet. Wenn die dritte Klemmenspannung jedoch größer oder gleich der Vergleichsspannung ist, dann bleibt der Schalter geschlossen und die zuvor beschriebenen Schritte werden mit dem nun neu mit Spannung versorgten Melder wiederholt.
  • Sobald die Zentrale versucht mit einem Melder zu kommunizieren, an den gerade die Versorgungsspannung durchgeschaltet wurde, kann sie am Ausbleiben einer Antwort erkennen, dass ein Fehler vorliegt. Dabei wird ein Kurzschluss erkannt, wenn der zuvor gestartete Melder seinen Verbindungsschalter infolge einer zu niedrigen dritten Klemmenspannung wieder öffnet. Dies kann die Zentrale ggf. bei diesem Melder erfragen. Andernfalls liegt ein Unterbruch oder ein defekter Melder vor. Wenn im letzteren Fall ein Melder, der ausgehend von einer ersten Seite einer Melderschleife nicht ansprechbar war, von einer zweiten Seite der Melderschleife aus, auf Fragen der Zentrale antwortet, liegt ein Unterbruch in der Leitung vor andernfalls ein defekter Melder.
  • In einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens senden die Melder Nachrichten mittels einer Strommodulation über die Verbindungsleitungen. Dabei kann z. B. eine Null durch den Ruhestrom des Melders dargestellt werden, während eine eins durch den deutlich höheren Modulationsstrom, der z. B. um 20 mA höher als der Ruhestrom liegt, dargestellt wird. Dabei wird erfindungsgemäß der höhere Modulationsstrom als Belastungsstrom zur Messung der zweiten Klemmenspannung genutzt. Daher erfolgt erfindungsgemäß zumindest die Messung der zweiten Klemmenspannung während dem Senden eines Kommunikationstelegramms durch den Melder. Die Messung der ersten Klemmenspannung kann ebenfalls während dem Senden eines Telegrams erfolgen.
  • Beim Messen der Klemmenspannungen während eines Telegramms kann es besonders bei Gefahrenmeldeanlagen mit langen Melderlinien, auf die viele Melder aufgeschaltet sind, und bei schnellen Baudraten am Ende der Leitung zu Ungenauigkeiten kommen, da der Belastungsstrom nicht lange genug anliegt um eine stabile Klemmenspannung zu bewirken. Daher werden die erste und/oder die zweite Klemmenspannung bevorzugt an einer Stelle im Telegramm gemessen, in der mehrere gleichwertige Bits aufeinander folgen, welche durch den hohen Strom dargestellt werden.
  • Für den Fall, dass jedoch bei der verwendeten Strommodulation, wie beim Manchestercode, unterschiedliche Werte durch steigende oder fallende Signalflanken codiert werden, erfolgt die Messung der ersten und/oder zweiten Klemmenspannung innerhalb eines gesendeten Telegramms nach einem Wechsel von null auf eins oder von eins auf null.
  • Die Erfindung betrifft weiterhin einen Kurzschlusstrenner zur Durchführung des zuvor beschriebenen Verfahrens. Ein erfindungsgemäßer Kurzschlusstrenner umfasst: einen Schalter zum Verbinden oder Trennen von Verbindungsleitungen, eine Einrichtung zum Erzeugen eines definierten elektrischen Stroms, eine Messeinrichtung zum Messen einer ersten, zweiten und dritten Klemmenspannung, einen Speicher zum Speichern eines Messwertes der ersten und/oder zweiten Klemmenspannung, einen Speicher zum Speichern des Wertes eines maximalen Einschaltstroms eines oder mehrerer an einer Verbindungsleitung angeschlossener Geräte, eine Recheneinheit zum Ermitteln einer Vergleichsspannung und eine Vergleichseinheit zum Vergleichen der dritten Klemmenspannung mit der Vergleichsspannung.
