EP2431525B1 - Steel-concrete-composite girder for a bridge construction - Google Patents

Steel-concrete-composite girder for a bridge construction Download PDF

Info

Publication number
EP2431525B1
EP2431525B1 EP11007512.4A EP11007512A EP2431525B1 EP 2431525 B1 EP2431525 B1 EP 2431525B1 EP 11007512 A EP11007512 A EP 11007512A EP 2431525 B1 EP2431525 B1 EP 2431525B1
Authority
EP
European Patent Office
Prior art keywords
steel
reinforced concrete
steel profile
precast concrete
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11007512.4A
Other languages
German (de)
French (fr)
Other versions
EP2431525A1 (en
Inventor
Victor Schmitt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SSF INGENIEURE AG
Original Assignee
SSF Ingenieure AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SSF Ingenieure AG filed Critical SSF Ingenieure AG
Priority to PL11007512T priority Critical patent/PL2431525T3/en
Publication of EP2431525A1 publication Critical patent/EP2431525A1/en
Application granted granted Critical
Publication of EP2431525B1 publication Critical patent/EP2431525B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • E04C3/293Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures the materials being steel and concrete
    • E04C3/294Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures the materials being steel and concrete of concrete combined with a girder-like structure extending laterally outside the element
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2/00Bridges characterised by the cross-section of their bearing spanning structure
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • E01D2101/268Composite concrete-metal

Definitions

  • the invention relates to a reinforced concrete composite beam for a bridge construction, in particular for an auxiliary bridge for road overpasses, with a U-shaped steel profile with two webs and a steel bottom flange on its underside and a limp reinforced concrete precast at its top.
  • the U-shaped steel profile binds with anchors at free ends of its webs by a embedment depth in the precast concrete part.
  • a shear-resistant bond between the precast concrete part as the upper flange of the composite steel support on the one hand and the U-shaped steel profile is produced as a bottom flange.
  • the invention also relates to a bridge structure for traffic routes, in particular an auxiliary bridge for overpasses, with a plurality of reinforced concrete composite beams, which are arranged running side by side in the bridge longitudinal direction.
  • the EP 2 096 222 A2 shows a method for producing bar-shaped steel-concrete composite beams from a steel beam and a reinforced concrete beam as a top flange, comprising the following steps: dividing a double-T beam into two stainless steel beams by a separating cut, forming steel anchors on a web-shaped portion of the Steel girder by a cut with sections with undercuts, the separating cut on the steel girder steel dowel forms, facing away from the carrier and a dowel base on the carrier opposite dowel sides merge unilaterally in a dowel end face, mounting of reinforcing steel for the concrete beam with involvement of the steel girder, concrete reinforcement of the reinforced concrete beam to the steel beam, wherein fillets are formed at the transitions between the dowel end faces and the dowel base.
  • the invention also relates to a steel beam for a beam-shaped steel-concrete composite beam according to this method and to a finished composite beam.
  • the DE 199 03 310 A1 discloses a composite beam as a steel beam with factory or in situ aufbeton Arthurm flange and is characterized in that is designed for bridge structures as deck bridges of the concrete flange of composite prefabricated part as a full-surface formwork element and forms (with an adjacent composite prefabricated part) the circuit for in-situ concrete slab.
  • the US 2006/265819 A1 shows a support system with a modified reverse box girder design for improved performance and ease of manufacture.
  • Each carrier of a series of carriers is formed with an upper flange portion, a pair of portions extending downwardly from opposite sides of the upper flange portion, and a base portion below the web portions.
  • the base portion has flanged foot portions generally facing each other.
  • a plate-shaped deck is coupled to the series of supports to form the support system.
  • each support profile comprises a recessed in the concrete connecting part, which is formed integrally with the profile and having means to the are intended to cooperate with the reinforcing elements, which are mounted transversely to the profiles and sunk together with the preventing profiles in the concrete.
  • the connecting part has a constant area and extends in a straight line on the support profile and its means, which are intended to cooperate with the reinforcing elements, which consist of cutouts and the triangulation of the profile between the belt of the profile and the concrete slab and a transfer of the vertical Ensure loads.
  • the carrier profile is in the form of a T-shaped profile
  • the connecting part forming web is provided with evenly spaced, substantially dovetailed cutouts and the profile and its connecting part is obtained either by cutting in the web of a T-profile or by symmetrical neckline of a I-shaped or H-shaped profile with a high bridge or a restored, welded profile, consisting of a strap and a bridge.
  • the outer, preferably rounded, the dovetail-shaped cutouts delimiting corner regions are each provided with at least one recess for attaching a flat reinforcing element or one or more connected Arm istsdorfisen.
  • the object of the invention is therefore to provide an economical bridge construction for auxiliary bridges.
  • This object is achieved in a bridge structure of the type mentioned by a regular rectangular cross-section of the precast concrete and by a largely concrete-free steel profile, namely, outside the embedment depth in the precast concrete part no contact with the concrete of the precast concrete more.
  • the embedment depth represents the measure to which the webs of the steel profile embed or immerse in the precast concrete part. It defines a contact surface between the precast concrete element and the steel profile.
  • the invention pursues the principle of composing the reinforced concrete composite support from the simplest possible basic components made of concrete on the one hand and steel on the other hand.
  • the precast concrete part has an extremely simple outer contour, which can be done for a factory production in high quantities and because of the simple and regular spatial form with very little effort.
  • the steel profile can also have a perfectly regular and simple cross-section.
  • reinforced concrete composite carrier requires only little effort.
  • the steel profile can be crushed from an upper side of the still fresh concrete of the precast concrete part to form together with the precast concrete part the reinforced concrete composite support. Since the steel profile is substantially free of concrete and unfilled and only pressed or shaken, the production of reinforced concrete composite carrier from its concrete and its steel component is no particular challenge.
  • the free ends of the webs of the U-shaped steel profile can be cut and alternately notched on different sides.
  • the welding of steel dowels to the steel profile as elements that integrate into the precast concrete slab is also known.
  • the free ends of the webs composite anchors which embed in the precast concrete part and are formed by cutting the webs of the steel profile.
  • composite dowels can be formed, which lead to a reliable and resilient gearing between the U-shaped steel profile and the precast concrete part.
  • an extremely economical production of the composite dowels can be achieved by a sectional direction symmetrical with respect to the cutting direction, in that the same section produces the composite dowels for two steel profiles. This makes it possible to achieve a low-defect formation of the composite dowels on the steel profile. It contributes to an extremely economical production of reinforced concrete composite beams.
  • the length of the steel dowels largely determines the embedment depth of the webs in the precast concrete part. They are usually slightly shorter than the embedment depth.
  • the steel profile may be made of a folded sheet metal.
  • the sheet may have a thickness of up to about 10 mm. These dimensions are sufficient for auxiliary bridges with short spans and low construction heights.
  • the steel profile may be made of welded sheets.
  • the webs can be welded as a vertical leg of the U-shaped steel profile on the steel lower flange as the sole of the U-shaped profile, for example by Halskehlnähte.
  • the composition of the U-shaped steel profile of webs on the one hand and a steel lower belt on the other hand also allows a material gradation in terms of their dimensioning between the steel lower flange and the web plates. As a result, the steel profile can be adapted to concrete loads and its material can be used economically.
  • the composite steel beams are regularly at the front end on the steel profile.
  • the U-shaped steel profile can therefore be filled with in-situ concrete, at least in the area of the load introduction surfaces.
  • the steel profile has at its front ends of the steel composite carrier load introduction stiffeners, which are arranged standing upright in a direction transverse to the longitudinal extension of the steel composite support and in the U-shaped steel profile. They prevent buckling of the U-shaped steel profile at its bearing surfaces under load.
  • reinforced concrete composite beams can be adjacent to each other to form an auxiliary bridge in the bridge longitudinal direction.
  • a compound of reinforced concrete composite support with each other is possible for example by applying a continuous in-situ concrete slab.
  • connection reinforcement that form loops and overlap in the assembled state with loops of an adjacent steel composite beam or with a separate reinforcement loop.
  • the overlapping reinforcing loops of adjacent reinforced concrete composite beams offer a certain amount of play in order to adjust the bridge in the transverse direction to the conditions. Should it not be sufficient, an additional or separate reinforcement loop can be inserted into the loop joint between two reinforced concrete composite beams to allow a greater distance between the beams.
  • the auxiliary bridge does not require full-surface Ortbetoner contemplatung. Rather, the individual reinforced concrete composite beams are such designed and constructed so that they can be used immediately. According to a further advantageous embodiment of the invention, therefore, they have a rough or profiled surface of the precast concrete part. It can be achieved in the production of precast concrete easily in the formwork of precast concrete, because it is preferably made overhead. Thus, the production of a directly drivable surface of the reinforced concrete composite part does not require a separate manufacturing step.
  • reinforced concrete composite carrier stands out from the prior art, as it consists of extremely simple, namely regular cross sections for the precast concrete and the U-shaped steel profile and therefore requires an extremely low production cost. Since the precast concrete part has a regular rectangular cross-section and also along its longitudinal extent no deviations from the rectangular plan, its production can be extremely rational and largely mechanized or automated by simple means. As a result, an economical production method of the reinforced concrete composite carrier can be ensured.
  • the production of the U-shaped steel profile by edges of relatively thin sheets or alternatively by welding of webs with a lower flange is not a technical challenge dar. Also the connection of the two components of the reinforced concrete composite carrier by pressing or shaking the U-shaped steel profile in the Still fresh precast concrete can be mechanized and very cost effective.
  • the in-situ bonding of adjoining steel composite beams by cast-in-situ casting is easily manageable and represents only a small amount of material. Because the Ortbetonverguss fills only the loop joints juxtaposed steel composite support, ie wide, extending in the longitudinal direction of the bridge grooves formed essentially by the longitudinal sides of the steel composite support become.
  • the modular design of the auxiliary bridge also allows an adjustment of the bridge deck or the bridge course in terms of their gradients to the circumstances, because the loop joints of adjacent reinforced concrete composite support provides a significant game between the carriers.
  • the bridge construction consists of several longitudinal steel composite beams 2 (see. FIG. 2 ), which are already prefabricated and are delivered in this form on site.
  • the composite steel beams 2 consist of a steel section 4 and a precast concrete part 6 and are laid side by side in a longitudinal direction on a prepared support.
  • the bearings of the composite beams 2 may be sheet piles, rubber mounts or steel plates.
  • the precast concrete 6 consists of a concrete slab 24 with long sides 10, narrow sides 40, a bottom 18 and a top 44.
  • the precast concrete 6 has a regular rectangular plan and a rectangular cross section and is 12 to 16 cm thick. Its width is between 1.50 and 3.00 m. It is limp reinforced with a longitudinal and transverse reinforcement and is manufactured in 180 ° or overhead position.
  • the concrete slab 24 represents the only concrete component of the reinforced concrete composite slab 2.
  • the steel profile 4 has a U-shaped cross-section and about the same length as the precast concrete part 6.
  • the U-shaped steel profile 4 is reinforced by perpendicular to the concrete plate 24 and parallel to each other arranged load introduction stiffeners 36, 38. They are welded only on the narrow sides 40 of the reinforced concrete composite beams 2 in order to prevent kinking of the U-shaped steel profile 4 due to the localized load introduction at the bearing points 34 of the reinforced concrete composite beam 2 on bearings not shown.
  • load introduction stiffeners 36 Two types are used, namely smaller triangular load introduction stiffeners 36, which only fill part of the U-shaped cross section of the steel profile 4 and are arranged symmetrically opposite one another.
  • the larger, rectangular load introduction stiffeners 38 almost completely fill the cross section of the U-shaped steel profile 4 (cf. FIGS. 4, 5 ).
  • the load introduction stiffeners 36, 38 are each used alternately in the longitudinal direction of the U-shaped steel profile 4.
  • FIG. 3 shows, inter alia, a sectional view through the U-shaped steel profile 4, which is composed of a steel lower chord 22 and two parallel webs 20 rising at right angles from the steel lower chord 22.
  • the legs carry 20 composite dowel 26, as in FIG. 3 , can be seen on the left in two enlarged views.
  • the composite dowels 26 thus alternate in the longitudinal direction of the steel section 4 with gaps 30, which in the side view of FIG. 3 occupy a slightly larger area than the composite dowels 26.
  • FIG. 9 Their production is in FIG. 9 illustrated.
  • two rows of composite dowels 26 are produced at the free ends 28 of two webs 20 in a single manufacturing step.
  • a special separating cut 46 which can be guided almost continuously and uninterruptedly, two webs 20 with composite dowels 26 are produced from a single workpiece.
  • the separating cut 46 is thereby guided in a special clothoid shape 42, so that similar composite dowels 26 are formed on both webs 20 and form the intermediate space 30 on the respective other web.
  • the illustrated cutting guide for the separating cut 46 in the clothoid form 42 causes the least possible waste.
  • the steel components of reinforced concrete composite carrier 2 show the FIGS. 1 or 1a:
  • the concrete slab 24 is regularly longitudinally and transversely reinforced and has an upper and a lower reinforcement layer 32 (cf. FIG. 6 ).
  • the load introduction stiffeners 36 are welded in the U-shaped steel profile 4, of which only two in the example FIGS. 1 . 1a are shown.
  • At one of the longitudinal edges 10 protrude reinforcing loops 8 in plate plane, but beyond the longitudinal edge 10 addition.
  • they cant over the rectangular cross-section. You are with a lost formwork 16 (see. FIGS. 6 . 7 ) on the underside 18 of the concrete slab 24 (see also Figures 2 . 2a ).
  • a sheet is cut with about 8mm thickness in the manner described above and folded twice in the longitudinal direction, so that the webs 20 and 22 Untergut arise.
  • the precast concrete element 6 is concreted in overhead position, ie rotated by 180 ° about the longitudinal axis.
  • the future top 44 is thus on a formwork floor. He is profiled and Due to future future bottom side 18, however, points in the manufacturing process upwards, so that the steel profile 4 can be shaken before setting the concrete in the precast concrete 6.
  • the steel profile 4 then projects with its composite dowels 20 by a binding depth t (see. FIG. 6 ) into the precast concrete part 6.
  • FIG. 8 shows the connection of two adjacent reinforced concrete composite beams along their longitudinal sides 10: Two reinforcing loops 8 of two adjacent reinforced concrete composite beams 2, which protrude from the precast concrete elements 6 on the longitudinal sides facing each other, each overlap with a separate reinforcing loop 12 and are rigidly connected by a concrete grout 14.
  • the lost formwork 16 may be attached to the underside 18 of the precast concrete part 6.
  • the bridge is driven directly.
  • Guides and fall arresters are installed separately and are not included in the steel composite beams 2.
  • Each prefabricated steel composite beam 2 comprises an open, U-shaped steel profile 4 with two parallel webs 20 and a steel lower flange 22 connecting them.
  • the steel profile 4 is produced by edges.
  • the webs 20 are welded onto the steel lower chord 22 with Halskehlnähten. This allows a material gradation between the lower flange 22 and the web plates 20th
  • the connection between the concrete slab 24 and the steel profile 4 produce the composite dowels 26 at the free ends 28 of the webs 20.
  • the composite dowels 26 are formed from the U-shaped steel profile 4 and therefore steel dowels which project into the concrete slab 24 and in the interstices 30th lie in the installation position lower reinforcing bar 32 of the roadway or concrete slab 24.
  • the composite dowels 26 are made in the steel sheet of the webs 20 by cutting in a special sectional shape, the so-called Klothoidenform 42.
  • the composite dowel 26 is characterized by a high load capacity and high deformation capacity. The fatigue-proof design can be exposed to high dynamic loads.
  • the composite beams 2 have a large bending and torsional rigidity. Only at the end bearing points 34 of the carrier 2 load introduction stiffeners 36, 38 are necessary.
  • the carriers 2 can be designed as Einfeldlyketten or as a continuous system. Passage systems can be realized by bolted tab joints on the lower flange 22 and in-situ concrete grouting of a lap joint in the concrete flange area or in the area of the precast concrete element 6 become. In the overlap shock extend in the longitudinal direction extending rebar, which protrude from the end narrow side 40 of the precast concrete part 6, by about one meter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

