EP2414108B1 - Method for modifying the surface energy of a solid - Google Patents

Method for modifying the surface energy of a solid Download PDF

Info

Publication number
EP2414108B1
EP2414108B1 EP10713182.3A EP10713182A EP2414108B1 EP 2414108 B1 EP2414108 B1 EP 2414108B1 EP 10713182 A EP10713182 A EP 10713182A EP 2414108 B1 EP2414108 B1 EP 2414108B1
Authority
EP
European Patent Office
Prior art keywords
grafting
glass
group
chemical
vinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10713182.3A
Other languages
German (de)
French (fr)
Other versions
EP2414108A2 (en
Inventor
Guy Deniau
Fabien Nekelson
Brigitte Mouanda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of EP2414108A2 publication Critical patent/EP2414108A2/en
Application granted granted Critical
Publication of EP2414108B1 publication Critical patent/EP2414108B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/34Applying different liquids or other fluent materials simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/30Other inorganic substrates, e.g. ceramics, silicon
    • B05D2203/35Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/104Pretreatment of other substrates

Definitions

  • the invention belongs to the field of surface treatments.
  • the present invention aims to provide a method for treating, in a durable manner, a material for modifying the surface energy or interfacial tension of at least one of its surfaces and in particular for modifying the wettability of this surface.
  • the invention notably makes it possible to modify the interface properties between a solid body and a liquid.
  • the present invention provides a method for increasing the contact angle of said surface by grafting a coating and also provides a kit for carrying out such a method.
  • a surface is generally defined as the external part or limit of a body, the surface is often considered as an interface between the solid body and its environment, such as solid, liquid or gaseous.
  • the modification of the wettability of a surface can be carried out by impregnation of a compound which penetrates more or less deeply into the material composing the structure.
  • This type of treatment requires that there is an affinity between the treated surface and the impregnating compound.
  • the surface obtained is rarely homogeneous.
  • the impregnating compound remaining labile, it is necessary to repeat the treatment regularly to ensure its sustainability.
  • the application of wax on wood corresponds to this type of treatment.
  • the application of a coating also leads to the modification of the surface properties. Generally this type of treatment is applied to reduce the wettability of the surface with respect to water and increase the contact angle.
  • the coating typically corresponds to a resin.
  • the basic products used may be epoxy resins, polyurethanes, polyesters, or vinyls with which specific properties are associated.
  • the application of these compounds does not lead to the formation of strong bonds at the interface of the surface and the coating, thus reducing the life of this type of coating according to the environment.
  • it is generally films which have a large thickness, especially greater than one micron, and in particular, when the coating is applied to large areas of the order of several m 2 . Such a thickness results in properties different optics between the untreated material and the coated material of the coating.
  • Glass is a material for which surface treatments are used extensively.
  • the control of the surface tensions of the glass is achieved only by the grafting of alkyl siloxanes of which there is a large choice.
  • the problem of this type of grafting lies in the stability of the bond between the glass and the silane (-Si-O-Si- bond), which hydrolyses quite rapidly over time, especially in a humid medium. This bond is fragile depending on the environment and particularly in a basic environment.
  • the present invention solves technical problems and disadvantages previously listed. Indeed, the present inventors have been interested in the grafting of an organic coating on the surface of a material to modify its properties such as the surface energy also called “surface tension”, “surface tension”, “energy interface “or” interfacial tension ".
  • the grafting of such an organic coating allows the formation of stable covalent bonds between the surface of the material and said coating organic and is applicable to all types of materials, including glass.
  • the establishment of covalent bonds between the material and the coating ensures the stability of the couple and contributes to the durability of the treatment.
  • the thickness of the organic coating obtained by this grafting is, moreover, easily controllable.
  • the coating may be in the form of very thin films that do not modify the optical properties of the material.
  • the surface to be coated may be an insulating material, conductive or semiconductor, especially when the grafting process used is a chemical or radical grafting. Similarly, said grafting can be carried out in an aqueous medium as in an organic medium. For these reasons, the method according to the invention is applicable to any type of surface.
  • the present invention relates to a method for modifying the surface energy of at least one surface of a solid as defined in the appended claim set comprising a step of grafting onto said surface an organic polymeric film, the first of which reason comes from a primary membership and at least one other reason is from a siloxane with vinyl terminations.
  • the present invention relates to a method for modifying the surface energy of at least one surface of a solid comprising a step of grafting onto said surface a polymeric organic film of graft polymers, each polymer having a first pattern directly bound to said surface derived from a cleavable aryl salt and at least one other unit of the polymer chain derived from a vinyl-terminated siloxane.
  • modifying the surface energy is meant in the context of the present invention both increase and decrease the surface energy (or “interfacial energy”) especially with respect to a given liquid that is hydrophilic or hydrophobic .
  • the method according to the present invention allows to modify (i.e. increase or decrease) the contact angle of a liquid disposed on the surface thus treated with respect to the contact angle of the same liquid disposed on said untreated surface.
