EP2422893A1 - Betriebsverfahren für ein Walzwerk zum Walzen von flachem Walzgut mit Walzenverschleißprognose - Google Patents

Betriebsverfahren für ein Walzwerk zum Walzen von flachem Walzgut mit Walzenverschleißprognose Download PDF

Info

Publication number
EP2422893A1
EP2422893A1 EP10174297A EP10174297A EP2422893A1 EP 2422893 A1 EP2422893 A1 EP 2422893A1 EP 10174297 A EP10174297 A EP 10174297A EP 10174297 A EP10174297 A EP 10174297A EP 2422893 A1 EP2422893 A1 EP 2422893A1
Authority
EP
European Patent Office
Prior art keywords
wear
actual
rolling
roller
expected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10174297A
Other languages
English (en)
French (fr)
Inventor
Johannes Dagner
Friedemann Schmid
Gerald Hohenbichler
Robert Andrew Shore
Andreas Jungbauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP10174297A priority Critical patent/EP2422893A1/de
Priority to PCT/EP2011/064153 priority patent/WO2012025438A1/de
Priority to PL11748920T priority patent/PL2588257T3/pl
Priority to EP11748920.3A priority patent/EP2588257B1/de
Priority to CN201180041473.0A priority patent/CN103079721B/zh
Publication of EP2422893A1 publication Critical patent/EP2422893A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2267/00Roll parameters
    • B21B2267/24Roll wear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby

Definitions

  • the present invention further relates to a computer program comprising machine code which can be processed directly by a control computer for a rolling mill for rolling flat rolled stock and whose execution by the control computer causes the control computer to operate the rolling mill according to such an operating method.
  • the present invention further relates to a control computer for a rolling mill for rolling flat rolled stock, wherein the control computer is designed such that it operates the rolling mill according to such an operating method.
  • the present invention further relates to a rolling mill for rolling flat rolled stock, which is equipped with such a control computer.
  • the extent to which wear occurs depends on various parameters. For example, the extent of wear depends on the type of rollers (work roll, Back-up roll, ...), the type of rolling (cold rolling or hot rolling), the arrangement of the rolls in the rolling mill (first, second, third stand of the rolling mill, etc.), the material of the rolling stock (steel, aluminum, copper, ... ), the material of the rolls (cast iron, cast steel, high-speed steel, etc.), etc.
  • the wear has an impact on the quality of the rolled flat rolled stock.
  • the wear must be taken into account and, if possible, compensated for by appropriate adjustments to the pitch - if necessary also with regard to profile and flatness.
  • the rollers must be changed from time to time and reground.
  • a direct measurement of the roller wear is only possible if the relevant roller is removed from the rolling stand and can be measured. In the ongoing rolling process, however, a direct measurement of the roller wear is not possible. However, it is known to detect actual variables of the rolling process and to account for the roll wear by means of a wear model in real time. By means of the wear model, the expected current wear of the respective roller is determined as a function of the rolled section of the rolling stock, the course of the rolling force over this route, etc. The wear model makes the determined expected present wear and tear available to other control systems, for example for the corresponding correction of the employment.
  • the rollers of the rolling stand must be changed from time to time.
  • the change intervals are determined in a conservative manner.
  • the roll changes take place sooner than too late, so that the rolled rolled material is safe and the required Specifications.
  • this approach has relatively frequent roll changes and associated downtime of the rolling mill result.
  • the rolling mill only works with reduced productivity. This is particularly true in the case of continuous streets and cast rolling mills, in particular cast rolling mills with continuous operation.
  • Another problem is that a roll change is not possible or useful at any time, but only between two successive flat rolled goods.
  • the object of the present invention is to provide opportunities to reliably predict future wear of at least one roll of the rolling stand of the rolling mill.
  • a fixed location of future roll travel such as the end of the flat rolled stock to be rolled next, and to determine the expected future actual wear at that location.
  • a defined reference wear can be predetermined and it can be determined at which location of the future roll travel the reference wear is expected.
  • the expected future actual wear of the at least one roller is determined for a large number of locations of the future roller travel and that the expected future actual wear is made available to the operator of the rolling mill as a function of the location of the future roller journey or vice versa ,
  • the at least one location for which the expected future actual wear is determined is compared with a reference location and / or the expected future actual wear determined for the at least one location is compared with a reference wear and that it is decided depending on the comparison, whether a change of the at least one roller is to be performed or whether the rolling of the flat rolled material is continued.
  • the actual data characterizing the actual actual wear are preferably fed to the correction quantity determiner from a grinding shop for the at least one roller and / or automatically.
  • the correction quantity determinator when determining the at least one correction quantity, takes into account only the expected present actual wear and the actual actual wear in the middle of the at least one roller. For even better results, on the other hand, if the correction quantity determiner additionally takes into account the expected present actual wear and the actual actual wear outside the center of the at least one roller when determining the at least one correction quantity-for example as a function of the roller width.
  • the adaptation of the wear model can be carried out reliably especially if it is decided on the basis of the properties of the flat rolled stock rolled to remove the at least one roll whether and, if appropriate, in which form the adaptation of the wear model is carried out or not.
  • the adaptation can be suppressed when various materials or special, otherwise rarely used materials are rolled, so that adaptation would be unreliable. Also, a material-specific adaptation can take place.
  • the wear model is preferably assigned to the respective roller individually.
  • the at least one roll may alternatively be incorporated into one of a plurality of rolling mills of the rolling mill. In this case, it is preferably taken into account in the wear model in which of the rolling stands the roll is installed.
  • the mill stand in which the at least one roller is installed, at least one other roll stand of the rolling mill upstream.
  • the same type of roller is always built into the other rolling stand.
  • another roller of one of at least two types may alternatively be incorporated in the other rolling stand. In this case, it is preferably taken into account in the wear model which type of other rollers is built into the other rolling stand.
  • the wear model takes into account a temperature of the rolls and / or the flat rolling stock in determining the expected current and / or future actual wear.
  • the object of the invention is further achieved by a computer program of the type mentioned.
  • the computer program is designed in this case such that the control computer executes an operating method with all steps of an operating method according to the invention.
  • control computer for a rolling mill for rolling flat rolled material which is designed such that it carries out such an operating method during operation.
  • the object is further achieved by a rolling mill for rolling flat rolling stock, which is equipped with such a control computer.
  • a rolling mill for rolling flat rolled stock 1 has a plurality of rolling stands 2.
  • the rolling stands 2 are run through by the flat rolling stock 1 in succession.
  • Each rolling stand 2 of the rolling mill has rollers 3.
  • the rollers 3 comprise at least work rolls, often also other rolls, for example support rolls or - in addition to back-up rolls - intermediate rolls.
  • the number of rolling mills 2 of the rolling mill shown is purely exemplary. Minimal is only a single stand 2 available. Furthermore, it is not mandatory that a strip running direction x, as in FIG. 1 represented, is always the same. Alternatively, a reversing rolling could take place, in particular if the rolling mill has only one single rolling stand 2 or only two rolling stands 2.
  • the flat rolled stock 1 which is rolled in the rolling mill, as shown in FIG. 1 a band.
  • it may be another flat rolled stock 1, for example a plate or a heavy plate.
  • the rolling mill is equipped with a control computer 4 which controls the rolling mill.
  • the control computer 4 is usually designed as a software programmable device.
  • the operation of the control computer 4 is therefore determined by a computer program 5, which is the control computer 4 via a computer-computer connection (not shown) or a storage medium 6 is supplied.
  • the storage medium 6, the computer program 5 in machine-readable form - usually in electronic form - stored.
  • the storage medium 6 is according to FIG. 1 designed as a USB memory stick.
  • this embodiment is purely exemplary. Any other configurations of the storage medium 6 are possible, for example as a CD-ROM or as an SD memory card.
  • the control computer 4 is programmed with the computer program 5.
  • the computer program 5 includes machine code 7, which is directly executable by the control computer 4.
  • the execution of the machine code 7 determines the operation of the control computer 4.
  • the execution of the machine code 7 by the control computer 4 causes the control computer 4 to operate the rolling mill according to an operating method which is described below in connection with FIG FIG. 2 is explained in more detail.
  • the programming of the control computer 4 with the computer program 5 thus effects the corresponding design of the control computer 4.
  • the present invention is in principle applicable to all rolls 3 of the rolling stands 2. Of particular importance is the application to the work rolls of the rolling stands 2. The present invention will be further described below in connection with the upper work roll 3 of the in FIG. 1 third rolling stand 2 explained. However, this definition is purely arbitrary. The present invention is analogously applicable to any other roll 3 of each roll stand 2.
  • FIG. 2 takes the control computer 4 in a step S1 in the future to be expected actual sizes for at least one future flat rolling 1 to be rolled.
  • These actual variables are, for example, stitch plan data or data of a flat rolling stock 1 which has already been rolled and similar properties as the future to be rolled flat rolling stock 1 has. The rolling of that flat rolling stock 1, whose future expected actual sizes of the control computer 4 receives in step S1, so has not yet begun.
  • the stitch plan data may be the data of a single flat rolled stock 1. Alternatively, it may be the stitch plan data for several flat rolled products 1.
  • the stitch plan data comprise on the one hand settings of the rolling mill with which the respective flat rolling stock 1 is to be rolled, for example the desired stitch decreases. Furthermore, the stitch plan data also includes data of the flat rolling stock 1, such as its width and its temperature and expected rolling conditions such as rolling force and rolling moment.
  • a step S2 the control computer 4 determines, based on an expected present actual wear V, for at least one location P of the future roller travel an expected future actual wear V '.
  • the determination of the step S2 is carried out by means of a wear model 8 of the roll 3 on the basis of the stitch plan data of future flat rolled stock 1 to be rolled.
  • the wear model 8 is known as such. For example, it may be the same model that is used in the prior art to continuously determine the expected current actual wear V.
  • roll travel is familiar to any person skilled in the art. These are the individual lengths of the various flat rolled goods 1, which have already been rolled by means of the considered roll 3 and - in the future roll travel - are still rolled. The roll travel can be visualized as if the flat rolled stock 1 were to stand still in the nip of the rolling stand 2 in which the considered roll 3 was installed, and the corresponding rolling stand 2 would move along the flat rolled stock 1 during the rolling.
  • the counting direction is switched accordingly each time the reversing is performed, so that the rolled length is a monotonically increasing function of time.
  • step S2 The knowledge of the expected current actual wear V is already presupposed in the context of step S2. The determination of the expected present actual wear V will be discussed later.
  • the control computer 4 provides at least one piece of information to an operator 9 of the rolling mill, optionally upon request by the operator 9.
  • the control computer 4 - see FIG. 3 indicate to the operator 9 which future actual wear V 'is expected at a predetermined location P of the future roll travel.
  • the predetermined future location P can be fixed in this case, for example, the control computer 4 or the control computer 4 by the operator 9 can be specified.
  • an information is output to the operator 9 at which point P of the future roll travel a predetermined future actual wear V 'is expected.
  • the predetermined future actual wear V ' can be predetermined to the control computer 4 in this case, for example, or predetermined by the operator 9.
  • control computer 4 may issue an alarm message if a predetermined reference wear is exceeded at the end of the flat rolled stock 1 to be rolled next. This will be later in connection with the FIGS. 7 and 8 will be explained in more detail. Also, the control computer 4, for example, a maximum allowable width for future to be rolled flat rolling 1 determine and spend.
  • Step S4 the control computer 4 checks whether - with respect to the roller 3 considered - a roll change is performed. If this is the case, the roll change is performed in a step S5.
  • Step S5 is in FIG. 2 only dashed lines, because the roll change itself - ie the removal of the previously used roller 3 and the incorporation of another roller 3 - although in the course of FIG. 2 must be taken into account, but as such is not performed by the control computer 4.
  • step S6 the control computer 4 initializes the wear model 8. Furthermore, in step S6, the control computer 4 sets the current expected actual wear V to an initial state, for a new or reground roll 3, for example to the value zero, otherwise to a corresponding, nonzero Value.
  • step S7 the control computer 4 controls the rolling mill. This causes (among other things) that the flat rolling stock 1 is rolled in the rolling stand 2 of the rolling mill considered.
  • step S10 the control computer 4 determines the (new) expected current actual wear V.
  • the control computer 4 then proceeds to a step S11.
  • step S11 the control computer 4 checks whether new stitch plan data is made available to it. Depending on the result of the examination of step S11, the control computer 4 returns to step S1 or to step S2.
  • the control computer 4 determines in step S10 the new expected present actual wear V of the roller 3 under consideration.
  • the control computer 4 starts from the already given actual wear V of the considered roller 3, determined by means of the wear model 8 an incremental wear increase ⁇ V for the respective execution of step S7 and adds the incremental wear increase ⁇ V to the already existing actual wear V.
  • the result corresponds to the new expected actual wear V.
  • the expected current actual wear V starting from the initial state of the considered roll 3, is determined step by step by adding up the respective incremental wear increases ⁇ V.
  • the control computer 4 therefore determines the expected present actual wear V from the initial state of the roller 3 under consideration.
  • the incremental wear increases ⁇ V are determined by means of the wear model 8.
  • the expected future actual wear V ' is also determined by means of the wear model 8.
  • the wear model 8 can be designed for these two purposes as a uniform wear model. It can therefore one and the same wear model 8 both for determining the expected current actual wear V as also be used to determine the expected future actual wear V '.
  • the wear model 8 may have two different submodels, wherein one submodels is used to determine the expected current actual wear V and the other submodel is used to determine the expected future actual wear V '. Regardless of which of these two approaches is taken, however, the incremental increase in wear ⁇ V is determined by means of the wear model 8 on the basis of the actual variables I detected and received by the control computer 4.
  • control computer 4 for the determination of the expected current Istverschl constitutes V in addition to the actual sizes I take into account plan data for the currently rolled flat rolling stock 1, for example, the width of the currently rolled flat rolled stock 1. It is the rule that a detected actual size I takes precedence over a corresponding size given in the pass schedule and that at least the rolling force is recorded. As a result, the control computer 4 thus determines the expected present actual wear V on the basis of the actual variables I detected during the previous roller travel of the roller 3 considered.
  • FIG. 5 shows a preferred embodiment of the steps S2 and S3 of FIG. 2 .
  • control computer 4 provides the control computer 4 to the operator 9 of the rolling mill the expected future actual wear V 'as a function of the location P of the future roll travel of the considered roll 3 (or vice versa) available.
  • the control computer 4 a corresponding table or a corresponding graph - see, for example FIG. 6 - Issue to the operator 9.
  • FIG. 7 shows a further possible embodiment of the step S2 and S3 of FIG. 2 ,
  • the design of FIG. 7 is alternative or in addition to the embodiment of FIG. 5 realizable.
  • the control computer 4 is given a predetermined expected future actual wear V '.
  • the control computer 4 determines in a step S31 that location P of the future roll travel, for which this future actual wear V 'is expected.
  • the determined location P is compared in a step S32 with a reference location P *, for example, the end of the next flat rolled stock 1 to be rolled, the beginning of which is not yet rolled in the rolling mill at this time.
  • the control computer 4 or the operator 9 can make the comparison of the step S32.
  • the reference location P * can be fixed to the control computer 4 or specified by the operator 9. The same applies to the predetermined expected future actual wear V '.
  • step S34 Depending on the comparison of the step S32, the rolling of the flat rolled stock 1 is continued either in a step S33 or a change of the considered roll 3 is carried out in a step S34.
  • the step S34 as such is - of course - performed by the operator 9 of the rolling mill.
  • the control computer 4 can support or initiate the execution of the step S34 by issuing a corresponding request.
  • steps S31 and S32 must be replaced by steps S41 and S42.
  • the control computer 4 is the location P of the future roll travel, for the expected future actual wear V 'is determined fixed.
  • the control computer 4 determines in step S41 the future actual wear V 'to be expected for this location P.
  • step S42 the determined expected future actual wear V 'is compared with a reference wear V *.
  • rollers 3 of the rolling mill must be changed from time to time.
  • a different - usually unswept - roller 3 is installed as a replacement for the removed roller 3 immediately - see FIG. 9 - Was recently provided from a warehouse 10.
  • the removed roller 3 is brought into a grinding shop 11, reground, measured and then spent in the warehouse 10.
  • Each roller 3 is assigned its respective wear model 8 (or at least corresponding parameterizations of the wear model 8) individually.
  • the respective wear model 8 (or the corresponding parameters) follow, so to speak, the respective roller 3 on its way from the rolling mill to the grinding shop 11, from there to the bearing 10 and from there back to the rolling mill.
  • the wear model 8 is initialized in a roll change (see the step S6 in FIG. 2 ).
  • the initialization may, for example, be designed as described below in connection with FIG. 10 is explained in more detail.
  • the roller 3 to be installed does not always have to be installed in the same rolling stand 2. It is purely by way of example rather possible that a specific roller 3 is first installed in the third rolling stand 2, comes to the bearing 10 after removal and grinding and is later installed in the fourth rolling stand 2 of the rolling mill.
  • the control computer 4 therefore takes according to FIG. 10 in a step S51, information about the installation location of the newly installed roller 3.
  • the control computer 4 then parameterizes the wear model 8 for the newly installed roller 3 accordingly. In the wear model 8 is therefore taken into account in which of the rolling stands 2, the roller 3 is installed.
  • the rollers 3 of the rolling stands 2 can furthermore belong to different types with respect to their material and surface properties. As a rule, the same type of roller 3 is always installed in a specific one of the rolling stands 2. In some cases, however, the type can vary. For example, in the second rolling mill 2 of FIG. 1 Alternatively, a roller of the surface material "high speed steel” (HSS) or from the surface material “high chrome cast iron” (HC, high chrome) or from the surface material "shell casting” (IC, English indefinite chill) are installed , In practice, it has been found that the wear of a roll 3 may also depend on which type of roll 3 is installed in the immediately upstream roll stand 2.
  • HSS high speed steel
  • HC high chrome cast iron
  • IC English indefinite chill
  • control computer 4 therefore preferably receives information about the type of at least one roller 3 of the upstream rolling stand 2 and, in a step S 54, parameterizes the wear model 8 accordingly.
  • wear model 8 can therefore also be considered, which type of rollers 3 is installed in the upstream rolling stand 2.
  • the actual data I 'characterizing the actual actual wear VE are - as already mentioned: usually from the grinding shop 11 - preferably fed to the control computer 4 automatically. Due to its programming with the computer program 5, the control computer 4 realizes (inter alia) a correction quantity determiner for the wear model 8.
  • the control computer 4 accepts the actual data I 'according to FIG FIG. 11 in a step S61 opposite. It determines therefrom in a step S62 the actual actual wear VE.
  • the control computer 4 compares the actual actual wear VE with the expected current actual wear V, that is, the expected current actual wear V accumulated until the removal of the roller 3.
  • the control computer 4 determines at least one correction quantity K for the wear model 8 based on the comparison.
  • the control computer 4 adapts the wear model 8 on the basis of the at least one correction variable K. After adapting the wear model 8 - ie when the associated roller 3 is re-installed in a rolling stand 2 of the rolling mill - the control computer 4 therefore takes into account the expected present and / or expected future actual wear V, V 'the at least one correction quantity K.
  • the adaptation of the wear model 8 is always and unconditionally. However, this is not mandatory. Preferably, only a conditional adaptation of the wear model 8 takes place.
  • the control computer 4 checks whether the adaptation should be made or not. For this purpose, the control computer 4 determines the value of a logical variable OK in a step S65. The value of the logical variable OK is retrieved in a step S66. Depending on the value of the logical variable OK, steps S63 and S64 are executed or skipped. As an alternative to skipping steps S63 and S64, it is further possible for the control computer 4 to issue a corresponding warning to the operator 9 of the rolling mill or to another person. In this case, the steps S63 and S64 are executed only if the control computer 4 is externally specified by a human an explicit corresponding statement.
  • the control computer 4 determines the value of the logical variable OK preferably based on the properties of the flat rolled goods 1, which - of course since the installation of the considered roller 3 - were rolled until their removal from the considered roller 3.
  • the adaptation can be suppressed if special materials - for example silicon steels - have been rolled.
  • adaptation may only be permitted if predominantly a predetermined type of material - for example carbon steels - has been rolled or if a rolled material mix is within predetermined percentages (eg at least 60% carbon steels, 20% to 30% stainless steels and a maximum of 10% silicon steels ).
  • a distinction according to rolled material can be made. In this case, a material-dependent adaptation can be performed.
  • the control computer 4 For adapting the wear model 8, ie the determination of the at least one correction variable K (step S63 in FIG. 11 ) it is according to FIG. 12 in the simplest case, it is possible for the control computer 4 to take into account only the actual actual wear VE and the expected present actual wear V in the middle of the roller 3 under consideration. alternative is it according to FIG. 13 possible that the control computer 4 additionally takes into account at least one actual actual wear VE and the corresponding expected present actual wear V at at least one point of the considered roller 3, which lies outside the middle of the considered roller 3. The control computer 4 may even consider the wear V, VE as a function of roll width
  • the adaptation of the wear model 8 does not necessarily have to be carried out by the control computer 4.
  • the adaptation can also be performed by another device.
  • the expected amount of wear V must be supplied to the other device as well. In the case that the control computer 4 carries out the adaptation, this is not necessary since the control computer 4 has itself determined the expected current wear V, that is, knows it.
  • the rolling forces enter into the determination of the expected present and / or expected future actual wear V, V '. Furthermore, go into the determination of the corresponding actual wear V, V 'to be rolled Walzgutin and Walzgutbreiten. The speed of the rolling process and the roll diameter can also be included in the said actual wear V, V '. If necessary - see FIG. 2 the wear model 8 can also take into account a temperature of the rollers 3 and / or the flat rolling stock 1 when determining the said actual wear V, V '.
  • the present invention has many advantages.
  • the prediction accuracy of the expected present actual wear V is maintained or even increased over the entire operating life of the rolling mill.
  • the roller life ie the time between installation and removal of the rollers 3, can be optimized.
  • the quality of the rolled flat rolled stock 1 can be optimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

Ein Walzwerk zum Walzen von flachem Walzgut (1) weist mindestens ein Walzgerüst (2) mit Walzen (3) auf. Das flache Walzgut (1) wird in dem Walzgerüst (2) gewalzt. Während des Walzens des flachen Walzguts (1) in dem Walzgerüst (2) werden Istgrößen (I) des flachen Walzguts (1) und/oder des Walzgerüsts (2) erfasst. Ausgehend von einem Anfangszustand mindestens einer Walze (3) des Walzgerüsts (2) wird mittels eines Verschleißmodells (8) anhand der während der bisherigen Walzenreise der jeweiligen Walze (3) erfassten Istgrößen (I) ein erwarteter gegenwärtiger Istverschleiß (V) der mindestens einen Walze (3) ermittelt. Ausgehend von dem erwarteten gegenwärtigen Istverschleiß (V) wird mittels des Verschleißmodells (8) anhand von zukünftig zu erwartenden Istgrößen für zukünftig zu walzendes flaches Walzgut (1) für mindestens einen Ort (P) der zukünftigen Walzenreise ein zu erwartender zukünftiger Istverschleiß (V') der mindestens einen Walze (3) ermittelt. Der Ort (P) der zukünftigen Walzenreise, der zu erwartende zukünftige Istverschleiß (V') und/oder mindestens eine aus diesen Werten abgeleitete Information werden einem Bediener (9) des Walzwerks zur Verfügung gestellt.