The structure has steel composite girders (2) runningly arranged adjacent to each other in a bridge longitudinal direction. U-shaped steel profiles (4) include two bars and a steel bottom flange on a lower side, and a slag reinforced precast concrete part at an upper side. Composite dowels are provided at free ends of the bars. The dowels are embedded into the precast concrete part and formed by cutting the bars. The steel profile is made of an edged sheet with a thickness of upto 10 mm. A load application stiffener (36) is provided at ends of the steel profile. An independent claim is also included for a method for constructing a bridge structure.

Description

Die Erfindung betrifft einen Stahlbetonverbundträger für eine Brückenkonstruktion, insbesondere für eine Hilfsbrücke für Straßenüberführungen, mit einem U-förmigen Stahlprofil mit zwei Stegen und einem Stahluntergurt auf seiner Unterseite und ein schlaff bewehrtes Betonfertigteil an seiner Oberseite. Das U-förmige Stahlprofil bindet mit Verbunddübeln an freien Enden seiner Stege um eine Einbindetiefe in das Betonfertigteil ein. Damit wird ein schubfester Verbund zwischen dem Betonfertigteil als Obergurt des Stahlverbundträgers einerseits und dem U-förmigen Stahlprofil als Untergurt hergestellt. Die Erfindung betrifft außerdem eine Brückenkonstruktion für Verkehrswege, insbesondere eine Hilfsbrücke für Straßenüberführungen, mit mehreren Stahlbetonverbundträgern, die in Brückenlängsrichtung verlaufend nebeneinander angeordnet sind.The invention relates to a reinforced concrete composite beam for a bridge construction, in particular for an auxiliary bridge for road overpasses, with a U-shaped steel profile with two webs and a steel bottom flange on its underside and a limp reinforced concrete precast at its top. The U-shaped steel profile binds with anchors at free ends of its webs by a embedment depth in the precast concrete part. Thus, a shear-resistant bond between the precast concrete part as the upper flange of the composite steel support on the one hand and the U-shaped steel profile is produced as a bottom flange. The invention also relates to a bridge structure for traffic routes, in particular an auxiliary bridge for overpasses, with a plurality of reinforced concrete composite beams, which are arranged running side by side in the bridge longitudinal direction.