  • Die Erfindung betrifft ferner einen Melder zur Durchführung des zuvor beschriebenen Verfahrens. Ein solcher Melder umfasst einen Schalter zum Verbinden oder Trennen von Verbindungsleitungen, mit dem eine Versorgungsspannung zu einem zweiten/weiteren Melder durchgeschaltet werden kann. Ein erfindungsgemäßer Melder umfasst weiterhin eine Einrichtung zum Erzeugen eines elektrischen Stroms definierter Höhe, eine Messeinrichtung zum Messen einer ersten, zweiten und dritten Klemmenspannung, einen Speicher zum Speichern eines Messwertes der ersten und/oder zweiten Klemmenspannung, einen Speicher zum Speichern des Wertes eines maximalen Einschaltstroms eines oder mehrerer Melder, eine Recheneinheit zum Ermitteln einer Vergleichsspannung und eine Vergleichseinheit zum Vergleichen der dritten Klemmenspannung mit der Vergleichsspannung.
  • Die Erfindung betrifft auch eine Gefahrenmeldeanlage zur Durchführung des erfindungsgemäßen Verfahrens. Eine solche Gefahrenmeldeanlage weist mindestens eine Spannungsquelle auf, die Gefahrenmelder und/oder andere periphere Geräte über Verbindungsleitungen mit Spannung versorgt. Neben den Gefahrenmelder und/oder anderen peripheren Geräten, die gemeinsam einfach Melder genannt werden, weist die Gefahrenmeldeanlage mindestens einen Kurzschlusstrenner auf, der folgendes umfasst: einen Schalter zum Verbinden oder Trennen von Verbindungsleitungen, eine Einrichtung zum Erzeugen eines definierten elektrischen Stroms, eine Messeinrichtung zum Messen einer ersten, zweiten und dritten Klemmenspannung, einen Speicher zum Speichern eines Messwertes der ersten und/oder zweiten Klemmenspannung, einen Speicher zum Speichern des Wertes eines maximalen Einschaltstroms eines oder mehrerer an einer Verbindungsleitung angeschlossener Geräte, eine Recheneinheit zum Ermitteln einer Vergleichsspannung und eine Vergleichseinheit zum Vergleichen der dritten Klemmenspannung mit der Vergleichsspannung. Dabei kann ein solcher Kurzschlusstrenner auch in einen Melder integriert sein.
  • Schließlich betrifft die Erfindung einen Gefahrenmelder mit einem integrierten Kurzschlusstrenner wie er zuvor beschrieben wurde.
  • Kurzbeschreibung der Zeichnungen
    • Figur 1 zeigt eine erfindungsgemäße Gefahrenmeldeanlage mit einer Zentrale, Verbindungsleitungen und Gefahrenmeldern mit Kurzschlusstrennern.
    • Figur 2 zeigt einen erfindungsgemäßen Kurzschlusstrenner.
    • Figur 3 zeigt eine andere Ausführung eines erfindungsgemäßen Kurzschlusstrenners.
    • Figur 4 zeigt ein Zeitdiagram mit verschiedenen Strom- und Spannungswerten die während des erfindungsgemäßen Verfahrens auftreten.
    Beschreibung der Ausführungsbeispiele
  • Nachfolgend wird die Erfindung genauer anhand der Zeichnungen erklärt.