  • the process according to the present invention is a process which makes it possible to modify (i.e. increase or decrease) the wettability of said surface.
  • adhesion primer is meant, in the context of the present invention, any molecule organic capable, under certain non-electrochemical or electrochemical conditions, to form either radicals or ions, and particularly cations, and thus to participate in chemical reactions. Such chemical reactions may in particular be chemisorption and in particular chemical grafting or electrografting. Thus, such an adhesion primer is capable, under non-electrochemical or electrochemical conditions, of chemisorbing on the surface, in particular by radical reaction, and of presenting another reactive function with respect to another radical after this chemisorption.
  • the adhesion primer is a cleavable aryl salt.
  • the cleavable aryl salt is advantageously chosen from the group consisting of aryl diazonium salts, ammonium aryl salts, aryl phosphonium salts, aryl iodonium salts and arylsulphonium salts.
  • the aryl group is an aryl group which may be represented by R as defined below.
  • aryl group of the cleavable aryl salts and in particular the compounds of formula (I) above mention may advantageously be made of aromatic or heteroaromatic carbon structures, optionally mono- or polysubstituted, consisting of one or more aromatic rings or heteroaromatic compounds each comprising from 3 to 8 atoms, the heteroatom (s) possibly being N, O, P or S.
  • the substituent (s) may contain one or more heteroatoms, such as N, O, F, Cl, P, Si, Br or S as well as C1 to C6 alkyl groups or C4 to C12 thioalkyl groups in particular.
  • R is preferably chosen from aryl groups substituted with electron-withdrawing groups such as NO 2 , ketones, CN, CO 2. H, and the esters.
  • Particularly preferred aryl groups R are the optionally substituted benzene and nitrobenzene radicals.
  • A may especially be chosen from inorganic anions such as halides such as I - , Br - and Cl - , haloborates such as tetrafluoroborate, perchlorates and sulphonates, and organic anions such as alcoholates and carboxylates.
  • inorganic anions such as halides such as I - , Br - and Cl -
  • haloborates such as tetrafluoroborate, perchlorates and sulphonates
  • organic anions such as alcoholates and carboxylates.
  • fluorinated adhesion primer means an adhesion primer as previously described comprising at least one fluorine atom, especially comprising between 1 and 40 fluorine atoms, in particular between 5 and 30 fluorine atoms and, more particularly, between 10 and 20 fluorine atoms.
  • the fluorinated adhesion primer is a cleavable and fluorinated aryl salt.
  • said fluorinated cleavable aryl salt is selected from the group consisting of fluorinated aryl diazonium salts, fluorinated ammonium aryl salts, fluorinated aryl phosphonium salts, fluorinated aryl iodonium salts and fluorinated aryl sulphonium salts.
  • the fluorinated aryl group is a fluorinated aryl group which may be represented by R 'as defined below.
  • fluorinated aryl group cleavable and fluorinated aryl salts and especially compounds of formula (II) previously described
  • aromatic or heteroaromatic carbonaceous structures optionally mono- or polysubstituted, consisting of one or more aromatic rings.
  • heteroaromatic compounds each comprising from 3 to 8 atoms, the heteroatom (s) possibly being N, O, P or S and the substituent (s) being (C 1 to C 18) alkyl groups, and more particularly C 5 to C 12 alkyl groups, or C 4 thioalkyl groups; at C12, alkyl and thioalkyl groups comprising one or more fluorine atoms.
  • the alkyl or thioalkyl substituent (s) may comprise between 1 and 40 fluorine atoms, especially between 5 and 30 fluorine atoms and, in particular, between 10 and 20 fluorine atoms.
  • This alkyl group is a linear, branched or cyclic alkyl group, preferably substituted by at least one fluorine atom, and comprising from 1 to 20 carbon atoms, in particular from 2 to 15 carbon atoms and, in particular, from 3 to 12 carbon atoms.
  • Said alkyl group can comprise between 1 and 40 fluorine atoms, in particular between 2 and 30 fluorine atoms and, more particularly, between 5 and 20 fluorine atoms.
  • R 3 represents a group -C (O) -R 7 and / or R 6 represents a group -O- (O) -R 8 in which R 7 and R 8 , which may be identical or different, represent a group comprising from 2 to 12 carbon atoms and having at least one ethylenic unsaturation.
  • the organic film used in the context of the present invention is essentially a polymer or copolymer, derived from several monomeric units of identical or different chemical species and / or adhesion primer molecules.
  • the films obtained by the process of the present invention are "essentially" of the polymer type insofar as the film also incorporates species derived from the adhesion primer and not only monomers present.
  • the organic film in the context of the invention and, more particularly, the polymers which constitute it have a sequence in monomeric units (or units) in which the first unit (or first unit) consists of a primary derivative.
  • the patterns of the organic film from the second pattern are therefore derived from the polymerization, in particular radical, of the elements present and chosen from fluorinated or non-fluorinated adhesion primers, fluorinated (meth) acrylates, vinyl-terminated siloxanes and polymerizable monomers such as that the polymerizable monomers of formula (II) as defined in the patent application FR 2 921 516 .
  • the fluoro or non-fluorinated adhesion primer molecules can be qualified as polymerizable insofar as, by radical reaction, they can lead to the formation of relatively high molecular weight molecules whose structure is formed. essentially units with multiple repetitions derived, de facto or conceptually, from adhesion primer molecules.
  • the grafting used in the process is a chemical grafting.
  • chemical grafting refers in particular to the use of highly reactive (typically radical) molecular entities capable of forming covalent bond bonds with a surface of interest, said molecular entities being generated independently of the surface on which they are intended to be grafted.