Es sind zahlreiche Konstruktionen für Stahlbetonverbundträger bekannt. In " Stahlbau 78" (2009), Heft 2, Seiten 86 bis 93 (Ernst & Sohn Verlag für Architektur und Technische Wissenschaften GmbH & Co. KG, Berl in) wird eine Verbundbrücke mit externer Bewehrung beschrieben. Zwei Verbundfertigteile mit halbierten Walzträgern als Untergurt und eine Ortbetonergänzung als Obergurt bilden den Querschnitt. Diese Bauweise ermöglicht eine wirtschaftliche Herstellung, bietet selbst eine wirtschaftliche Bauweise und verspricht eine hohe Dauerhaftigkeit. Diese Stärken kann die Bauweise bei einem temporären Bauwerk, wie es eine Hilfsbrücke darstellt, allerdings nicht vollständig ausspielen. Denn dort spielen Kriterien wie vor allem ein hoher Vorfertigungsgrad der Brückenbestandteile, ihre kostengünstige Herstellung und ein möglichst weitgehendes Gleichteilekonzept eine wichtige Rolle.Numerous constructions for reinforced concrete composite beams are known. In " Stahlbau 78 "(2009), No. 2, pages 86 to 93 (Ernst & Sohn Verlag für Architektur und Technische Wissenschaften GmbH & Co. KG, Berl in) a composite bridge with external reinforcement is described. Two prefabricated composite parts with halved roll girders as bottom chord and an in-situ concrete supplement as top chord form the cross section. This design allows an economical production, even offers an economical construction and promises a high durability. However, these features can not be fully exploited in a temporary structure such as an auxiliary bridge. For there, criteria such as, above all, a high degree of prefabrication of the bridge components, their cost-effective production and the greatest possible common-part concept play an important role.

Die EP 2 096 222 A2 zeigt ein Verfahren zur Herstellung von balkenförmigen Stahl-Beton-Verbundträgern aus einem Stahlträger und einem bewehrten Betonbalken als Obergurt, mit den folgenden Schritten: Teilen eines Doppel-T-Trägers in zwei obergurtlose Stahlträger durch einen Trennschnitt, Ausbilden von Stahldübeln an einem stegförmigen Abschnitt des Stahlträgers durch einen Trennschnitt mit Abschnitten mit Hinterschneidungen, wobei der Trennschnitt am Stahlträger Stahldübel ausbildet, deren dem Träger abgewandte und einem Dübelgrund am Träger gegenüberliegende Dübeloberseiten einseitig ausrundungsfrei in eine Dübelstirnfläche übergehen, Montage von Bewehrungsstahl für den Betonbalken unter Einbindung des Stahlträgers, Anbetonieren des bewehrten Betonbalkens an den Stahlträger, wobei Ausrundungen an den Übergängen zwischen den Dübelstirnflächen und dem Dübelgrund ausgebildet werden. Die Erfindung betrifft außerdem einen Stahlträger für einen balkenförmigen Stahl-Beton-Verbundträger nach diesem Verfahren sowie einen fertigen Verbundträger.The EP 2 096 222 A2 shows a method for producing bar-shaped steel-concrete composite beams from a steel beam and a reinforced concrete beam as a top flange, comprising the following steps: dividing a double-T beam into two stainless steel beams by a separating cut, forming steel anchors on a web-shaped portion of the Steel girder by a cut with sections with undercuts, the separating cut on the steel girder steel dowel forms, facing away from the carrier and a dowel base on the carrier opposite dowel sides merge unilaterally in a dowel end face, mounting of reinforcing steel for the concrete beam with involvement of the steel girder, concrete reinforcement of the reinforced concrete beam to the steel beam, wherein fillets are formed at the transitions between the dowel end faces and the dowel base. The invention also relates to a steel beam for a beam-shaped steel-concrete composite beam according to this method and to a finished composite beam.

Die DE 199 03 310 A1 offenbart einen Verbundträger als Stahlträger mit werkseitig oder in situ aufbetoniertem Flansch und zeichnet sich dadurch aus, daß für Brückenbauwerke als Deckbrücken der Betonflansch des Verbundfertigteilträgers als vollflächiges Schalungselement ausgebildet ist und (mit einem danebenliegenden Verbundfertigteilträger) die Schaltung für die Ortbetonplatte bildet.The DE 199 03 310 A1 discloses a composite beam as a steel beam with factory or in situ aufbetoniertem flange and is characterized in that is designed for bridge structures as deck bridges of the concrete flange of composite prefabricated part as a full-surface formwork element and forms (with an adjacent composite prefabricated part) the circuit for in-situ concrete slab.

Die US 2006/265819 A1 zeigt ein Tragsystem mit einem modifizierten umgekehrten Kastenträger-Design für verbesserte Leistung und Einfachheit der Herstellung. Jeder Träger einer Reihe von Trägern ist mit einem oberen Flanschabschnitt, einem Paar von Abschnitten, die sich von gegenüberliegenden Seiten des oberen Flanschabschnitts abwärts erstrecken, und einem Basisabschnitt unterhalb der Stegabschnitte ausgebildet. Der Basisabschnitt weist angeflanschte Fußabschnitte auf, die im Allgemeinen aufeinander zu gerichtet sind. Ein plattenförmiges Deck ist mit der Reihe von Träger gekoppelt, um das Tragsystem zu bilden.The US 2006/265819 A1 shows a support system with a modified reverse box girder design for improved performance and ease of manufacture. Each carrier of a series of carriers is formed with an upper flange portion, a pair of portions extending downwardly from opposite sides of the upper flange portion, and a base portion below the web portions. The base portion has flanged foot portions generally facing each other. A plate-shaped deck is coupled to the series of supports to form the support system.

Die EP 0 369 914 A1 beschreibt eine Vorrichtung, im Wesentlichen bestehend aus einer Betonplatte, deren Armierung mittels Verbindern mit Trägerprofilen verbunden und teilweise in dem Beton versenkt ist, wobei jedes Trägerprofil ein in dem Beton versenktes Verbindungsteil umfasst, das einstückig mit dem Profil ausgebildet ist und Mittel aufweist, die dazu bestimmt sind, mit den Armierungselementen zusammenzuwirken, die quer verlaufend zu den Profilen befestigt und zusammen mit den Verhindernder Profile in dem Beton versenkt sind. Das Verbindungsteil weist einen gleichbleibenden Bereich auf und erstreckt sich geradlinig auf dem Trägerprofil und seinen Mitteln, die dazu bestimmt sind, mit den Armierungselementen zusammenzuwirken, die aus Ausschnitten bestehen und die Triangulation des Profils zwischen dem Gurt des Profils und der Betonplatte sowie eine Übertragung der vertikalen Lasten gewährleisten. Das Trägerprofil ist in Form eines T-Profils ausgebildet, dessen das Verbindungsteil bildender Steg mit gleichmäßig beabstandeten, im wesentlichen schwalbenschwanzförmig angeordneten Ausschnitten versehen ist und das Profil und sein Verbindungsteil entweder erhalten wird durch Ausschnitt im Steg eines T-Profils oder auch durch symmetrischen Ausschnitt eines I- oder H-Profils mit hohem Steg oder eines wiederhergestellten, geschweißten Profils, bestehend aus einem Gurt und einem Steg. Die äußeren, bevorzugt abgerundeten, die schwalbenschwanzförmigen Ausschnitte begrenzenden Eckbereiche sind jeweils mit wenigstens einer Aussparung zur Anbringung eines flachen Armierungselementes oder eines oder mehrerer angebundener Armierungsrundeisen versehen.
Aufgabe der Erfindung ist es daher, eine wirtschaftliche Brückenkonstruktion für Hilfsbrücken anzugeben.
The EP 0 369 914 A1 describes a device, essentially consisting of a concrete slab whose reinforcement is connected by means of connectors with support profiles and partially recessed in the concrete, each support profile comprises a recessed in the concrete connecting part, which is formed integrally with the profile and having means to the are intended to cooperate with the reinforcing elements, which are mounted transversely to the profiles and sunk together with the preventing profiles in the concrete. The connecting part has a constant area and extends in a straight line on the support profile and its means, which are intended to cooperate with the reinforcing elements, which consist of cutouts and the triangulation of the profile between the belt of the profile and the concrete slab and a transfer of the vertical Ensure loads. The carrier profile is in the form of a T-shaped profile, the connecting part forming web is provided with evenly spaced, substantially dovetailed cutouts and the profile and its connecting part is obtained either by cutting in the web of a T-profile or by symmetrical neckline of a I-shaped or H-shaped profile with a high bridge or a restored, welded profile, consisting of a strap and a bridge. The outer, preferably rounded, the dovetail-shaped cutouts delimiting corner regions are each provided with at least one recess for attaching a flat reinforcing element or one or more connected Armierungsrundeisen.
The object of the invention is therefore to provide an economical bridge construction for auxiliary bridges.