  • Figur 1 zeigt eine erfindungsgemäße Gefahrenmeldeanlage (1) welche z. B. eine Brandmeldeanlage sein kann. Die Gefahrenmeldeanlage (1) besteht aus einer Zentrale (2) mit einem ersten Terminal (5) und einem zweiten Terminal (6) und einer Melderlinie (9), die ausgehend vom ersten Terminal (5) mehrere Gefahrenmelder (8) über eine, in diesem Beispiel zweiadrig ausgeführte, Verbindungsleitung (7) mit der Zentrale verbindet. Neben den Gefahrenmeldern (8) verbindet die Verbindungsleitung (7) auch weitere periphere Geräte wie Sirenen oder Schnittstellenmodulen, mit denen z. B. Geräte, die das Protokoll der Melderlinie nicht unterstützen an der Melderlinie betrieben werden können, mit der Zentrale. Der Einfachheit halber werden Gefahrenmelder (8) und andere periphere Geräte zusammenfassend Melder (8) genannt. In der in Figur 1 gezeigten Ausführung sind in die Melder (8)
  • Kurzschlusstrenner (11) integriert. Die Kurzschlusstrenner (11) können aber auch als separate Geräte zwischen den Meldern (8) die Verbindungsleitungen (7) überwachen. Die Kurzschlusstrenner (11), die, wie in der gezeigten Ausführung, in die Melder (8) integriert sind können, in den Meldern (8) ohnehin vorhandene, Einrichtungen wie eine Recheneinrichtung (10) und einen Bereich eines Speichers (13) nutzen.
  • In Figur 2 sind einige Details eines Kurzschlusstrenners (1) gezeigt, während in Figur 4 ein Zeitdiagramm gezeigt ist, mit dem der Ablauf des erfindungsgemäßen Verfahrens verdeutlicht wird. Ein erfindungsgemäßer Kurzschlusstrenner (11) ist über Klemmen (3a, 3b, 4a, 4b) mit den Adern (3, 4) der Verbindungsleitung (7) verbunden. Zwischen den Klemmen 3a und 3b der Ader 3 befindet sich ein steuerbarer Schalter (12), mit dem eine Verbindung zwischen den Klemmen 3a und 3b hergestellt und wieder aufgetrennt werden kann. Auf beiden Seiten des Schalters (12) befinden sich je ein Spannungsmesser (14) zum Messen einer Spannung zwischen den Klemmen 3a und 4a bzw. 3b und 4b und je eine Stromsenke (15) zum Erzeugen eines Belastungsstroms (I2) in der Versorgungsleitung (7). Mit den Spannungsmessern (14) können, je nachdem von welcher Seite aus ein Melder (8) mit der Zentrale (2) verbunden ist, die Spannungen zwischen den Klemmen 3a und 4a bzw. 3b und 4b gemessen werden.
  • Der Ablauf einer Kurzschlusserkennung wird nun am Beispiel der Inbetriebnahme einer erfindungsgemäßen Gefahrenmeldeanlage (1) anhand der Figuren 1, 2 und 4 erläutert.
  • Hierzu wird davon ausgegangen, dass alle Melder (8) incl. Kurzschlusstrenner (11) installiert sind und alle Schalter (12) in den Kurzschlusstrennern (11) geöffnet sind. Falls nicht alle Schalter (12) geöffnet sein sollten, wäre es möglich diese mit einem speziellen Befehl zu einem späteren Zeitpunkt von der Zentrale (2) aus schließen zulassen. Zu Beginn des Aufstartens legt die Zentrale (2) über das erste Terminal (5) eine Versorgungsspannung an die Verbindungsleitung (7) an. Damit liegt diese Spannung auch an den Klemmen 3a und 4a des ersten Melders (8) an, und es fließt für eine kurze Zeit z. B. für 5 ms ein maximaler Einschaltstrom von z. B 60 mA. Nachdem die im Melder (8) vorhandenen, aber nicht gezeigten, Energiespeicher geladen sind, fließt nur noch ein mittlerer Ruhestrom (I1) von z. B. 100 µA. Spätestens nachdem die Zentrale dem Melder (8) einen Befehl zum Schließen seines Verbindungsschalters (12) gesendet hat, misst der Kurzschlusstrenner (11) zu einem Zeitpunkt t1 mit dem Spannungsmesser (14) eine erste Klemmenspannung (U1), die zwischen den Klemmen 3a und 4a an dem Melder (8) anliegt und legt den Messwert zur späteren Verwendung in einem