EP2421145B1 - Dispositif et procédé d'identification des paramètres d'un schéma électrique équivalent d'un moteur asynchrone triphasé sans utilisation d'encodeur de vitesse - Google Patents

Dispositif et procédé d'identification des paramètres d'un schéma électrique équivalent d'un moteur asynchrone triphasé sans utilisation d'encodeur de vitesse Download PDF

Info

Publication number
EP2421145B1
EP2421145B1 EP10172899.6A EP10172899A EP2421145B1 EP 2421145 B1 EP2421145 B1 EP 2421145B1 EP 10172899 A EP10172899 A EP 10172899A EP 2421145 B1 EP2421145 B1 EP 2421145B1
Authority
EP
European Patent Office
Prior art keywords
equivalent circuit
motor
identification
parameters
test signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10172899.6A
Other languages
German (de)
English (en)
Other versions
EP2421145A1 (fr
Inventor
Sebastian Villwock
Heiko Zatocil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baumueller Nuernberg GmbH
Original Assignee
Baumueller Nuernberg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baumueller Nuernberg GmbH filed Critical Baumueller Nuernberg GmbH
Priority to EP10172899.6A priority Critical patent/EP2421145B1/fr
Priority to US13/205,687 priority patent/US8587239B2/en
Priority to CN201110251314.5A priority patent/CN102375118B/zh
Publication of EP2421145A1 publication Critical patent/EP2421145A1/fr
Application granted granted Critical
Publication of EP2421145B1 publication Critical patent/EP2421145B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/16Estimation of constants, e.g. the rotor time constant
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/01Asynchronous machines