Diese Aufgabe wird bei einer Brückenkonstruktion der eingangs genannten Art gelöst durch einen regelmäßigen Rechteckquerschnitt des Betonfertigteils und durch ein weitgehend betonfreies Stahlprofil, das nämlich außerhalb der Einbindetiefe in das Betonfertigteil keinen Kontakt zum Beton des Betonfertigteils mehr aufweist. Die Einbindetiefe stellt das Maß dar, um das die Stege des Stahlprofils in das Betonfertigteil einbinden bzw. eintauchen. Sie definiert eine Kontaktfläche zwischen dem Betonfertigteil und dem Stahlprofil mit. Durch die oben beschriebene Konstruktion entsteht ein Stahlverbundträger mit einem geometrisch äußerst einfachen Aufbau, nämlich aus einer flachen quaderförmigen Betonfertigteilplatte und einem ebenfalls quaderförmigen lang gestreckten und im Querschnitt gedrungenen Stahlprofil. Die Erfindung verfolgt also das Prinzip, den Stahlbetonverbundträger aus möglichst einfachen Grundbestandteilen aus Beton einerseits und aus Stahl andererseits zusammenzusetzen. So hat das Betonfertigteil eine äußerst einfache äußere Kontur, die sich für eine werkseitige Produktion in hohen Stückzahlen und wegen der einfachen und regelmäßigen Raumform mit sehr geringem Schalaufwand bewerkstelligen lässt. Auch das Stahlprofil kann über einen vollkommen regelmäßigen und einfachen Querschnitt verfügen.This object is achieved in a bridge structure of the type mentioned by a regular rectangular cross-section of the precast concrete and by a largely concrete-free steel profile, namely, outside the embedment depth in the precast concrete part no contact with the concrete of the precast concrete more. The embedment depth represents the measure to which the webs of the steel profile embed or immerse in the precast concrete part. It defines a contact surface between the precast concrete element and the steel profile. The construction described above results in a composite steel beam with a geometrically extremely simple construction, namely a flat cuboid precast concrete slab and also a parallelepiped-shaped, elongated steel section which is squat in cross-section. Thus, the invention pursues the principle of composing the reinforced concrete composite support from the simplest possible basic components made of concrete on the one hand and steel on the other hand. Thus, the precast concrete part has an extremely simple outer contour, which can be done for a factory production in high quantities and because of the simple and regular spatial form with very little effort. The steel profile can also have a perfectly regular and simple cross-section.

Auch seine Montage am Stahlbetonverbundträger erfordert einen nur geringen Aufwand. Das Stahlprofil kann von einer Oberseite des noch frischen Betons des Betonfertigteils aus eingedrückt bzw. eingerüttelt werden, um zusammen mit dem Betonfertigteil das Stahlbetonverbundträger zu bilden. Da das Stahlprofil im Wesentlichen frei von Beton und unverfüllt ausgebildet ist und lediglich eingedrückt bzw. eingerüttelt wird, stellt die Herstellung des Stahlbetonverbundträgers aus seinem Beton- und seinem Stahlbestandteil keine besondere Herausforderung dar.Also, its installation on reinforced concrete composite carrier requires only little effort. The steel profile can be crushed from an upper side of the still fresh concrete of the precast concrete part to form together with the precast concrete part the reinforced concrete composite support. Since the steel profile is substantially free of concrete and unfilled and only pressed or shaken, the production of reinforced concrete composite carrier from its concrete and its steel component is no particular challenge.

Für einen tragfähigen Verbund zwischen dem Betonfertigteil und dem Stahlprofil können unterschiedliche Technologien zum Einsatz kommen: so können die freien Enden der Stege des U-förmigen Stahlprofils eingeschnitten und abwechselnd nach unterschiedlichen Seiten ausgeklinkt werden. Auch das Anschweißen von Stahldübeln an das Stahlprofil als Elemente, die in die Betonfertigteilplatte einbinden, ist bekannt. Nach einer vorteilhaften Ausgestaltung der Erfindung weisen die freien Enden der Stege Verbunddübel auf, die in das Betonfertigteil einbinden und durch Schneiden der Stege des Stahlprofils ausgebildet sind. Dadurch lassen sich einerseits Verbunddübel ausbilden, die zu einer zuverlässigen und belastbaren Verzahnung zwischen dem U-förmigen Stahlprofil und dem Betonfertigteil führen. Andererseits kann durch eine bezüglich der Schnittrichtung symmetrische Schnittführung eine äußerst sparsame Herstellung der Verbunddübel erreicht werden, indem derselbe Schnitt die Verbunddübel für zwei Stahlprofile erzeugt. Damit lässt sich eine verschnittarme Ausbildung der Verbunddübel am Stahlprofil erreichen. Sie bietet einen Beitrag zu einer äußerst wirtschaftlichen Herstellung der Stahlbetonverbundträger. Die Länge der Stahldübel bestimmt weitgehend die Einbindetiefe der Stege in das Betonfertigteil. Sie sind regelmäßig geringfügig kürzer als die Einbindetiefe.For a sustainable bond between the precast concrete element and the steel profile different technologies can be used: so the free ends of the webs of the U-shaped steel profile can be cut and alternately notched on different sides. The welding of steel dowels to the steel profile as elements that integrate into the precast concrete slab is also known. According to an advantageous embodiment of the invention, the free ends of the webs composite anchors, which embed in the precast concrete part and are formed by cutting the webs of the steel profile. As a result, on the one hand composite dowels can be formed, which lead to a reliable and resilient gearing between the U-shaped steel profile and the precast concrete part. On the other hand, an extremely economical production of the composite dowels can be achieved by a sectional direction symmetrical with respect to the cutting direction, in that the same section produces the composite dowels for two steel profiles. This makes it possible to achieve a low-defect formation of the composite dowels on the steel profile. It contributes to an extremely economical production of reinforced concrete composite beams. The length of the steel dowels largely determines the embedment depth of the webs in the precast concrete part. They are usually slightly shorter than the embedment depth.

Sowohl die Dimensionierung des Betonfertigteils als auch diejenige des U-förmigen Stahlprofils bestimmt die Tragfähigkeit des Stahlbetonverbundträgers. Nach einer vorteilhaften Ausgestaltung der Erfindung kann das Stahlprofil aus einem gekanteten Blech hergestellt sein. Um aus dem Blech ein U-förmiges Stahlprofil durch Kanten herzustellen, kann das Blech eine Dicke von bis zu ca. 10 mm aufweisen. Diese Dimensionen genügen für Hilfsbrücken mit kurzen Stützweiten und geringen Konstruktionshöhen.Both the dimensioning of the precast concrete part and that of the U-shaped steel profile determines the load bearing capacity of the reinforced concrete composite beam. According to an advantageous embodiment of the invention, the steel profile may be made of a folded sheet metal. To produce from the sheet metal a U-shaped steel profile by edges, the sheet may have a thickness of up to about 10 mm. These dimensions are sufficient for auxiliary bridges with short spans and low construction heights.

Für größere Stützweiten und größere Konstruktionshöhen kann nach einer alternativen Ausgestaltungsform der Erfindung das Stahlprofil aus geschweißten Blechen hergestellt sein. Dazu können die Stege als vertikale Schenkel des U-förmigen Stahlprofils auf dem Stahluntergurt als Sohle des U-förmigen Profils, beispielsweise durch Halskehlnähte, aufgeschweißt werden. Die Zusammensetzung des U-förmigen Stahlprofils aus Stegen einerseits und einem Stahluntergurt andererseits ermöglicht zusätzlich auch eine Materialabstufung hinsichtlich ihrer Dimensionierung zwischen dem Stahluntergurt und den Stegblechen. Dadurch kann das Stahlprofil an konkrete Belastungen angepasst und sein Material wirtschaftlich eingesetzt werden.For larger spans and larger construction heights, according to an alternative embodiment of the invention, the steel profile may be made of welded sheets. For this purpose, the webs can be welded as a vertical leg of the U-shaped steel profile on the steel lower flange as the sole of the U-shaped profile, for example by Halskehlnähte. The composition of the U-shaped steel profile of webs on the one hand and a steel lower belt on the other hand also allows a material gradation in terms of their dimensioning between the steel lower flange and the web plates. As a result, the steel profile can be adapted to concrete loads and its material can be used economically.

Die Stahlverbundbetonträger liegen an ihrem stirnseitigen Ende regelmäßig auf dem Stahlprofil auf. Dadurch sind folglich hohe Querkräfte zu erwarten. Das U-förmige Stahlprofil kann daher zumindest im Bereich der Lasteinleitungsflächen mit Ortbeton ausgefüllt sein. Nach einer vorteilhaften Ausgestaltung der Erfindung verfügt das Stahlprofil an seinen stirnseitigen Enden des Stahlverbundträgers Lasteinleitungssteifen, die in einer Richtung quer zur Längserstreckung des Stahlverbundträgers und im U-förmigen Stahlprofil aufrecht stehend angeordnet sind. Sie verhindern ein Einknicken des U-förmigen Stahl profils an seinen Auflageflächen unter Last.The composite steel beams are regularly at the front end on the steel profile. As a result, high lateral forces are to be expected. The U-shaped steel profile can therefore be filled with in-situ concrete, at least in the area of the load introduction surfaces. According to an advantageous embodiment of the invention, the steel profile has at its front ends of the steel composite carrier load introduction stiffeners, which are arranged standing upright in a direction transverse to the longitudinal extension of the steel composite support and in the U-shaped steel profile. They prevent buckling of the U-shaped steel profile at its bearing surfaces under load.