Speicher (13) ab. Die erste Klemmenspannung (U1) unterscheidet sich von der Spannung; die von der Zentrale an die Verbindungsleitung (7) angelegt wird, nur um den geringen Betrag, der an der Verbindungsleitung (7)abfällt. Zum Zeitpunkt t2 belastet der Kurzschlusstrenner (11) die Spannungsquelle im ersten Terminal (5) der Zentrale (2), mittels einer Stromsenke (15) mit einem Belastungsstrom (I2). Der Belastungsstrom (I2) erzeugt einen höheren Spannungsabfall an der Verbindungsleitung (7) als der Ruhestrom (I1). Dies führt dazu, dass zum Zeitpunkt t2 die zweite Klemmenspannung (U2) an den Klemmen (3a, 4a) gemessen wird, welche ebenfalls zur späteren Verwendung im Speicher (13) abgelegt wird. Aus den gespeicherten Werten für die erste und zweite Klemmenspannung U1, U2), der Differenz aus dem Belastungsstrom (I2) und Ruhestrom (I1) und dem maximalen Einschaltstrom Imax von nachfolgenden Meldern (8), wird anschließend in einer Recheneinrichtung (10) ein Vergleichswert (Umin) für die Kurzschlusserkennung ermittelt. Die Differenz aus Belastungsstrom (I2) und Ruhestrom (I1) ist durch die Verwendung der Stromsenke (15) bekannt, und der Vergleichswert Umin kann z. B. aus folgender Formel berechnet werden. U min < U 1 U 2 I 2 I 1 I max
    Figure imgb0001
  • Vorzugsweise wird der Vergleichswert Umin jedoch noch um einen zusätzlichen Sicherheitsbetrag verringert.
  • Nach der Ermittlung des Vergleichswertes Umin schließt der Kurzschlusstrenner (11) zum Zeitpunkt ts seinen Schalter (12) und misst danach zum Zeitpunkt t3 eine dritte Klemmenspannung (U3). Nach dem Schließen des Schalters (12) wird ein zweiter/weiterer Melder (8) mit der Zentrale verbunden, worauf der zweit/weitere Melder (8) die Spannungsquelle im ersten Terminal (5) mit seinem Einschaltstrom belastet. Dadurch fließt zum Zeitpunkt t3 der Strom I3 und erzeugt einen neuen Spannungsfall über die Verbindungsleitung (7) bis zum ersten Melder (8). Schließlich vergleicht der Kurzschlusstrenner (11) die dritte Klemmenspannung (U3) mit dem Vergleichswert (Umin). Wenn in diesem Vergleich festgestellt wird, dass die dritte Klemmenspannung (U3) größer oder gleich dem Vergleichswert (Umin) ist, wird zunächst davon ausgegangen, dass kein Leitungsfehler vorliegt und der Schalter (12) bleibt geschlossen. Damit bleibt der zweite/weitere Melder (8) mit der Zentrale verbunden und kann nach einer Startzeit mit dieser kommunizieren. Der nun neu verbundene zweite/weitere Melder (8) übernimmt dann beim weiteren Aufstarten der Melderlinie (9) die Funktion des bisherigen ersten Melders. Stellt die Zentrale (2) in diesem Stadium jedoch fest, dass der zweite/weitere Melder nicht auf ihre Anfragen reagiert, schließt die Steuerung Zentrale (2) darauf, dass ein Leitungs- oder Melderfehler vorliegt und setzt den Aufstartvorgang am zweiten Terminal (6) fort. Wird der zweite/weitere Melder zu einem späteren Zeitpunkt schließlich von der Zentrale (2) über das zweite Terminal (6) erreicht und kann mit ihr kommunizieren, dann liegt ein Unterbruch in der Verbindungsleitung (7) zwischen dem ersten und dem zweiten/weiteren Melder (8) vor, anderenfalls, wird davon ausgegangen, dass der zweite/weitere Melder (8) defekt ist.