Description

  • Betriebsverfahren für ein Walzwerk zum Walzen von flachem Walzgut mit Walzenverschleißprognose
  • Die vorliegende Erfindung betrifft ein Betriebsverfahren für ein Walzwerk zum Walzen von flachem Walzgut, das mindestens ein Walzgerüst mit Walzen aufweist,
    • wobei das flache Walzgut in dem Walzgerüst gewalzt wird,
    • wobei während des Walzens des flachen Walzguts in dem Walzgerüst Istgrößen des flachen Walzguts und/oder des Walzgerüsts erfasst werden,
    • wobei, ausgehend von einem Anfangszustand mindestens einer Walze des Walzgerüsts, mittels eines Verschleißmodells anhand der während der bisherigen Walzenreise der jeweiligen Walze erfassten Istgrößen ein erwarteter gegenwärtiger Istverschleiß der mindestens einen Walze ermittelt wird.
  • Die vorliegende Erfindung betrifft weiterhin ein Computerprogramm, das Maschinencode umfasst, der von einem Steuerrechner für ein Walzwerk zum Walzen von flachem Walzgut unmittelbar abarbeitbar ist und dessen Abarbeitung durch den Steuerrechner bewirkt, dass der Steuerrechner das Walzwerk gemäß einem derartigen Betriebsverfahren betreibt.
  • Die vorliegende Erfindung betrifft weiterhin einen Steuerrechner für ein Walzwerk zum Walzen von flachem Walzgut, wobei der Steuerrechner derart ausgebildet ist, dass er das Walzwerk gemäß einem derartigen Betriebsverfahren betreibt.
  • Die vorliegende Erfindung betrifft weiterhin ein Walzwerk zum Walzen von flachem Walzgut, das mit einem derartigen Steuerrechner ausgestattet ist.
  • Beim Walzen von Metallen tritt an den Walzen der Walzgerüste Verschleiß auf. Das Ausmaß, in dem der Verschleiß auftritt, ist von verschiedenen Parametern abhängig. Beispielsweise hängt das Ausmaß des Verschleißes von der Art der Walzen (Arbeitswalze, Stützwalze, ...), der Art des Walzens (Kaltwalzen oder Warmwalzen), der Anordnung der Walzen im Walzwerk (erstes, zweites, drittes Walzgerüst des Walzwerks usw.), dem Material des Walzguts (Stahl, Aluminium, Kupfer, ...), dem Material der Walzen (Gusseisen, Stahlguss, Hochleistungsschnellstahl, ...) usw. ab.
  • Der Verschleiß hat Auswirkungen auf die Qualität des gewalzten flachen Walzguts. Insbesondere muss der Verschleiß durch entsprechende Anstellungskorrekturen - gegebenenfalls auch in Bezug auf Profil und Planheit - berücksichtigt und nach Möglichkeit kompensiert werden. Weiterhin müssen die Walzen von Zeit zu Zeit gewechselt und nachgeschliffen werden.
  • Eine direkte Messung des Walzenverschleißes ist nur möglich, wenn die betreffende Walze aus dem Walzgerüst ausgebaut ist und vermessen werden kann. Im laufenden Walzprozess ist eine direkte Messung des Walzenverschleißes hingegen nicht möglich. Es ist jedoch bekannt, Istgrößen des Walzprozesses zu erfassen und den Walzenverschleiß mittels eines Verschleißmodells in Echtzeit mitzurechnen. Mittels des Verschleißmodells wird in Abhängigkeit von der gewalzten Strecke des Walzguts, dem Verlauf der Walzkraft über diese Strecke usw. der erwartete gegenwärtige Verschleiß der jeweiligen Walze ermittelt. Das Verschleißmodell stellt den ermittelten erwarteten gegenwärtigen Verschleiß anderen Steuerungssystemen zur Verfügung, beispielsweise zur entsprechenden Korrektur der Anstellung.
  • Es ist weiterhin bekannt, das Verschleißmodell in der Inbetriebsetzungsphase des Walzwerks an die aktuellen Gegebenheiten anzupassen. Im laufenden Betrieb erfolgt jedoch keine Überprüfung oder gegebenenfalls Korrektur dieser Anpassung.
  • Wie bereits erwähnt, müssen die Walzen des Walzgerüsts von Zeit zu Zeit gewechselt werden. Im Stand der Technik werden die Wechselintervalle auf konservative Weise bestimmt. Die Walzenwechsel erfolgen eher zu früh als zu spät, damit das gewalzte Walzgut sicher ordnungsgemäß ist und den geforderten Spezifikationen entspricht. Diese Vorgehensweise hat jedoch relativ häufige Walzenwechsel und damit verbundene Stillstandzeiten des Walzwerks zur Folge. Das Walzwerk arbeitet daher im Ergebnis nur mit verminderter Produktivität. Ganz besonders gilt dies bei Kontistraßen und Gießwalzanlagen, insbesondere Gießwalzanlagen mit Endlosbetrieb.
  • Es ist selbstverständlich möglich, die Walzenwechselintervalle zu verlängern. In diesem Fall besteht jedoch die Gefahr, dass der Verschleiß kurz vor dem Walzenwechsel zu groß wird, so dass das gewalzte Walzgut nicht mehr den geforderten Spezifikationen entspricht.
  • Ein weiteres Problem besteht darin, dass ein Walzenwechsel nicht zu beliebigen Zeitpunkten möglich bzw. sinnvoll ist, sondern nur zwischen zwei aufeinander folgenden flachen Walzgütern.
  • Die Aufgabe der vorliegenden Erfindung besteht darin, Möglichkeiten zu schaffen, einen zukünftigen Verschleiß mindestens einer Walze des Walzgerüsts des Walzwerks auf zuverlässige Weise vorhersagen zu können.
  • Die Aufgabe wird durch ein Betriebsverfahren für ein Walzwerk mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen des Betriebsverfahrens sind Gegenstand der abhängigen Ansprüche 2 bis 13.
  • Erfindungsgemäß ist vorgesehen, ein Betriebsverfahren der eingangs genannten Art dadurch auszugestalten,
    • dass, ausgehend von dem erwarteten gegenwärtigen Istverschleiß, mittels des Verschleißmodells anhand von zukünftig zu erwartenden Istgrößen für zukünftig zu walzendes flaches Walzgut für mindestens einen Ort der zukünftigen Walzenreise ein zu erwartender zukünftiger Istverschleiß der mindestens einen Walze ermittelt wird und
    • dass der Ort der zukünftigen Walzenreise, der zu erwartende zukünftige Istverschleiß und/oder mindestens eine aus die-
    sen Werten abgeleitete Information einem Bediener des Walzwerks zur Verfügung gestellt werden.
  • In einer Minimalkonfiguration der vorliegenden Erfindung ist es beispielsweise möglich, einen festen Ort der zukünftigen Walzenreise - beispielsweise das Ende des als nächstes zu walzenden flachen Walzguts - vorzugeben und den zu erwartenden zukünftigen Istverschleiß an diesem Ort zu ermitteln. Alternativ kann ein definierter Referenzverschleiß vorgegeben sein und ermittelt werden, an welchem Ort der zukünftigen Walzenreise der Referenzverschleiß erwartet wird. Vorzugsweise ist hingegen vorgesehen, dass für eine Vielzahl von Orten der zukünftigen Walzenreise jeweils der zu erwartende zukünftige Istverschleiß der mindestens einen Walze ermittelt wird und dass der zu erwartende zukünftige Istverschleiß dem Bediener des Walzwerks als Funktion des Ortes der zukünftigen Walzenreise oder umgekehrt zur Verfügung gestellt wird.
  • In einer bevorzugten Ausgestaltung der vorliegenden Erfindung ist weiterhin vorgesehen, dass der mindestens eine Ort, für den der zu erwartende zukünftige Istverschleiß ermittelt wird, mit einem Referenzort verglichen wird und/oder der für den mindestens einen Ort ermittelte zu erwartende zukünftige Istverschleiß mit einem Referenzverschleiß verglichen wird und dass in Abhängigkeit von dem Vergleich entschieden wird, ob ein Wechsel der mindestens einen Walze durchzuführen ist oder ob das Walzen des flachen Walzguts fortgesetzt wird.
  • Die erfindungsgemäße Vorgehensweise funktioniert noch besser, wenn das Verschleißmodell adaptiert wird. Vorzugsweise ist daher vorgesehen,
    • dass nach einem Ausbau der mindestens einen Walze einem Korrekturgrößenermittler der erwartete gegenwärtige Istverschleiß der mindestens einen Walze und den tatsächlichen Istverschleiß der mindestens einen Walze charakterisierende Istdaten zugeführt werden,
    • dass der Korrekturgrößenermittler anhand eines Vergleichs des erwarteten gegenwärtigen Istverschleißes und des tatsächlichen Istverschleißes mindestens eine Korrekturgröße ermittelt und
    • dass der Korrekturgrößenermittler das Verschleißmodell anhand der mindestens einen Korrekturgröße adaptiert, so dass nach dem Adaptieren des Verschleißmodells beim Ermitteln von erwarteten gegenwärtigen und/oder zu erwartenden zukünftigen Istverschleißen die mindestens eine Korrekturgröße berücksichtigt wird.
  • Die den tatsächlichen Istverschleiß charakterisierenden Istdaten werden zu diesem Zweck dem Korrekturgrößenermittler vorzugsweise aus einer Schleiferei für die mindestens eine Walze und/oder automatisch zugeführt.
  • Im einfachsten Fall berücksichtigt der Korrekturgrößenermittler bei der Ermittlung der mindestens einen Korrekturgröße ausschließlich den erwarteten gegenwärtigen Istverschleiß und den tatsächlichen Istverschleiß in der Mitte der mindestens einen Walze. Zu noch besseren Ergebnissen führt es hingegen, wenn der Korrekturgrößenermittler bei der Ermittlung der mindestens einen Korrekturgröße zusätzlich den erwarteten gegenwärtigen Istverschleiß und den tatsächlichen Istverschleiß außerhalb der Mitte der mindestens einen Walze - beispielsweise als Funktion über die Walzenbreite - berücksichtigt.
  • Das Adaptieren des Verschleißmodells kann besonders dann zuverlässig vorgenommen werden, wenn anhand der Eigenschaften des bis zum Ausbauen der mindestens einen Walze gewalzten flachen Walzguts entschieden wird, ob und ggf. in welcher Form das Adaptieren des Verschleißmodells vorgenommen wird oder nicht. Insbesondere kann das Adaptieren unterdrückt werden, wenn verschiedene Materialien oder spezielle, sonst nur selten verwendete Materialien gewalzt werden, so dass ein Adaptieren unzuverlässig wäre. Auch kann eine materialspezifische Adaption erfolgen.
  • Das Verschleißmodell ist vorzugsweise der jeweiligen Walze individuell zugeordnet.
  • In vielen Fällen kann die mindestens eine Walze alternativ in eines von mehreren Walzgerüsten des Walzwerks eingebaut sein. In diesem Fall wird im Verschleißmodell vorzugsweise berücksichtigt, in welches der Walzgerüste die Walze eingebaut ist.