Mehrere Stahlbetonverbundträger können zur Ausbildung einer Hilfsbrücke in Brückenlängsrichtung nebeneinander liegen. Eine Verbindung der Stahlbetonverbundträger untereinander ist beispielsweise durch Aufbringen einer durchgehenden Ortbetonplatte möglich. Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung dagegen verfügen die Stahlverbundträger an ihren Längsseiten über freiliegende und mit Ortbeton vergießbare Bewehrungseisen als Anschlussbewehrung, die Schlaufen bilden und die sich im montierten Zustand mit Schlaufen eines benachbarten Stahlverbundträgers oder mit einer separaten Bewehrungsschlaufe überlappen. Damit wird zwischen zwei nebeneinander liegenden Stahlbetonverbundträgern lediglich ein schmaler Bereich mit Ortbetonverfüllung erforderlich, um die Stahlbetonverbundträger untereinander zu verbinden. Die dafür erforderliche Menge an Ortbeton ist jedoch erheblich geringer als eine vollflächige Ortbetonergänzung über die gesamte Brückentafel hinweg. Die einander überlappenden Bewehrungsschlaufen nebeneinander liegender Stahlbetonverbundträger bieten ein gewisses Spiel, um die Brücke in Querrichtung an die Gegebenheiten anzupassen. Sollte es nicht ausreichen, so kann eine zusätzliche bzw. separate Bewehrungsschlaufe in den Schlaufenstoß zwischen zwei Stahlbetonverbundträgern eingesetzt werden, um einen größeren Abstand zwischen den Trägern zu ermöglichen.Several reinforced concrete composite beams can be adjacent to each other to form an auxiliary bridge in the bridge longitudinal direction. A compound of reinforced concrete composite support with each other is possible for example by applying a continuous in-situ concrete slab. According to a further advantageous embodiment of the invention, however, have the steel composite beams on their long sides over exposed and pourable with cast-in-place reinforcing bars as connection reinforcement that form loops and overlap in the assembled state with loops of an adjacent steel composite beam or with a separate reinforcement loop. Thus, between two adjacent reinforced concrete composite beams only a narrow area with Ortbetonverfüllung required to connect the reinforced concrete composite support with each other. However, the required quantity of in-situ concrete is considerably lower than a full-surface in-situ concrete addition over the entire bridge deck. The overlapping reinforcing loops of adjacent reinforced concrete composite beams offer a certain amount of play in order to adjust the bridge in the transverse direction to the conditions. Should it not be sufficient, an additional or separate reinforcement loop can be inserted into the loop joint between two reinforced concrete composite beams to allow a greater distance between the beams.

Dem Zweck des kostengünstigen und einfachen Aufbaus der Hilfsbrücke dient es, dass sie keine vollflächige Ortbetonergänzung erfordert. Vielmehr sind die einzelnen Stahlbetonverbundträger derart bemessen und konstruiert, dass sie unmittelbar befahren werden können. Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung weisen sie daher eine raue oder profilierte Oberfläche des Betonfertigteils auf. Sie lässt sich bei der Herstellung des Betonfertigteils auf einfache Weise bereits in der Schalung des Betonfertigteils erzielen, weil es vorzugsweise überkopf hergestellt wird. Damit erfordert die Herstellung einer direkt befahrbaren Oberfläche des Stahlbetonverbundfertigteils keinen separaten Herstellungsschritt.The purpose of the low-cost and simple construction of the auxiliary bridge is that it does not require full-surface Ortbetonergänzung. Rather, the individual reinforced concrete composite beams are such designed and constructed so that they can be used immediately. According to a further advantageous embodiment of the invention, therefore, they have a rough or profiled surface of the precast concrete part. It can be achieved in the production of precast concrete easily in the formwork of precast concrete, because it is preferably made overhead. Thus, the production of a directly drivable surface of the reinforced concrete composite part does not require a separate manufacturing step.

Die eingangs genannte Aufgabe wird außerdem durch ein Verfahren zur Herstellung einer Brückenkonstruktion für eine Hilfsbrücke gemäß der obigen Beschreibung gelöst, die die folgenden Herstellungsschritte umfasst:

  1. a) Herstellen eines Stahlbetonverbundträgers mit einem Betonfertigteil und mit einem U-förmigen Stahlprofil mit Stegen als Fertigteil,
  2. b) Verlegen der Stahlbetonverbundträger mit ihren Längsachsen in Brückenlängsrichtung nebeneinander auf vorbereiteten Auflagen, und
  3. c) biegesteifes Verbinden nebeneinander liegender Stahlbetonverbundträger an deren einander zugewandten Längsseiten durch Vergießen mit Ortbeton.
The object stated at the beginning is also achieved by a method for producing a bridge construction for an auxiliary bridge as described above, which comprises the following production steps:
  1. a) producing a reinforced concrete composite beam with a precast concrete part and with a U-shaped steel profile with webs as a finished part,
  2. b) laying the reinforced concrete composite beams with their longitudinal axes in the bridge longitudinal direction next to each other on prepared supports, and
  3. c) rigid connection of adjacent reinforced concrete composite beams on their longitudinal sides facing each other by casting with in-situ concrete.

Schon die Herstellung des Stahlbetonverbundträgers hebt sich insofern vom Stand der Technik ab, als er aus äußerst einfachen, nämlich regelmäßigen Querschnitten für das Betonfertigteil und das U-förmige Stahlprofil besteht und daher einen äußerst geringen Herstellungsaufwand erfordert. Da das Betonfertigteil einen regelmäßigen Rechteckquerschnitt und auch entlang seiner Längserstreckung keine Abweichungen vom rechteckigen Grundriss aufweist, kann seine Herstellung mit einfachen Mitteln äußerst rationell und weitgehend mechanisiert bzw. automatisiert erfolgen. Dadurch lässt sich eine wirtschaftliche Herstellungsweise des Stahlbetonverbundträgers sicherstellen. Auch die Herstellung des U-förmigen Stahlprofils durch Kanten relativ dünner Bleche oder alternativ durch Verschwei-ßen von Stegen mit einem Untergurt stellt keine technische Herausforderung dar. Auch die Verbindung der beiden Bestandteile des Stahlbetonverbundträgers durch Eindrücken bzw. Einrütteln des U-förmigen Stahlprofils in das noch frische Betonfertigteil kann mechanisiert und sehr kostengünstig erfolgen.Even the production of reinforced concrete composite carrier stands out from the prior art, as it consists of extremely simple, namely regular cross sections for the precast concrete and the U-shaped steel profile and therefore requires an extremely low production cost. Since the precast concrete part has a regular rectangular cross-section and also along its longitudinal extent no deviations from the rectangular plan, its production can be extremely rational and largely mechanized or automated by simple means. As a result, an economical production method of the reinforced concrete composite carrier can be ensured. The production of the U-shaped steel profile by edges of relatively thin sheets or alternatively by welding of webs with a lower flange is not a technical challenge dar. Also the connection of the two components of the reinforced concrete composite carrier by pressing or shaking the U-shaped steel profile in the Still fresh precast concrete can be mechanized and very cost effective.

Auch das biegesteife Verbinden nebeneinander liegender Stahlverbundträger durch Ortbetonverguss ist bautechnisch problemlos beherrschbar und stellt nur einen geringen Materialaufwand dar. Denn der Ortbetonverguss füllt lediglich die Schlaufenstöße nebeneinander liegender Stahlverbundträger aus, also breite, in Brückenlängsrichtung verlaufende Nuten, die im Wesentlichen durch die Längsseiten der Stahlverbundträger gebildet werden. Die modulare Bauweise der Hilfsbrücke ermöglicht zudem eine Anpassung der Brückentafel bzw. des Brückenverlaufs hinsichtlich ihrer Gradienten an die Gegebenheiten, weil die Schlaufenstöße der nebeneinander liegenden Stahlbetonverbundträger ein erhebliches Spiel zwischen den Trägern bietet.The in-situ bonding of adjoining steel composite beams by cast-in-situ casting is easily manageable and represents only a small amount of material. Because the Ortbetonverguss fills only the loop joints juxtaposed steel composite support, ie wide, extending in the longitudinal direction of the bridge grooves formed essentially by the longitudinal sides of the steel composite support become. The modular design of the auxiliary bridge also allows an adjustment of the bridge deck or the bridge course in terms of their gradients to the circumstances, because the loop joints of adjacent reinforced concrete composite support provides a significant game between the carriers.