Definitions

  • the present invention is based on a method, a device, a device and a method application for a sensorless identification of electrical equivalent circuit parameters of a three-phase asynchronous motor.
  • Electrical equivalent circuit parameters allow the characterization of a three-phase motor by means of electrical equivalent circuit components, so that the electrical behavior of the motor can be simulated in operation.
  • a so-called T-equivalent circuit diagram is used for characterizing the electrical behavior of an asynchronous motor, in which the stator and rotor coil or the electrical stator and rotor behavior by means of two ohmic resistors R 1 , R ' 2 , two coil inductances L 1 ⁇ , L ' 2 ⁇ and a main inductance L h is modeled.
  • Fig. 4 is the T-equivalent circuit diagram of an asynchronous motor with respect to a single-phase consideration shown, with knowledge of said equivalent circuit diagram sizes, the electrical performance of the three-phase motor in a steady-state operation, ie at constant speed and load can be estimated.
  • the parameter s indicates the slip, ie the lag of the rotating rotor relative to the rotating stator magnetic field.
  • a three-phase system can also be described by means of two coordinates, wherein for describing the total current, a coordinate system in the complex plane can be considered, in which the two coordinates real part and imaginary part as ⁇ and ⁇ coordinates with respect to the fixed orientation of the stator windings Fig. 1 can be designated.
  • the ⁇ / ⁇ coordinate system describes, for example, the direction of current flow or the rotor flux axis in the stationary reference frame of the stator of the three-phase motor.
  • a second rotating coordinate system can be introduced whose axes are referred to as the d and q axes of the rotor, as shown in FIG Fig. 2 is shown.
  • the d- axis denotes the direction of the rotor flux and the q- axis the perpendicular cross-flux axis.
  • a transformation of the ⁇ / ⁇ stator coordinate system into the rotating d / q rotor coordinate system can be established via the rotation angle ⁇ k between the winding axis of the phase U of the stator and the longitudinal axis of the rotor magnetic field.
  • a total motor current l or its three phase currents l u , l v and l w in the stator fixed ⁇ / ⁇ coordinate system or in rotating with the rotor d / q coordinate system can be considered.
  • a pseudo-noise binary signal PRBS
  • PRBS pseudo-noise binary signal
  • the mechanical system is a single-input single-output (SISO) system that uses a single mechanical or electrical system Input a single mechanical output variable can be measured.
  • SISO single-input single-output
  • the input quantity is excited by means of the pseudo-noise binary signal, so that in the output variable a broadband behavior of the SISO system can be determined.
  • JM Pacas "Application of the Welch Method for the Identification of Two and Three Mass Systems," IEEE Transactions on Industrial Electronics, Vol. 1, January 2008, pp. 457-466 (Reference [2]) described.
  • a genre-like process is part of a conference article in: P. Szczupak, JM Pacas: "Automatic Identification of a PMSM Drive Equipped with an Output LC Filter", IEEE Industrial Electronics, IECON 2006, 32nd Annual Confrence on November 2006, pp. 1143-1148 (Reference [3]) presented.
  • the object of the present invention is, starting from an electrical T-equivalent circuit diagram of a three-phase asynchronous machine, to propose a method for determining the substitute panel characteristics, wherein a parameter identification without electrical or mechanical load of the motor is enabled, the rotor is stationary and by a single measurement all electrical equivalent circuit parameters for a description of the electrical behavior of the three-phase motor for a large frequency range can be determined.
  • Advantageous developments of the invention are the subject of the dependent claims.
  • a standstill position of the rotor means that the angle of the rotor with respect to the stator does not change, and thus the angle of rotation between ⁇ - and d-axis is constant and possibly known.
  • a test signal is fed in the same direction in both axial directions, ie in the ⁇ -axis direction and ⁇ -axis direction of the stator.
  • the structure of the test signal determines which frequency components or ranges are measurable and with what accuracy the equivalent circuit parameters can be identified, with parameters corresponding to the frequency coverage of the test signal extracted.
  • a feed of the test signal voltages U 1 ⁇ and U 1 ⁇ generates measurement signal currents I 1 ⁇ , I 1 ⁇ , which are measured.
  • the feeding of the two phase voltages for measuring the two phase currents can be done for example by means of a 2/3 phase converter, the above matrix relation of the two voltages U 1 ⁇ and U 1 ⁇ generate the three phase voltages U U , U V and U W from the three measured currents I U , I V and I W can transform the two currents I 1 ⁇ and I 1 ⁇ .
  • An injection of the test signal can, for example, by a control of an inverter of the Motor control device of the three-phase motor done.
  • the test signal voltages can be fed directly into the strings of the asynchronous machine.
  • the measurement of the phase currents can be made via the same current measuring instruments that are used in a control unit without control in the operation of the three-phase motor.
  • the injected test signal voltages and the measured measured signal currents may be recorded as digitally sampled time samples, and on the basis of which the equivalent circuit parameters may be extracted.
  • This is preferably done by a frequency domain analysis, ie a frequency transformation of the recorded time domain data, and an analysis of the frequency response of the measured transfer functions G 1 , G 2 , G 3 or G 4 .
  • the coefficients of the transfer function can be determined by means of a suitable signal-theoretical method, these coefficients for identifying the equivalent circuit parameter R 1 , R ' 2 , L 1 ⁇ , L' 2 ⁇ and L h can be used.
  • a determination of the frequency response of the transfer function G with knowledge of the underlying admittance formula Y allows the extraction of the equivalent circuit parameter.
  • a broadband test signal by means of a single measurement, statements can be made about the equivalent circuit characteristics of the three-phase motor.
  • signal-theoretical methods are used which transform the measured time domain data into frequency domain data, wherein the frequency response can be detected formulaically, and by means of a parameter extraction from the frequency response, the coefficients of the underlying transfer function and thus the equivalent circuit diagram sizes can be identified.
  • test current injection is only possible with great effort.
  • the four admittance functions have identical frequency response and give the same parameters, since the underlying equivalent circuit includes balanced components and includes identical resistors and inductance values.
  • the test signal may be a "pseudo-noise binary signal.”
  • the test signal should have a high bandwidth in order to enable as high a frequency resolution as possible and a broadband analysis of the electrical motor behavior
  • Pseudo-Noise Binary Signal PRBS is a binary signal that approximates the white noise spectrum and can typically take the values +1 and -1 and is used as an alternative to white noise.
  • a PRB test signal can easily be generated by linear feedback shift registers and can be generated, for example, by a DSP (Digital Signal Processor), FPGA (Field Programmable gate array) or microcontroller a motor controller to drive the inverter can be generated.
  • DSP Digital Signal Processor
  • FPGA Field Programmable gate array
  • microcontroller a motor controller to drive the inverter can be generated.
  • each motor drive electronics can produce such a PRB signal without major modification and feed it as motor voltage into the motor.
  • a frequency domain transformation of sampled time domain data for identifying the equivalent circuit parameter in the frequency domain can be arbitrary.
  • the identification of the equivalent circuit diagram parameters may comprise a Fourier transformation according to a periodogram method, preferably a Bartlett method, in particular a Welch method.
  • a periodogram method a spectral power density is achieved by a Fourier transformation of individual data blocks.
  • the quality of the spectral estimation can be improved by averaging a number of independent periodograms. This method is known in the literature under the name Bartlett method, in which the measured signal is divided into sections.
  • the Welch method is an extension of the approach suggested by Bartlett Reduction of the leak effect ( leakage effect ) certain window functions are used here.
  • the spurious leakage effect occurs when the signal portion is not periodically, an integer multiple of the period, or this signal portion is zero at the edges.
  • the use of a Welch method in the identification of a two- or three-mass system is already known from the above-mentioned document [2].
  • the Welch method splits M samples into K subsequences, which are weighted by a window function and to which a Fourier transform is applied.
  • the Welch method described in the publication [1] allows the transformation of any number of samples with the highest possible accuracy in the frequency domain.
