EP2418450B1 - Heat exchanger of three-dimensional textile structure, use of same and method for producing same - Google Patents

Heat exchanger of three-dimensional textile structure, use of same and method for producing same Download PDF

Info

Publication number
EP2418450B1
EP2418450B1 EP11006619.8A EP11006619A EP2418450B1 EP 2418450 B1 EP2418450 B1 EP 2418450B1 EP 11006619 A EP11006619 A EP 11006619A EP 2418450 B1 EP2418450 B1 EP 2418450B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
wires
fibres
regions
structural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11006619.8A
Other languages
German (de)
French (fr)
Other versions
EP2418450A2 (en
EP2418450A3 (en
Inventor
Lena Dr.-Ing. Schnabel
Michael Dr.-Ing. Herrmann
Stefan Dr. Rer. Nat. Henninger
Ursula Dipl.-Ing. Wittstadt
Olaf Dr.-Ing. Andersen
Thomas Dr.-Ing. Studnitzky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP2418450A2 publication Critical patent/EP2418450A2/en
Publication of EP2418450A3 publication Critical patent/EP2418450A3/en
Application granted granted Critical
Publication of EP2418450B1 publication Critical patent/EP2418450B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/122Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and being formed of wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/026Evaporators specially adapted for sorption type systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0038Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for drying or dehumidifying gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/02Heat exchange conduits with particular branching, e.g. fractal conduit arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/06Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes composite, e.g. polymers with fillers or fibres

Definitions

  • the invention relates to a heat exchanger which has a three-dimensional textile structure made of wires or technical fibers with different structural areas, wherein the structural areas differ in the density of the technical fibers or wires or the porosity, so that a structural area in the form of channels with respect to the other structural area is closed, and the other structural portion has an enlarged outer surface.
  • the invention relates to a method for producing such heat exchangers. These heat exchangers are used in particular in the field of sorption heat pumps and refrigerators, heat pipes, evaporative coolers, condensers and catalysts.
  • an improvement in transmission performance can be achieved by reducing the design / layout of the flow channel to the properties, e.g. Density, pressure, flow regime, surface tension, state of aggregation, the respective heat-emitting and heat-absorbing fluid is adjusted.
  • Further requirements for the design of the heat exchanger can result from phase transitions or chemical reaction processes. Here are often on one side of the heat exchanger greatly enlarged surfaces required to produce the maximum possible contact area between the heat exchanger and the condensing / to be evaporated medium or between the reactants.
  • the fluid-carrying structures and functional areas which improve the heat transfer, for example by turbulence generation or by large volume-specific surfaces, produced in separate manufacturing steps and are each self-supporting areas.
  • the tubes can only be connected by widening with the lamella plates, even if a cohesive connection would have a significantly improved heat transfer result.
  • a cohesive connection can not be realized at reasonable cost due to the narrow spacing of the lamellae and the thus difficult accessibility of the contact point between the tube and lamella. Bonded connections are realized in practice in such a way that the tube and the surface enlargement are made of a material and the enlarged surface is produced, for example, by rolling or milling methods.
  • the achievable surface enlargement is limited in terms of their volume fraction and limited to radial geometries.
  • the functional structures ie the surface enlargement or turbulence structures
  • the functional structures are connected from both sides cohesively with the walls of the fluid channel, as this significantly improves the heat transfer.
  • the minimization of the thermal mass of the heat exchanger is a further central task.
  • the DE 10 2005 017 920 A1 describes various car radiator structures.
  • metallic fabric structures are used as heat conductors in the region through which exhaust gas or vapor flows, in order to better deliver the heat to the liquid-carrying channel structures.
  • the DE 689 05 402 T2 describes a heat exchanger, which consists of flat tubes, to which a fabric structure is welded.
  • the wire mesh is dimensioned so that an optimal ratio for the maximum inflow surface is realized with minimal pressure loss.
  • the DE 10 2005 012 754 A1 describes a method in which hot-dip galvanizing, ie by dipping the channel structure and the surface enlargement into liquid zinc, material-bonded connections between the tissue units and the fluid structure are formed.
  • EP 1 715 276 which can be considered as the closest prior art, metallic fabric structures are used as a heat conductor in the region through which exhaust gas or vapor flows, in order to be able to deliver the heat better to the liquid-carrying channel structures.
  • the tubes and heat transfer fabric in the heat exchanger of EP 1 715 276 represent only individual juxtaposed elements and not just structural areas of a single three-dimensional textile structure.
  • the different structural regions according to the invention can simultaneously assume a plurality of functions. These include the spatial separation of different flow areas or different fluids, the improvement of heat and mass transfer by generating turbulence at the same time good flow through or increasing the thermal conductivity and the stabilization of the heat exchanger.
  • the simultaneous use of the three aspects In combination with the use of thin wires contributes to the realization in lightweight construction.
  • the different structural areas are not dependent on a layered arrangement due to the available manufacturing technology and the integrated dimensioning of different functions, as described above but can be freely designed. The same applies to the production in the depth or in the flow direction. In this case, flow channels can be merged with the run length of the heat exchanger, change their diameter or even structural areas change their properties.
  • the at least partially closure of the first structural area is achieved by flowing through with a binder or a soldering suspension and / or by ascending a binder or a soldering suspension caused by capillary action. It is also possible to immerse the fabric structure in a bath containing a soldering suspension or a binder.
  • the tightness of the channel walls can be achieved by a thermal aftertreatment, in particular by soldering, sintering or gluing, for which different methods come into question.
  • the thermal contacting of the wires within the surface enlargement can be achieved, for example, by solder-coated wires.
  • the structural regions are produced with varying density of the engineering fibers or wires by varying mesh sizes or by varying insertion of weft or warp yarns into the structure.
  • a further preferred embodiment provides that the modification in step b) by an at least partially coating and / or by leading to swelling and bonding thermal and / or chemical activation of the wires or fibers he follows.
  • a modification of the inner surface of the channels takes place. This can be done in particular by at least partially coating, lamination, thermal or chemical activation and / or swelling.
  • a heat exchanger which contains a three-dimensional textile structure of wires and / or technical fibers.
  • the heat exchanger has a first and at least one further structural region which differs from the first structural region, the structural regions differing in the density of the technical fibers or wires and / or the porosity.
  • the first structural region in the form of channels is closed at least in regions relative to the further structural regions, and the further structural regions have an enlarged outer surface.
  • the wires or fibers are modified by at least partially coating or by thermal and / or chemical activation. During thermal and / or chemical activation, swelling and bonding of the wires or fibers then occur.
  • a further variant according to the invention provides that the inner surface of the channels is modified. This can be done in particular by an at least partially coating, lamination, thermal or chemical activation and / or swelling.
  • the channels have structures for generating turbulent flows. These include in particular in the channels projecting fabric loops and / or oriented substantially perpendicular to the flow direction and connected to the channel walls fabric threads.
  • a further preferred embodiment of the heat exchanger provides that the first and / or the further structural regions are substantially transparent in the visible wavelength range of the spectrum are.
  • the further structural regions preferably have a porosity of 70 to 80% with pore diameters of 0.1 to 5 mm. Furthermore, the further structural regions preferably have a specific surface area of 2,000 to 20,000 m 2 / m 3 . Preferably, the structural regions have a thermal conductivity of 1 to 50 W / mK.
  • the further structural areas are constructed in multiple layers, wherein the individual layers of wires or technical fibers consist of materials with different melting point or substantially contain these materials.
  • an enlarged surface is provided on the phase change side.
  • Structured surfaces, as they can be produced by tissue, can achieve various advantages here.
  • bubble boiling is the preferred boiling regime in most processes in order to achieve high heat flux densities.
  • Bladder boiling is assisted by the provision of nucleation sites in which the bubbles are created.
  • the cavities, which can be produced by tissue structures, are very well suited for this purpose.
  • a heat transfer structure that supports nucleate boiling can therefore be constructed from a fluid-carrying tissue layer, which is followed horizontally by a tissue layer which, in its design, produces cavities that correspond to the physical properties of the fluid, such as the surface tension, the viscosity and the pressure range. customized are.
  • capillary assisted evaporation processes which are determined by capillary assisted evaporation, and for condensation processes, rather vertically arranged functional surfaces can be realized.
  • capillary assisted evaporation processes these are in accordance with fluid and operating conditions, such as e.g. Pressure, temperature, surface tension, viscosity or density, to be dimensioned so that the liquid fluid in the tissue realized appropriate heights of rise, and then to be able to evaporate into a more open-pored area.
  • the tissue function areas in the adsorber serve to achieve large specific surfaces.
  • Another possibility is the direct processing of the sorbent as a fabric material.
  • the use of carbon fibers in question which can be used in conjunction with water, methanol and ethanol as a sorbent.
  • Heat pipes are highly efficient, passive thermal components that transfer heat through area-wise evaporation and condensation. In them, the working medium accordingly exists in both the liquid and the vapor phase. Therefore, both larger cross sections for the vapor transport and smaller for the liquid transport (capillary effect) are necessary.
  • the idea described makes it possible to design the textile inner structure of the steam channel in such a way that a return transport of the condensed and therefore liquid working medium by capillary effects becomes possible.
  • a metallic self-supporting spacer fabric structure according to the invention consisting of the base surfaces 2 and the spacer fabric 1, wherein the spacer fabric meets the requirements for the structural region for the sorption coating.
  • a tissue structure according to the invention is shown with flow channels 1 for a liquid, wherein the flow channels 1 have different cross-sections and are merged over the run length.
  • the walls of the channels are created by a dense fabric structure, which may be post-treated.
  • the structure area 2 is suitable for the flow of gases or air.
  • the tissue-based spacer structure serves on the one hand for structural stabilization and on the other hand for improved heat transfer to the liquid flowing in channel 1.
  • a separation layer 3 is used to either separate different gas flow areas from each other or to support the stability of the structure.
  • the fluid channels 4 may be analogous to those of the flow channels 1 pronounced or also form a different flow pattern.
  • Fig. 3 shows a fabric structure according to the invention, wherein the arrangement of the areas shows that in a heat exchanger flexible various structural areas can be realized.
  • the structural areas 1 and 2 have a different fabric density, which can preferably be traversed by gas or air, and in which regions with denser structure can realize an improved heat transfer.
  • the structural area 2 and / or 3, 5 can be used as an open-pored inflow area, which reduces overall the pressure losses with good heat transfer.
  • the channel structures 4, 6 are suitable for flowing through with liquid media and can thus dissipate the heat released.
  • the heat exchanger has separating and / or stabilizing fabric layers 7, 8.
  • the tissue functional areas serve on the one hand as a heat transport structure and on the other as a carrier structure for coating with suitable sorption agents. By dimensioning the free cross sections of the structure beyond the mass transport of the working medium is defined.
  • a heat exchanger coated with sorbent a high thermal conductivity with a low thermal mass and a large specific surface of the tissue functional areas should be sought.
  • metallic wires eg consisting of aluminum or copper, but also carbon fibers come into consideration.
  • specific textile processing methods can be used Reach surfaces in the range of 5,000 to 15,000 m 2 / m 3 .
  • An adsorption heat exchanger made of metallic fabric structures, as in Fig. 1 can be prepared as follows:
  • a metallic self-supporting spacer fabric structure consisting of the base surfaces 2 and the spacer fabric 1 is made such that the spacer fabric meets the requirements for the structure region for the sorption coating.
  • a plurality of spacer fabric mats are arranged one above the other and fixed laterally in a support structure 5.
  • tissue mats are fixed, they are flowed through with a Lotsuspension on the coolant channels 3; the deposition of the solder suspension allows in the subsequent thermal treatment, both the tight sealing of the tissue surfaces and the sealing of the border areas of tissue mat and support structure.
  • the channels which are defined by the spacer knitted fabric, flowed through with an adsorbent suspension or the crystallization solution, which leaves a sorption layer on the spacer wires and the inner walls after appropriate drying or calcination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Catalysts (AREA)