  • highly reactive molecular entities capable of forming covalent bond bonds with a surface of interest, said molecular entities being generated independently of the surface on which they are intended to be grafted.
  • the grafting reaction leads to the formation of covalent bonds between the area of the surface to be coated with an organic film and the derivative of the adhesion primer.
  • the first organic film pattern i.e., the constituent polymers thereof
  • the first organic film pattern is a derivative of the adhesion primer that has reacted with the surface and with another chemical compound.
  • the surfaces of inorganic nature can be chosen in particular from conducting materials such as metals, noble metals, oxidized metals, transition metals, metal alloys and for example Ni, Zn, Au, Pt, Ti or steel. It can also be semiconductor materials such as Si, SiC, AsGa, Ga, etc. It is also possible to apply the process to non-conductive surfaces such as non-conductive oxides such as SiO 2 , Al 2 O 3 and MgO.
  • an inorganic surface may consist of, for example, an amorphous material, such as a glass generally containing silicates or a ceramic, as well as a crystalline one such as diamond, graphite which may be more or less organized, like graphene, highly oriented graphite (HOPG), or carbon nanotubes.
  • an amorphous material such as a glass generally containing silicates or a ceramic
  • a crystalline one such as diamond
  • graphite which may be more or less organized, like graphene, highly oriented graphite (HOPG), or carbon nanotubes.
  • polymers such as latex or rubber, or artificial such as polyamide or polyethylene derivatives, and especially polymers having n-type bonds such as polymers bearing ethylenic bonds, carbonyl groups, imine.
  • the surface of which it is desired to modify the surface energy is a glass surface such as a flat glass particularly used in the building, architecture, automotive, glazing and mirrors, an aquarium glass , eyeglass or optical glass.
  • the solution S 1 may further comprise a solvent.
  • the latter may be a protic solvent or an aprotic solvent. It is preferable that the adhesion primer which is employed is soluble in the solvent of the solution S 1 .
  • protic solvent is meant, in the context of the present invention, a solvent which comprises at least one hydrogen atom capable of being released in the form of a proton.
  • the protic solvent is advantageously chosen from the group consisting of water, deionized water, distilled water, acidified or not, acetic acid, hydroxylated solvents such as methanol and ethanol, and low glycols. molecular weights such as ethylene glycol, and mixtures thereof.
  • the protic solvent used in the context of the present invention consists only of a protic solvent or a mixture of different protic solvents.
  • the protic solvent or the mixture of protic solvents may be used in admixture with at least one aprotic solvent, it being understood that the resulting mixture has the characteristics of a protic solvent.
  • aprotic solvent is meant, in the context of the present invention, a solvent which is not considered as protic. Such solvents are not likely to release a proton or accept one under non-extreme conditions.
  • the aprotic solvent is advantageously chosen from dimethylformamide (DMF), acetone, tetrahydrofuran (THF), dichloromethane, acetonitrile, dimethyl sulfoxide (DMSO) and mixtures thereof.
  • Solution S 1 comprising an adhesion primer and an element as defined above may also contain at least one surfactant and this, in particular to improve the solubility of this element.
  • surfactants that can be used in the context of the invention is given in the patent application FR 2,897,876 which the person skilled in the art can refer to.
  • a single surfactant or a mixture of several surfactants can be used.
  • adhesion primer is soluble in the solvent of the solution S 1 .
  • an adhesion primer is considered soluble in a given solvent if it remains soluble up to a concentration of 0.5 M, ie its solubility is at least 0.5 M in normal temperature and pressure conditions (CNTP).
  • Solubility is defined as the analytical composition of a saturated solution as a function of the proportion of a given solute in a given solvent; it can in particular express itself in molarity. A solvent containing a given concentration of a compound will be considered saturated, when the concentration will be equal to the solubility of the compound in this solvent. Solubility can be finite as infinite. In the latter case, the compound is soluble in any proportion in the solvent.
  • the amount of adhesion primer present in the solution S 1 used according to the process according to the invention may vary according to the wishes of the experimenter. This amount is particularly related to the desired organic film thickness and the amount of adhesion primer it is possible and possible to integrate in the film. Thus to obtain a grafted film on the entire surface in contact with the solution, it is necessary to employ a minimum amount of adhesion primer that can be estimated by molecular size calculations. According to a particularly advantageous embodiment of the invention, the concentration of adhesion primer in the liquid solution is between 10 -6 and 5 M approximately, preferably between 10 -3 and 10 -1 M.
  • the pH of the solution is typically less than 7. It is recommended to work at a pH between 0 and 3 when the preparation of the adhesion primer is carried out in the same medium as that of the grafting. If necessary, the pH of the solution can be adjusted to the desired value using one or more acidifying agents well known to those skilled in the art, for example using inorganic or organic acids such as hydrochloric acid, sulfuric acid, etc.
  • the adhesion primer can either be introduced in the state in the solution S 1 as defined above, or be prepared in situ in the latter.
  • the process according to the present invention comprises a step for preparing the adhesion primer, especially when the latter is an aryl diazonium salt.
  • Such compounds are generally prepared from arylamine, which may comprise several amine substituents, by reaction with NaNO 2 in an acidic medium.
  • arylamine which may comprise several amine substituents