  • the time domain data is windowed, the fenestrated data are divided into subsequences and Fourier transformed, and from this periodigrams are determined which can be used to determine the transfer function, in this case the admittance function, in the frequency domain.
  • a correlogram method which is also known in the literature as Blackman Tukey estimation, are used.
  • the spectral estimation takes place on the basis of an autocorrelation function (AKF) and a cross-correlation function (CCF), which result from the test signal (Excitation signal) and the measurement signal (response signal) is calculated.
  • the spectral power density is obtained by Fourier transformation of the previously estimated AKF and KKF.
  • the Welch method provides more robust results.
  • the equivalent circuit parameters of the three-phase motor can be extracted.
  • the Levenberg-Marquardt algorithm can be used in a development of the invention to identify the equivalent circuit parameters by means of a transfer function parameter determination.
  • a method according to Nelder and Mead can be used, although the Levenberg-Marquardt algorithm provides more robust results, in particular for heavily noisy data sets. He belongs to the group of gradient methods, whereby by iteratively minimizing an error function better parameter vectors corresponding to the coefficients of the transfer function can be calculated.
  • the Levenberg-Marquardt method is currently the standard method for nonlinear optimizations. It is a mixture of gradient method and inversion of a Hesse matrix and is referred to in the literature as the method of steepest descent. The inversion of the Hesse matrix is also referred to as the Gauss-Newton method.
  • the equivalent circuit parameter L 1 ⁇ , L ' 2 ⁇ , L h , R 1 and R ' 2 can thus be determined.
  • the identified equivalent circuit parameter can be used in an adjustment and / or optimization of inverter control parameters and / or engine monitoring.
  • asynchronous motor control devices which can control at fast speed transients or providing dynamic variable output energy due to the knowledge of electrical equivalent circuit parameters according to the inverter or the Stranggantriebshoven can pretend that the machine can optimally meet the desired work without overshoot.
  • control and regulation are used interchangeably.
  • the knowledge of the equivalent circuit parameters of the electrical circuit can therefore serve the parameterization of the current controller, the highest requirement for high dynamics as the innermost controller.
  • sophisticated control methods that exceed those of conventional PI controllers Go beyond require a very precise knowledge of the machine parameters, in particular the equivalent circuit parameters.
  • state space controllers dead-beat controllers or model sequence controllers may be mentioned here.
  • the equivalent circuit parameters of already integrated or exchanged in the mechanical drive train three-phase motors can be determined in a complex machine environment, and the motor controller can be set on site.
  • the description of the electrical behavior during dynamic operations is possible, so that in particular in the control of complex transient transient operations of the machine, an accurate control of the inverter is made possible. This enables an overshoot-free controller setting and an optimized fast dynamics control of the motor.
  • Regime parameterization serves to optimize the control parameters of the inverter, whereby a deviation of the equivalent circuit diagram parameters from, for example, previous measurements for error monitoring of the motor or for wear control can be taken into account.
  • the use of the method may be advantageous in the context of "condition monitoring" of the engine, so that from time to time the method can redetermine the equivalent circuit parameters, adaptively adapt the motor controller and output error signaling in case of significant deviations from previously identified or presettable parameter values, so that motor or control electronics can be checked.
  • an identification device according to claim 7 is proposed.
  • this invention relates to an identification device which is adapted to carry out an aforementioned method and for this purpose opens the possibility to communicate by means of an inverter interface unit with an inverter control device, in particular with the semiconductor switching components of the inverter to switch them or their operating state query.
  • an inverter interface unit with an inverter control device, in particular with the semiconductor switching components of the inverter to switch them or their operating state query.
  • a standstill of the rotor can be detected.
  • speed or rotary encoder sensors can provide information about a standstill of the rotor. However, these sensors are not needed for parameter identification, a heuristic knowledge of an assumed rotor standstill can be sufficient in most cases.
  • the identification device comprises a test signal generating device which can generate a two-channel identical ⁇ / ⁇ test signal, wherein the test signal, in particular a PRB noise signal, can be converted into a U / V / W control test signal by means of a U / V / W transformation unit. which is the inverter control device fed.
  • the control test signal generates in the motor corresponding test signal voltages in the three motor strings.
  • the identification device comprises an ⁇ / ⁇ transformation unit, which the measured I U , I V and I W -Meßsignalströme in ⁇ / ⁇ -Meßsignalströme I ⁇ and I ⁇ can convert and a parameter identification unit based on the present in the time domain test signal voltages U ⁇ , U ⁇ and measured Meßsignalströme I ⁇ , I ⁇ , can perform a parameter identification according to the aforementioned method.
  • Such an identification device may for example be constructed in several parts, wherein the motor controller of a motor control device can be used to generate the test signal.
  • the measured currents may also be recorded by the engine control device.
  • An external computer can read out these measured and injected voltages and currents, transform them into the frequency range and perform a parameter identification.
  • the parameter identification unit may comprise a Fourier transformation means, in particular an FFT / DFT means for Fourier transformation of intermittent ⁇ / ⁇ -scan signal values according to the Welch method and a parameter determination means, in particular a Levenberg-Marquardt transfer function parameter determination means.
  • the parameter identification unit comprises a Fourier transformation means for transferring the injected and measured voltage and current time samples U 1 ⁇ , U 1 ⁇ , I 1 ⁇ , I 1 ⁇ and a parameter determination means which, starting from frequency domain transmission functions G 1 , G 2 , G 3 and / or G 4 , a determination of the transfer function coefficients a 0 , a 1 , b 0 , b 1 and b 2 can perform.
  • the computation methods necessary for this purpose can be carried out, for example, within a DSP, a microcontroller of an FPGA, a PC or a small computer, whereby a logical and structural separation between test signal generation, measured value storage, Fourier transformation and parameter determination is possible.
  • the signal processing and the subsequent numerical method can advantageously be provided as a software implementation at least partially on an engine controller or engine control device.
  • the Fourier transformation means as FPGA in order to realize a fast Fourier transformation with the aid of a static circuit, and implementing the parameter identification means as variable computing software on a high performance DSP of a motor control controller.
  • Test signal generation and measurement storage may be performed within an inverter engine control device.
  • Fourier transformation and parameter identification may also be accomplished by a motor control device or by an external identification device having an interface for communication with the engine control device.
  • the motor control device can be equipped with low computing power, and sophisticated signal theoretical tasks in an external identification device, which is lockable to the engine control device, are processed, whereby hardware costs can be saved.
  • the device may further comprise a monitoring and optimization unit which is set up to determine, optimize and / or monitor control parameters of an inverter control device on the basis of the identified equivalent circuit diagram parameters.
  • the monitoring and optimizing unit receives the determined equivalent circuit parameters of the parameter identifier unit and can optimize control parameters of the motor controller based on the determined equivalent circuit parameters, particularly with respect to dynamic controller behavior and / or filter characteristics, to reduce the effects of the inductive behavior of the asynchronous motor on the grid.
  • efficient operation of the engine control system can be optimized and engine modifications monitored or an error signal output in the event of engine failure or faulty behavior.
  • the equivalent circuit diagram parameters required for this purpose can be routinely re-performed within the scope of a condition monitoring by the monitoring and optimization unit after a specific time interval or, for example, when the motor or engine parts are replaced.