Description

Die Erfindung betrifft einen Wärmeübertrager, der eine dreidimensionale textile Struktur aus Drähten oder technischen Fasern mit unterschiedlichen Strukturbereichen aufweist, wobei sich die Strukturbereiche in der Dichte der technischen Fasern oder Drähte oder der Porosität unterscheiden, so dass ein Strukturbereich in Form von Kanälen gegenüber dem anderen Strukturbereich verschlossen ist, und der andere Strukturbereich eine vergrößerte äußere Oberfläche aufweist. Ebenso betrifft die Erfindung ein Verfahren zur Herstellung derartiger Wärmeübertrager. Diese Wärmeübertrager werden insbesondere im Bereich der Sorptionswärmepumpen und -kältemaschinen, Heat pipes, Verdunstungskühlern, Kondensatoren und Katalysatoren eingesetzt.The invention relates to a heat exchanger which has a three-dimensional textile structure made of wires or technical fibers with different structural areas, wherein the structural areas differ in the density of the technical fibers or wires or the porosity, so that a structural area in the form of channels with respect to the other structural area is closed, and the other structural portion has an enlarged outer surface. Likewise, the invention relates to a method for producing such heat exchangers. These heat exchangers are used in particular in the field of sorption heat pumps and refrigerators, heat pipes, evaporative coolers, condensers and catalysts.

In vielen Wärmeübertragungsprozessen kann eine Verbesserung der Übertragungsleistung erreicht werden, indem die Auslegung/Gestaltung des Strömungskanals an die Eigenschaften, z.B. Dichte, Druck, Strömungsregime, Oberflächenspannung, Aggregatzustand, des jeweils wärmeabgebenden und wärmeaufnehmenden Fluids angepasst wird. Weitere Anforderungen an die Gestaltung des Wärmeübertragers können sich durch Phasenübergänge oder chemische Reaktionsprozesse ergeben. Hier sind häufig auf einer Seite des Wärmeübertragers stark vergrößerte Oberflächen erforderlich, die eine möglichst maximale Kontaktfläche zwischen dem Wärmeübertrager und dem zu kondensierenden/zu verdampfenden Medium bzw. zwischen den Reaktanden herstellen.In many heat transfer processes, an improvement in transmission performance can be achieved by reducing the design / layout of the flow channel to the properties, e.g. Density, pressure, flow regime, surface tension, state of aggregation, the respective heat-emitting and heat-absorbing fluid is adjusted. Further requirements for the design of the heat exchanger can result from phase transitions or chemical reaction processes. Here are often on one side of the heat exchanger greatly enlarged surfaces required to produce the maximum possible contact area between the heat exchanger and the condensing / to be evaporated medium or between the reactants.

Bisher werden in der Wärmeübertragung die fluidführenden Strukturen und Funktionsbereiche, die beispielsweise durch Turbulenzerzeugung oder durch große volumenspezifische Oberflächen den Wärmeübergang verbessern, in getrennten Fertigungsschritten erzeugt und sind jeweils selbsttragende Bereiche.So far, in the heat transfer, the fluid-carrying structures and functional areas, which improve the heat transfer, for example by turbulence generation or by large volume-specific surfaces, produced in separate manufacturing steps and are each self-supporting areas.

Häufige Gestaltungsformen von Oberflächenvergrößerungen sind z.B. Finnen oder Lamellen, als Turbulenzstrukturen werden Rillen, Einkerbungen oder vergleichbares angewendet.Common designs of surface enlargement are e.g. Finns or fins, as turbulence structures grooves, notches or the like are applied.

Konkrete Anwendung finden vergrößerte oder strukturierte Oberflächen in folgenden Bereichen:

  • Verdampfungs-, Verdunstungs- oder Kondensationsprozesse,
  • Luft/Wasser-Wärmeübertrager,
  • Trennprozesse in der Verfahrenstechnik,
  • Ad- und Absorptionsprozesse,
  • in Fluidkanälen (Turbulenzstrukturen),
  • Heat-Pipes (durchströmbare Kapillarstruktur).
Specific applications find enlarged or structured surfaces in the following areas:
  • Evaporation, evaporation or condensation processes,
  • Air / water heat exchanger,
  • Separation processes in process engineering,
  • Ad- and absorption processes,
  • in fluid channels (turbulence structures),
  • Heat pipes (flow through capillary structure).

In der Praxis erfolgt die Zusammenführung der unterschiedlichen Funktionalitäten eines Wärmeübertragers in fertigungstechnisch nacheinander abfolgenden Prozessschritten. Beispielsweise werden für die Herstellung eines Lamellen-Wärmeübertragers zunächst Rohre gezogen, zurechtgeschnitten und dann entsprechend dem Wärmeübertragerdesign angeordnet. Anschließend werden die Lamellen-Bleche aufgefädelt und durch Aufweiten der Rohre mit diesen verbunden. Zum Abschluss werden die einzelnen Rohre durch das Anlöten von Bögen miteinander verbunden.In practice, the merger of the different functionalities of a heat exchanger takes place in process steps that follow one another sequentially. For example, first tubes are drawn, cut to size and then arranged according to the Wärmeübertragerdesign for the production of a finned heat exchanger. Subsequently, the lamella plates are threaded and connected by widening the tubes with these. Finally, the individual tubes are connected by soldering sheets together.