  • In vielen Fällen ist dem Walzgerüst, in das die mindestens eine Walze eingebaut ist, mindestens ein anderes Walzgerüst des Walzwerks vorgeordnet. Meist ist in das andere Walzgerüst stets ein und derselbe Typ von Walze eingebaut. In seltenen Fällen kann jedoch in das andere Walzgerüst alternativ eine andere Walze eines von mindestens zwei Typen eingebaut sein. In diesem Fall wird im Verschleißmodell vorzugsweise berücksichtigt, welcher Typ von anderen Walzen in das andere Walzgerüst eingebaut ist.
  • In einer bevorzugten Ausgestaltung der vorliegenden Erfindung ist weiterhin vorgesehen, dass das Verschleißmodell bei der Ermittlung des erwarteten gegenwärtigen und/oder zukünftigen Istverschleißes eine Temperatur der Walzen und/oder des flachen Walzguts berücksichtigt.
  • Die erfindungsgemäße Aufgabe wird weiterhin durch ein Computerprogramm der eingangs genannten Art gelöst. Das Computerprogramm ist in diesem Fall derart ausgestaltet, dass der Steuerrechner ein Betriebsverfahren mit allen Schritten eines erfindungsgemäßen Betriebsverfahrens ausführt.
  • Die Aufgabe wird weiterhin durch einen Steuerrechner für ein Walzwerk zum Walzen von flachem Walzgut gelöst, der derart ausgebildet ist, dass er im Betrieb ein derartiges Betriebsverfahren ausführt.
  • Die Aufgabe wird weiterhin durch ein Walzwerk zum Walzen von flachem Walzgut gelöst, das mit einem derartigen Steuerrechner ausgestattet ist.
  • Weitere Vorteile und Einzelheiten ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen in Verbindung mit den Zeichnungen. Es zeigen in Prinzipdarstellung:
  • FIG 1
    schematisch ein Walzwerk zum Walzen von flachem Walzgut,
    FIG 2
    ein Ablaufdiagramm,
    FIG 3 und 4
    mögliche Ausgaben an einen Bediener,
    FIG 5
    ein Ablaufdiagramm,
    FIG 6
    eine mögliche Ausgabe an den Bediener,
    FIG 7 und 8
    Ablaufdiagramme,
    FIG 9
    schematisch einen Nutzungszyklus einer Walze,
    FIG 10 und 11
    Ablaufdiagramme und
    FIG 12 und 13
    Diagramme.
  • Gemäß FIG 1 weist ein Walzwerk zum Walzen von flachem Walzgut 1 mehrere Walzgerüste 2 auf. Die Walzgerüste 2 werden von dem flachen Walzgut 1 nacheinander durchlaufen. Jedes Walzgerüst 2 des Walzwerks weist Walzen 3 auf. Die Walzen 3 umfassen zumindest Arbeitswalzen, oftmals auch weitere Walzen, beispielsweise Stützwalzen oder - zusätzlich zu Stützwalzen - Zwischenwalzen.
  • Die Anzahl an dargestellten Walzgerüsten 2 des Walzwerks ist rein beispielhaft. Minimal ist nur ein einziges Walzgerüst 2 vorhanden. Weiterhin ist auch nicht zwingend, dass eine Bandlaufrichtung x, wie in FIG 1 dargestellt, stets dieselbe ist. Alternativ könnte ein reversierendes Walzen erfolgen, insbesondere dann, wenn das Walzwerk nur ein einziges Walzgerüst 2 oder nur zwei Walzgerüste 2 aufweist.
  • Das flache Walzgut 1, das in dem Walzwerk gewalzt wird, ist gemäß der Darstellung von FIG 1 ein Band. Alternativ kann es sich jedoch um ein anderes flaches Walzgut 1 handeln, beispielsweise eine Platte oder ein Grobblech.
  • Das Walzwerk ist mit einem Steuerrechner 4 ausgestattet, der das Walzwerk steuert. Der Steuerrechner 4 ist in der Regel als softwareprogrammierbare Einrichtung ausgebildet. Die Wirkungsweise des Steuerrechners 4 wird daher durch ein Computerprogramm 5 bestimmt, das dem Steuerrechner 4 über eine Rechner-Rechner-Verbindung (nicht dargestellt) oder ein Speichermedium 6 zugeführt wird. Auch dem Speichermedium 6 ist das Computerprogramm 5 in maschinenlesbarer Form - zumeist in elektronischer Form - gespeichert. Das Speichermedium 6 ist gemäß FIG 1 als USB-Memorystick ausgebildet. Diese Ausgestaltung ist jedoch rein beispielhaft. Es sind beliebige andere Ausgestaltungen des Speichermediums 6 möglich, beispielsweise als CD-ROM oder als SD-Speicherkarte.
  • Der Steuerrechner 4 ist mit dem Computerprogramm 5 programmiert. Das Computerprogramm 5 umfasst Maschinencode 7, der von dem Steuerrechner 4 unmittelbar ausführbar ist. Die Abarbeitung des Maschinencodes 7 legt die Wirkungsweise des Steuerrechners 4 fest. Die Abarbeitung des Maschinencodes 7 durch den Steuerrechner 4 bewirkt, dass der Steuerrechner 4 das Walzwerk gemäß einem Betriebsverfahren betreibt, das nachfolgend in Verbindung mit FIG 2 näher erläutert wird. Die Programmierung des Steuerrechners 4 mit dem Computerprogramm 5 bewirkt also die entsprechende Ausbildung des Steuerrechners 4.
  • Die vorliegende Erfindung ist prinzipiell bei allen Walzen 3 der Walzgerüste 2 anwendbar. Von besonderer Bedeutung ist die Anwendung bei den Arbeitswalzen der Walzgerüste 2. Die vorliegende Erfindung wird weiterhin nachfolgend in Verbindung mit der oberen Arbeitswalze 3 des in FIG 1 dritten Walzgerüsts 2 erläutert. Diese Festlegung ist jedoch rein willkürlich. Die vorliegende Erfindung ist in analoger Weise auf jede andere Walze 3 jedes Walzgerüsts 2 anwendbar.
  • Gemäß FIG 2 nimmt der Steuerrechner 4 in einem Schritt S1 zukünftig zu erwartende Istgrößen für mindestens ein zukünftig zu walzendes flaches Walzgut 1 entgegen. Bei diesen Istgrößen handelt es sich beispielsweise um Stichplandaten oder um Daten eines flachen Walzgutes 1, das bereits gewalzt wurde und ähnliche Eigenschaften wie das zukünftig zu walzende flache Walzgut 1 aufweist. Das Walzen desjenigen flachen Walzguts 1, dessen zukünftig zu erwartende Istgrößen der Steuerrechner 4 im Schritt S1 entgegen nimmt, hat also noch nicht begonnen.
  • Nachfolgend wird anstelle von zukünftig zu erwartenden Istgrößen stets von Stichplandaten gesprochen, weil dies vermutlich der häufigste Fall sein wird.
  • Bei den Stichplandaten kann es sich um die Daten eines einzigen flachen Walzguts 1 handeln. Alternativ kann es sich um die Stichplandaten für mehrere flache Walzgüter 1 handeln.
  • Bei den entgegen genommenen Stichplandaten kann es sich um die Daten des als nächstes zu walzenden flachen Walzguts 1 handeln. Alternativ kann es sich um die Daten eines flachen Walzguts 1 handeln, das nach dem als nächstes zu walzenden flachen Walzgut 1 gewalzt werden soll. In diesem letztgenannten Fall sind dem Steuerrechner 4 nach Ausführung des Schrittes S1 in der Regel die Stichplandaten aller flachen Walzgüter 1 bekannt, die vorher gewalzt werden sollen. Ein Zahlenbeispiel:
    • Bereits gewalzt seien die flachen Walzgüter a, b und c. Momentan gewalzt wird das flache Walzgut d. Im Schritt S1 kann der Steuerrechner 4 die Stichplandaten des flachen Walzguts e entgegen nehmen. Alternativ kann der Steuerrechner 4 - beispielsweise - im Schritt S1 die Stichplandaten der flachen Walzgüter g und h entgegen nehmen. In diesem Fall sind dem Steuerrechner 4 in der Regel die Stichplandaten der noch nicht gewalzten flachen Walzgüter e und f bereits bekannt.
  • Die Stichplandaten umfassen zum einen Einstellungen des Walzwerks, mit denen das jeweilige flache Walzgut 1 gewalzt werden soll, beispielsweise die gewünschten Stichabnahmen. Weiterhin umfassen die Stichplandaten auch Daten des flachen Walzguts 1 wie beispielsweise dessen Breite und dessen Temperatur sowie erwartete Walzbedingungen wie beispielsweise Walzkraft und Walzmoment.
  • In einem Schritt S2 ermittelt der Steuerrechner 4, ausgehend von einem erwarteten gegenwärtigen Istverschleiß V, für mindestens einen Ort P der zukünftigen Walzenreise einen zu erwartenden zukünftigen Istverschleiß V'. Die Ermittlung des Schrittes S2 erfolgt mittels eines Verschleißmodells 8 der Walze 3 anhand der Stichplandaten von zukünftig zu walzendem flachem Walzgut 1.
  • Das Verschleißmodell 8 ist als solches bekannt. Es kann sich beispielsweise um dasselbe Modell handeln, das im Stand der Technik zum laufenden Ermitteln des erwarteten gegenwärtigen Istverschleißes V verwendet wird.
  • Der Begriff "Walzenreise" ist jedem Fachmann geläufig. Es handelt sich um die einzelnen Längen der verschiedenen flachen Walzgüter 1, die mittels der betrachteten Walze 3 bereits gewalzt wurden und - bei der zukünftigen Walzenreise - noch gewalzt werden. Man kann sich die Walzenreise bildlich so vorstellen, als ob das flache Walzgut 1 im Walzspalt des Walzgerüsts 2, in das die betrachtete Walze 3 eingebaut ist, stillstehen würde und das entsprechende Walzgerüst 2 sich während des Walzens entlang des flachen Walzguts 1 bewegen würde. Bei reversierendem Walzen wird selbstverständlich bei jedem Reversieren die Zählrichtung entsprechend umgeschaltet, so dass die gewalzte Länge eine monoton ansteigende Funktion der Zeit ist.
  • Das Bekanntsein des erwarteten gegenwärtigen Istverschleißes V wird im Rahmen des Schrittes S2 bereits vorausgesetzt. Auf die Ermittlung des erwarteten gegenwärtigen Istverschleißes V wird später noch eingegangen werden.
  • Der Begriff "zukünftig zu walzendes flaches Walzgut" hat weiterhin in Verbindung mit dem Schritt S2 die Bedeutung des gesamten noch nicht gewalzten flachen Walzguts 1. In analoger Weise ist der Begriff "erwarteter gegenwärtiger Istverschleiß" auf das gesamte bereits gewalzte flache Walzgut 1 bezogen. Ein Beispiel:
    • Man nehme - rein beispielhaft - an, die flachen Walzgüter a, b und c seien bereits gewalzt. Das flache Walzgut d sei - soweit es die betrachtete Walze 3 betrifft - zu 30 % gewalzt, zu 70 % noch nicht gewalzt. Es soll der zu erwartende zukünftige Verschleiß V' am Ende des flachen Walzguts e ermittelt werden. In diesem Fall bezieht sich der Begriff "erwarteter gegenwärtiger Istverschleiß" auf den Verschleiß, der nach dem Walzen der flachen Walzgüter a, b und c und von 30 % des flachen Walzguts d erwartet wird. Im Schritt S2 werden, ausgehend von diesem Istverschleiß V, zunächst die Stichplandaten des Walzguts d verwendet, um einen zu erwartenden zukünftigen Istverschleiß V' am Ende des Walzguts d zu ermitteln. Sodann wird, ausgehend von diesem Istverschleiß V', anhand der Stichplandaten des flachen Walzguts e der zu erwartende zukünftige Istverschleiß V' nach dem Walzen des flachen Walzguts e ermittelt.