  • the elements selected from the group consisting of a fluorinated adhesion primer, a fluorinated (meth) acrylate and a vinyl-terminated siloxane and in particular fluorinated (meth) acrylates and vinyl-terminated siloxanes may be soluble to a certain extent. in the solvent of the solution S 1 , ie the value of their solubility in this solvent is finished. This applies to the other elements that the solution S1 could also contain, such as the polymerizable monomers of formula (II) as defined in the patent application. FR 2 921 516 .
  • fluorinated adhesion primers fluorinated (meth) acrylates, vinyl-terminated siloxanes and others
  • fluorinated adhesion primers fluorinated (meth) acrylates, vinyl-terminated siloxanes and others
  • solubility in the solvent of the solution S 1 is finite, in particular less than 0.1 M and in particular between 5.10 -2 and 10 -6 M.
  • the invention also applies to a mixture of two, three, four or more elements selected from the elements previously described.
  • the quantity of these elements in the solution S 1 can vary according to the wish of the experimenter. This amount may be greater than the solubility of the element in question in the solvent of the solution S 1 used and may represent for example 18 to 40 times the solubility of said element in the solution at a given temperature, generally the ambient temperature or that of reaction. Under these conditions, it is advantageous to employ means for dispersing the monomer molecules in the solution, such as a surfactant or ultrasound.
  • Solution S 1 comprising an adhesion primer and a vinyl-terminated siloxane and optionally a polymerizable monomer of formula (II) as defined in the patent application FR 2 921 516 may additionally contain at least one surfactant, in particular to improve the solubility of said element.
  • a precise description of the surfactants that can be used in the context of the invention is given in the patent application FR 2,897,876 which the person skilled in the art can refer to. A single surfactant or a mixture of several surfactants can be used.
  • the solution S 1 can also be in the form of an emulsion.
  • non-electrochemical conditions implemented in step (b 1 ) of the process according to the invention is meant in the context of the present invention in the absence of electrical voltage.
  • the non-electrochemical conditions used in step (b 1 ) of the process according to the invention are conditions that allow the formation of radical entities from the adhesion primer, in the absence of the application of any electrical voltage to the surface on which the organic film is grafted. These conditions involve parameters such as, for example, the temperature, the nature of the solvent, the presence of a particular additive, stirring, pressure while the electric current does not occur during the formation of radical entities.
  • the non-electrochemical conditions allowing the formation of radical entities are numerous and this type of reaction is known and studied in detail in the prior art (Rempp & Merrill, Polymer Synthesis, 1991, 65-86, Hüthig & Wepf).
  • non-electrochemical conditions allowing the formation of radical entities are typically selected from the group consisting of thermal, kinetic, chemical, photochemical, radiochemical conditions and combinations thereof.
  • the non-electrochemical conditions are chosen from the group consisting of thermal, chemical, photochemical and radiochemical conditions and their combinations with each other and / or with the kinetic conditions.
  • the Non-electrochemical conditions used in the context of the present invention are more particularly chemical conditions.
  • the thermal environment is a function of the temperature. Its control is easy with the heating means usually employed by those skilled in the art. The use of a thermostated environment is of particular interest since it allows precise control of the reaction conditions.
  • the kinetic environment essentially corresponds to the agitation of the system and the friction forces. It is not a question here of the agitation of the molecules in itself (elongation of bonds, etc.), but of the global movement of the molecules.
  • the application of a pressure makes it possible in particular to bring energy to the system so that the adhesion primer is destabilized and can form reactive species, especially radicals.
  • the action of various radiations such as electromagnetic radiation, ⁇ radiation, UV rays, electron or ion beams may also sufficiently destabilize the adhesion primer to form radicals and / or ions.
  • the wavelength used will be chosen according to the primary used. For example, a wavelength of about 306 nm will be used for 4-hexylbenzenediazonium.
  • one or more chemical initiator is used in the reaction medium.
  • the presence of chemical initiators is often coupled with conditions environmental non-chemical as outlined above.
  • a chemical initiator will act on the adhesion primer and will generate the formation of radical entities from the latter.
  • chemical initiators whose action is not essentially related to environmental conditions and which can act over wide ranges of thermal or kinetic conditions.
  • the initiator will preferably be adapted to the environment of the reaction, for example to the solvent.
  • the grafting used in the process is electrografting.
  • electro-initiated and localized grafting of an adhesion primer capable of being electrically activated, on a composite surface comprising conductive portions and / or semiconducting electricity, by contacting said adhesion primers with said composite surface.
  • the grafting is carried out electrochemically in a single step on selected, defined areas of said conductive and / or semiconducting portions. Said zones are brought to a potential greater than or equal to a threshold electric potential determined with respect to a reference electrode, said threshold electrical potential being the potential beyond which grafting of said adhesion primers occurs.
  • the term " semiconductor" is understood to mean an organic or inorganic material having an electrical conductivity intermediate between the metals and the insulators.
  • the conductivity properties of a semiconductor are influenced mainly by the charge carriers (electrons or holes) that the semiconductor exhibits. These properties are determined by two particular energy bands called the valence band (corresponding to the electrons involved in the covalent bonds) and the conduction band (corresponding to the electrons in an excited state and able to move in the semiconductor) .