Trotz der insgesamt aufwendigen Fertigungsabfolge können die Rohre lediglich durch Aufweiten mit den Lamellen-Blechen verbunden werden, auch wenn hier eine stoffschlüssige Verbindung einen deutlich verbesserten Wärmedurchgang zur Folge hätte. Eine stoffschlüssige Verbindung ist aber aufgrund des engen Lamellenabstands und der damit erschwerten Zugänglichkeit der Kontaktstelle zwischen Rohr und Lamelle bei vertretbarem Aufwand nicht zu realisieren. Stoffschlüssige Verbindungen werden in der Praxis derart realisiert, dass das Rohr und die Oberflächenvergrö-βerung aus einem Material gefertigt werden und die vergrößerte Oberfläche beispielsweise durch Walz-oder Fräsverfahren erzeugt wird. Die so erreichbare Oberflächenvergrößerung ist aber hinsichtlich ihres Volumenanteils limitiert und auf radiale Geometrien beschränkt.Despite the overall complex production sequence, the tubes can only be connected by widening with the lamella plates, even if a cohesive connection would have a significantly improved heat transfer result. However, a cohesive connection can not be realized at reasonable cost due to the narrow spacing of the lamellae and the thus difficult accessibility of the contact point between the tube and lamella. Bonded connections are realized in practice in such a way that the tube and the surface enlargement are made of a material and the enlarged surface is produced, for example, by rolling or milling methods. However, the achievable surface enlargement is limited in terms of their volume fraction and limited to radial geometries.

Generell ist es für eine verbesserte Wärmeübertragung von zentralem Interesse, dass die Funktionsstrukturen, d.h. die Oberflächenvergrößerung oder Turbulenzstrukturen, von beiden Seiten stoffschlüssig mit den Wandungen des Fluidkanals verbunden sind, da hierdurch der Wärmeübergang deutlich verbessert wird. Darüber hinaus ist in vielen Anwendungen, bedingt durch Materialkosten, Energieverbrauch, z.B. im Fahrzeugbereich, und die erreichbare Effizienz, die Minimierung der thermischen Masse des Wärmeübertragers eine weitere zentrale Aufgabenstellung.In general, for improved heat transfer, it is of central interest that the functional structures, ie the surface enlargement or turbulence structures, are connected from both sides cohesively with the walls of the fluid channel, as this significantly improves the heat transfer. In addition, in many applications, due to material costs, energy consumption, eg in the vehicle sector, and the achievable efficiency, the minimization of the thermal mass of the heat exchanger is a further central task.

Die DE 10 2005 017 920 A1 beschreibt verschiedene Autokühlerstrukturen. Hierbei werden metallische Gewebestrukturen als Wärmeleiter in den von Abgas oder Dampf durchströmten Bereich eingesetzt, um die Wärme besser an die flüssigkeitsführenden Kanalstrukturen abgeben zu können.The DE 10 2005 017 920 A1 describes various car radiator structures. In this case, metallic fabric structures are used as heat conductors in the region through which exhaust gas or vapor flows, in order to better deliver the heat to the liquid-carrying channel structures.

Die DE 689 05 402 T2 beschreibt einen Wärmeübertrager, der aus Flachrohren besteht, auf die eine Gewebestruktur aufgeschweißt wird. Dabei wird das Drahtgewebe so dimensioniert, dass ein optimales Verhältnis für die maximale Anströmfläche bei minimalem Druckverlust realisiert wird.The DE 689 05 402 T2 describes a heat exchanger, which consists of flat tubes, to which a fabric structure is welded. In this case, the wire mesh is dimensioned so that an optimal ratio for the maximum inflow surface is realized with minimal pressure loss.

Die DE 10 2005 012 754 A1 beschreibt ein Verfahren, bei dem durch Feuerverzinken, d.h. durch Tauchen der Kanalstruktur und der Oberflächenvergrößerung in flüssiges Zink, stoffschlüssige Verbindungen zwischen den Gewebeeinheiten und der Fluidstruktur gebildet werden.The DE 10 2005 012 754 A1 describes a method in which hot-dip galvanizing, ie by dipping the channel structure and the surface enlargement into liquid zinc, material-bonded connections between the tissue units and the fluid structure are formed.

In EP 1 715 276 , welches als nächstliegender Stand der Technik berücksichtigt werden kann, werden metallische Gewebestrukturen als Wärmeleiter in dem von Abgas oder Dampf durchströmten Bereich eingesetzt, um die Wärme besser an die flüssigkeitsführenden Kanalstrukturen abgeben zu können.In EP 1 715 276 , which can be considered as the closest prior art, metallic fabric structures are used as a heat conductor in the region through which exhaust gas or vapor flows, in order to be able to deliver the heat better to the liquid-carrying channel structures.

Die Rohre und Wärmeübertragungsgewebe im Wärmetauscher der EP 1 715 276 stellen nur einzelne nebeneinander angeordnete Elemente und eben keine Strukturbereiche einer einzelnen dreidimensionalen textilen Struktur dar.The tubes and heat transfer fabric in the heat exchanger of EP 1 715 276 represent only individual juxtaposed elements and not just structural areas of a single three-dimensional textile structure.

Die oben beschriebene Herstellung von Wärmeübertragern mit vergrößerten Oberflächen zeigt deutlich, dass in Leichtbau-Anwendungen (Lamellen-Wärmeübertragern) die thermische Kontaktierung der Oberflächenvergrößerung mit der fluidführenden Struktur nicht oder nur durch großen technischen Aufwand realisiert werden kann. Alternative Herstellungsverfahren zur Oberflächenvergrößerung, wie z.B. Walzen oder Fräsen, erlauben zwar einen guten Wärmeübergang, erreichen aber nicht ausreichend geringe thermische Massen und sind in der geometrischen Ausführung stark eingeschränkt.The production of heat exchangers with enlarged surfaces described above clearly shows that in lightweight applications (fin heat exchangers) the thermal contacting of the surface enlargement with the fluid-carrying structure is not possible or only by great technical effort can be realized. Although alternative production methods for surface enlargement, such as rolling or milling, allow a good heat transfer, but do not reach sufficiently low thermal masses and are severely limited in the geometric design.

Aufgabe der vorliegenden Erfindung ist daher die Bereitstellung eines Wärmeübertragers, der in Leichtbau-Weise, d.h. eine geringe thermische Masse aufweisend, hergestellt ist und trotzdem eine gute thermische Kontaktierung einer flexibel auszulegenden Oberflächenvergrößerung und/oder Turbulenzstrukturen mit der Fluidkanalstruktur erlaubt.It is therefore an object of the present invention to provide a heat exchanger which is lightweight, e.g. having a low thermal mass is produced, and still allows a good thermal contact of a flexibly interpreted surface enlargement and / or turbulence structures with the fluid channel structure.

Diese Aufgabe wird durch das Verfahren zur Herstellung eines Wärmeübertragers mit den Merkmalen des Anspruchs 1 sowie durch den Wärmeübertrager mit den Merkmalen des Anspruchs 7 gelöst. In Anspruch 15 werden erfindungsgemäße Verwendungen angegeben. Die weiteren abhängigen Ansprüche stellen vorteilhafte Weiterbildungen dar.This object is achieved by the method for producing a heat exchanger with the features of claim 1 and by the heat exchanger with the features of claim 7. In claim 15 uses of the invention are given. The other dependent claims represent advantageous developments.

Erfindungsgemäß wird ein Verfahren zur Herstellung eines Wärmeübertragers bereitgestellt, bei dem

  1. a) mittels textiler Fertigungstechnologie aus Drähten und/oder technischen Fasern eine dreidimensionale textile Struktur mit einem ersten und mindestens einem weiteren, sich vom ersten Strukturbereich unterscheidenden Strukturbereich synchron erzeugt wird, wobei sich die Strukturbereiche in der Dichte der technischen Fasern oder Drähte und/oder der Porosität unterscheiden und damit unterschiedliche Funktionen ausprägen können (Verbesserung Wärmeleitung, Erzeugung von Turbulenzen, Erzeugung kompakter Wandungslagen), und
  2. b) durch eine Nachbehandlung der erste Strukturbereich unter Ausbildung von Kanälen gegenüber den weiteren Strukturbereichen zumindest bereichsweise verschlossen wird und die weiteren Strukturbereiche zur Vergrößerung der spezifischen Oberfläche in diesen Bereichen modifiziert werden.
According to the invention, a method for producing a heat exchanger is provided, in which
  1. a) by means of textile production technology of wires and / or technical fibers, a three-dimensional textile structure with a first and at least one further, different from the first structure area structure area is generated synchronously, wherein the structural areas in the density of the technical fibers or wires and / or the Differentiate porosity and thus can express different functions (improvement of heat conduction, generation of turbulence, generation of more compact Wall layers), and
  2. b) is closed at least partially by aftertreatment of the first structural area to form channels with respect to the other structural areas and the other structural areas are modified to increase the specific surface area in these areas.