  • In einem Schritt S3 stellt der Steuerrechner 4 einem Bediener 9 des Walzwerks - gegebenenfalls auf Anforderung durch den Bediener 9 - mindestens eine Information zur Verfügung. Beispielsweise kann der Steuerrechner 4 - siehe FIG 3 - dem Bediener 9 anzeigen, welcher zukünftige Istverschleiß V' an einem vorbestimmten Ort P der zukünftigen Walzenreise erwartet wird. Der vorbestimmte zukünftige Ort P kann in diesem Fall beispielsweise dem Steuerrechner 4 fest vorgegeben sein oder dem Steuerrechner 4 vom Bediener 9 vorgegeben werden. Alternativ oder zusätzlich ist es möglich, dass im Schritt S3 gemäß der Darstellung von FIG 4 eine Information an den Bediener 9 ausgegeben wird, an welchem Ort P der zukünftigen Walzenreise ein vorbestimmter zukünftiger Istverschleiß V' erwartet wird. Der vorbestimmte zukünftige Istverschleiß V' kann dem Steuerrechner 4 in diesem Fall beispielsweise fest vorgegeben sein oder vom Bediener 9 vorgegeben werden. Auch eine Anzeige anderer, aus diesen Werten abgeleiteter Informationen ist möglich. Beispielsweise kann der Steuerrechner 4 eine Alarmmeldung ausgeben, wenn am Ende des als nächsten zu walzenden flachen Walzguts 1 ein vorgegebener Referenzverschleiß überschritten wird. Dies wird später in Verbindung mit den FIG 7 und 8 noch näher erläutert werden. Auch kann der Steuerrechner 4 beispielsweise eine maximal zulässige Breite für zukünftig zu walzendes flaches Walzgut 1 ermitteln und ausgeben.
  • In einem Schritt S4 prüft der Steuerrechner 4, ob - bezogen auf die betrachtete Walze 3 - ein Walzenwechsel durchgeführt wird. Wenn dies der Fall ist, wird in einem Schritt S5 der Walzenwechsel durchgeführt. Der Schritt S5 ist in FIG 2 nur gestrichelt eingezeichnet, weil der Walzenwechsel selbst - also das Ausbauen der bisher benutzten Walze 3 und das Einbauen einer anderen Walze 3 - zwar im Ablauf von FIG 2 berücksichtigt werden muss, als solcher aber nicht vom Steuerrechner 4 durchgeführt wird.
  • In einem Schritt S6 initialisiert der Steuerrechner 4 das Verschleißmodell 8. Weiterhin setzt der Steuerrechner 4 im Schritt S6 den gegenwärtigen erwarteten Istverschleiß V auf einen Anfangszustand, bei einer neuen oder nachgeschliffenen Walze 3 beispielsweise auf den Wert Null, ansonsten auf einen entsprechenden, von Null verschiedenen Wert.
  • Wenn kein Walzenwechsel erfolgt, geht der Steuerrechner 4 vom Schritt S4 zu einem Schritt S7 über. Im Schritt S7 steuert der Steuerrechner 4 das Walzwerk an. Dadurch wird (unter anderem) bewirkt, dass das flache Walzgut 1 in dem betrachteten Walzgerüst 2 des Walzwerks gewalzt wird.
  • Während des Walzens des flachen Walzguts 1 in dem betrachteten Walzgerüst 2 werden Istgrößen I des flachen Walzguts 1 und/oder des Walzgerüsts 2 erfasst. Beispielsweise können die Walzkraft, das Walzmoment, der Bandzug vor und/oder hinter dem betrachteten Walzgerüst 2, eine einlaufende und/oder eine auslaufende Banddicke, ein Walzspalt usw. erfasst werden. Der Steuerrechner 4 nimmt die erfassten Istgrößen I in einem Schritt S8 entgegen. Der Steuerrechner 4 speichert die Istgrößen I in einem Schritt S9 ab, so dass sie für spätere Auswertungen zur Verfügung stehen.
  • In einem Schritt S10 ermittelt der Steuerrechner 4 den (neuen) erwarteten gegenwärtigen Istverschleiß V. Sodann geht der Steuerrechner 4 zu einem Schritt S11 über. Im Schritt S11 prüft der Steuerrechner 4, ob ihm neue Stichplandaten zur Verfügung gestellt werden. Je nach Ergebnis der Prüfung des Schrittes S11 geht der Steuerrechner 4 zum Schritt S1 oder zum Schritt S2 zurück.
  • Der Steuerrechner 4 ermittelt im Schritt S10 den neuen erwarteten gegenwärtigen Istverschleiß V der betrachteten Walze 3. Der Steuerrechner 4 geht aus von dem bereits gegebenen Istverschleiß V der betrachteten Walze 3, ermittelt mittels des Verschleißmodells 8 einen inkrementellen Verschleißzuwachs δV für die jeweilige Abarbeitung des Schrittes S7 und addiert den inkrementellen Verschleißzuwachs δV zum bereits gegebenen gegenwärtigen Istverschleiß V. Das Ergebnis entspricht dem neuen erwarteten gegenwärtigen Istverschleiß V.
  • Auf Grund der beschriebenen Vorgehensweise wird der erwartete gegenwärtige Istverschleiß V, ausgehend vom Anfangszustand der betrachteten Walze 3, nach und nach durch Aufsummieren der jeweiligen inkrementellen Verschleißzuwächse δV ermittelt. Im Ergebnis ermittelt der Steuerrechner 4 daher den erwarteten gegenwärtigen Istverschleiß V ausgehend vom Anfangszustand der betrachteten Walze 3.
  • Die inkrementellen Verschleißzuwächse δV werden mittels des Verschleißmodells 8 ermittelt. Auch der zu erwartende zukünftige Istverschleiß V' wird mittels des Verschleißmodells 8 ermittelt. Das Verschleißmodell 8 kann zu diesen beiden Zwecken als einheitliches Verschleißmodell ausgebildet sein. Es kann also ein und dasselbe Verschleißmodell 8 sowohl zur Ermittlung des erwarteten gegenwärtigen Istverschleißes V als auch zur Ermittlung des zu erwartenden zukünftigen Istverschleißes V' verwendet werden. Alternativ kann das Verschleißmodell 8 zwei voneinander verschiedene Teilmodelle aufweisen, wobei das eine Teilmodelle zur Ermittlung des erwarteten gegenwärtigen Istverschleißes V und das andere Teilmodell zur Ermittlung des zu erwartenden zukünftigen Istverschleißes V' verwendet wird. Unabhängig davon, welche dieser beiden Vorgehensweisen ergriffen wird, wird der inkrementellen Verschleißzuwachs δV jedoch mittels des Verschleißmodells 8 anhand der jeweils erfassten und vom Steuerrechner 4 entgegen genommenen Istgrößen I ermittelt.
  • Soweit erforderlich, kann der Steuerrechner 4 für die Ermittlung des erwarteten gegenwärtigen Istverschleißes V zusätzlich zu den Istgrößen I Stichplandaten für das momentan gewalzte flache Walzgut 1 berücksichtigen, beispielsweise die Breite des momentan gewalzten flachen Walzguts 1. Es gilt aber die Regel, dass eine erfasste Istgröße I Vorrang vor einer aus dem Stichplan gegebenen korrespondierenden Größe hat und dass zumindest die Walzkraft erfasst wird. Im Ergebnis ermittelt der Steuerrechner 4 den erwarteten gegenwärtigen Istverschleiß V somit anhand der Istgrößen I, die während der bisherigen Walzenreise der betrachteten Walze 3 erfasst wurden.
  • FIG 5 zeigt eine bevorzugte Ausgestaltung der Schritte S2 und S3 von FIG 2. Gemäß FIG 5 ermittelt der Steuerrechner 4 nicht nur für einen bestimmten Ort P der zukünftigen Walzenreise den entsprechenden zu erwartenden zukünftigen Istverschleiß V der betrachteten Walze 3 bzw. für einen bestimmten zu erwartenden zukünftigen Istverschleiß V' den korrespondierenden Ort P der zukünftigen Walzenreise. Vielmehr ermittelt der Steuerrechner 4 gemäß FIG 5 in einem Schritt S21 (= Ausgestaltung des Schrittes S2 von FIG 2) für eine Vielzahl von Orten P der zukünftigen Walzenreise jeweils den zu erwartenden zukünftigen Istverschleiß V' der betrachteten Walze 3. In einem Schritt S22 (= Ausgestaltung des Schrittes S3 von FIG 2) stellt der Steuerrechner 4 dem Bediener 9 des Walzwerks den zu erwartenden zukünftigen Istverschleiß V' als Funktion des Ortes P der zukünftigen Walzenreise der betrachteten Walze 3 (oder umgekehrt) zur Verfügung. Beispielsweise kann der Steuerrechner 4 eine entsprechende Tabelle oder eine entsprechende Grafik - siehe beispielhaft FIG 6 - an den Bediener 9 ausgeben.
  • FIG 7 zeigt eine weitere mögliche Ausgestaltung der Schritt S2 und S3 von FIG 2. Die Ausgestaltung von FIG 7 ist alternativ oder zusätzlich zur Ausgestaltung von FIG 5 realisierbar.
  • Gemäß FIG 7 ist dem Steuerrechner 4 ein vorbestimmter zu erwartender zukünftiger Istverschleiß V' vorgegeben. Der Steuerrechner 4 ermittelt in einem Schritt S31 denjenigen Ort P der zukünftigen Walzenreise, für den dieser zukünftige Istverschleiß V' erwartet wird. Der ermittelte Ort P wird in einem Schritt S32 mit einem Referenzort P* verglichen, beispielsweise dem Ende des als nächstes zu walzenden flachen Walzguts 1, dessen Anfang zu diesem Zeitpunkt noch nicht im Walzwerk gewalzt wird. Den Vergleich des Schrittes S32 kann alternativ der Steuerrechner 4 oder der Bediener 9 vornehmen. Der Referenzort P* kann dem Steuerrechner 4 fest vorgegeben sein oder vom Bediener 9 vorgegeben werden. Gleiches gilt für den vorbestimmten zu erwartenden zukünftigen Istverschleiß V'.
  • In Abhängigkeit von dem Vergleich des Schrittes S32 wird entweder in einem Schritt S33 das Walzen des flachen Walzguts 1 fortgesetzt oder in einem Schritt S34 ein Wechsel der betrachteten Walze 3 durchgeführt. Der Schritt S34 als solcher wird - selbstverständlich - vom Bediener 9 des Walzwerks durchgeführt. Der Steuerrechner 4 kann aber die Ausführung des Schrittes S34 durch Ausgeben einer entsprechenden Anforderung unterstützen bzw. initiieren.
  • Alternativ können gemäß FIG 8 die Schritte S31 und S32 durch Schritte S41 und S42 ersetzt sein. In diesem Fall ist dem Steuerrechner 4 der Ort P der zukünftigen Walzenreise, für den der zu erwartende zukünftige Istverschleiß V' ermittelt wird, fest vorgegeben. Der Steuerrechner 4 ermittelt in diesem Fall im Schritt S41 den für diesen Ort P zu erwartenden zukünftigen Istverschleiß V'. Im Schritt S42 wird der ermittelte zu erwartende zukünftige Istverschleiß V' mit einem Referenzverschleiß V* verglichen. Die übrigen Ausführungen zu FIG 7 sind auch bei FIG 8 analog anwendbar.
  • Die bisher beschriebene Vorgehensweise liefert bereits recht gute Ergebnisse. Die Vorgehensweise kann jedoch durch die nachfolgenden Ausgestaltungen der vorliegenden Erfindung weiter verbessert werden. Die nachfolgend beschriebenen Ausgestaltungen sind nach Bedarf mit den vorstehend beschriebenen Ausgestaltungen und auch untereinander in beliebiger Weise kombinierbar.