  • Wenn in dem Vergleich jedoch festgestellt wird, dass die dritte Klemmenspannung (U3) kleiner als der Vergleichswert Umin ist, wird ein Kurzschluss oder schleichender Kurzschluss erkannt und der Schalter (12) im Kurzschlusstrenner (11) wird wieder geöffnet. Auch in diesem Fall setzt die Zentrale den Aufstartvorgang am zweiten Terminal (6) fort. Jedoch kann der erste Melder (8) der Zentrale ggf. auf eine entsprechende Anfrage hin mitteilen, dass ein Kurzschluss in dem auf ihn folgenden Leitungsabschnitt vorhanden ist.
  • Durch das Messen von Klemmenspannungen (U1, U2, U3) kann auf einen, für eine Strommessung nötigen, Messwiderstand zwischen den Klemmen 3a und 3b bzw. 4a und 4b verzichtet werden, der den Widerstand der Verbindungsleitung (7) zwischen der Zentrale und weiteren Meldern (8) erhöhen würde. Somit werden längere Melderlinien (9) mit zusätzlichen Teilnehmern (8) möglich, als bei einer Kurzschlusserkennung mittels einer Strommessung.
  • Die individuelle Ermittlung des Vergleichswertes Umin für jeden einzelnen Melder (8) bzw. Kurzschlusstrenner (11) ermöglicht eine verbesserte Erkennung von schleichenden Kurzschlüssen.
  • Ausgehend vom zweiten Terminal (6) wird beim Aufstarten der Melderlinie (9) die Suche nach Leitungsfehlern auf die gleiche Art und Weise durchgeführt wie sie für das Aufstarten ausgehend vom ersten Terminal (5) beschrieben wurde.
  • In der Figur 3 wird eine weitere Ausführungsform eines Kurzschlusstrenners (11) beschrieben. Im Unterschied zu dem in Figur 2 dargestellten Kurzschlusstrenner (11) weist der hier gezeigte Kurzschlusstrenner (11) zwei Verbindungsschalter (12) auf, welche direkt an den Klemmen 3a und 3b angebracht sind und von je einer Diode (16) überbrückt werden. Dafür weist diese Ausführungsform nur je einen Spannungsmesser (14) und eine Stromsenke (15) auf. Bei der Verwendung dieser Ausführungsform des Kurzschlusstrenners (11) muss bei der Ermittlung des Vergleichswertes der Spannungsfall über die Dioden berücksichtigt werden. Die Dioden dienen dazu den jeweils ersten bzw. nach dem Druchschalten zweiten/weiteren Melder (8) mit Spannung zu versorgen, während die Schalter (12) im jeweiligen Melder (8) noch geschlossen sind.
  • In einer bevorzugten Ausgestaltung der Erfindung dient der Kommunikationssender (15) eines Melders (8) bzw. eines separaten Kurzschlusstrenners (11) als Stromsenke (15) zur Erzeugung des Belastungsstroms (I2). In diesem Fall findet die Messung der ersten und der zweiten Klemmenspannung (U1, U2) zu einer Zeit statt, während der, der Melder (8) oder ein separater Kurzschlusstrenner (11) ein Telegramm an die Zentrale sendet. In dem in Figur 4 gezeigten Beispiel beginnt das Telegramm zum Zeitpunkt tM, wobei, wie gezeigt, die Bitfolge 101010 gesendet wird. Vorzugsweise wird hierbei die Messung der ersten und der zweiten Klemmenspannung (U1, U2) am Ende einer Bitfolge mit jeweils gleichen Werten durchgeführt. Z. B. wird die erste Klemmenspannung (U1) an Ende einer Folge von dreimal 0 und die zweite Klemmenspannung (U2) am Ende einer Bitfolge mit dreimal 1 gemessen.
  • Wenn jedoch zum Senden von Telegrammen ein Manchestercode verwendet wird, wird die erste Klemmenspannung (U1) nach einem Wechsel von 1 auf 0 und die zweite Klemmenspannung (U2) nach einem Wechsel von 0 auf 1 gemessen.