Mit neuen Fertigungstechniken im Bereich der technischen Weberei, Strickerei oder Wirkerei können metallische, aber auch andere Rund- oder Flachdrähte zu räumlichen Gewebestrukturen verarbeitet werden. Der erfindungsgemäße Ansatz beruht nun darauf, dass diese Drahtverarbeitungsverfahren so genutzt werden, dass in einem Fertigungsschritt sowohl die fluidführende Kanalstruktur als auch direkt die Funktionsstrukturen, d.h. Oberflächenvergrößerung oder Turbulenzstrukturen, gefertigt werden. Hierbei werden die Möglichkeiten der technischen Weberei, Strickerei oder Wirkerei derart genutzt, dass die Wandungen der Fluidkanäle sehr feinmaschig verarbeitet werden, während die Bereiche der Oberflächenvergrößerung hingegen den dort erforderlichen Anforderungen hinsichtlich Porosität, Wärmeleitfähigkeit oder spezifischer Oberfläche angepasst sind.With new production techniques in the field of technical weaving, knitting or warp knitting metallic, but also other round or flat wires can be processed into spatial fabric structures. The inventive approach is based on the fact that these wire processing methods are used so that in a manufacturing step, both the fluid-carrying channel structure and directly the functional structures, i. Surface enlargement or turbulence structures are manufactured. Here, the possibilities of technical weaving, knitting or knitting are used in such a way that the walls of the fluid channels are processed very fine mesh, while the areas of surface enlargement, however, are adapted to the requirements there in terms of porosity, thermal conductivity or specific surface.

Die unterschiedlichen erfindungsgemäßen Strukturbereiche können gleichzeitig mehrere Funktionen übernehmen. Dazu gehören die räumliche Trennung unterschiedlicher Strömungsbereiche bzw. unterschiedlicher Fluide, die Verbesserung von Wärme- und Stofftransport durch Erzeugen von Turbulenzen bei gleichzeitig guter Durchströmbarkeit oder Erhöhen der Wärmeleitfähigkeit und die Stabilisierung des Wärmeübertragers. Insbesondere die gleichzeitige Nutzung der drei Aspekte trägt in Kombination mit der Verwendung von dünnen Drähten dazu bei, dass eine Realisierung in Leichtbauweise möglich wird.The different structural regions according to the invention can simultaneously assume a plurality of functions. These include the spatial separation of different flow areas or different fluids, the improvement of heat and mass transfer by generating turbulence at the same time good flow through or increasing the thermal conductivity and the stabilization of the heat exchanger. In particular, the simultaneous use of the three aspects In combination with the use of thin wires contributes to the realization in lightweight construction.

Die unterschiedlichen Strukturbereiche sind aufgrund der verfügbaren Fertigungstechnik und der integrierten Dimensionierung unterschiedlicher Funktionen, wie zuvor beschrieben, nicht auf eine schichtweise Anordnung angewiesen sondern können frei gestaltet werden. Gleiches gilt für die Fertigung in der Tiefe bzw. in Strömungsrichtung. Hier können mit der Lauflänge des Wärmeübertragers Strömungskanäle zusammengeführt werden, ihren Durchmesser ändern oder auch Strukturbereiche ihre Eigenschaften ändern.The different structural areas are not dependent on a layered arrangement due to the available manufacturing technology and the integrated dimensioning of different functions, as described above but can be freely designed. The same applies to the production in the depth or in the flow direction. In this case, flow channels can be merged with the run length of the heat exchanger, change their diameter or even structural areas change their properties.

Die erfindungsgemäße Leichtbauweise kann realisiert werden,

  1. 1. indem die Gewebestruktur gleichzeitig die räumliche Trennung der strömenden Fluide in Form von dicht verarbeiteten Wandungen gewährleistet und die Integration von Funktionsbereichen erlaubt, die beispielsweise Turbulenzen erzeugen oder der verbesserten Wärmeabfuhr dienen.
  2. 2. da durch die gleichzeitige Nutzung der Struktur als Funktions- und Stabilisierungsstruktur Material eingespart und ein kompakteres Design realisiert werden kann.
  3. 3. da durch die Verarbeitung von Drähten mit kleinen Durchmessern (<0,5 mm) sehr geringe Wandstärken realisiert werden können.
The lightweight construction according to the invention can be realized
  1. 1. By the fabric structure at the same time ensures the spatial separation of the flowing fluids in the form of densely processed walls and allows the integration of functional areas that produce, for example, turbulence or serve the improved heat dissipation.
  2. 2. since the simultaneous use of the structure as a functional and stabilizing structure saves material and a more compact design can be realized.
  3. 3. very small wall thicknesses can be achieved by processing wires with small diameters (<0.5 mm).

Durch die Verwendung textiler Fertigungsverfahren kann eine sehr große Vielfalt an geometrischen Ausformungen erzeugt werden, die einen großen gestalterischen Freiheitsgrad für die Strukturen mit sich bringt. Dabei ist es möglich komplexe Geometrien zu erstellen, die im Schnitt durch den Wärmeübertrager nicht auf einen reinen Schichtaufbau beschränkt sind und in der Wärmeübertragertiefe ebenfalls räumliche Verschiebungen der Strukturbereiche erlauben.By using textile manufacturing processes can be a very large variety of geometric shapes be generated, which brings a great degree of creative freedom for the structures. It is possible to create complex geometries that are not limited by the heat exchanger on a pure layer structure and in the heat exchanger depth also allow spatial shifts of the structural areas.

Vorzugsweise wird der zumindest bereichsweise Verschluss des ersten Strukturbereichs mittels Durchströmen mit einem Bindemittel oder einer Lötsuspension und/oder mittels durch Kapillareffekt bedingtem Aufsteigen eines Bindemittels oder einer Lötsuspension erreicht. Ebenso ist es möglich, die Gewebestruktur in ein Bad einzutauchen, das eine Lötsuspension oder ein Bindemittel enthält.Preferably, the at least partially closure of the first structural area is achieved by flowing through with a binder or a soldering suspension and / or by ascending a binder or a soldering suspension caused by capillary action. It is also possible to immerse the fabric structure in a bath containing a soldering suspension or a binder.

Die Dichtheit der Kanalwandungen kann durch eine thermische Nachbehandlung, insbesondere durch Löten, Versintern oder Kleben, erreicht werden, wobei hierfür unterschiedliche Verfahren in Frage kommen. Die thermische Kontaktierung der Drähte innerhalb der Oberflächenvergrößerung kann beispielsweise durch lotbeschichtete Drähte erreicht werden.The tightness of the channel walls can be achieved by a thermal aftertreatment, in particular by soldering, sintering or gluing, for which different methods come into question. The thermal contacting of the wires within the surface enlargement can be achieved, for example, by solder-coated wires.

Vorzugsweise werden die Strukturbereiche mit unterschiedlicher Dichte der technischen Fasern oder Drähte durch variierende Maschenweiten oder durch variierende Einbringung von Schuss- oder Kettenfäden in die Struktur erzeugt.Preferably, the structural regions are produced with varying density of the engineering fibers or wires by varying mesh sizes or by varying insertion of weft or warp yarns into the structure.

Eine weitere bevorzugte Ausführungsform sieht vor, dass die Modifizierung in Schritt b) durch eine zumindest bereichsweise Beschichtung und/oder durch eine zum Aufquellen und Verbinden führende thermische und/oder chemische Aktivierung der Drähte oder Fasern erfolgt.A further preferred embodiment provides that the modification in step b) by an at least partially coating and / or by leading to swelling and bonding thermal and / or chemical activation of the wires or fibers he follows.