  • the invention proposes a motor control device for the encoderless control of a three-phase asynchronous motor, which comprises a previously described identification device for the encoderless identification of electrical equivalent circuit parameter, wherein the identified replacement circuitry parameters are usable for determining, optimizing and monitoring the engine and / or engine control.
  • a motor control device which can conventionally perform a sensor-based control of the rotational speed behavior of the asynchronous motor and which comprises an identification device or is in connection with such an identification device and which identifies the equivalent circuit diagram parameters Optimization of the control behavior, used to determine electrical quantities for the control of the motor and for monitoring a faultless behavior of the induction motor and / or the motor control.
  • the determined equivalent circuit parameters can be used for optimal adjustment of control characteristics, so that a dynamic control behavior can be overshoot enabled.
  • the identified parameters can be used to optimize the power consumption and the energy efficiency of the asynchronous motor and be used for example for a filter configuration for setting electronic filters or they can be used to monitor the error-free behavior of the motor control device and / or the induction motor.
  • an error case can be assumed or a new determination of the equivalent circuit diagram parameters can be carried out.
  • the engine control device may adaptively identify the equivalent circuit parameters of the new engine and tune to the new engine in an optimized manner. Such a self-calibration of the engine control device can be done at the factory, or when installing the machine at the customer, or during operation in the context of a "Condition Monitoring".
  • the engine control device is set up such that an automated identification of the equivalent circuit parameter during a rotor standstill can be undertaken, at least during the initial startup, preferably several times in the course of the operation, with an identifiable deviation of the identified Organicchaltstoryparameter of previously determined stored and / or model-related equivalent circuit parameters error signaling can be triggered.
  • this aspect proposes that at least during a first startup, or a test run factory, but preferably in the context of a "condition monitoring", or repair or replacement of parts of the engine, a parameter identification is made, the engine control device for optimization, adjustment and Monitoring the motor can take into account these equivalent circuit parameters.
  • a "universal" motor control device can be provided which can adaptively adapt to a whole range of different asynchronous motors, wherein an identification of the electrical variables is vorOSEbar during engine downtime. Aging changes in the engine may be accounted for by adaptive correction of the controller parameters, and malfunctions of the engine or engine control monitoring may be detected.
  • a use of the aforementioned method for determining, optimizing and monitoring motor control parameters for the control or regulation of electric drives, in particular for setting control parameters of a motor control or motor control device is proposed.
  • the determined equivalent circuit diagram parameters are used for controller optimization, parameterization and monitoring.
  • a determination of the equivalent circuit diagram parameters can be made, for example, for a series of asynchronous motors once on a sample motor, and corresponding control parameters for the motor control devices used therefor can be optimized and adapted. This can be done at the factory.
  • an identification device in an engine control device or can be connected externally, it can perform a new identification of the parameters in the installed state of the engine during initial commissioning, in repair measures or routine or ongoing condition monitoring.
  • parts of the method such as the frequency domain transformation and the parameter determination, can be performed on an external computer, and other parts, such as the injection of the test signal and the conversion from the three-phase system in the two-coordinate system, made within the engine control device become.
  • the decisive factor is that the identified equivalent circuit parameters can be used for optimum controller parameterization, filter adjustment, electrical component dimensioning.
  • FIG. 1 an equivalent circuit of the stator coil 01 of a three-phase motor.
  • Each coil strand U , V and W comprises a coil resistance R s 03 and a coil inductance L s 05.
  • the three coil strands 07 are interconnected at their first end and at their second end to the three phases U , V , W connected to the output of an inverter.
  • the stator coil 01 interacts with the rotatably mounted rotor coil 11, in which upon impressing a rotating magnetic field of the stator coil 01, a voltage is induced, which generates an oppositely directed rotor magnetic field through which the motor is rotated.
  • the rotational speed of the rotor 11 lags behind the magnetic rotational speed of the stator coil 01, whereby voltage is further induced in the rotor 11.
  • the degree of lag is referred to as slip s.
  • the system of rotor coil 11 and stator coil 01 can be considered instead of in a rotational phase system U / V / W in a stator two-coordinate system ⁇ / ⁇ or rotor two-coordinate system d / q , from which the in Fig. 4 represented T-equivalent circuit diagram of the engine can be derived.
  • FIG. 2 shows first Fig. 2 the spatial assignment of the three-phase system U / V / W with the three coordinate directions 1 (0 °), e j2 ⁇ / 3 (120 °) and e j4 ⁇ / 3 (240 °) compared to the ⁇ / ⁇ coordinate system of the complex plane with real part and imaginary part , Assuming a total current / it can be divided into three sub-currents I U , I V and I W with respect to the three-phase system. In the same way, the current through the partial currents can be expressed in complex stator-fixed coordinate system I ⁇ and I ⁇ . The relation between I ⁇ , I ⁇ and I U , I V and I W have already been given above.
  • the rotor has a rotating coordinate system d / q , which has the rotor flow axis d and transverse flow axis q .
  • the relationship between the rotating coordinates d / q and the fixed coordinates ⁇ / ⁇ can be established by the rotor rotation angle ⁇ k .
  • FIG. 3 schematically the structure of a three-phase asynchronous motor 09 is shown.
  • This comprises in a simple embodiment a three-phase stator 13 with the coil strands U1, U2 (07-U), V1, V2 (07-V) and W1, W2 (07-W).
  • the fixed stator coils define three coil axes A1, A2 and A3, which correspond to the in Fig. 2 shown three phase axes 1, e j2 ⁇ / 3 and e j4 ⁇ / 3 correspond.
  • the rotor 11 includes a squirrel-cage rotor in which voltage is induced at a rotating stator magnetic field and whose induced current generates a reverse magnetic field, thereby generating a torque of the motor 09.
  • FIG. 4 shows the equivalent circuit of the coupling of stator and rotor coils with the phase currents I 1 , I 2 and U 1 , U 2 where the index 1 stands for the stator coil and the index 2 for the rotor coil.
  • the equivalent circuit diagram after Fig. 4 is a T-equivalent circuit diagram and describes the electrical relationship between the stator coil 01 with R 1 , L 1 ⁇ 03, 05 and main inductance L h to the rotor 11 and the effect of the rotor coil with R ' 2 and L ' 2 ⁇ and also with main inductance L h .
  • Fig. 6 schematically shows a Motoran horrscrien 16, in which the phases of a three-phase supply network 17 are converted by means of a three-phase bridge rectifier 19 into a DC voltage of a DC intermediate circuit 21.
  • a buffer capacitor 23 is provided, which smoothes the voltage and, for example, can provide buffer energy for a controlled emergency operation of the motor 09 in the event of a power failure.
  • An inverter 25 comprises three switching bridges, in which power semiconductor switching elements 27 can switch the motor strings U / V / W in a coordinated manner with respect to the DC voltage + DC and DC of the DC link 21, and thus a variable-speed PWM-modeled drive voltage U u , U v , U w for the three-phase motor 09 provide.
  • the phase voltages U u , U v , U w 31 and phase currents I u , I v , I w 33 are tapped in the supply lines to the three-phase motor 09, and fed to a motor control device 35.
  • the phase voltages do not necessarily have to be tapped, since these can be specified by the inverter 25 and it is assumed that the predetermined voltage setpoint is equal to the voltage actual value.
  • the motor control device 35 includes control lines to drive the individual power semiconductor switching elements 27 in phase according to the desired speed behavior of the motor 09.
  • the engine control device 35 is further coupled to position angle and acceleration sensors, wherein temperature sensors for monitoring the operating temperature of the motor 09 can be connected.
  • the motor control device 35 can perform a rotationally-optimized control of the inverter switching components 27 only by knowing the phase voltages 31 and measured phase currents 33.
  • the control parameters of Motor control device 35 may be detected by knowing the electrical behavior of the motor 09, which is defined by the in FIG Fig. 4 described equivalent circuit diagram can be set.