  • the gap represents the difference in energy between the valence band and the conduction band.
  • a semiconductor also, unlike insulators or metals, is a material whose electrical conductivity can be controlled, in a broadly, by adding doping agents that correspond to foreign elements inserted into the semiconductor.
  • the surface used in the context of the process according to the invention may be any surface usually used in electrografting and advantageously an inorganic surface.
  • an inorganic surface may especially be chosen from conductive materials such as metals, noble metals, oxidized metals, transition metals, metal alloys and, for example, Ni, Zn, Au, Ag, Cu, Pt, Ti and the like. 'steel.
  • the inorganic surface may also be selected from semiconductor materials such as Si, SiC, AsGa, Ga, etc.
  • said inorganic surface used in the process according to the invention generally consists of a material chosen from metals, noble metals, oxidized metals, transition metals, metal alloys and photosensitive semiconductor materials. or not.
  • the term "photosensitive semiconductor” is understood to mean a semiconductor material whose conductivity can be modulated by variations in magnetic field, temperature or illumination, which influence the electron-electron pairs. holes and the density of charge carriers. These properties are due to the existence of the gap as defined above. This gap generally does not exceed 3.5 eV for semiconductors, against 5 eV in materials considered insulators. It is therefore possible to populate the band of conduction by excitation of carriers through the gap, especially under illumination.
  • the elements of group IV of the periodic table such as carbon (in diamond form), silicon, germanium have such properties.
  • Semiconductor materials can be formed from several elements, both Group IV, such as SiGe or SiC, Group III and V, such as GaAs, InP or GaN, or Group II and VI, such as CdTe or ZnSe .
  • the photosensitive semiconductor substrate is of inorganic nature.
  • the photosensitive semiconductor used in the context of the present invention is chosen from the group consisting of Group IV elements (more particularly, silicon and germanium); alloys of group IV elements (more particularly, SiGe and SiC alloys); alloys of group III and group V elements (referred to as "III-V” compounds, such as AsGa, InP, GaN) and alloys of group II and group VI elements (referred to as "II-VI” compounds , such as CdSe, CdTe, Cu 2 S, ZnS or ZnSe).
  • the preferred photosensitive semiconductor is silicon.
  • the photosensitive semiconductor is doped with one or more doping agents.
  • the doping agent is chosen according to the semiconductor, and the doping is of the p or n type.
  • the choice of the doping agent and the doping technologies are routine techniques for those skilled in the art.
  • the doping agent is selected from the group consisting of boron, nitrogen, phosphorus, nickel, sulfur, antimony, arsenic and mixtures thereof.
  • boron for a silicon substrate, among the most widely used doping agents of the p type, there may be mentioned boron and, for the n-type dopants, arsenic, phosphorus and antimony.
  • the method further comprises a step (C 2 ) of exposing said surface to light radiation whose energy is at least equal to that of the gap of said semiconductor.
  • a step (C 2 ) of exposing said surface to light radiation whose energy is at least equal to that of the gap of said semiconductor.
  • solution S 1 All that has been previously described for solution S 1, namely the solvent, the amounts of adhesion primer and other elements, the preparation of the adhesion primer in situ, the presence of a supporting electrolyte and possibly a surfactant also applies to the solution S 2 .
  • the solvent of the solution S 2 is advantageously a protic solvent as defined above.
  • the electric potential employed in step (b 2 ) of the method according to the present invention is close to the potential of reduction of the adhesion primer used and which reacts on the surface.
  • the value of the electric potential applied can be up to 50% higher than the reduction potential of the adhesion primer, more typically it will not be greater than 30%.
  • This variant of the present invention can be implemented in an electrolysis cell comprising different electrodes: a first working electrode constituting the surface intended to receive the film, a counter electrode, as well as possibly a reference electrode.
  • the polarization of said surface may be carried out by any technique known to those skilled in the art and in particular under linear or cyclic voltammetric conditions, under potentiostatic, potentiodynamic, intensiostatic, galvanostatic, galvanodynamic or by simple or pulsed chronoamperometry conditions.
  • the process according to the present invention is carried out under conditions of static or pulsed chronoamperometry.
  • static mode the electrode is polarized for a duration generally less than 2 h, typically less than 1 h and for example less than 20 min.
  • pulsed mode the number of pulses will be included, preferably between 1 and 1000 and, even more preferably, between 1 and 100, their duration generally being between 100 ms and 5 s, typically 1 s.
  • the thickness of the organic film is easily controllable, irrespective of the variant of the method of the present invention implemented, as previously explained.
  • the parameters such as the duration of step (b 1 ) or (b 2 ) and depending on the reagents it will use, one skilled in the art will be able to iteratively determine the optimum conditions for obtaining a film , of given thickness, not modifying the optical properties of the surface.
  • the method according to the present invention comprises an additional step, prior to chemical grafting or electrografting, of cleaning the surface on which it is desired to form the organic film, in particular by sanding and / or polishing. Additional ultrasonic treatment with an organic solvent such as ethanol, acetone or dimethylformamide (DMF) is even recommended.
  • an organic solvent such as ethanol, acetone or dimethylformamide (DMF) is even recommended.