  • Wie bereits erwähnt, müssen die Walzen 3 des Walzwerks von Zeit zu Zeit gewechselt werden. Wenn die - verschlissene - Walze 3 ausgebaut wird, wird als Ersatz für die ausgebaute Walze 3 unverzüglich eine andere - in der Regel unverschlissene - Walze 3 eingebaut, die - siehe FIG 9 - kurz zuvor aus einem Lager 10 bereitgestellt wurde. Die ausgebaute Walze 3 wird in eine Schleiferei 11 gebracht, nachgeschliffen, vermessen und sodann ins Lager 10 verbracht.
  • Gemäß FIG 9 ist jeder Walze 3 ihr jeweiliges Verschleißmodell 8 (bzw. zumindest entsprechende Parametrierungen des Verschleißmodells 8) individuell zugeordnet. Das jeweilige Verschleißmodell 8 (bzw. die entsprechenden Parameter) folgen sozusagen der jeweiligen Walze 3 auf ihren Weg vom Walzwerk in die Schleiferei 11, von dort ins Lager 10 und von dort zurück ins Walzwerk.
  • Wie bereits in Verbindung mit FIG 2 erläutert, wird bei einem Walzenwechsel das Verschleißmodell 8 initialisiert (siehe den Schritt S6 in FIG 2). Die Initialisierung kann beispielsweise so ausgestaltet sein, wie dies nachfolgend in Verbindung mit FIG 10 näher erläutert wird.
  • Wenn eine Walze 3 aus dem Lager 10 entnommen wird und als Ersatz für eine andere Walze 3 in ein Walzgerüst 2 des Walzwerks eingebaut wird, muss die einzubauende Walze 3 nicht stets in das gleiche Walzgerüst 2 eingebaut werden. Es ist - rein beispielhaft - vielmehr möglich, dass eine bestimmte Walze 3 zunächst in das dritte Walzgerüst 2 eingebaut ist, nach dem Ausbauen und Schleifen ins Lager 10 kommt und später in das vierte Walzgerüst 2 des Walzwerks eingebaut wird. Vorzugsweise nimmt der Steuerrechner 4 daher gemäß FIG 10 in einem Schritt S51 eine Information über den Einbauort der neu eingebauten Walze 3 entgegen. In einem Schritt S52 parametriert der Steuerrechner 4 sodann das Verschleißmodell 8 für die neu eingebaute Walze 3 entsprechend. Im Verschleißmodell 8 wird daher berücksichtigt, in welches der Walzgerüste 2 die Walze 3 eingebaut ist.
  • Die Walzen 3 der Walzgerüste 2 können weiterhin bezüglich ihrer Material- und Oberflächeneigenschaften verschiedenen Typen angehören. In der Regel wird in ein bestimmtes der Walzgerüste 2 stets derselbe Typ von Walze 3 eingebaut. In manchen Fällen kann der Typ jedoch variieren. Beispielsweise könnte in das zweite Walzgerüst 2 von FIG 1 alternativ eine Walze aus dem Oberflächenmaterial "Hochleistungsschnellstahl" (HSS, engl. high speed steel) oder aus dem Oberflächenmaterial "Hochchromgusseisen" (HC, engl. high chrome) oder aus dem Oberflächenmaterial "Schalenhartguss" (IC, engl. indefinite chill) eingebaut werden. In der Praxis hat sich gezeigt, dass der Verschleiß einer Walze 3 auch davon abhängen kann, welcher Typ von Walze 3 in das unmittelbar vorgeordnete Walzgerüst 2 eingebaut ist. Vorzugsweise nimmt der Steuerrechner 4 daher in einem Schritt S53 Informationen über den Typ mindestens einer Walze 3 des vorgeordneten Walzgerüsts 2 entgegen und parametriert in einem Schritt S54 das Verschleißmodell 8 entsprechend. Im Verschleißmodell 8 kann daher auch berücksichtigt werden, welcher Typ von Walzen 3 in das vorgeordnete Walzgerüst 2 eingebaut ist.
  • Weiterhin ist es möglich - und sogar die Regel -, dass in der Schleiferei 11 vor dem Nachschleifen der ausgebauten Walze 3 deren tatsächlicher Istverschleiß VE erfasst wird. Entsprechende Istdaten I' können nach dem Ausbau der verschlissenen Walze 3 jedoch auch anderweitig erfasst werden. Anhand des tatsächlichen Istverschleißes VE kann das Verschleißmodell 8 adaptiert werden. Dies wird nachfolgend in Verbindung mit FIG 11 näher erläutert.
  • Die den tatsächlichen Istverschleiß VE charakterisierenden Istdaten I' werden - wie bereits erwähnt: in der Regel aus der Schleiferei 11 - dem Steuerrechner 4 vorzugsweise automatisch zugeführt. Der Steuerrechner 4 realisiert auf Grund seiner Programmierung mit dem Computerprogramm 5 (unter anderem) einen Korrekturgrößenermittler für das Verschleißmodell 8. Der Steuerrechner 4 nimmt die Istdaten I' gemäß FIG 11 in einem Schritt S61 entgegen. Er ermittelt daraus in einem Schritt S62 den tatsächlichen Istverschleiß VE.
  • In einem Schritt S63 vergleicht der Steuerrechner 4 den tatsächlichen Istverschleiß VE mit dem erwarteten gegenwärtigen Istverschleiß V, das heißt dem bis zum Ausbau der Walze 3 aufgelaufenen erwarteten gegenwärtigen Istverschleiß V. Der Steuerrechner 4 ermittelt anhand des Vergleichs mindestens eine Korrekturgröße K für das Verschleißmodell 8. In einem Schritt S64 adaptiert der Steuerrechner 4 das Verschleißmodell 8 anhand der mindestens einen Korrekturgröße K. Nach dem Adaptieren des Verschleißmodells 8 - also wenn die zugehörige Walze 3 wieder in ein Walzgerüst 2 des Walzwerks eingebaut ist - berücksichtigt der Steuerrechner 4 daher beim Ermitteln von erwarteten gegenwärtigen und/oder zu erwartenden zukünftigen Istverschleißen V, V' die mindestens eine Korrekturgröße K.
  • Gemäß den bisherigen Ausführungen zu FIG 11 erfolgt das Adaptieren des Verschleißmodells 8 stets und unbedingt. Dies ist jedoch nicht zwingend erforderlich. Vorzugsweise erfolgt vielmehr nur eine bedingte Adaption des Verschleißmodells 8. In diesem Fall prüft der Steuerrechner 4, ob das Adaptieren vorgenommen werden soll oder nicht. Zu diesem Zweck ermittelt der Steuerrechner 4 in einem Schritt S65 den Wert einer logischen Variablen OK. Der Wert der logischen Variablen OK wird in einem Schritt S66 abgefragt. Je nach dem Wert der logischen Variablen OK werden die Schritte S63 und S64 ausgeführt oder übersprungen. Alternativ zu einem Überspringen der Schritte S63 und S64 ist es weiterhin möglich, dass der Steuerrechner 4 eine entsprechende Warnung an den Bediener 9 des Walzwerks oder eine andere Person ausgibt. In diesem Fall werden die Schritte S63 und S64 nur dann ausgeführt, wenn dem Steuerrechner 4 von außen von einem Menschen eine explizite entsprechende Anweisung vorgegeben wird.
  • Der Steuerrechner 4 ermittelt den Wert der logischen Variablen OK vorzugsweise anhand der Eigenschaften der flachen Walzgüter 1, die - selbstverständlich seit dem Einbau der betrachteten Walze 3 - bis zu deren Ausbau von der betrachteten Walze 3 gewalzt wurden. So kann beispielsweise das Adaptieren unterdrückt werden, wenn Spezialmaterialien - beispielsweise Siliziumstähle - gewalzt wurden. Alternativ oder zusätzlich kann das Adaptieren beispielsweise nur dann zugelassen werden, wenn überwiegend eine vorbestimmte Materialsorte - beispielsweise Kohlenstoffstähle - gewalzt wurden oder wenn ein gewalzter Materialmix innerhalb vorbestimmter Prozentzahlen liegt (beispielsweise mindestens 60 % Kohlenstoffstähle, 20 % bis 30 % Edelstähle und maximal 10 % Siliziumstähle). Gegebenenfalls kann innerhalb des Verschleißmodells 8 auch eine Unterscheidung nach gewalztem Material vorgenommen werden. In diesem Fall kann eine materialabhängige Adaption durchgeführt werden.
  • Zum Adaptieren des Verschleißmodells 8, also der Ermittlung der mindestens einen Korrekturgröße K (Schritt S63 in FIG 11) ist es gemäß FIG 12 im einfachsten Fall möglich, dass der Steuerrechner 4 ausschließlich den tatsächlichen Istverschleiß VE und den erwarteten gegenwärtigen Istverschleiß V in der Mitte der betrachteten Walze 3 berücksichtigt. Alternativ ist es gemäß FIG 13 möglich, dass der Steuerrechner 4 zusätzlich auch mindestens einen tatsächlichen Istverschleiß VE und den korrespondierenden erwarteten gegenwärtigen Istverschleiß V an mindestens einer Stelle der betrachteten Walze 3 berücksichtigt, die außerhalb der Mitte der betrachteten Walze 3 liegt. Der Steuerrechner 4 kann sogar den die Verschleiße V, VE als Funktion über die Walzenbreite berücksichtigen
  • Das Adaptieren des Verschleißmodells 8 muss nicht zwingend vom Steuerrechner 4 durchgeführt werden. Alternativ kann das Adaptieren auch von einer anderen Einrichtung durchgeführt werden. Wenn das Adaptieren des Verschleißmodells 8 von der anderen Einrichtung durchgeführt wird, muss der anderen Einrichtung selbstverständlich auch der erwartete gegenwärtige Verschleiß V zugeführt werden. In dem Fall, dass der Steuerrechner 4 die Adaption vornimmt, ist dies nicht erforderlich, da der Steuerrechner 4 selbst den erwarteten gegenwärtigen Verschleiß V ermittelt hat, ihn also kennt.
  • In die Ermittlung des erwarteten gegenwärtigen und/oder zu erwartenden zukünftigen Istverschleißes V, V' gehen, wie bereits erwähnt, zumindest die Walzkräfte ein. Weiterhin gehen in die Ermittlung der entsprechenden Istverschleiße V, V' die zu walzenden Walzgutlängen und Walzgutbreiten ein. Auch die Geschwindigkeit des Walzvorgangs und der Walzendurchmesser können in die genannten Istverschleiße V, V' mit eingehen. Gegebenenfalls - siehe FIG 2 - kann das Verschleißmodell 8 bei der Ermittlung der genannten Istverschleiße V, V' auch eine Temperatur der Walzen 3 und/oder des flachen Walzguts 1 berücksichtigen.
  • Die vorliegende Erfindung weist viele Vorteile auf. Insbesondere bleibt im Falle einer Adaption die Vorhersagegenauigkeit des erwarteten gegenwärtigen Istverschleißes V über die gesamte Betriebszeit des Walzwerks erhalten oder wird sogar erhöht. Weiterhin kann die Walzenstandzeit, also die Zeit zwischen Einbau und Ausbau der Walzen 3, optimiert werden. Auch kann oftmals die Qualität des gewalzten flachen Walzguts 1 optimiert werden.
  • Die obige Beschreibung dient ausschließlich der Erläuterung der vorliegenden Erfindung. Der Schutzumfang der vorliegenden Erfindung soll hingegen ausschließlich durch die beigefügten Ansprüche bestimmt sein.