  • the engine control device 35 comprises an identification device 39, as shown in FIG Fig. 7 is shown.
  • a motor control device 35 which includes an identification device 39 for extracting the equivalent circuit parameters of the three-phase asynchronous motor 09.
  • the motor control device 35 has inputs for detecting the three phase currents I U , I V and I W 33 and the three phase voltages U U , U V and U W 31 of the three-phase motor 09, wherein a detection of only two phase voltages and phase currents is sufficient, since the third size after Kirchhoff results.
  • the motor control device 35 comprises switching outputs 61 for outputting inverter switching signals for actuating the power semiconductor switching elements 27 of the inverter 25.
  • the in-phase generation of the inverter switching signals 61 is effected by means of a PWM (Pulse-Width Modulation) microcontroller, which comprises an inverter Control device 37 is to make sensorless or sensor-based speed and torque control of the three-phase motor 09.
  • the identification device 39 receives the phase voltages 31 and phase currents 33 and comprises an ⁇ / ⁇ transformation unit 41, which converts phase voltages and phase currents into the partial voltage U ⁇ , U ⁇ as well as partial currents I ⁇ , I ⁇ of the complex two-coordinate system.
  • the converted phase voltages and phase currents are fed to a parameter identification unit 67 which comprises, on the one hand, a Fourier transformation means 45 and, on the other hand, a parameter extraction means 47.
  • Fourier transformation is applied to the time domain data of the phase voltages and phase currents so that these data are present in the frequency domain and admittance transfer functions G 1 , G 2 , G 3 or G 4 defined above can be formed.
  • admittance function coefficients of another transfer function, in particular impedance function or other meaningful electrical functional relationships, can be used as the basis and on this basis the parameters of interest can be determined.
  • the parameter identification unit 67 of the Parameter extraction means 47 Based on the characteristics of the transfer functions, the parameter identification unit 67 of the Parameter extraction means 47 with knowledge of the underlying admittance description function extract the coefficients to be identified from the curves. From this, the equivalent circuit parameters R 1 , R ' 2 , L 1 ⁇ , L ' 2 a and L h of in Fig. 4 shown equivalent circuit diagram, and based on which an optimization unit 49, which can perform a modulation of the motor and an optimization of parameter settings of the pulse width generation, control parameters and filter parameters for the parameterization, optimization and monitoring of the inverter controller 37. These are forwarded to a PWM interface 53 and can thus be transmitted to the inverter control device 37, in order to enable optimal control of the asynchronous motor.
  • a pseudo-noise binary signal PRBS
  • PRBS pseudo-noise binary signal
  • This input signal is forwarded to the inverter control device 37, which controls the inverter 25 in such a way that the motor 09 is energized in accordance with the test signal.
  • step S1 first, the rotor is brought into a standstill position, in which the number of revolutions n is equal to zero.
  • step S2 the injection of a test signal as a PRB signal in the ⁇ / ⁇ system in both channels alike, not phase-shifted, or made with a negative sign. This is an essential prerequisite, so that no torques of the rotor can occur. From the ⁇ / ⁇ test signals, a conversion into the phase voltages U U , U V and U W is carried out and thus the motor is driven.
  • the controlled voltage signals U (n) and the measured current values I (n) are sampled in the time domain and in the frequency domain by means of a Fourier transformation, in particular a DFT (Discrete Fourier Transformation) or FFT (Fast Fourier Transformation) using a Welch method, ie in this case transferred to the Laplace area, so that the Frequency domain values U (k), I (k) result.
  • a parameter extraction for example based on the Levenberg-Marquardt algorithm, can be carried out by means of a system identification in order to determine the transfer function coefficients a 0 , a 1 , b 0 , b 1 and b 2 from the curve. From this, the values of the equivalent circuit parameters R 1 , R ' 2 , L 1 ⁇ , L ' 2 ⁇ and L h can be derived and for setting motor control parameters, optimizing load changes or torque changes, and setting and designing filter parameters for filtering motor currents or motor voltages are used.
  • a parameterization of the inverter control device 37 can be made, wherein a high dynamics of the motor behavior can be achieved by optimizing the control behavior of the inverter controller as the innermost controller.
  • sophisticated control methods that go far beyond the possibilities of a conventional PI controller of the asynchronous motor, can be achieved because of a precise knowledge of the electrical machine parameters.
  • the controller parameters for a state space controller, a dead-beat controller or a model-following control can be set exactly.
  • Fig. 9 1 schematically shows the feeding of a test signal of a test signal generation unit 51 into a mathematical model of a three-phase motor 59 as an ⁇ / ⁇ model in the context of a Matlab-Simulink simulation.
  • the test signal generation unit 51 generates a pseudo-noise binary signal, which is provided in the clock of an inverter controller 37, which usually operates at 16 kHz clock rate, ie 62.5 ⁇ s clock duration. Since the ⁇ / ⁇ motor model 59 can be modeled with quasi-analog signals, a sampling increase unit 55 is interposed, which generates a quasi-continuous test signal from the roughly sampled 16 kHz test signal.
  • Fig. 12 is again a magnitude and phase course of an averaged machine model, the sum and phase curves of the individual transfer functions G 1 to G 4 summarized averages compared to the exact machine model shown. Only in the uppermost frequency range near 1 kHz are there slight deviations in the phase curve, the magnitude curve
  • the test signal generating unit 51 includes an ⁇ -test signal generating means 63 and ⁇ -test signal generating means 65.
  • the ⁇ -test signal generating means 63 generates a pseudo-noise binary signal provided at a typical clock frequency of a 16 kHz inverter controller 37 and a sampling rate increasing unit 55 is converted to a quasi-continuous-time signal, wherein a gain of the signal by means of a test signal amplifier 57 is connected downstream.
  • the time profile of the test signal and the signal currents is detected by means of a signal recording unit 69.
  • the PRB signal is fed as voltage U ⁇ into the mathematical model of the three-phase motor 59.
  • the ⁇ -test-signal generating means 65 generates a constant voltage, which is fed as U ⁇ into the model of the three-phase motor 59.
  • Fig. 14 are the two sub-products of the torque equation and the total torque at which the rotor is driven, shown. It can clearly be seen that in the case of an asymmetrical feeding of the test signals, a torque is generated which causes the rotor 11 to rotate, in which case a parameter identification would also depend on the type of the mechanical drive train. Finally shows Fig. 15 the evaluation of the transfer function or Admittanzen G 1 to G 4 , which provides completely different values, the phase and magnitude curves are practically useless. Thus, it is stated that only in the same direction feeding the test signal in both coordinate directions ⁇ and ⁇ of the motor 09 leads to usable results.
  • the basic idea of the invention is based on a signal-theoretical consideration of a three-phase electric motor in a two-coordinate space ⁇ / ⁇ , wherein by means of symmetrical feeding of a broadband test signal, preferably a PRB signal, Evaluation signals, which are present as motor currents, can be transformed into the frequency range by means of preferably a Welch method. Based on this, transfer functions can be extracted from the injected and measured signals, and the underlying system description parameters can be evaluated by means of a parameter identification method, preferably a Levenberg-Marquardt algorithm. By knowing the formulaic relationship of the transfer function, the individual function parameters can be identified and thus the electrical behavior of the motor can be characterized.
  • a parameter identification method preferably a Levenberg-Marquardt algorithm
  • the method depicts the transient behavior of the engine over a wide operating frequency range or speed range and can be used to adjust, optimize and monitor the engine.
  • a universal engine control device can be provided, which can be used adaptively at the factory or after installation of the engine when coupled with a mechanical output train for determining the engine behavior.
  • a motor-friendly and fast determination of the machine-describing parameters is thereby made possible.
  • the method can be retrofitted into existing motor control devices such as the Baumüller b_maXX motor controllers and servocontrollers, in particular b_maXX 1000-5000, and provides automated identification and monitoring of the motor-describing parameters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Ac Motors In General (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Control Of Electric Motors In General (AREA)