Es ist weiterhin bevorzugt, dass in einem zusätzlichen Schritt eine Modifizierung der inneren Oberfläche der Kanäle erfolgt. Dies kann insbesondere durch zumindest bereichsweise Beschichtung, Laminierung, thermische oder chemische Aktivierung und/oder Aufquellung erfolgen.It is further preferred that in an additional step, a modification of the inner surface of the channels takes place. This can be done in particular by at least partially coating, lamination, thermal or chemical activation and / or swelling.

Zusätzlich zu dem Vorteil der Fertigung "in einem Stück" bietet die Textilverarbeitungstechnik den gro-βen Vorteil, dass einzelne Elemente direkt ohne apparative Vorbereitung gefertigt werden können. Im Vergleich zu Wärmeübertragern, die mit Gussformen, Pressen, Ziehen oder ähnlichen Verfahren hergestellt werden, ist für die textile Fertigung keine Form erforderlich. Das geforderte Design kann direkt aus der Zeichnung durch entsprechende Programmierung auf die Maschine geschickt und dort angefertigt werden. Erfindungsgemäß wird ebenso ein Wärmeübertrager bereitgestellt, der eine dreidimensionale textile Struktur aus Drähten und/oder technischen Fasern enthält. Der Wärmeübertrager weist dabei einen ersten und mindestens einen weiteren, sich vom ersten Strukturbereich unterscheidenden Strukturbereich auf, wobei sich die Strukturbereiche in der Dichte der technischen Fasern oder Drähte und/oder der Porosität unterscheiden. Weiterhin ist der erste Strukturbereich in Form von Kanälen gegenüber den weiteren Strukturbereichen zumindest bereichsweise verschlossen und die weiteren Strukturbereiche weisen eine vergrößerte äußere Oberfläche auf.In addition to the advantage of manufacturing "in one piece", textile processing technology offers the great advantage that individual elements can be manufactured directly without any technical preparation. Compared to heat exchangers, which are produced by casting, pressing, drawing or similar processes, no form is required for textile production. The required design can be sent directly from the drawing by appropriate programming on the machine and made there. According to the invention, a heat exchanger is also provided which contains a three-dimensional textile structure of wires and / or technical fibers. In this case, the heat exchanger has a first and at least one further structural region which differs from the first structural region, the structural regions differing in the density of the technical fibers or wires and / or the porosity. Furthermore, the first structural region in the form of channels is closed at least in regions relative to the further structural regions, and the further structural regions have an enlarged outer surface.

Es ist bevorzugt, dass die Drähte oder technischen Fasern ausgewählt sind aus der Gruppe bestehend aus

  • metallischen Materialien, insbesondere Kupfer, Aluminium oder Edelstahl,
  • kohlenstoffhaltigen Materialien, insbesondere Kohlefasern Aktivkohlefasern oder Glasfasern
  • Polymermaterialien, insbesondere Polypropylen (PP), Polyethylen (PE), Polyamid (PA), Polyether-ether-ketone (PEEK), Polyester (PET) oder
  • Verbundstoffen hiervon,
wobei die Drähte oder technischen Fasern insbesondere einen Durchmesser von 50 bis 500 µm aufweisen.It is preferred that the wires or engineering fibers are selected from the group consisting of
  • metallic materials, in particular copper, Aluminum or stainless steel,
  • Carbonaceous materials, in particular carbon fibers activated carbon fibers or glass fibers
  • Polymer materials, in particular polypropylene (PP), polyethylene (PE), polyamide (PA), polyether ether ketone (PEEK), polyester (PET) or
  • Composites thereof,
wherein the wires or technical fibers in particular have a diameter of 50 to 500 microns.

Es ist weiter bevorzugt, dass die Drähte oder Fasern durch zumindest bereichsweise Beschichtung oder durch thermische und/oder chemische Aktivierung modifiziert sind. Bei der thermischen und/oder chemischen Aktivierung kommt es dann zu einem Aufquellen und Verbinden der Drähte oder Fasern.It is further preferred that the wires or fibers are modified by at least partially coating or by thermal and / or chemical activation. During thermal and / or chemical activation, swelling and bonding of the wires or fibers then occur.

Eine weitere erfindungsgemäße Variante sieht vor, dass die innere Oberfläche der Kanäle modifiziert ist. Dies kann insbesondere durch eine zumindest bereichsweise Beschichtung, Laminierung, thermische oder chemische Aktivierung und/oder Aufquellung erfolgen.A further variant according to the invention provides that the inner surface of the channels is modified. This can be done in particular by an at least partially coating, lamination, thermal or chemical activation and / or swelling.

Es ist weiterhin bevorzugt, dass die Kanäle Strukturen zur Erzeugung turbulenter Strömungen aufweisen. Hierzu zählen insbesondere in die Kanäle hineinragende Gewebeschlaufen und/oder im wesentlichen senkrecht zur Strömungsrichtung ausgerichtete und mit den Kanalwandungen verbundene Gewebefäden.It is further preferred that the channels have structures for generating turbulent flows. These include in particular in the channels projecting fabric loops and / or oriented substantially perpendicular to the flow direction and connected to the channel walls fabric threads.

Eine weitere bevorzugte Ausführungsform des Wärmeübertragers sieht vor, dass der erste und/oder die weiteren Strukturbereiche im sichtbaren Wellenlängenbereich des Spektrums im Wesentlichen transparent sind.A further preferred embodiment of the heat exchanger provides that the first and / or the further structural regions are substantially transparent in the visible wavelength range of the spectrum are.

Vorzugsweise weisen die weiteren Strukturbereiche eine Porosität von 70 bis 80 % bei Porendurchmessern von 0,1 bis 5 mm auf. Weiterhin weisen die weiteren Strukturbereiche vorzugsweise eine spezifische Oberfläche von 2000 bis 20000 m2/m3 auf. Vorzugsweise besitzen die Strukturbereiche eine Wärmeleitfähigkeit von 1 bis 50 W/mK.The further structural regions preferably have a porosity of 70 to 80% with pore diameters of 0.1 to 5 mm. Furthermore, the further structural regions preferably have a specific surface area of 2,000 to 20,000 m 2 / m 3 . Preferably, the structural regions have a thermal conductivity of 1 to 50 W / mK.

Es ist weiterhin bevorzugt, dass die weiteren Strukturbereiche mehrlagig aufgebaut sind, wobei die einzelnen Lagen aus Drähten oder technischen Fasern aus Materialien mit unterschiedlichem Schmelzpunkt bestehen oder diese Materialien im Wesentlichen enthalten.It is further preferred that the further structural areas are constructed in multiple layers, wherein the individual layers of wires or technical fibers consist of materials with different melting point or substantially contain these materials.

In vielen Verdampfungs- und Kondensationsprozessen wird auf der Seite des Phasenwechsels eine vergrößerte Oberfläche zur Verfügung gestellt. Strukturierte Oberflächen, wie sie sich durch Gewebe erzeugen lassen, können hier verschiedene Vorteile erzielen.
In Verdampfungsprozessen wird in den meisten Prozessen Blasensieden als Siederegime angestrebt, um hohe Wärmestromdichten erreichen zu können. Blasensieden wird durch die Bereitstellung von Keimstellen unterstützt, in denen die Blasen entstehen. Die Kavitäten, die durch Gewebestrukturen erzeugbar sind, sind hierfür sehr gut geeignet.
In many evaporation and condensation processes, an enlarged surface is provided on the phase change side. Structured surfaces, as they can be produced by tissue, can achieve various advantages here.
In evaporation processes, bubble boiling is the preferred boiling regime in most processes in order to achieve high heat flux densities. Bladder boiling is assisted by the provision of nucleation sites in which the bubbles are created. The cavities, which can be produced by tissue structures, are very well suited for this purpose.

Eine Wärmeübertragerstruktur, die das Blasensieden unterstützt, kann demnach aus einer fluidführenden Gewebeschicht aufgebaut sein, über der sich horizontal eine Gewebeschicht anschließt, die in ihrer Ausführung Kavitäten erzeugt, die den physikalischen Eigenschaften des Fluids, wie z.B. der Oberflächenspannung, der Viskosität und den Druckbereich, angepasst sind.A heat transfer structure that supports nucleate boiling can therefore be constructed from a fluid-carrying tissue layer, which is followed horizontally by a tissue layer which, in its design, produces cavities that correspond to the physical properties of the fluid, such as the surface tension, the viscosity and the pressure range. customized are.