Das Prinzip der Erfindung wird anhand einer Zeichnung beispielshalber noch näher erläutert. In der Zeichnung zeigen:

Figur 1:
mehrere Ansichten der Stahlbestandteile des Stahlbetonverbundträgers,
Figur 1a:
eine Teilansicht gemäß Figur 1 mit einer perspektivischen und 3 Seitenansichten,
Figur 2:
eine perspektivische Ansicht zweier Stahlverbundträger,
Figur 2a:
eine Detailansicht gemäß Figur 2,
Figur 3:
Detailansichten und eine Schnittansicht des Stahlprofils,
Figur 4:
zwei Ansichten von Lagersteifen,
Figur 5:
zwei Ansichten einer alternativen Lagersteife,
Figur 6:
eine Schnittansicht des Stahlbetonverbundträgers,
Figur 7:
eine schematische Draufsicht auf zwei Stahlbetonverbundträger,
Figur 8:
eine Detailansicht des Längsstoßes und
Figur 9:
eine Detailansicht zur Dübelherstellung.
The principle of the invention will be explained in more detail with reference to a drawing by way of example. In the drawing show:
FIG. 1:
several views of the steel components of the reinforced concrete composite beam,
FIG. 1a
a partial view according to FIG. 1 with a perspective and 3 side views,
FIG. 2:
a perspective view of two composite steel beams,
FIG. 2a:
a detailed view according FIG. 2 .
FIG. 3:
Detailed views and a sectional view of the steel profile,
FIG. 4:
two views of bearing stiffeners,
FIG. 5:
two views of an alternative bearing stiffness,
FIG. 6:
a sectional view of the reinforced concrete composite carrier,
FIG. 7:
a schematic plan view of two reinforced concrete composite beams,
FIG. 8:
a detailed view of the longitudinal joint and
FIG. 9:
a detailed view of the dowel production.

Die Brückenkonstruktion besteht aus mehreren längsverlaufenden Stahlverbundträgern 2 (vgl. Figur 2), die bereits vorgefertigt sind und in dieser Form bauseits angeliefert werden. Die Stahlverbundträger 2 bestehen aus einem Stahlprofil 4 und einem Betonfertigteil 6 und werden in Längsrichtung nebeneinander auf einem vorbereiteten Auflager verlegt. Die Lager der Verbundträger 2 können Spundwände, Gummilager oder Stahlplatten sein. Das Betonfertigteil 6 besteht aus einer Betonplatte 24 mit Langseiten 10, Schmalseiten 40, einer Unterseite 18 und einer Oberseite 44. Das Betonfertigteil 6 hat einen regelmäßigen rechteckigen Grundriss und einen ebenso rechteckigen Querschnitt und ist 12 bis 16 cm dick. Seine Breite beträgt zwischen 1,50 und 3,00 m. Sie ist schlaff bewehrt mit einer Längsund Querbewehrung und wird in 180°- bzw. Überkopflage hergestellt. Dafür wird ein Schalboden erstellt, der eine profilierte Oberfläche hat, um später eine ausreichende Griffigkeit der Oberfläche 44 der Stahlverbundträger 2 zu garantieren, weil sie im Einbauzustand ggf. eine Fahrbahnoberfläche der Brücke bildet. Die Betonplatte 24 stellt den einzigen Betonbestandteil der Stahlbetonverbundplatte 2 dar.The bridge construction consists of several longitudinal steel composite beams 2 (see. FIG. 2 ), which are already prefabricated and are delivered in this form on site. The composite steel beams 2 consist of a steel section 4 and a precast concrete part 6 and are laid side by side in a longitudinal direction on a prepared support. The bearings of the composite beams 2 may be sheet piles, rubber mounts or steel plates. The precast concrete 6 consists of a concrete slab 24 with long sides 10, narrow sides 40, a bottom 18 and a top 44. The precast concrete 6 has a regular rectangular plan and a rectangular cross section and is 12 to 16 cm thick. Its width is between 1.50 and 3.00 m. It is limp reinforced with a longitudinal and transverse reinforcement and is manufactured in 180 ° or overhead position. For a scarf floor is created, which has a profiled surface, to later guarantee a sufficient grip of the surface 44 of the composite steel beams 2, because if necessary forms a road surface of the bridge in the installed state. The concrete slab 24 represents the only concrete component of the reinforced concrete composite slab 2.

Das Stahlprofil 4 hat einen U-förmigen Querschnitt und etwa dieselbe Länge wie das Betonfertigteil 6. An den Schmalseiten 40, an denen nicht dargestellte Auflagerpunkte 34 (vgl. Figur 2a, eine Detailansicht gemäß Figur 2) liegen, ist das U-förmige Stahlprofil 4 durch senkrecht zur Betonplatte 24 stehende und parallel zueinander angeordnete Lasteinleitungssteifen 36, 38 verstärkt. Sie sind nur an den Schmalseiten 40 der Stahlbetonverbundträger 2 eingeschweißt, um an den Auflagerpunkten 34 des Stahlbetonverbundträgers 2 auf nicht dargestellten Lagern ein Knicken des U-förmigen Stahlprofils 4 infolge der dortigen punktuellen Lasteinleitung zu verhindern.The steel profile 4 has a U-shaped cross-section and about the same length as the precast concrete part 6. At the narrow sides 40, at which bearing points 34, not shown (see. FIG. 2a , a detailed view according to FIG. 2 ), the U-shaped steel profile 4 is reinforced by perpendicular to the concrete plate 24 and parallel to each other arranged load introduction stiffeners 36, 38. They are welded only on the narrow sides 40 of the reinforced concrete composite beams 2 in order to prevent kinking of the U-shaped steel profile 4 due to the localized load introduction at the bearing points 34 of the reinforced concrete composite beam 2 on bearings not shown.

Es kommen zwei Typen von Lasteinleitungssteifen zum Einsatz, nämlich kleinere dreiecksförmige Lasteinleitungssteifen 36, die lediglich einen Teil des U-förmigen Querschnitts des Stahlprofils 4 ausfüllen und einander gegenüberliegend symmetrisch angeordnet sind. Die größeren, rechteckigen Lasteinleitungssteifen 38 dagegen füllen den Querschnitt des U-förmigen Stahlprofils 4 nahezu vollständig aus (vgl. Figuren 4, 5). Die Lasteinleitungssteifen 36, 38 werden jeweils abwechselnd in Längsrichtung des U-förmigen Stahlprofils 4 eingesetzt.Two types of load introduction stiffeners are used, namely smaller triangular load introduction stiffeners 36, which only fill part of the U-shaped cross section of the steel profile 4 and are arranged symmetrically opposite one another. By contrast, the larger, rectangular load introduction stiffeners 38 almost completely fill the cross section of the U-shaped steel profile 4 (cf. FIGS. 4, 5 ). The load introduction stiffeners 36, 38 are each used alternately in the longitudinal direction of the U-shaped steel profile 4.

Figur 3 zeigt u. a. eine Schnittansicht durch das U-förmige Stahlprofil 4, das sich aus einem Stahluntergurt 22 und zwei parallelen und rechtwinklig vom Stahluntergurt 22 aufragenden Stegen 20 zusammensetzt. An deren freien Enden, also an den dem Stahluntergurt 22 gegenüberliegenden Enden, tragen die Schenkel 20 Verbunddübel 26, wie sie in Figur 3, links in zwei vergrößerten Darstellungen zu erkennen sind. Die Verbunddübel 26 wechseln sich demnach in Längsrichtung des Stahlprofils 4 mit Zwischenräumen 30 ab, die in der Seitenansicht der Figur 3 eine geringfügig größere Fläche als die Verbunddübel 26 einnehmen. FIG. 3 shows, inter alia, a sectional view through the U-shaped steel profile 4, which is composed of a steel lower chord 22 and two parallel webs 20 rising at right angles from the steel lower chord 22. At their free ends, ie at the steel lower flange 22 opposite ends, the legs carry 20 composite dowel 26, as in FIG. 3 , can be seen on the left in two enlarged views. The composite dowels 26 thus alternate in the longitudinal direction of the steel section 4 with gaps 30, which in the side view of FIG. 3 occupy a slightly larger area than the composite dowels 26.

Deren Herstellung ist in Figur 9 veranschaulicht. Demnach werden zwei Reihen von Verbunddübeln 26 an den freien Enden 28 zweier Stege 20 in einem einzigen Herstellungsschritt produziert. Durch einen speziellen Trennschnitt 46, der nahezu durchgehend und ununterbrochen geführt werden kann, werden aus einem einzigen Werkstück zwei Stege 20 mit Verbunddübeln 26 hergestellt. Der Trennschnitt 46 wird dabei in einer speziellen Klothoidenform 42 geführt, so dass gleichartige Verbunddübel 26 an beiden Stegen 20 entstehen und am jeweils anderen Steg den Zwischenraum 30 bilden. Die gezeigte Schnittführung für den Trennschnitt 46 in der Klothoidenform 42 verursacht dabei geringstmöglichen Verschnitt.Their production is in FIG. 9 illustrated. Thus, two rows of composite dowels 26 are produced at the free ends 28 of two webs 20 in a single manufacturing step. By means of a special separating cut 46, which can be guided almost continuously and uninterruptedly, two webs 20 with composite dowels 26 are produced from a single workpiece. The separating cut 46 is thereby guided in a special clothoid shape 42, so that similar composite dowels 26 are formed on both webs 20 and form the intermediate space 30 on the respective other web. The illustrated cutting guide for the separating cut 46 in the clothoid form 42 causes the least possible waste.