Claims (12)

  1. Procédé d'identification sans résolveur de paramètres d'un schéma de branchement électrique de remplacement (03, 05, 15) d'un moteur asynchrone triphasé (09), qui comprend au moins l'étape suivante :
    - adoption d'une position de repos du rotor (11),
    caractérisé en ce qu'il comprend au moins les étapes suivantes :
    - injection identique d'une tension signal de test (U , U ) dans les directions d'axes de stator α et β constituant des directions de coordonnées d'un système complexe à deux coordonnées du système triphasé du moteur asynchrone (09) ;
    - mesure des courants signal de mesure (I , I ) des directions d'axes α et β du moteur asynchrone (09) ;
    - identification de paramètres de schémas de branchement de remplacement (03, 05, 15) du moteur asynchrone (09) sur la base des tensions signal de test (U , U ) et des valeurs échantillons prises dans le temps, saisies en numérique, des courants signal de mesure (I , I ), par analyse de la réponse en fréquence de la fonction de transfert mesurée, la fonction de transfert étant connue dans le domaine de fréquence d'un schéma de branchement de remplacement d'un moteur asynchrone, exécutée par extraction de paramètres ;
    l'injection du signal de test dans le moteur asynchrone (09) s'effectuant de telle sorte que le rotor (11) reste libre de tout couple.
  2. Procédé selon la revendication 1, caractérisé en ce qu'au moins une fonction de réponse en fréquence G, de préférence toutes les fonctions de réponse en fréquence G1 = I 1α/U 1α, G2 = I 1β/U 1α, G3 = I 1α/U 1β, G4 = I 1β/U 1β, est ou sont obtenue(s) pour l'identification de paramètres de schémas de branchement de remplacement (03, 05, 15), des écarts des fonctions de réponse en fréquence pouvant être prédéterminés provoquant une répétition du procédé ou un signalement d'erreur.
  3. Procédé selon l'une des revendications précédentes, caractérisé en ce que le signal de test est un signal binaire de pseudo bruit.
  4. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'identification des paramètres des schémas de branchement de remplacement (03, 05, 15) comprend une transformation de Fourier de signaux temporels discrets selon un procédé de Welsh.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'identification des paramètres des schémas de branchement de remplacement (03, 05, 15) comprend la détermination de paramètres par fonction de transfert, en particulier selon un algorithme de Levenberg-Marquardt.
  6. Procédé selon l'une des revendications précédentes, caractérisé en ce que les paramètres des schémas de branchement de remplacement identifiés (03, 05, 15) sont utilisés lors d'un ajustement et/ou d'une optimisation de paramètres de commande d'un onduleur et/ou pour le contrôle du moteur.
  7. Dispositif d'identification (39) pour l'identification sans résolveur de paramètres de schémas de branchement électrique de remplacement (03, 05, 15) d'un moteur asynchrone triphasé (09) qui est commandé par une commande (35) comprenant un dispositif de commande d'onduleur (37), caractérisé en ce que le dispositif d'identification (39) comprend en outre une unité interface d'onduleur (53) qui peut être connectée au dispositif de commande (37) de l'onduleur pour la communication des commandes et pour la détermination de l'état de repos du rotor, un dispositif de production de signaux de test (51) pour la production et l'injection identique dans les directions d'axes du stator α et β, constituant des directions de coordonnées d'un système complexe à deux coordonnées du système triphasé du moteur asynchrone (09), d'un signal de test α/β sous la forme de tensions signal de test (U , U ), l'injection d'un signal de test dans le moteur asynchrone (09) s'effectuant de telle sorte que, lorsqu'est adopté un état de repos du rotor (11), le rotor (11) reste libre de tout couple, une unité de transformation U/V/W (43) pour la transformation du signal de test α/β en un signal de test de commande U/V/W envoyé au moteur (9), une unité de transformation α/β (41) pour la transformation de courants signal de mesure U/V/W mesurés en courants signal de mesure α/β (I , I ) et une unité d'identification de paramètres (67) destinée à l'identification de paramètres de schémas de branchement de remplacement (03, 05, 15) sur la base des tensions signal de test (U , U ) et des valeurs échantillons prises dans le temps, saisies en numérique, des courants signal de mesure (I , I ), par analyse de la réponse en fréquence de la fonction de transfert mesurée, la fonction de transfert étant connue dans le domaine de fréquence d'un schéma de branchement de remplacement d'un moteur asynchrone, exécutée par extraction de paramètres.
  8. Dispositif selon la revendication 7, caractérisé en ce que l'unité d'identification de paramètres (67) comprend un moyen de transformation de Fourier (45), en particulier un moyen FFT/DFT servant à effectuer la transformation de Fourier de valeurs discontinues du signal α/β selon un procédé de Welch, et un moyen de détermination de paramètres (47), en particulier un moyen de détermination de paramètres d'une fonction de transfert selon Levenberg-Marquart.
  9. Dispositif selon l'une des revendications 7 ou 8, caractérisé en ce qu'il comprend en outre une unité de contrôle et d'optimisation (49) qui est conçue pour déterminer, optimiser et/ou contrôler des paramètres de commande d'un dispositif de commande d'onduleur (37) sur la base des paramètres des schémas de branchement de remplacement identifiés (03, 05, 15).
  10. Dispositif de commande de moteur (35) pour la commande d'un moteur asynchrone triphasé (09), caractérisé en ce qu'il comprend un dispositif d'identification (39) pour l'identification sans résolveur de paramètres de schémas électriques de branchement de remplacement (03, 05, 15) d'un moteur asynchrone triphasé (09) selon l'une des revendications précédentes 7 à 9, les paramètres des schémas de branchement de remplacement identifiés (03, 05, 15) pouvant être utilisés pour la détermination, l'optimisation et le contrôle du moteur (09) et/ou de la commande du moteur.
  11. Dispositif selon la revendication 10, caractérisé en ce que le dispositif est conçu de telle sorte qu'au moins lors de la première mise en service, de préférence plusieurs fois au cours de la durée de vie utile, une identification automatisée des paramètres des schémas de branchement de remplacement (03, 05, 15) peut être exécutée pendant un état de repos du rotor, et en ce que, dans le cas d'un écart prédéterminable des paramètres des schémas de branchement de remplacement identifiés (03, 05, 15), par rapport à des paramètres de schémas de branchement de remplacement prédéterminés, mémorisés et/ou rapportés à un modèle (03, 05, 15), un signalement d'erreur peut être déclenché.
  12. Utilisation d'un procédé selon l'une des revendications précédentes pour la détermination, l'optimisation et le contrôle de paramètres de régulateurs de moteurs servant à commander des entraînements électriques, en particulier pour l'ajustement de paramètres de régulation d'un dispositif de commande de moteur (35).
EP10172899.6A 2010-08-16 2010-08-16 Dispositif et procédé d'identification des paramètres d'un schéma électrique équivalent d'un moteur asynchrone triphasé sans utilisation d'encodeur de vitesse Active EP2421145B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10172899.6A EP2421145B1 (fr) 2010-08-16 2010-08-16 Dispositif et procédé d'identification des paramètres d'un schéma électrique équivalent d'un moteur asynchrone triphasé sans utilisation d'encodeur de vitesse
US13/205,687 US8587239B2 (en) 2010-08-16 2011-08-09 Apparatus and method for sensorless identification of rotating electrical equivalent circuit parameters of a three-phase asynchronous motor
CN201110251314.5A CN102375118B (zh) 2010-08-16 2011-08-16 识别交流异步电动机电等效电路图参量的设备和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10172899.6A EP2421145B1 (fr) 2010-08-16 2010-08-16 Dispositif et procédé d'identification des paramètres d'un schéma électrique équivalent d'un moteur asynchrone triphasé sans utilisation d'encodeur de vitesse