Für Verdampfungsprozesse, die durch kapillar unterstützte Verdampfung bestimmt sind, und für Kondensationsprozesse sind eher vertikal angeordnete funktionale Oberflächen zu realisieren. Bei kapillar unterstützten Verdampfungsprozessen sind diese entsprechend den Fluid- und Betriebsbedingungen, wie z.B. Druck, Temperatur, Oberflächenspannung, Viskosität oder Dichte, so zu dimensionieren, dass das flüssige Fluid im Gewebe angemessene Steighöhen realisiert, um dann in einen offenporigeren Bereich hinein verdampfen zu können.For evaporation processes, which are determined by capillary assisted evaporation, and for condensation processes, rather vertically arranged functional surfaces can be realized. In capillary assisted evaporation processes, these are in accordance with fluid and operating conditions, such as e.g. Pressure, temperature, surface tension, viscosity or density, to be dimensioned so that the liquid fluid in the tissue realized appropriate heights of rise, and then to be able to evaporate into a more open-pored area.

In der Ad- und Absorptionstechnik dienen die Gewebefunktionsbereiche im Adsorber zur Erzielung großer spezifischer Oberflächen. Für die Absorptionstechnik sind diese als Kontaktfläche zwischen der ungesättigten Lösung und dem zu absorbierenden Dampf von zentralem Interesse für eine effektive Wärme- und Stoffübertragung und die erreichbare Leistungsdichte des Apparats.In the adsorption and absorption technique, the tissue function areas in the adsorber serve to achieve large specific surfaces. For the absorption technique, these are the contact surface between the unsaturated solution and the vapor to be absorbed of central interest for effective heat and mass transfer and the achievable power density of the apparatus.

Aufgrund der hohen lokalen Wärmeflüsse ist eine Lotummantelung der Drähte sinnvoll, um diese untereinander thermisch kontaktieren zu können.Due to the high local heat fluxes, a solder coating of the wires makes sense in order to contact them thermally.

Für den Anwendungsbereich Adsorptionstechnik sind auch Bereiche unterschiedlicher Porosität sehr interessant. Dabei sollte die Struktur dichter werden, je näher sie am wärmetransportierenden Fluid ist. Damit kann erreicht werden, dass in den äußeren Bereichen ein sehr guter Dampftransport möglich ist und gleichzeitig in Richtung des wärmeabführenden Fluids die Wärmeleitung verbessert wird. Bereiche mit großen Porendurchmessern können darüber hinaus genutzt werden, um im Aufbau des Wärmeübertragers zusätzliche Abstandshalter zu ersetzen.For the field of adsorption technology also areas of different porosity are very interesting. The structure should become denser, the closer it is to the heat-transporting fluid. This can be achieved that in the outer regions a very good vapor transport is possible and at the same time in the direction of the heat-dissipating fluid, the heat conduction is improved. Areas with large pore diameters can also be used, to replace additional spacers in the structure of the heat exchanger.

Eine weitere Möglichkeit stellt die direkte Verarbeitung des Sorptionsmittels als Gewebematerial dar. Dafür kommt z.B. die Verwendung von Kohlefasern in Frage, die im Zusammenspiel mit Wasser, Methanol und Ethanol als Sorptionsmittel verwendet werden können.Another possibility is the direct processing of the sorbent as a fabric material. the use of carbon fibers in question, which can be used in conjunction with water, methanol and ethanol as a sorbent.

Heat-Pipes sind hocheffiziente, passive thermische Komponenten, durch die Wärme mittels bereichsweiser Verdampfung und Kondensation übertragen wird. In ihnen liegt das Arbeitsmedium dementsprechend sowohl in flüssiger als auch in dampfförmiger Phase vor. Daher sind sowohl größere Querschnitte für den Dampftransport als auch kleinere für den Flüssigkeitstransport (Kapillareffekt) notwendig. Durch die beschriebene Idee ist es möglich, die textile Innenstruktur des Dampfkanals derart zu gestalten, dass ein Rücktransport des kondensierten und damit flüssigen Arbeitsmediums durch Kapillareffekte möglich wird. Es sind sowohl rohrförmige als auch flächige Konstruktionen vorstellbar, die nach dem Heat-Pipe-Prinzip arbeiten.Heat pipes are highly efficient, passive thermal components that transfer heat through area-wise evaporation and condensation. In them, the working medium accordingly exists in both the liquid and the vapor phase. Therefore, both larger cross sections for the vapor transport and smaller for the liquid transport (capillary effect) are necessary. The idea described makes it possible to design the textile inner structure of the steam channel in such a way that a return transport of the condensed and therefore liquid working medium by capillary effects becomes possible. There are both tubular and planar constructions conceivable that work on the heat pipe principle.

Anhand der nachfolgenden Figuren und des Beispiels soll der erfindungsgemäße Gegenstand näher erläutert werden, ohne diesen auf die hier gezeigte spezielle Ausführungsform einschränken zu wollen.

  • Fig. 1 zeigt einen Längs- und Querschnitt durch eine Gewebestruktur einer erfindungsgemäßen Ausführungsform des Wärmeübertragers.
  • Fig. 2 zeigt einen Längs- und Querschnitt durch eine Gewebestruktur einer erfindungsgemäßen Ausführungsform des Wärmeübertragers mit sich über die Lauflänge verändernden Strömungskanalquerschnitten.
  • Fig. 3 zeigt einen Querschnitt durch eine Gewebestruktur einer erfindungsgemäßen Ausführungsform des Wärmeübertragers mit unterschiedlichen Strömungsbereichen und Kanalgeometrien.
Based on the following figures and the example of the subject invention is to be explained in more detail, without wishing to limit this to the specific embodiment shown here.
  • Fig. 1 shows a longitudinal and cross-section through a fabric structure of an embodiment of the invention of the heat exchanger.
  • Fig. 2 shows a longitudinal and cross section through a fabric structure of an embodiment of the invention the heat exchanger with over the run length changing flow channel cross sections.
  • Fig. 3 shows a cross section through a fabric structure of an embodiment of the invention the heat exchanger with different flow areas and channel geometries.

In Fig. 1 ist eine erfindungsgemäße metallische selbsttragende Abstandsgewebestruktur bestehend aus den Grundflächen 2 und dem Abstandsgewirke 1 dargestellt, wobei das Abstandgewirke den Anforderungen an den Strukturbereich für die Sorptionsbeschichtung entspricht.In Fig. 1 a metallic self-supporting spacer fabric structure according to the invention is shown, consisting of the base surfaces 2 and the spacer fabric 1, wherein the spacer fabric meets the requirements for the structural region for the sorption coating.

In Fig. 2 ist eine erfindungsgemäße Gewebestruktur mit Strömungskanälen 1 für eine Flüssigkeit dargestellt, wobei die Strömungskanäle 1 unterschiedliche Querschnitte aufweisen und über die Lauflänge zusammengeführt werden. Die Wandungen der Kanäle werden durch eine dichte Gewebestruktur erzeugt, die ggf. nachbehandelt ist. Der Strukturbereich 2 eignet sich für die Durchströmung von Gasen oder Luft. Die gewebebasierte Abstandsstruktur dient einerseits der Strukturstabilisierung und andererseits der verbesserten Wärmeübertragung an die im Kanal 1 strömende Flüssigkeit. Weiterhin wird eine Trennlage 3 genutzt, um entweder unterschiedliche Gasströmungsbereiche voneinander zu trennen oder die Stabilität der Struktur zu unterstützen. Die Flüssigkeitskanäle 4 können analog zu denen der Strömungskanäle 1 ausgeprägt sein oder auch einen anderen Strömungsverlauf ausprägen.In Fig. 2 a tissue structure according to the invention is shown with flow channels 1 for a liquid, wherein the flow channels 1 have different cross-sections and are merged over the run length. The walls of the channels are created by a dense fabric structure, which may be post-treated. The structure area 2 is suitable for the flow of gases or air. The tissue-based spacer structure serves on the one hand for structural stabilization and on the other hand for improved heat transfer to the liquid flowing in channel 1. Furthermore, a separation layer 3 is used to either separate different gas flow areas from each other or to support the stability of the structure. The fluid channels 4 may be analogous to those of the flow channels 1 pronounced or also form a different flow pattern.