  • the method according to the present invention comprises an additional step, following chemical grafting or electrografting, of subjecting the grafted organic film to heat treatment.
  • said heat treatment consists in subjecting said grafted film to a temperature of between 60 and 180 ° C., in particular between 90 and 150 ° C. and, in particular, of the order of 120 ° C. (ie 120 ° C. ⁇ 10 ° C. C) and this, for a period of between 1 h and 3 d, especially between 6 am and 2 d and, in particular, between 12 and 24 h.
  • This heat treatment step may be carried out in an oven or in an oven.
  • the present invention also relates to the use of a method as previously defined for modifying the wettability of a surface, for improving the sealing of a surface or for protecting said surface from corrosion.
  • the present invention relates to a method for modifying the wettability of a surface, for improving the sealing of a surface and / or for protecting a surface from corrosion, said method of modifying the surface energy of said surface by a method as defined above .
  • the adhesion primer of the first compartment and the element of the second compartment may be in solution.
  • Said solutions are more particularly solutions S 1 and S 2 as previously defined.
  • the chemical initiator of the third compartment may also be in solution.
  • an identical or different solvent is contained in each of the solutions of the first and second compartments and optionally in the solution of the third compartment.
  • the first compartment contains not an adhesion primer advantageously in solution but at least one precursor of an adhesion primer advantageously in solution.
  • adhesion primer precursor it is necessary to understand a molecule separated from the primary by a single operating step and easy to implement.
  • the kit will possibly include at least one other compartment in which there will be at least one element necessary to develop the primary from its precursor.
  • the kit may for example contain an arylamine, precursor of the adhesion primer, advantageously in solution, and also a NaNO 2 solution to allow by addition the formation of an aryl diazonium salt, primary adhesion.
  • the solutions of the different compartments may of course contain different other identical or different agents such as stabilizing agents or surfactants.
  • the use of the kit proves to be simple since it suffices to place the sample whose surface is to be treated in contact with the mixture of solutions prepared extemporaneously by mixing the solutions of the different compartments, preferably with stirring and in particular under ultrasound .
  • the solution containing the monomer i.e. the second compartment, is placed under ultrasound before being mixed with the solution containing the adhesion primer prepared extemporaneously from a precursor or present in the first compartment.
  • Example I Grafting of the 4-NBDT / PHFBM pair on gold and glass with ferrocene
  • the glass slides were rinsed beforehand with water, ethanol and acetone with ultrasound.
  • the IR spectrometry analysis of the gold plates confirms the presence of the expected film whose thickness is constant for the immersed samples for 30 and 60 min ( Figure 1 ).
  • Table 1 below and the figure 2 take the values of the contact angle obtained for a drop of water placed on a blank glass slide or on a glass slide on which was grafted an organic film obtained from 4-NBDT and HFBM for 30 minutes. min or 60 min (7 independent measurements).
  • the Figure 3 is a photograph of this drop on such a grafted glass slide ( Figure 3A ) or on a blank glass slide ( Figure 3B ).
  • Table 1 ⁇ / u> Measure N ° Blank glass ⁇ (°) Grafted glass 30 min ⁇ (°) Grafted glass 60 min ⁇ (°) 1 28 52 54 2 22 50 57 3 20 48 62 4 21 47 62 5 22 47 62 6 23 49 64 7 24 49 56
  • the IR spectrometry analysis of the gold plates confirms the presence of the expected film whose thickness is constant for the immersed samples for 30 and 60 min ( Figure 4 ).
  • the specific strips of the coating at 1264 cm -1 (CF 3 deformation), 1105 cm -1 (CF 2 deformation) are visible.
  • An estimation of the coating thicknesses (% grafting) is obtained by measuring the absorption percentage of the most intense band of the spectrum, here the CF 3 band at 1264 cm -1 .
  • Table 2 below and the figure 5 take again the values of the contact angle obtained for a drop of water placed on a blank glass slide or on a glass slide on which has been grafted an organic film obtained from MB83 for 30 min or 60 min (11 independent measurements).
  • the Figure 6 is a photograph of this drop on such a grafted glass slide ( Figure 6A ) or on a blank glass slide ( Figure 6B ).
  • Example III Grafting of the 4-NBDT / PDMS couple on gold and glass with ferrocene
  • a batch of two glass and gold slides was removed after 30 min and another at 60 min. These slides were rinsed successively with MQ water, ethanol, acetone and immersed in a hexane bath at 60 ° C for 15 min. The samples were also sonicated in a hexane bath for 2-3 min before performing the IR and contact angle measurements.
  • the IR spectrometry analysis of the gold plates confirms the presence of the expected film whose thickness increases with time ( Figure 7 ).
  • the specific strips of the coating at 1264 cm -1 (Si-O deformation), 1107 cm -1 (Si-O deformation) are visible.
  • An estimation of the coating thicknesses (% grafting) is obtained by measuring the absorption percentage of the most intense band of the spectrum, here the Si-O at 1264 cm -1 .
  • Table 3 below and the figure 8 take the values of the contact angle obtained for a drop of water placed on a blank glass slide or on a glass slide on which was grafted an organic film obtained from 4-NBDT and PDMS for 30 min or 60 min (10 independent measurements).
  • the Figure 9 is a photograph of this drop on such a grafted glass slide ( Figure 9A ) or on a blank glass slide ( Figure 9B ).
  • the values of the contact angles of a blank glass slide, a glass slide treated according to the protocol described above and a gold slide which has undergone the same treatment are respectively 28.7 ⁇ 4.4; 100 ⁇ 4.6 and 96.8 ⁇ 3.8.
  • the values of the contact angles of a blank glass slide, a glass slide treated according to the protocol described above and a gold slide which has undergone the same treatment are 28.7 ⁇ 4.4; 100 ⁇ 4.6 and 96.8 ⁇ 3.8 respectively.