Publications (2)

Publication Number Publication Date
EP2421145A1 EP2421145A1 (fr) 2012-02-22
EP2421145B1 true EP2421145B1 (fr) 2015-02-11

Family

ID=43012493

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10172899.6A Active EP2421145B1 (fr) 2010-08-16 2010-08-16 Dispositif et procédé d'identification des paramètres d'un schéma électrique équivalent d'un moteur asynchrone triphasé sans utilisation d'encodeur de vitesse

Country Status (3)

Country Link
US (1) US8587239B2 (fr)
EP (1) EP2421145B1 (fr)
CN (1) CN102375118B (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010003096A1 (de) * 2010-03-22 2011-09-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ermittlung einer aktuellen Winkelposition eines drehbaren magnetischen Bauteils in einem elektrischen Antrieb
WO2014024059A2 (fr) * 2012-08-09 2014-02-13 Danfoss Power Electronics A/S Adaptation de moteur automatisée
US9024569B2 (en) 2013-06-28 2015-05-05 Eaton Corporation System and method of rotor time constant online identification in an AC induction machine
DE112014003571B4 (de) 2013-08-02 2021-11-25 Danfoss Power Electronics A/S Automatisierte Motoranpassung
US9641108B2 (en) * 2014-04-16 2017-05-02 Eaton Corporation Method and system for calibrating and detecting offset of rotary encoder relative to rotor of motor
CN104215906B (zh) * 2014-09-22 2017-02-08 国家电网公司 一种基于自动控制的电动机效率测试的试验方法
CN105021987B (zh) * 2015-07-08 2018-06-12 合肥工业大学 三相异步电动机效率特性测试的方法
JP6585979B2 (ja) * 2015-09-25 2019-10-02 株式会社日立製作所 回転機診断システム
DE102015013016B4 (de) 2015-10-07 2017-04-27 Audi Ag Verfahren zum Klassifizieren eines Zustands einer Elektromaschine
JP6730339B2 (ja) * 2018-02-16 2020-07-29 ファナック株式会社 パラメータ決定支援装置及びプログラム
DE102019202464A1 (de) * 2019-02-22 2020-08-27 Audi Ag Verfahren und Steuervorrichtung zum Ermitteln zumindest eines Kennwerts eines Antriebsstrangs, der sich im eingebauten Zustand in einem elektrisch antreibbaren Kraftfahrzeug befindet, sowie Kraftfahrzeug
CN111913104B (zh) 2019-05-08 2023-01-13 博格华纳公司 用于电动马达的调试过程中确定马达参数的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3887853A (en) * 1973-12-14 1975-06-03 Eaton Corp Stabilizing system for an inverter-driven induction motor
DE3212439C2 (de) * 1982-04-02 1992-02-20 Robert Prof.Dr.-Ing. 6100 Darmstadt Jötten Verfahren zum Betrieb einer durch schnelle elektrische Stellglieder gespeisten Asynchronmaschine
US4967134A (en) * 1989-02-27 1990-10-30 Losic Novica A Synthesis of load-independent ac drive systems
US5388052A (en) * 1993-03-31 1995-02-07 Otis Elevator Company Method of operating an induction motor
DE4434749A1 (de) * 1994-09-29 1996-04-04 Lust Antriebstechnik Gmbh Verfahren zur Bestimmung der elektrischen Parameter von Asynchronmotoren
US5689169A (en) * 1995-03-10 1997-11-18 Allen-Bradley Company, Inc. Transient inductance identifier for motor control
US5929400A (en) * 1997-12-22 1999-07-27 Otis Elevator Company Self commissioning controller for field-oriented elevator motor/drive system
US6774664B2 (en) * 1998-09-17 2004-08-10 Danfoss Drives A/S Method for automated measurement of the ohmic rotor resistance of an asynchronous machine
JP3959902B2 (ja) * 1999-09-28 2007-08-15 株式会社安川電機 誘導電動機の定数同定装置および制御装置
CA2395500C (fr) * 1999-12-23 2011-01-25 Siemens Aktiengesellschaft Procede pour faire fonctionner des moteurs asynchrones, et dispositif correspondant
CN1193497C (zh) * 2001-12-05 2005-03-16 艾默生网络能源有限公司 异步电机转动惯量辨识方法
US7557557B2 (en) * 2004-03-03 2009-07-07 Rohm Co., Ltd. Current detection circuit, load drive circuit, and memory storage
US7499290B1 (en) * 2004-05-19 2009-03-03 Mississippi State University Power conversion
JP4988374B2 (ja) * 2007-02-15 2012-08-01 三洋電機株式会社 モータ制御装置
CN100563093C (zh) * 2007-09-21 2009-11-25 艾默生网络能源有限公司 一种异步电动机的堵转参数辨识方法及装置
CN101938246B (zh) * 2010-09-29 2012-07-04 重庆交通大学 无速度传感器电机转速的模糊融合辨识方法