In Fig. 3 zeigt eine erfindungsgemäße Gewebestruktur, wobei die Anordnung der Bereiche zeigt, dass in einem Wärmeübertrager flexibel verschiedenste Strukturbereiche realisiert werden können. Die Strukturbereiche 1 und 2 besitzen eine unterschiedliche Gewebedichte, die vorzugsweise mit Gas oder Luft durchströmt werden können und in denen Bereiche mit dichterer Struktur einen verbesserten Wärmeübertrag realisieren lassen. So kann beispielsweise für eine Anwendung, in der auf den engmaschigen Bereichen 3 aufgrund einer chemischen Reaktion oder Kondensation Wärme freigesetzt wird, der Strukturbereich 2 und/oder 3, 5 als offenporiger Anströmungsbereich genutzt werden, der insgesamt die Druckverluste bei guter Wärmeübertragung reduziert. Die Kanalstrukturen 4, 6 sind zur Durchströmung mit flüssigen Medien geeignet und können so die freiwerdende Wärme gut abführen. Weiterhin weist der Wärmeübertrager trennende und/oder stabilisierende Gewebelagen 7, 8 auf.In Fig. 3 shows a fabric structure according to the invention, wherein the arrangement of the areas shows that in a heat exchanger flexible various structural areas can be realized. The structural areas 1 and 2 have a different fabric density, which can preferably be traversed by gas or air, and in which regions with denser structure can realize an improved heat transfer. Thus, for example, for an application in which heat is released on the close-meshed areas 3 due to a chemical reaction or condensation, the structural area 2 and / or 3, 5 can be used as an open-pored inflow area, which reduces overall the pressure losses with good heat transfer. The channel structures 4, 6 are suitable for flowing through with liquid media and can thus dissipate the heat released. Furthermore, the heat exchanger has separating and / or stabilizing fabric layers 7, 8.

Beispielexample AdsorptionswärmeübertragerAdsorptionswärmeübertrager

In der Adsorptionstechnik dienen die Gewebefunktionsbereiche einerseits als Wärmetransportstruktur und andererseits als Trägerstruktur für eine Beschichtung mit geeigneten Sorptionsmitteln. Durch die Dimensionierung der freien Querschnitte der Struktur wird darüber hinaus noch der Stofftransport des Arbeitsmittels definiert. Für die Ausführung eines mit Sorptionsmittel beschichteten Wärmeübertragers ist eine hohe Wärmeleitfähigkeit bei geringer thermischer Masse und großer spezifischer Oberfläche der Gewebefunktionsbereiche anzustreben. Dafür kommen grundsätzlich metallische Drähte, z.B. bestehend aus Aluminium oder Kupfer, aber auch Kohlefasern in Betracht. Bei Faserstärken im Bereich von 50 bis 200 µm lassen sich mit den entsprechenden Textil-Verarbeitungsverfahren spezifische Oberflächen im Bereich von 5.000 bis 15.000 m2/m3erreichen.In adsorption technology, the tissue functional areas serve on the one hand as a heat transport structure and on the other as a carrier structure for coating with suitable sorption agents. By dimensioning the free cross sections of the structure beyond the mass transport of the working medium is defined. For the execution of a heat exchanger coated with sorbent, a high thermal conductivity with a low thermal mass and a large specific surface of the tissue functional areas should be sought. In principle, metallic wires, eg consisting of aluminum or copper, but also carbon fibers come into consideration. For fiber thicknesses in the range of 50 to 200 μm, specific textile processing methods can be used Reach surfaces in the range of 5,000 to 15,000 m 2 / m 3 .

Ein Adsorptionswärmeübertrager aus metallischen Gewebestrukturen, wie er in Fig. 1 dargestellt ist, kann folgendermaßen hergestellt werden:An adsorption heat exchanger made of metallic fabric structures, as in Fig. 1 can be prepared as follows:

Eine metallische selbsttragende Abstandsgewebestruktur bestehend aus den Grundflächen 2 und dem Abstandsgewirke 1 wird derart angefertigt, dass das Abstandgewirke den Anforderungen an den Strukturbereich für die Sorptionsbeschichtung entspricht.A metallic self-supporting spacer fabric structure consisting of the base surfaces 2 and the spacer fabric 1 is made such that the spacer fabric meets the requirements for the structure region for the sorption coating.

Für die Anordnung in einem Wärmeübertrager werden mehrere Abstandsgewebematten übereinander angeordnet und seitlich in einer Tragstruktur 5 fixiert.For arrangement in a heat exchanger, a plurality of spacer fabric mats are arranged one above the other and fixed laterally in a support structure 5.

Sind die Gewebematten fixiert, werden sie mit einer Lotsuspension über die Kühlmittelkanäle 3 durchströmt; die Ablagerung der Lotsuspension erlaubt in der nachgeschalteten thermischen Behandlung sowohl das dichte Verschließen der Gewebeflächen als auch das Abdichten der Einfassungsbereiche von Gewebematte und Tragstruktur.If the tissue mats are fixed, they are flowed through with a Lotsuspension on the coolant channels 3; the deposition of the solder suspension allows in the subsequent thermal treatment, both the tight sealing of the tissue surfaces and the sealing of the border areas of tissue mat and support structure.

Anschließend werden die Kanäle, die durch die Abstandsgewirke definiert sind, mit einer Adsorbenssuspension oder der Kristallisationslösung durchströmt, die nach entsprechender Trocknung oder Kalzinierung eine Sorptionsschicht auf den Abstandsdrähten und den Innenwandungen hinterlässt.Subsequently, the channels, which are defined by the spacer knitted fabric, flowed through with an adsorbent suspension or the crystallization solution, which leaves a sorption layer on the spacer wires and the inner walls after appropriate drying or calcination.

Claims (15)

  1. Method for the production of a heat exchanger, in which
    a) a three-dimensional textile structure having a first and at least one further structural region which differs from the first structural region is generated synchronously from wires and/or technical fibres by means of textile manufacturing technology, wherein the structural regions differ in the thickness of the technical fibres or wires and/or porosity, and
    b) the first structural region is sealed at least in certain regions by forming channels opposite the further structural regions by a post-treatment and the further structural regions are modified to enlarge the specific surface area in these regions.
  2. Method according to claim 1,
    characterised in that an interweaving, knitting, weaving or combinations hereof of the wires and/or technical fibres occurs in the textile manufacturing technology.
  3. Method according to one of the preceding claims, characterised in that the sealing of the first structural region which is undertaken at least in certain regions occurs by means of flow-through with a binding agent or a solder suspension and/or by means of an increase of a binding agent or a solder suspension caused by capillaries and/or by immersion in a bath containing a solder suspension or a binding agent as well as, if necessary, subsequent thermal or photochemical treatment.
  4. Method according to one of the preceding claims, characterised in that the structural regions having different thicknesses of the technical fibres or wires are generated by varying mesh width or by varying introduction of weft or warp threads into the structure.
  5. Method according to one of the preceding claims, characterised in that the modification in step b) occurs by a coating which is present at least in certain regions and/or by a thermal and/or chemical activation of the wires or fibres leading to swelling and connection.
  6. Method according to one of the preceding claims, characterised in that, in an additional step, a modification of the inner surface area of the channels occurs, in particular by coating, laminating, thermal or chemical activation and/or swelling which are present at least in certain regions.
  7. Heat exchanger containing a three-dimensional textile structure made from wires and/or technical fibres having a first and at least one further structural region which differs from the first structural region, wherein the structural regions differ in the thickness of the technical fibres or wires and/or porosity and the first structural region is sealed at least in certain regions in the form of channels opposite the further structural regions and the further structural regions have an enlarged outer surface area.
  8. Heat exchanger according to claim 7,
    characterised in that the wires or technical fibres are selected from the group consisting of
    - metallic materials, in particular copper, aluminium or stainless steel,
    - materials containing carbon, in particular carbon fibres, active carbon fibres or glass fibres
    - polymer materials, in particular polypropylene (PP), polyethylene (PE), polyamide (PA), polyether-ether-ketone (PEEK), polyester (PET) or
    - composites thereof,
    wherein the wires or technical fibres in particular have a diameter from 50 to 500 µm.
  9. Heat exchanger according to one of claims 7 or 8, characterised in that the wires or fibres have, as a modification, a coating which is present at least in certain regions and/or a thermal and/or chemical activation of the wires or fibres leading to swelling and connection.
  10. Heat exchanger according to one of claims 7 to 9, characterised in that the inner surface area of the channels is modified, in particular by a coating, lamination, thermal or chemical activation and/or swelling which are present at least in certain regions.
  11. Heat exchanger according to one of claims 7 to 10, characterised in that the channels have structures for the generation of turbulent flows, in particular in the textile tubing protruding into the channels and/or textile fibres which are aligned substantially perpendicularly to the flow direction and are connected to the channel walls.
  12. Heat exchanger according to one of claims 7 to 11, characterised in that the first and/or the further structural regions are substantially transparent in the visible wave length range of the spectrum.
  13. Heat exchanger according to one of claims 7 to 12, characterised in that the further structural regions have a porosity of 70 to 80% for pore diameters from 0.1 to 5 mm and/or a specific surface area from 2000 to 20000 m2/m3 and/or a thermal conductivity from 1 to 50 W/mK.
  14. Heat exchanger according to one of claims 7 to 13, characterised in that the further structural regions are constructed to be multi-layered, wherein the individual layers consist of wires or technical fibres made from materials having different melting points or substantially contain these.
  15. Use of the heat exchanger according to claims 7 to 14 in evaporation, condensation and sorption processes, in particular in ad- and absorption heat pumps and cooling machines, heat pipes and catalysers.
EP11006619.8A 2010-08-11 2011-08-11 Heat exchanger of three-dimensional textile structure, use of same and method for producing same Not-in-force EP2418450B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010034019A DE102010034019A1 (en) 2010-08-11 2010-08-11 Heat exchanger, process for its preparation and its use