Die Stahlbestandteile des Stahlbetonverbundträgers 2 zeigen die Figuren 1 bzw. 1a: Die Betonplatte 24 ist regelmäßig längs- bzw. querbewehrt und hat eine obere und eine untere Bewehrungslage 32 (vgl. auch Figur 6). Im Bereich der Enden, die die Auflagerpunkte 34 bilden, sind die Lasteinleitungssteifen 36 im U-förmigen Stahlprofil 4 eingeschweißt, von denen exemplarisch jeweils nur zwei in den Figuren 1, 1a gezeigt sind. An einem der Längsränder 10 (Figuren 1, 6, 7) ragen Bewehrungsschlaufen 8 in Plattenebene, aber über deren Längsrand 10 hinaus. Im Fertigzustand des Stahlbetonverbundträgers 2 kragen sie über dessen rechteckigen Querschnitt aus. Sie sind mit einer verlorenen Schalung 16 (vgl. Figuren 6, 7) an der Unterseite 18 der Betonplatte 24 kombiniert (vgl. auch Figuren 2, 2a).The steel components of reinforced concrete composite carrier 2 show the FIGS. 1 or 1a: The concrete slab 24 is regularly longitudinally and transversely reinforced and has an upper and a lower reinforcement layer 32 (cf. FIG. 6 ). In the region of the ends which form the support points 34, the load introduction stiffeners 36 are welded in the U-shaped steel profile 4, of which only two in the example FIGS. 1 . 1a are shown. At one of the longitudinal edges 10 ( FIGS. 1 . 6 . 7 ) protrude reinforcing loops 8 in plate plane, but beyond the longitudinal edge 10 addition. In the finished state of the reinforced concrete composite carrier 2, they cant over the rectangular cross-section. You are with a lost formwork 16 (see. FIGS. 6 . 7 ) on the underside 18 of the concrete slab 24 (see also Figures 2 . 2a ).

Zur Herstellung des Stahlprofils 4 wird ein Blech mit ca. 8mm Dicke in der oben beschriebenen Weise ausgeschnitten und in Längsrichtung zweifach gekantet, so dass die Stege 20 und der Untergut 22 entstehen. Das Betonfertigteil 6 wird in Überkopf-Lage, also um 180° um die Längsachse gedreht, betoniert. Die zukünftige Oberseite 44 liegt damit auf einem Schalungsboden auf. Er ist profiliert und profiliert damit die zukünftige Oberseite 44. Due zukünftige Unterseite 18 dagegen weist im Herstellungsprozess nach oben, so dass das Stahlprofil 4 vor dem Abbinden des Betons in das Betonfertigteil 6 eingerüttelt werden kann. Das Stahlprofil 4 ragt dann mit seinen Verbunddübeln 20 um eine Einbindetiefe t (vgl. Figur 6) in das Betonfertigteil 6 hinein.For the production of the steel profile 4, a sheet is cut with about 8mm thickness in the manner described above and folded twice in the longitudinal direction, so that the webs 20 and 22 Untergut arise. The precast concrete element 6 is concreted in overhead position, ie rotated by 180 ° about the longitudinal axis. The future top 44 is thus on a formwork floor. He is profiled and Due to future future bottom side 18, however, points in the manufacturing process upwards, so that the steel profile 4 can be shaken before setting the concrete in the precast concrete 6. The steel profile 4 then projects with its composite dowels 20 by a binding depth t (see. FIG. 6 ) into the precast concrete part 6.

Figur 8 zeigt die Verbindung zweier nebeneinander liegender Stahlbetonverbundträger entlang ihrer Längsseiten 10: Zwei Bewehrungsschlaufen 8 zweier nebeneinander liegender Stahlbetonverbundträger 2 , die an den einander zugewandten Längsseiten 10 aus den Betonfertigteilen 6 ragen, überlappen jeweils mit einer separaten Bewehrungsschlaufe 12 und werden durch einen Betonverguss 14 biegesteif verbunden. Für die Erstellung des Vergusses 14 kann die verlorene Schalung 16 am der Unterseite 18 des Betonfertigteils 6 angebracht sein. FIG. 8 shows the connection of two adjacent reinforced concrete composite beams along their longitudinal sides 10: Two reinforcing loops 8 of two adjacent reinforced concrete composite beams 2, which protrude from the precast concrete elements 6 on the longitudinal sides facing each other, each overlap with a separate reinforcing loop 12 and are rigidly connected by a concrete grout 14. For the creation of the potting 14, the lost formwork 16 may be attached to the underside 18 of the precast concrete part 6.

Die Brücke wird direkt befahren. Leiteinrichtungen und Absturzsicherungen werden separat eingebaut und sind nicht in den Stahlverbundträgern 2 enthalten.The bridge is driven directly. Guides and fall arresters are installed separately and are not included in the steel composite beams 2.

Jeder vorgefertigte Stahlverbundträger 2 umfasst ein offenes, U-förmiges Stahlprofil 4 mit zwei parallelen Stegen 20 und einem sie verbindenden Stahluntergurt 22. Bei kurzen Stützweiten mit kleinen Konstruktionshöhen und dünnen Blechen (bis 10mm) wird das Stahlprofil 4 durch Kanten hergestellt. Bei größeren Stützweiten und größeren Materialdicken werden die Stege 20 auf den Stahluntergurt 22 mit Halskehlnähten aufgeschweißt. Dies ermöglicht eine Materialabstufung zwischen dem Untergurt 22 und den Stegblechen 20.Each prefabricated steel composite beam 2 comprises an open, U-shaped steel profile 4 with two parallel webs 20 and a steel lower flange 22 connecting them. For short spans with small structural heights and thin metal sheets (up to 10 mm), the steel profile 4 is produced by edges. For larger spans and larger material thicknesses, the webs 20 are welded onto the steel lower chord 22 with Halskehlnähten. This allows a material gradation between the lower flange 22 and the web plates 20th

Die Verbindung zwischen der Betonplatte 24 und dem Stahlprofil 4 erzeugen die Verbunddübel 26 an den freien Enden 28 der Stege 20. Die Verbunddübel 26 sind aus dem U-förmigen Stahlprofil 4 ausgebildet und daher Stahldübel, die in die Betonplatte 24 ragen und in deren Zwischenräume 30 die in der Einbaulage unteren Bewehrungseisen 32 der Fahrbahn- bzw. Betonplatte 24 liegen. Die Verbunddübel 26 werden im Stahlblech der Stege 20 durch Schneiden in einer speziellen Schnittform, der sogenannten Klothoidenform 42 gefertigt. Die Verbunddübel 26 zeichnet eine große Tragfähigkeit bei gleichzeitig großen Verformungsvermögen aus. Die ermüdungsgerechte Konstruktion kann hohen dynamischen Belastungen ausgesetzt werden.The connection between the concrete slab 24 and the steel profile 4 produce the composite dowels 26 at the free ends 28 of the webs 20. The composite dowels 26 are formed from the U-shaped steel profile 4 and therefore steel dowels which project into the concrete slab 24 and in the interstices 30th lie in the installation position lower reinforcing bar 32 of the roadway or concrete slab 24. The composite dowels 26 are made in the steel sheet of the webs 20 by cutting in a special sectional shape, the so-called Klothoidenform 42. The composite dowel 26 is characterized by a high load capacity and high deformation capacity. The fatigue-proof design can be exposed to high dynamic loads.

Die Verbundträger 2 besitzen eine große Biege- und Torsionssteifigkeit. Lediglich an den endseitigen Auflagerpunkten 34 der Träger 2 werden Lasteinleitungssteifen 36, 38 notwendig.The composite beams 2 have a large bending and torsional rigidity. Only at the end bearing points 34 of the carrier 2 load introduction stiffeners 36, 38 are necessary.

Die Träger 2 können als Einfeldträgerketten oder als Durchlaufsystem ausgebildet werden. Durchlaufsysteme können durch verschraubte Laschenstöße am Untergurt 22 und einen Ortbetonverguss eines Übergreifungsstoßes im Betonflanschbereich bzw. im Bereich des Betonfertigteils 6 realisiert werden. Im Übergreifungsstoß übergreifen sich in Längsrichtung verlaufende Bewehrungseisen, die aus der endseitigen Schmalseite 40 des Betonfertigteils 6 ragen, um etwa einen Meter.The carriers 2 can be designed as Einfeldträgerketten or as a continuous system. Passage systems can be realized by bolted tab joints on the lower flange 22 and in-situ concrete grouting of a lap joint in the concrete flange area or in the area of the precast concrete element 6 become. In the overlap shock extend in the longitudinal direction extending rebar, which protrude from the end narrow side 40 of the precast concrete part 6, by about one meter.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

22
StahlverbundträgerSteel composite beam
44
Stahlprofilsteel section
66
BetonfertigteilPrecast concrete
88th
Bewehrungsschlaufenreinforcement loops
1010
Längsseitenlong sides
1212
separate Bewehrungsschlaufeseparate reinforcement loop
1414
Vergussgrouting
1616
verlorene Schalunglost formwork
1818
Unterseitebottom
2020
Stegweb
2222
StahluntergurtStahluntergurt
2424
Betonplatteconcrete slab
2626
VerbunddübelBonded anchors
2828
freies Endefree end
3030
Zwischenraumgap
3232
Bewehrungseisenrebar
3434
Auflagerpunktsupport point
36, 3836, 38
LasteinleitungssteifeLoad transfer stiffness
4040
Schmalseitenarrow side
4242
KlothoidenformKlothoidenform
4444
Oberseitetop
4646
Trennschnittseparating cut
tt
Einbindetiefeembedment

Claims (12)