Claims (16)

  1. Betriebsverfahren für ein Walzwerk zum Walzen von flachem Walzgut (1), das mindestens ein Walzgerüst (2) mit Walzen (3) aufweist,
    - wobei das flache Walzgut (1) in dem Walzgerüst (2) gewalzt wird,
    - wobei während des Walzens des flachen Walzguts (1) in dem Walzgerüst (2) Istgrößen (I) des flachen Walzguts (1) und/ oder des Walzgerüsts (2) erfasst werden,
    - wobei, ausgehend von einem Anfangszustand mindestens einer Walze (3) des Walzgerüsts (2), mittels eines Verschleißmodells (8) anhand der während der bisherigen Walzenreise der jeweiligen Walze (3) erfassten Istgrößen (I) ein erwarteter gegenwärtiger Istverschleiß (V) der mindestens einen Walze (3) ermittelt wird,
    - wobei, ausgehend von dem erwarteten gegenwärtigen Istverschleiß (V), mittels des Verschleißmodells (8) anhand von zukünftig zu erwartenden Istgrößen für zukünftig zu walzendes flaches Walzgut (1) für mindestens einen Ort (P) der zukünftigen Walzenreise ein zu erwartender zukünftiger Istverschleiß (V') der mindestens einen Walze (3) ermittelt wird,
    - wobei der Ort (P) der zukünftigen Walzenreise, der zu erwartende zukünftige Istverschleiß (V') und/oder mindestens eine aus diesen Werten abgeleitete Information einem Bediener (9) des Walzwerks zur Verfügung gestellt werden.
  2. Betriebsverfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass für eine Vielzahl von Orten (P) der zukünftigen Walzenreise jeweils der zu erwartende zukünftige Istverschleiß (V') der mindestens einen Walze (3) ermittelt wird und dass der zu erwartende zukünftige Istverschleiß (V') dem Bediener (9) des Walzwerks als Funktion des Ortes (P) der zukünftigen Walzenreise oder umgekehrt zur Verfügung gestellt wird.
  3. Betriebsverfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass der mindestens eine Ort (P), für den der zu erwartende zukünftige Istverschleiß (V') ermittelt wird, mit einem Referenzort (P*) verglichen wird und/oder der für den mindestens einen Ort (P) ermittelte zu erwartende zukünftige Istverschleiß (V') mit einem Referenzverschleiß (V*) verglichen wird und dass in Abhängigkeit von dem Vergleich entschieden wird, ob ein Wechsel der mindestens einen Walze (3) durchzuführen ist oder ob das Walzen des flachen Walzguts (1) fortgesetzt wird.
  4. Betriebsverfahren nach Anspruch 1, 2 oder 3,
    dadurch gekennzeichnet ,
    - dass nach einem Ausbau der mindestens einen Walze (3) einem Korrekturgrößenermittler (4) der erwartete gegenwärtige Istverschleiß der mindestens einen Walze (3) und den tatsächlichen Istverschleiß (VE) der mindestens einen Walze (3) charakterisierende Istdaten (I') zugeführt werden,
    - dass der Korrekturgrößenermittler (4) anhand eines Vergleichs des erwarteten gegenwärtigen Istverschleißes (V) und des tatsächlichen Istverschleißes (VE) mindestens eine Korrekturgröße (K) ermittelt und
    - dass der Korrekturgrößenermittler (4) das Verschleißmodell (8) anhand der mindestens einen Korrekturgröße (K) adaptiert, so dass nach dem Adaptieren des Verschleißmodells (8) beim Ermitteln von erwarteten gegenwärtigen und/oder zu erwartenden zukünftigen Istverschleißen (V, V') die mindestens eine Korrekturgröße (K) berücksichtigt wird.
  5. Betriebsverfahren nach Anspruch 4,
    dadurch gekennzeichnet,
    dass die den tatsächlichen Istverschleiß (VE) charakterisierenden Istdaten (I') dem Korrekturgrößenermittler (4) aus einer Schleiferei (11) für die mindestens eine Walze (3) zugeführt werden.
  6. Betriebsverfahren nach Anspruch 4 oder 5,
    dadurch gekennzeichnet ,
    dass die den tatsächlichen Istverschleiß (VE) charakterisierenden Istdaten (I') dem Korrekturgrößenermittler (4) automatisch zugeführt werden.
  7. Betriebsverfahren nach Anspruch 4, 5 oder 6,
    dadurch gekennzeichnet,
    dass der Korrekturgrößenermittler (4) bei der Ermittlung der mindestens einen Korrekturgröße (K) den erwarteten gegenwärtigen Istverschleiß (V) und den tatsächlichen Istverschleiß (VE) in der Mitte der mindestens einen Walze (3) berücksichtigt.
  8. Betriebsverfahren nach Anspruch 7,
    dadurch gekennzeichnet ,
    dass der Korrekturgrößenermittler (4) bei der Ermittlung der mindestens einen Korrekturgröße (K) zusätzlich den erwarteten gegenwärtigen Istverschleiß (V) und den tatsächlichen Istverschleiß (VE) außerhalb der Mitte der mindestens einen Walze (3) berücksichtigt.
  9. Betriebsverfahren nach einem der Ansprüche 4 bis 8,
    dadurch gekennzeichnet,
    dass anhand der Eigenschaften des bis zum Ausbauen der mindestens einen Walze (3) gewalzten flachen Walzguts (1) entschieden wird, ob und ggf. in welcher Form das Adaptieren des Verschleißmodells (8) vorgenommen wird oder nicht.
  10. Betriebsverfahren nach einem der obigen Ansprüche,
    dadurch gekennzeichnet,
    dass das Verschleißmodell (8) der jeweiligen Walze (3) individuell zugeordnet ist.
  11. Betriebsverfahren nach einem der obigen Ansprüche,
    dadurch gekennzeichnet ,
    dass die mindestens eine Walze (3) alternativ in eines von mehreren Walzgerüsten (2) des Walzwerks eingebaut ist und dass im Verschleißmodell (8) berücksichtigt wird, in welches der Walzgerüste (2) die Walze (3) eingebaut ist.
  12. Betriebsverfahren nach einem der obigen Ansprüche,
    dadurch gekennzeichnet ,
    dass dem Walzgerüst (2), in das die mindestens eine Walze (3) eingebaut ist, mindestens ein anderes Walzgerüst (2) des Walzwerks vorgeordnet ist, dass in das andere Walzgerüst (2) alternativ eine andere Walze (3) eines von mindestens zwei Typen eingebaut ist und dass im Verschleißmodell (8) berücksichtigt wird, welcher Typ von anderen Walzen (3) in das andere Walzgerüst (2) eingebaut ist.
  13. Betriebsverfahren nach einem der obigen Ansprüche,
    dadurch gekennzeichnet,
    dass das Verschleißmodell (8) bei der Ermittlung des erwarteten gegenwärtigen und/oder des zu erwartenden zukünftigen Istverschleißes (V, V') eine Temperatur der Walzen (3) und/ oder des flachen Walzguts (1) berücksichtigt.
  14. Computerprogramm, das Maschinencode (7) umfasst, der von einem Steuerrechner (4) für ein Walzwerk zum Walzen von flachem Walzgut (1) unmittelbar abarbeitbar ist und dessen Abarbeitung durch den Steuerrechner (4) bewirkt, dass der Steuerrechner (4) das Walzwerk gemäß einem Betriebsverfahren mit allen Schritten eines Betriebsverfahrens nach einem der obigen Ansprüche betreibt.
  15. Steuerrechner für ein Walzwerk zum Walzen von flachem Walzgut (1),
    dadurch gekennzeichnet ,
    dass der Steuerrechner derart ausgebildet ist, dass er das Walzwerk gemäß einem Betriebsverfahren mit allen Schritten eines Betriebsverfahrens nach einem der Ansprüche 1 bis 13 betreibt.
  16. Walzwerk zum Walzen von flachem Walzgut (1),
    dadurch gekennzeichnet ,
    dass das Walzwerk mit einem Steuerrechner (4) nach Anspruch 15 ausgestattet ist.
EP10174297A 2010-08-27 2010-08-27 Betriebsverfahren für ein Walzwerk zum Walzen von flachem Walzgut mit Walzenverschleißprognose Withdrawn EP2422893A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10174297A EP2422893A1 (de) 2010-08-27 2010-08-27 Betriebsverfahren für ein Walzwerk zum Walzen von flachem Walzgut mit Walzenverschleißprognose
PCT/EP2011/064153 WO2012025438A1 (de) 2010-08-27 2011-08-17 Betriebsverfahren für ein walzwerk zum walzen von flachem walzgut mit walzenverschleissprognose
PL11748920T PL2588257T3 (pl) 2010-08-27 2011-08-17 Sposób pracy walcarki do walcowania płaskich materiałów walcowanych, obejmujący prognozowanie zużycia walca
EP11748920.3A EP2588257B1 (de) 2010-08-27 2011-08-17 Betriebsverfahren für ein walzwerk zum walzen von flachem walzgut mit walzenverschleissprognose
CN201180041473.0A CN103079721B (zh) 2010-08-27 2011-08-17 具有轧辊磨损预测功能的用于轧制平坦的轧件的轧机的运行方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10174297A EP2422893A1 (de) 2010-08-27 2010-08-27 Betriebsverfahren für ein Walzwerk zum Walzen von flachem Walzgut mit Walzenverschleißprognose