Description

DOMAINE TECHNIQUETECHNICAL AREA

L'invention appartient au domaine des traitements de surface.The invention belongs to the field of surface treatments.

Plus particulièrement, la présente invention vise à fournir un procédé permettant de traiter, de façon durable, un matériau pour modifier l'énergie de surface ou tension interfaciale d'au moins une de ses surfaces et notamment pour modifier la mouillabilité de cette surface. L'invention permet notamment de modifier les propriétés d'interface entre un corps solide et un liquide.More particularly, the present invention aims to provide a method for treating, in a durable manner, a material for modifying the surface energy or interfacial tension of at least one of its surfaces and in particular for modifying the wettability of this surface. The invention notably makes it possible to modify the interface properties between a solid body and a liquid.

La présente invention propose un procédé permettant d'augmenter l'angle de contact de ladite surface par greffage d'un révêtement et propose également un kit pour la mise en oeuvre d'un tel procédé.The present invention provides a method for increasing the contact angle of said surface by grafting a coating and also provides a kit for carrying out such a method.

ÉTAT DE LA TECHNIQUE ANTÉRIEURESTATE OF THE PRIOR ART

Une surface est généralement définie comme la partie ou la limite externe d'un corps, la surface est souvent considérée comme une interface entre le corps solide et son environnement qu'il soit notamment solide, liquide ou gazeux.A surface is generally defined as the external part or limit of a body, the surface is often considered as an interface between the solid body and its environment, such as solid, liquid or gaseous.

Quand une goutte d'un liquide donné est déposée sur la surface d'un solide, elle adopte une configuration d'équilibre et s'étale plus ou moins sur la surface. L'angle θ, ou angle de contact qui est défini comme la mesure de l'angle entre la surface du solide et la tangente à la goutte, résulte de l'équilibre des tensions des trois interfaces solide/liquide, solide/vapeur et liquide/vapeur. Ces grandeurs sont liées entre elles par la relation de Young. Typiquement, un ensemble de mesures est réalisé sur une même surface pour déterminer une valeur moyenne de θ. Selon la valeur obtenue, on peut distinguer quatre cas :

  • le liquide s'étale spontanément et le mouillage est dit « parfait » (θ = 0),
  • le mouillage est considéré comme « bon » (0 < θ < 90°),
  • le mouillage est dit « mauvais » (90° < θ < 180°),
  • il n'y a pas de mouillage (θ = 180°).
When a drop of a given liquid is deposited on the surface of a solid, it adopts an equilibrium configuration and spreads more or less on the surface. The angle θ, or contact angle which is defined as the measurement of the angle between the surface of the solid and the tangent to the drop, results from the balance of the voltages of the three interfaces solid / liquid, solid / vapor and liquid /steam. These quantities are linked together by Young's relation. Typically, a set of measurements is made on the same surface to determine an average value of θ. Depending on the value obtained, we can distinguish four cases:
  • the liquid spreads spontaneously and the wetting is said to be "perfect" ( θ = 0),
  • wetting is considered "good" (0 <90 °)
  • the wetting is said to be "bad" (90 ° < θ <180 °),
  • there is no wetting ( θ = 180 °).

Les comportements associés aux observations réalisées à l'échelle macroscopique lors des mesures d'angle de contact peuvent être différents de ceux observés à des échelles moindres pour lesquelles les tensions de surface des liquides jouent un rôle important. Toutefois, ces comportements ne remettent pas en cause les mesures qui sont réalisées à l'échelle macroscopique en ce qu'ils permettent de caractériser les surfaces.The behaviors associated with observations made on a macroscopic scale during contact angle measurements may be different from those observed at lower scales for which liquid surface tensions play an important role. However, these behaviors do not call into question the measurements that are made at the macroscopic scale in that they make it possible to characterize the surfaces.

La caractérisation et l'étude des propriétés et du comportement des surfaces sont abondamment documentées dans la littérature à laquelle l'homme du métier pourra se reporter. A ce titre, on peut notamment citer l'article de P. G. de Gennes, 1985 (Rev. Mod. Phys., vol. 57, pages 827-863 ).Characterization and study of the properties and behavior of surfaces are abundantly documented in the literature to which the skilled person can refer. As such, we may include the article of PG of Gennes, 1985 (Rev. Mod Physics, vol 57, pages 827-863 ).

La modification de la mouillabilité d'une surface peut être réalisée par imprégnation d'un composé qui pénètre plus ou moins profondément dans le matériau composant la structure. Ce type de traitement nécessite qu'il existe une affinité entre la surface traitée et le composé d'imprégnation. Toutefois, la surface obtenue est rarement homogène. De plus, le composé d'imprégnation restant labile, il faut répéter régulièrement le traitement pour assurer sa pérennité. L'application de cire sur le bois correspond à ce type de traitement.The modification of the wettability of a surface can be carried out by impregnation of a compound which penetrates more or less deeply into the material composing the structure. This type of treatment requires that there is an affinity between the treated surface and the impregnating compound. However, the surface obtained is rarely homogeneous. In addition, the impregnating compound remaining labile, it is necessary to repeat the treatment regularly to ensure its sustainability. The application of wax on wood corresponds to this type of treatment.

L'application d'un enduit conduit également à la modification des propriétés de surface. Généralement ce type de traitement est appliqué pour réduire la mouillabilité de la surface par rapport à l'eau et augmenter l'angle de contact. L'enduit correspond typiquement à une résine. Les produits de base utilisés peuvent être des résines époxydiques, polyuréthanes, polyesters, ou vinyliques auxquelles sont associées des propriétés spécifiques. L'application de ces composés ne conduit pas à la formation de liaisons fortes à l'interface de la surface et de l'enduit, ce qui réduit ainsi la durée de vie de ce type de revêtement selon l'environnement. En outre, il s'agit généralement de films qui présentent une épaisseur importante, notamment supérieure au micron, et ce, en particulier, lorsque l'enduit est appliqué à de vastes surfaces de l'ordre de plusieurs m2. Une telle épaisseur entraîne des propriétés optiques différentes entre le matériau non traité et le matériau revêtu de l'enduit.The application of a coating also leads to the modification of the surface properties. Generally this type of treatment is applied to reduce the wettability of the surface with respect to water and increase the contact angle. The coating typically corresponds to a resin. The basic products used may be epoxy resins, polyurethanes, polyesters, or vinyls with which specific properties are associated. The application of these compounds does not lead to the formation of strong bonds at the interface of the surface and the coating, thus reducing the life of this type of coating according to the environment. In addition, it is generally films which have a large thickness, especially greater than one micron, and in particular, when the coating is applied to large areas of the order of several m 2 . Such a thickness results in properties different optics between the untreated material and the coated material of the coating.