Claims (7)

  1. Verfahren zum Erkennen von Leitungsfehlern in einer Gefahrenmeldeanlage (1), insbesondere mit einer Melderlinie, die mehrere Melder (8, 11) über eine Verbindungsleitung (7) verbindet, wobei insbesondere die Melder (8, 11) einen Schalter (12) zum Verbinden oder Trennen der Verbindungsleitungen (7), mit dem eine Versorgungspannung zu einem weiteren Melder durchgeschaltet werden kann umfassen, mit folgenden Verfahrenschritten:
    a. Anlegen einer Versorgungsspannung aus einer Spannungsquelle an einen ersten Melder (8, 11), dessen Schalter (12) geöffnet ist,
    b. Messen einer ersten Klemmenspannung (U1) in dem ersten Melder (8, 11), während einer Zeit, in welcher der Melder die Spannungsquelle mit seinem Ruhestrom (I1) belastet,
    c. Belasten der Spannungsquelle, mit einem erhöhten definierten Strom (I2) durch den Melder (8, 11) und gleichzeitiges Messen einer zweiten Klemmenspannung (U2) in dem ersten Melder (8,11),
    d. Ermitteln einer Vergleichsspannung (Umin) aus der ersten und der zweiten Klemmenspannung (U1, U2), der Stromdifferenz (I2-I1) und einem als bekannt angenommenen maximalen Einschaltstrom (Imax),
    e. Schließen des Schalters (12) im ersten Melder (8,11), wodurch die am ersten Melder (8,11) anliegende Spannung an den nächsten Abschnitt der Verbindungsleitungen (7) durchgeschaltet und somit die Versorgungsspannung insbesondere an einen zweiten/weiteren Melder angelegt wird,
    f. Messen einer dritten Klemmenspannung (U3) im ersten Melder (8, 11) nach dem Schließen des Schalters (12) in dem ersten Melder (8, 11),
    g. Vergleichen der dritten Klemmenspannung (U3) mit der in Schritt d. ermittelten Vergleichsspannung (Umin),
    h. Öffnen des zuvor (in Schritt e) geschlossenen Schalters (12), wenn die dritte Klemmenspannung (U3) die Vergleichsspannung unterschreitet, oder Wiederholen der Schritte b bis h mit jedem weiteren vorhandenen Melder (8, 11), wobei der zweite/weitere Melder dann die Funktion des zuvor ersten Melders (8, 11) übernimmt.
  2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass die Melder (8, 11), Nachrichten mittels einer Strommodulation über die Verbindungsleitungen (7) senden und der erhöhte Modulationsstrom des Melders (8, 11) als Belastungsstrom (I2) zum Messen der zweiten Klemmenspannung (U2) in Schritt 1.c, genutzt wird.
  3. Verfahren nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass die erste und/oder zweite Klemmenspannung (U1, U2) jeweils an einer Stelle mit einer Folge von zwei oder mehreren gleichen Bits innerhalb einer gesendeten Nachricht gemessen wird.
  4. Verfahren nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass die erste und/oder zweite Klemmenspannung (U1, U2) an einer Stelle mit einer Folge von zwei Bits innerhalb einer Nachricht, deren Werte sich ändern, gemessen wird.
  5. Kurzschlusstrenner (11) zur Durchführung des Verfahrens nach einem oder mehreren der Ansprüche 1 bis 4 umfassend einen Schalter (12) zum Verbinden oder Trennen von Verbindungsleitungen (7), eine Einrichtung zum Erzeugen eines definierten elektrischen Stroms (15), einer Messeinrichtung (14) zum Messen einer ersten, zweiten und dritten Klemmenspannung (U1, U2, U3), einen Speicher (13) zum Speichern eines Messwertes der ersten und/oder zweiten Klemmenspannung (U1, U2), einen Speicher (13) zum Speichern des Wertes eines maximalen Einschaltstroms eines oder mehrerer an einer Verbindungsleitung (7) angeschlossener peripherer Geräte (8, 11), einer Recheneinheit (10) zum Ermitteln einer Vergleichsspannung (Umin), eine Vergleichseinheit zum Vergleichen der dritten Klemmenspannung (U3) mit der Vergleichsspannung.
  6. Gefahrenmelder (8) dadurch gekennzeichnet, dass er einen Kurzschlusstrenner (11) nach Anspruch 5 umfasst, der in den Gefahrenmelder (8) integriert ist.
  7. Gefahrenmeldeanlage (1) zur Durchführung des Verfahrens nach einem oder mehreren der Ansprüche 1 bis 4 mit mindestens einer Spannungsquelle, welche die Gefahrenmelder (8) und/oder andere periphere Geräte (8, 11) über Verbindungsleitungen (7) mit Spannung versorgt, wobei die Gefahrenmeldeanlage mindestens einen Kurzschlusstrenner nach Anspruch 5 und/oder wenigstens einen Melder (8, 11) nach Anspruch 6 umfasst.
EP11008014.0A 2010-10-04 2011-10-04 Gefahrenmelder, Gefahrenmeldeanlage und Verfahren zum Erkennen von Leitungsfehlern Active EP2437228B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201010047227 DE102010047227B3 (de) 2010-10-04 2010-10-04 Gefahrenmelder, Gefahrenmeldeanlage und Verfahren zum Erkennen von Leitungsfehlern