Publications (3)

Publication Number Publication Date
EP2418450A2 EP2418450A2 (en) 2012-02-15
EP2418450A3 EP2418450A3 (en) 2014-03-12
EP2418450B1 true EP2418450B1 (en) 2015-06-17

Family

ID=44908170

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11006619.8A Not-in-force EP2418450B1 (en) 2010-08-11 2011-08-11 Heat exchanger of three-dimensional textile structure, use of same and method for producing same

Country Status (2)

Country Link
EP (1) EP2418450B1 (en)
DE (1) DE102010034019A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9162935B2 (en) * 2012-02-21 2015-10-20 Ceramatec, Inc. Compact FT combined with micro-fibrous supported nano-catalyst
WO2014055045A1 (en) * 2012-10-03 2014-04-10 Technická Univerzita V Košiciach Flow profile with debossed boundaries
DE102016222697B3 (en) * 2016-11-17 2018-01-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Heat exchanger and method for its production
DE102017217569A1 (en) * 2017-10-04 2019-04-04 Mahle International Gmbh Heat exchanger, in particular for a motor vehicle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3139402A1 (en) * 1981-10-03 1983-04-14 Hoechst Ag, 6230 Frankfurt Multilayer knitted web and its use as a heat-exchanger element and as a fibre reinforcement
DE68905402T2 (en) 1988-07-29 1993-09-16 Econergie Sa HEAT EXCHANGER BETWEEN A GAS AND A LIQUID WITH INCREASED THERMAL EXCHANGEABILITIES.
NL1016713C2 (en) * 2000-11-27 2002-05-29 Stork Screens Bv Heat exchanger and such a heat exchanger comprising thermo-acoustic conversion device.
DE10161667C1 (en) * 2001-12-14 2003-01-02 Eads Deutschland Gmbh Automotive or chemical industry heat exchanger consists of layers of panels of artificial fibre
DE202004013267U1 (en) * 2004-08-24 2005-02-10 Deutsche Institute für Textil- und Faserforschung Stuttgart - Stiftung des öffentlichen Rechts Solar collector for obtaining solar energy comprises a coated textile spacer transparent on one side and covered with a light-absorbing dark coating on the other side
DE102005012754A1 (en) 2005-03-19 2006-09-28 Durlum-Leuchten Gmbh Lichttechnische Spezialfabrik Process for production of medium thruput immersion heater element useful for wall and underfloor heating and for solar panels
DE102005017920A1 (en) * 2005-04-18 2006-10-19 Behr Gmbh & Co. Kg Heat exchanger for motor vehicle has heat transfer fabric with several surface sectors extending between two flow channel limiting surfaces in different directions
DE102006035189B4 (en) * 2006-07-29 2011-06-22 Fachhochschule Kaiserslautern, 66482 Flat structure, fleece, knitted fabric, woven fabric, spacer fabric, heat or sound insulation as well as hollow fiber for the transport of heat energy
DE102008063700A1 (en) * 2008-12-19 2010-06-24 Behr Gmbh & Co. Kg Heat exchanger has flow channels for medium and other flow channels for another medium, where heat exchange wall separates former flow channels from latter flow channels
DE102009022932B4 (en) * 2009-05-27 2013-09-12 Dieter Girlich solar collector

Also Published As

Publication number Publication date
DE102010034019A8 (en) 2012-05-24
EP2418450A2 (en) 2012-02-15
DE102010034019A1 (en) 2012-02-16
EP2418450A3 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
EP1987300B1 (en) Adsorption heat pump, adsorption refrigerator, and adsorber elements therefor
EP3143357B1 (en) Heat transfer device and use thereof
EP2418450B1 (en) Heat exchanger of three-dimensional textile structure, use of same and method for producing same
AT12048U1 (en) DEVICE FOR TRANSFERRING HEAT
DE112011103811B4 (en) Festkörpersorptionskühlung
DE112005000648T5 (en) The fluid flow distribution device
EP2414746B1 (en) Operating resource store, heat transfer device and heating pump
EP1918668B1 (en) Device for absorbing a fluid via capillary forces and method for manufacturing the device
DE102008013134A1 (en) A heat exchange device and method of manufacturing a heat exchange element for a heat exchange device
EP3027981B1 (en) Adsorption module
EP1920202B1 (en) Heat exchanger plate arrangement which is in thermal contact with an absorbent
EP2379978B1 (en) Rotationally symmetrical fluiddistributor
EP1430530A2 (en) Heat exchanger
EP1895259B1 (en) Film heat transformer for fluids
DE102006028372A1 (en) Heat exchanger e.g. sorption, reaction and/or heat pipe, for e.g. motor vehicle-air conditioning system, has number of fibers, where fibers with its end are attached to wall surface using flock-coating process
CN113137886A (en) 5G mobile phone honeycomb bionic liquid absorption core vapor chamber and preparation method thereof
WO2018091567A1 (en) Heat exchanger structure and method for the production and use thereof
DE19721657A1 (en) Heat exchanger for solar collectors for heating and cooling systems
DE102019134587B4 (en) Heat exchanger and adsorption machine
WO2004042308A1 (en) Heat exchanger
EP3405732A1 (en) New type of heat exchanger
DE102018203548A1 (en) Heat exchanger and method for its production
DE29600420U1 (en) Thermo element
EP1734327B1 (en) Heat exchanger in particular sorption, or reaction heat exchanger and/or heat pipe.
WO2014063927A2 (en) Improved thermal shielding system

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ANDERSEN, OLAF, DIPL.-ING.

Inventor name: STUDNITZKY, THOMAS, DIPL.-ING.

Inventor name: SCHNABEL, LENA, DR.-ING.

Inventor name: HERRMANN, MICHAEL, DR.-ING.

Inventor name: HENNINGER, STEFAN, DR. RER. NAT.

Inventor name: WITTSTADT, URSULA, DIPL.-ING.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 13/00 20060101ALI20140203BHEP

Ipc: F28D 21/00 20060101ALI20140203BHEP

Ipc: F28F 7/02 20060101ALI20140203BHEP

Ipc: F28D 5/00 20060101ALN20140203BHEP

Ipc: F28D 15/02 20060101ALN20140203BHEP

Ipc: F28F 1/12 20060101AFI20140203BHEP

17P Request for examination filed

Effective date: 20140911

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150213

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 13/00 20060101ALI20150130BHEP

Ipc: F28D 5/00 20060101ALN20150130BHEP

Ipc: F28F 7/02 20060101ALI20150130BHEP

Ipc: F28F 1/12 20060101AFI20150130BHEP

Ipc: F28D 21/00 20060101ALI20150130BHEP

Ipc: F28D 15/02 20060101ALN20150130BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STUDNITZKY, THOMAS, DR.-ING.

Inventor name: SCHNABEL, LENA, DR.-ING.

Inventor name: WITTSTADT, URSULA, DIPL.-ING.

Inventor name: HENNINGER, STEFAN, DR. RER. NAT.

Inventor name: HERRMANN, MICHAEL, DR.-ING.

Inventor name: ANDERSEN, OLAF, DR.-ING.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 732182

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011007075

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150917

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20150617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150918

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150917

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150617

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151017

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151019

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011007075

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150811

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

26N No opposition filed

Effective date: 20160318

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150811

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 732182

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150617

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190821

Year of fee payment: 9

Ref country code: FR

Payment date: 20190822

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190827

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502011007075

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200811

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200811

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210819

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011007075

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230301