  1. Reinforced concrete composite girder (2) for a bridge structure, in particular an auxiliary bridge structure, comprising a U-shaped steel profile (4) with two side walls(20) and a steel bottom chord (22) on the underside and a loosely armoured precast concrete part (6) on the top, wherein the steel profile (4) is embedded to an embedding depth (t) into the precast concrete part (6) with bonded anchors (26) at free ends (28) of the side walls (20), characterized by a regular rectangular cross section of the precast concrete part (6) and by a steel profile (4) which is largely free of concrete outside the embedding depth (t).
  2. Reinforced concrete composite girder (2) according to claim 1, characterized by bonded anchors (26), which are implemented by cutting of the side walls (20).
  3. Reinforced concrete composite girder (2) according to claim 1 or 2, characterized by a steel profile (4) made from a canted metal sheet.
  4. Reinforced concrete composite girder (2) according to claim 1 or 2, characterized by a steel profile (4) from welded metal sheets.
  5. Reinforced concrete composite girder (2) according to claims 1 to 4, characterized by load distributing struts (36; 38) at ends of the steel profile (4).
  6. Reinforced concrete composite girder (2) according to claims 1 to 5, with exposed reinforcing steel bars which can be cast with in-situ concrete along the longitudinal sides (10) of the steel composite girders (4), characterized in that the reinforcing steel bars form loops (8) which overlap with loops (8) of an adjacent reinforced concrete composite girder (4) or with a separate reinforcement loop (12).
  7. Reinforced concrete composite girder (2) according to claims 1 to 6, characterized by a rough or profiled surface (44) of the precast concrete part (6).
  8. Reinforced concrete composite girder (2) according to claims 1 to 7 for a bridge structure as a flow-line system, characterized by butt strap joints on the bottom chord (22) and by an overlap joint on the narrow sides (40) of the precast concrete parts (6) with an in-situ concrete casting.
  9. Bridge structure with a plurality of reinforced concrete composite girders (2) according to any one of the previous claims, which are arranged next to one another along the direction of construction of the bridge and comprise a U-shaped steel profile (4) with two side walls (20) and a steel bottom chord (22) on the underside and a loosely armoured precast concrete part (6) on the top, wherein the steel profile (4) is embedded to an embedding depth (t) into the precast concrete part (6) with bonded anchors (26) at free ends (28) of the side walls (20), characterized by a regular rectangular cross section of the precast concrete part (6) and by a steel profile (4) which is largely free of concrete outside the embedding depth (t).
  10. Method for producing a bridge structure according to claim 9, having the following production steps:
    a) production of a reinforced concrete composite girder (2) with a precast concrete part (6) and with a U-shaped steel profile (4) with side walls (20) as a finished part according to any one of claims 1 to 8,
    b) laying of the reinforced concrete composite girders (2) next to one another along the direction of construction of the bridge on pre-prepared supports,
    c) flexurally rigid connection of reinforced concrete composite girders (2) placed next to one another at their longitudinal sides (10) that face each other by casting with concrete.
  11. Method according to claim 10, characterized in that in step a) bonded anchors (26) are formed on the side walls (20) of the steel profile (4) by cutting the side walls (20).
  12. Method according to claim 10 or 11, characterized in that in step a) the reinforced concrete composite girders (2) are produced in the face-up position and a rough or profiled top side(44) is applied to the precast concrete part (6).
EP11007512.4A 2010-09-15 2011-09-14 Steel-concrete-composite girder for a bridge construction Active EP2431525B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL11007512T PL2431525T3 (en) 2010-09-15 2011-09-14 Steel-concrete-composite girder for a bridge construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010045453A DE102010045453A1 (en) 2010-09-15 2010-09-15 bridge construction

Publications (2)

Publication Number Publication Date
EP2431525A1 EP2431525A1 (en) 2012-03-21
EP2431525B1 true EP2431525B1 (en) 2013-11-20

Family

ID=44785115

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11007512.4A Active EP2431525B1 (en) 2010-09-15 2011-09-14 Steel-concrete-composite girder for a bridge construction

Country Status (3)

Country Link
EP (1) EP2431525B1 (en)
DE (1) DE102010045453A1 (en)
PL (1) PL2431525T3 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106149540A (en) * 2016-07-19 2016-11-23 长安大学 Assembling steel plate composite beam bridge and construction method thereof based on steel reinforced concrete combined bridge deck
CN108252210A (en) * 2018-04-09 2018-07-06 长沙理工大学 Segment cast-in-situ UHPC bridge beam section joint and construction method thereof
CN109338866B (en) * 2018-11-14 2024-03-19 邵旭东 Ultra-light combined beam structure suitable for large-span bridge and construction method thereof
CN109610310B (en) * 2018-12-12 2023-07-25 湖南大学 Profile steel-UHPC combined bridge deck structure suitable for cantilever state and construction method thereof
CN111139740A (en) * 2020-01-16 2020-05-12 清华大学 Structure and method for improving cracking resistance of hogging moment area of steel-concrete composite beam bridge
CN112663866B (en) * 2020-12-17 2022-07-19 同济大学建筑设计研究院(集团)有限公司 Concrete coupling beam structure for super high-rise building and design, prefabrication and construction method thereof
CN115928557A (en) * 2023-01-04 2023-04-07 内蒙古工业大学 Light-weight high-strength high-toughness concrete plate steel box girder combined assembly type structure and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2644990A1 (en) * 1976-10-06 1978-04-13 Hans Dieter Dreyer Composite bridge steel and concrete girder without formwork - has concrete slab upper and steel flange lower chord on double T girder
CA2003060A1 (en) * 1988-11-16 1990-05-16 Pierre Trouillet Process for uniting a mass of material to a functional support, and device thus made
WO1999037865A1 (en) * 1998-01-23 1999-07-29 Herbert Geisler Process for erecting single-span or multispan bridges
WO1999042677A1 (en) * 1998-02-18 1999-08-26 Schmitt Stumpf Frühauf und Partner Ingenieurgesellschaft mbH Composite prefabricated girder and a method for manufacturing girders, especially for the construction of bridges
US7627921B2 (en) * 2005-04-15 2009-12-08 Board Of Regents Of University Of Nebraska Girder system employing bent steel plating
DE102008011176A1 (en) * 2008-02-26 2009-09-03 Ssf-Ingenieure Gmbh Steel-concrete composite beam and process for its production
DE102009008826B4 (en) * 2009-02-13 2014-12-11 Ssf Ingenieure Ag Bridge for railways and side members and method for their production

Also Published As

Publication number Publication date
PL2431525T3 (en) 2014-07-31
EP2431525A1 (en) 2012-03-21
DE102010045453A1 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
EP2431525B1 (en) Steel-concrete-composite girder for a bridge construction
DE3343696C2 (en) ceiling
EP2088244B1 (en) Reinforced concrete or composite bridge and method for their production
EP2623670B1 (en) Ballastless railway track structure for rail vehicles
DE102008032209B4 (en) Steel-concrete composite trough as a bridge superstructure and method for its production
EP2102415A1 (en) Solid track comprising a concrete strip
WO2022256851A1 (en) Method for producing a bridge from finished-part beams and roadway plate elements
DE102009008826A1 (en) Bridge for railways and side members and method for their production
EP1669505B1 (en) Steel-concrete composite joist with fire-resistant support for ceiling elements
DE102007046249B4 (en) Track with glued troughs
WO1981000272A1 (en) Prefabricated covering element for roofing
AT520614B1 (en) Process for the production of a carriageway slab with precast slabs underneath
DE1658492C3 (en) Fastening made of concrete grid plates, in particular for roadways
DE102006038888B3 (en) Roadway for maglev trains
DE19629029A1 (en) Manufacturing method for bridge support and traffic structure
DE102015118241A1 (en) Reinforced concrete composite beam and method for its production
DE956685C (en) Precast concrete or reinforced concrete part for composite structures
DE19941603A1 (en) Reinforced concrete part for the production of foundations for buildings
AT526142B1 (en) Method for producing a bridge from longitudinal girders and deck slab elements
DE102011010672B4 (en) Tensile structure with composite panels
DE2139035A1 (en) BRIDGE STRUCTURE TO BE ASSEMBLED FROM PRE-FABRICATED CONCRETE COMPONENTS METHOD OF CONSTRUCTION OF A BRIDGE SUPPORT
DE29915343U1 (en) Reinforced concrete part for the production of foundations for buildings
AT526252A4 (en) METHOD FOR PRODUCING A ROAD Slab FOR A BRIDGE
AT526724A1 (en) Method for manufacturing a bridge from pier segments, longitudinal beams and deck slab elements
WO1999037865A1 (en) Process for erecting single-span or multispan bridges

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SSF INGENIEURE AG

17P Request for examination filed

Effective date: 20120811

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: E04C 3/294 20060101ALI20130517BHEP

Ipc: E01D 2/00 20060101AFI20130517BHEP

INTG Intention to grant announced

Effective date: 20130612

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 641752

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011001658

Country of ref document: DE

Effective date: 20140116

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131120

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140220

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140320

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011001658

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

26N No opposition filed

Effective date: 20140821

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011001658

Country of ref document: DE

Effective date: 20140821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140914

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140221

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110914

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20210903

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20211112

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20220929

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220914

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220914

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230930

Year of fee payment: 13

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 641752

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230914