Also Published As

Publication number Publication date
EP2421145A1 (fr) 2012-02-22
US20120038303A1 (en) 2012-02-16
CN102375118A (zh) 2012-03-14
US8587239B2 (en) 2013-11-19
CN102375118B (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
EP2421145B1 (fr) Dispositif et procédé d'identification des paramètres d'un schéma électrique équivalent d'un moteur asynchrone triphasé sans utilisation d'encodeur de vitesse
EP2421148B1 (fr) Dispositif et procédé d'identification des paramètres de référence mécaniques d'un moteur asynchrone triphasé sans utilisation d'encodeur de vitesse
EP2421147B1 (fr) Dispositif et procédé d'identification des paramètres d'un schéma électrique équivalent d'un moteur synchrone triphasé sans utilisation d'encodeur de vitesse
EP2421146B1 (fr) Dispositif et procédé d'identification des paramètres de référence magnéto-mécaniques d'un moteur synchrone triphasé sans utilisation d'encodeur de vitesse
DE102010042330B4 (de) Verfahren und Systeme zum Durchführen von Fehlerdiagnosen für Rotoren von Elektromotoren
EP1985007B1 (fr) Procede et dispositif de fonctionnement d'une machine synchrone
EP0847617B1 (fr) Procede et dispositif de correction de la direction de flux d'un modele de flux d'un moteur a champ rotatif, commande sans capteur et par orientation de champ jusqu'a une frequence zero
DE112010001465T5 (de) Wechselstrommotor-Steuervorrichtung und Wechselstrommotor-Treibersystem
DE102020108299A1 (de) Bestimmung einer anfänglichen position eines rotors einer permanentmagnet-synchronmaschine
EP2538547B1 (fr) Dispositif et procédé d'identification de paramètres mécaniques d'un moteur linéaire asynchrone sans capteur de position
DE102008017900A1 (de) Verfahren zum Erfassen eines Fehlers in einer Drehfeldmaschine
DE102011080324A1 (de) Verfahren und Systeme für das Diagnostizieren von Fehlern für Rotore von elektrischen Motoren
DE102015207185A1 (de) Vorrichtung und Verfahren zum Minimieren des Einflusses einer Temperaturveränderung in einem Motor
DE112018001976T5 (de) Stückweise schätzung von gegenspannung zur fehlererkennung in elektrischen systemen
DE112015006003T5 (de) Winkelfehlerkorrekturvorrichtung und Winkelfehlerkorrekturverfahren für einen Positionssensor
EP1121740A1 (fr) Dispositif pour surveiller le systeme de mesure d'une commande electrique
DE112011102451T5 (de) Kalibrierungssteuerung für einen Generatorsatz
EP3703246A1 (fr) Dispositif et procédé de détection de la température d'enroulement
EP3422557B1 (fr) Procédé de détection de différences de charge
DE102014209603B3 (de) Verfahren und Vorrichtung zur sensorlosen Erfassung der Rotorposition einer Synchronmaschine
DE102020111018A1 (de) Verfahren zum bestimmen von motorparametern während der inbetriebnahme eines synchronen und asynchronen elektromotors und eines verwandten inbetriebgenommenen elektromotors
DE102017012027A1 (de) Verfahren zur drehgeberlosen Rotorlagebestimmung einer Drehfeldmaschine und Vorrichtung zur drehgeberlosen Regelung eines Drehstrommotors
DE102013204382A1 (de) Steuereinrichtung und Verfahren zum Ansteuern einer Drehfeldmaschine
DE112011102467T5 (de) Kalibrierungssteuerung für einen Generatorsatz
DE102019116339A1 (de) Motoransteuervorrichtung

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120801

17Q First examination report despatched

Effective date: 20130211

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140811

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 710195

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010008856

Country of ref document: DE

Effective date: 20150326

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHNEIDER FELDMANN AG PATENT- UND MARKENANWAEL, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150511

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150512

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010008856

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20151112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150816

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150816

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100816

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: BAUMUELLER NUERNBERG GMBH, DE

Free format text: FORMER OWNER: BAUMUELLER NUERNBERG GMBH, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230823

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230831

Year of fee payment: 14

Ref country code: GB

Payment date: 20230824

Year of fee payment: 14

Ref country code: CH

Payment date: 20230902

Year of fee payment: 14

Ref country code: AT

Payment date: 20230818

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230821

Year of fee payment: 14

Ref country code: DE

Payment date: 20230822

Year of fee payment: 14