Publications (3)

Publication Number Publication Date
EP2437228A2 EP2437228A2 (de) 2012-04-04
EP2437228A3 EP2437228A3 (de) 2012-05-16
EP2437228B1 true EP2437228B1 (de) 2016-08-10

Family

ID=44905261

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11008014.0A Active EP2437228B1 (de) 2010-10-04 2011-10-04 Gefahrenmelder, Gefahrenmeldeanlage und Verfahren zum Erkennen von Leitungsfehlern

Country Status (2)

Country Link
EP (1) EP2437228B1 (de)
DE (1) DE102010047227B3 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11328580B2 (en) 2018-05-29 2022-05-10 Autronica Fire & Security As Testing of a network of hazard warning devices
US11367339B2 (en) 2018-06-21 2022-06-21 Autronica Fire & Security As System and method for startup of a detector loop

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9880214B2 (en) 2013-08-21 2018-01-30 Honeywell International Inc. Apparatus and method for detection and adaption to an end-of-line resistor and for ground fault localization
EP3825973A1 (de) * 2019-11-22 2021-05-26 Honeywell International Inc. Brandmeldesystemsteuerung, brandmeldesystem, trennvorrichtung und verfahren zur initialisierung eines brandmeldesystems

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1197936A2 (de) * 2000-10-10 2002-04-17 Job Lizenz GmbH & Co. KG Gefahrenmeldeanlage

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632517B2 (ja) * 1985-07-19 1994-04-27 ホーチキ株式会社 異常監視装置
EP0347808B1 (de) 1988-06-21 1992-08-26 Max Dipl.-Ing. Aicher Verfahren zur Behandlung von Klärschlamm
ATE85719T1 (de) * 1988-06-23 1993-02-15 Siemens Ag Gefahrenmeldeanlage.
JP3382370B2 (ja) * 1994-08-18 2003-03-04 能美防災株式会社 火災報知設備の伝送線路監視装置
EP2051220A1 (de) * 2007-10-17 2009-04-22 Siemens Building Technologies Fire & Security Products GmbH & Co. oHG Trennvorrichtung mit Energiespeicher für Energie führende elektrische Leitung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1197936A2 (de) * 2000-10-10 2002-04-17 Job Lizenz GmbH & Co. KG Gefahrenmeldeanlage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11328580B2 (en) 2018-05-29 2022-05-10 Autronica Fire & Security As Testing of a network of hazard warning devices
US11367339B2 (en) 2018-06-21 2022-06-21 Autronica Fire & Security As System and method for startup of a detector loop