Publications (1)

Publication Number Publication Date
EP2422893A1 true EP2422893A1 (de) 2012-02-29

Family

ID=43618281

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10174297A Withdrawn EP2422893A1 (de) 2010-08-27 2010-08-27 Betriebsverfahren für ein Walzwerk zum Walzen von flachem Walzgut mit Walzenverschleißprognose
EP11748920.3A Active EP2588257B1 (de) 2010-08-27 2011-08-17 Betriebsverfahren für ein walzwerk zum walzen von flachem walzgut mit walzenverschleissprognose

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11748920.3A Active EP2588257B1 (de) 2010-08-27 2011-08-17 Betriebsverfahren für ein walzwerk zum walzen von flachem walzgut mit walzenverschleissprognose

Country Status (4)

Country Link
EP (2) EP2422893A1 (de)
CN (1) CN103079721B (de)
PL (1) PL2588257T3 (de)
WO (1) WO2012025438A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105160390A (zh) * 2015-08-12 2015-12-16 江苏永钢集团有限公司 轧槽过钢量在线计数装置及其使用方法
CN106694572A (zh) * 2017-02-28 2017-05-24 中冶华天工程技术有限公司 基于轧辊磨损检测的在线轧制工艺调整***及方法
WO2018192798A1 (de) * 2017-04-18 2018-10-25 Primetals Technologies Germany Gmbh Optimierung der modellierung von prozessmodellen
DE102019119989A1 (de) * 2019-07-24 2021-01-28 Aktien-Gesellschaft der Dillinger Hüttenwerke Vorrichtung und Verfahren zur Überwachung und/oder Steuerung eines industriellen Verfahrens zur Herstellung eines Stahlerzeugnisses
EP3580622B1 (de) * 2017-02-07 2023-07-19 Primetals Technologies Austria GmbH Ganzheitliche planung von produktions- und/oder wartungsplänen

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109365542B (zh) * 2018-09-20 2020-06-19 北京金自天正智能控制股份有限公司 一种粗轧立辊磨损的计算方法
DE102020206477A1 (de) 2020-05-25 2021-11-25 Sms Group Gmbh Wartungsplanungssystem, Verfahren und Computerprogramm zur Bestimmung von Wartungsmaßnahmen für eine Produktionsanlage, insbesondere einer Produktionsanlage der metallerzeugenden Industrie, der nicht-Eisen- oder Stahlindustrie oder der Vorlegierungsherstellung
CN114178319A (zh) * 2021-11-17 2022-03-15 首钢智新迁安电磁材料有限公司 一种轧制设备的控制方法、装置及计算机设备
CN114589205B (zh) * 2022-04-08 2023-03-28 燕山大学 一种确定板带轧制过程在线换辊时间节点的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU929262A1 (ru) * 1980-10-20 1982-05-23 Московский Ордена Октябрьской Революции,Ордена Трудового Красного Знамени Институт Стали И Сплавов Устройство дл автоматического контрол износа валков в процессе прокатки
SU1060264A1 (ru) * 1982-07-14 1983-12-15 Центральное Проектно-Конструкторское Бюро По Системам Автоматизации Всесоюзного Объединения "Союзпромавтоматика" Устройство дл автоматического контрол износа валков клетей непрерывной группы прокатного стана
JPH0417920A (ja) * 1990-05-11 1992-01-22 Furukawa Electric Co Ltd:The 圧延機の圧延ロール寿命測定方法
KR20040020481A (ko) * 2002-08-30 2004-03-09 재단법인 포항산업과학연구원 연속주조기의 롤 수명 예측방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3630055A (en) * 1969-05-14 1971-12-28 Gen Electric Workpiece shape control
JPH0833009B2 (ja) * 1987-07-13 1996-03-29 旭化成工業株式会社 袋体を有する既製杭の施工方法
JPH1017920A (ja) * 1996-07-08 1998-01-20 Nippon Steel Corp 浸漬管の芯金構造
CN1301810C (zh) * 2004-01-16 2007-02-28 宝山钢铁股份有限公司 冷带钢连轧机轧制规程的综合优化控制方法
CN1804739A (zh) * 2005-12-12 2006-07-19 燕山大学 平整机成品板面粗糙度预报与控制技术
CN100493751C (zh) * 2006-07-18 2009-06-03 宝山钢铁股份有限公司 一种在线轧辊不圆度的检测装置及检测方法
CN101537431B (zh) * 2008-03-21 2011-05-11 宝山钢铁股份有限公司 冷轧薄带钢表面粗糙度在线预测和控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU929262A1 (ru) * 1980-10-20 1982-05-23 Московский Ордена Октябрьской Революции,Ордена Трудового Красного Знамени Институт Стали И Сплавов Устройство дл автоматического контрол износа валков в процессе прокатки
SU1060264A1 (ru) * 1982-07-14 1983-12-15 Центральное Проектно-Конструкторское Бюро По Системам Автоматизации Всесоюзного Объединения "Союзпромавтоматика" Устройство дл автоматического контрол износа валков клетей непрерывной группы прокатного стана
JPH0417920A (ja) * 1990-05-11 1992-01-22 Furukawa Electric Co Ltd:The 圧延機の圧延ロール寿命測定方法
KR20040020481A (ko) * 2002-08-30 2004-03-09 재단법인 포항산업과학연구원 연속주조기의 롤 수명 예측방법

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105160390A (zh) * 2015-08-12 2015-12-16 江苏永钢集团有限公司 轧槽过钢量在线计数装置及其使用方法
CN105160390B (zh) * 2015-08-12 2018-01-12 江苏永钢集团有限公司 轧槽过钢量在线计数装置及其使用方法
EP3580622B1 (de) * 2017-02-07 2023-07-19 Primetals Technologies Austria GmbH Ganzheitliche planung von produktions- und/oder wartungsplänen
CN106694572A (zh) * 2017-02-28 2017-05-24 中冶华天工程技术有限公司 基于轧辊磨损检测的在线轧制工艺调整***及方法
CN106694572B (zh) * 2017-02-28 2018-12-04 中冶华天工程技术有限公司 基于轧辊磨损检测的在线轧制工艺调整***及方法
WO2018192798A1 (de) * 2017-04-18 2018-10-25 Primetals Technologies Germany Gmbh Optimierung der modellierung von prozessmodellen
US11493891B2 (en) 2017-04-18 2022-11-08 Primetals Technologies Germany Gmbh Optimization of the modeling of process models
DE102019119989A1 (de) * 2019-07-24 2021-01-28 Aktien-Gesellschaft der Dillinger Hüttenwerke Vorrichtung und Verfahren zur Überwachung und/oder Steuerung eines industriellen Verfahrens zur Herstellung eines Stahlerzeugnisses

Also Published As

Publication number Publication date
CN103079721A (zh) 2013-05-01
EP2588257B1 (de) 2014-04-16
PL2588257T3 (pl) 2014-09-30
CN103079721B (zh) 2015-10-21
WO2012025438A1 (de) 2012-03-01
EP2588257A1 (de) 2013-05-08

Similar Documents

Publication Publication Date Title
EP2588257B1 (de) Betriebsverfahren für ein walzwerk zum walzen von flachem walzgut mit walzenverschleissprognose
EP2195127B1 (de) Betriebsverfahren zum einbringen eines walzguts in ein walzgerüst eines walzwerks, steuereinrichtung, datenträger und walzwerk zum walzen eines bandförmigen walzgutes
EP2548665B1 (de) Ermittlungsverfahren für relativbewegungsabhängigen Verschleiß einer Walze
EP2603337B1 (de) Verfahren zum herstellen von walzgut mittels einer giesswalzverbundanlage, steuer- und/oder regeleinrichtung für eine giesswalzverbundanlage und giesswalzverbundanlage
EP2691188B1 (de) Betriebsverfahren für eine walzstrasse
DE202011110781U1 (de) Anlage zur Herstellung von flachgewalzten Produkten
EP2988884B1 (de) Verfahren und walzgerüst zum kaltwalzen von walzgut
EP3107666B1 (de) Einfache vorsteuerung einer keilanstellung eines vorgerüsts
EP3535069B1 (de) Verfahren zum betreiben einer giesswalzverbundanlage
WO2009016086A1 (de) Verfahren zur einstellung eines zustands eines walzguts, insbesondere eines vorbands
EP2527053A1 (de) Steuerverfahren für eine Walzstraße
EP3341142B1 (de) Verfahren zum betreiben einer anlage nach dem csp-konzept
EP2293889B1 (de) Konti-walzstrasse mit ein- und/oder ausgliedern von walzgerüsten im laufenden betrieb
WO2013110399A1 (de) Verfahren zur bearbeitung von walzgut in einem warmwalzwerk
EP2906369B1 (de) Breitenbeeinflussung eines bandförmigen walzguts
EP2662158A1 (de) Verfahren zur Bearbeitung von Walzgut und Walzwerk
EP4061552B1 (de) Verfahren, steuervorrichtung sowie walzanlage zur einstellung einer auslauftemperatur eines aus einer walzstrasse auslaufenden metallbands
EP1827735B1 (de) Verfahren und vorrichtung zum bandgiessen von metallen
EP3715000B1 (de) Vermeidung von wellen beim walzen von metallbändern
EP3307448B1 (de) Verfahren und vorrichtung zum regeln eines parameters eines walzgutes
DE1527612B2 (de) Einrichtung zum regeln der dicke und querschnittsform bzw. ebenheit von blechen und baendern in walzwerken
EP4272884A1 (de) Ermittlung des seitlichen versatzes eines metallbandes anhand der kontur einer stirnseite eines coils
EP3009205B1 (de) Berücksichtigung einer Referenzgeschwindigkeit beim Ermitteln einer Leitgeschwindigkeit
EP3974073A1 (de) Walzen unter berücksichtigung von frequenzverhalten
DE102009060828A1 (de) Walzanlage zum kontinuierlichen Walzen von bandförmigem Walzgut

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120830