Also Published As

Publication number Publication date
EP2437228A2 (de) 2012-04-04
EP2437228A3 (de) 2012-05-16
DE102010047227B3 (de) 2012-03-01

Similar Documents

Publication Publication Date Title
EP2437228B1 (de) Gefahrenmelder, Gefahrenmeldeanlage und Verfahren zum Erkennen von Leitungsfehlern
EP1702808A2 (de) Vorrichtung zur Spannungsversorgung der Verbraucher eines Kraftfahrzeug-Bordnetzes unter Verwendung von mehreren Generatoren
EP3748599B1 (de) Verfahren zum betrieb und tests eines gefahrenmeldesystems mit einem bussystem, melder zum anschluss an ein bussystem und gefahrenmeldesystem mit einem bussystem.
WO2019149755A1 (de) Fehlerdetektionsvorrichtung einer ortsnetzstation und einrichtung zur meldung eines fehlers an eine zentrale steuervorrichtung
EP2546852A2 (de) Bistabiles Sicherheitsrelais
EP3451477A1 (de) Erkennen eines fehlers in einem gleichstromübertragungssystem
EP3042805B1 (de) Vorrichtung zum überwachen eines bordnetzes
DE202008009211U1 (de) Vorrichtung zur Erkennung von Unterbrechungen bei einem Ringbus
EP1197936B2 (de) Gefahrenmeldeanlage
DE4336698C2 (de) Servoregler
EP2169644A1 (de) Prüfung der Meldelinien einer Gefahrenmeldeanlage
EP3531137B1 (de) Energieversorgungsvorrichtung und verfahren zum betreiben einer energieversorgungsvorrichtung
EP3480609B1 (de) Modifizieren von test-messsignalen für schutzeinrichtungen für elektrische stromnetze
EP3376485B1 (de) Signalgebereinheit mit integriertem rückkanal
DE2711519A1 (de) Datenuebertragungssystem
EP3899558A1 (de) Verfahren und prüfvorrichtung
EP2149956A1 (de) Modulares elektrisches System und Verfahren zum Betrieb
DE10306444A1 (de) 2-Leitungs-Bussystem
DE202005017996U1 (de) Einrichtung zur Isolationsfehlerortung in elektrischen Weichenheizungsanlagen
DE4345258C2 (de) Servoregler
DE2454494A1 (de) Einrichtung zur fehlerortung bei nachrichtenuebertragungsstrecken mit pilotgeregelten verstaerkern
DE2442067C3 (de)
WO2020038616A1 (de) Versorgungssystem zur versorgung mit elektrischer spannung und verfahren zum betreiben eines versorgungssystems
DE102022210181A1 (de) Selbsttestende Messeinrichtung
EP4002628A1 (de) Verfahren zur automatisierten erkennung einer schaltmatrix von an ein dreiphasen-verteilnetz angeschlossenen elektrischen verbrauchsmitteln, insbesondere von ladeeinrichtungen für elektrische energiespeicher sowie ladeeinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: G08B 26/00 20060101AFI20120411BHEP

17P Request for examination filed

Effective date: 20121112

17Q First examination report despatched

Effective date: 20130723

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150325

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160316

INTG Intention to grant announced

Effective date: 20160404

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 819655

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011010338

Country of ref document: DE

RIN2 Information on inventor provided after grant (corrected)

Inventor name: ROESKE, SIEGFRIED

Inventor name: BRENDLE, DIETMAR

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161210

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161110

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161111

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161212

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011010338

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161110

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170511

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161110

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161110

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161004

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20191001

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201004

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231018

Year of fee payment: 13

Ref country code: CH

Payment date: 20231102

Year of fee payment: 13

Ref country code: AT

Payment date: 20231019

Year of fee payment: 13