Le verre est un matériau pour lequel les traitements de surface sont abondamment utilisés. Actuellement, le contrôle des tensions de surface du verre n'est réalisé que par le greffage d'alkyl siloxanes dont il existe un grand choix. Cependant, le problème de ce type de greffage réside dans la stabilité de la liaison entre le verre et le silane (liaison -Si-O-Si-), qui s'hydrolyse assez rapidement dans le temps, notamment en milieu humide. Cette liaison est fragile selon l'environnement et particulièrement en milieu basique.Glass is a material for which surface treatments are used extensively. Currently, the control of the surface tensions of the glass is achieved only by the grafting of alkyl siloxanes of which there is a large choice. However, the problem of this type of grafting lies in the stability of the bond between the glass and the silane (-Si-O-Si- bond), which hydrolyses quite rapidly over time, especially in a humid medium. This bond is fragile depending on the environment and particularly in a basic environment.

Il existe donc un réel besoin de proposer un traitement pérenne permettant de modifier et/ou de contrôler les tensions de surface d'un matériau, applicable à tout matériau et ne modifiant pas les propriétés optiques dudit matériau ainsi traité.There is therefore a real need to provide a durable treatment for modifying and / or controlling the surface tension of a material, applicable to any material and not modifying the optical properties of said material treated.

EXPOSÉ DE L'INVENTIONSTATEMENT OF THE INVENTION

La présente invention permet de résoudre des problèmes techniques et inconvénients précédemment listés. En effet, les présents inventeurs se sont intéressés au greffage d'un revêtement organique sur la surface d'un matériau pour en modifier les propriétés telles que l'énergie de surface également appelée « tension de surface », « tension superficielle », « énergie d'interface » ou « tension interfaciale ».The present invention solves technical problems and disadvantages previously listed. Indeed, the present inventors have been interested in the grafting of an organic coating on the surface of a material to modify its properties such as the surface energy also called "surface tension", "surface tension", "energy interface "or" interfacial tension ".

Le greffage d'un tel revêtement organique permet la formation de liaisons covalentes stables entre la surface du matériau et ledit revêtement organique et est applicable à tout type de matériau et notamment au verre. L'établissement de liaisons covalentes entre le matériau et le revêtement assure la stabilité du couple et participe à la durabilité du traitement.The grafting of such an organic coating allows the formation of stable covalent bonds between the surface of the material and said coating organic and is applicable to all types of materials, including glass. The establishment of covalent bonds between the material and the coating ensures the stability of the couple and contributes to the durability of the treatment.

L'épaisseur du revêtement organique obtenu par ce greffage est, en outre, facilement contrôlable. Ainsi, le revêtement peut se présenter sous forme de films très minces ne modifiant pas les propriétés optiques du matériau.The thickness of the organic coating obtained by this grafting is, moreover, easily controllable. Thus, the coating may be in the form of very thin films that do not modify the optical properties of the material.

La surface à revêtir peut être en un matériau isolant, conducteur ou semi-conducteur notamment lorsque le procédé de greffage mis en oeuvre est un greffage chimique ou radicalaire. De même, ledit greffage peut être réalisé dans un milieu aqueux comme dans un milieu organique. Pour ces raisons, le procédé selon l'invention est applicable à tout type de surface.The surface to be coated may be an insulating material, conductive or semiconductor, especially when the grafting process used is a chemical or radical grafting. Similarly, said grafting can be carried out in an aqueous medium as in an organic medium. For these reasons, the method according to the invention is applicable to any type of surface.

Enfin, la diversité chimique des unités structurales mises en oeuvre lors de ce greffage permet de couvrir et d'obtenir une large gamme de tensions superficielles.Finally, the chemical diversity of the structural units used during this grafting makes it possible to cover and obtain a wide range of surface tensions.

Ainsi, la présente invention concerne un procédé pour modifier l'énergie de surface d'au moins une surface d'un solide tel que défini dans le jeu de revendications annexé comprenant une étape consistant à greffer sur ladite surface un film organique polymère dont le premier motif est issu d'un primaire d'adhésion et dont au moins un autre motif est issu d'un siloxane à terminaisons vinyliques.Thus, the present invention relates to a method for modifying the surface energy of at least one surface of a solid as defined in the appended claim set comprising a step of grafting onto said surface an organic polymeric film, the first of which reason comes from a primary membership and at least one other reason is from a siloxane with vinyl terminations.

Plus particulièrement, la présente invention concerne un procédé pour modifier l'énergie de surface d'au moins une surface d'un solide comprenant une étape consistant à greffer sur ladite surface un film organique polymère constitué de polymères greffés, chaque polymère présentant un premier motif directement lié à ladite surface issu d'un sel d'aryle clivable et au moins un autre motif de la chaîne polymérique issu d'un siloxane à terminaisons vinyliques.More particularly, the present invention relates to a method for modifying the surface energy of at least one surface of a solid comprising a step of grafting onto said surface a polymeric organic film of graft polymers, each polymer having a first pattern directly bound to said surface derived from a cleavable aryl salt and at least one other unit of the polymer chain derived from a vinyl-terminated siloxane.

Par « modifier l'énergie de surface », on entend dans le cadre de la présente invention aussi bien augmenter que diminuer l'énergie de surface (ou « énergie interfaciale ») notamment par rapport à un liquide donné qu'il soit hydrophile ou hydrophobe. Le procédé selon la présente invention permet de modifier (i.e. augmenter ou diminuer) l'angle de contact d'un liquide disposé sur la surface ainsi traitée par rapport à l'angle de contact du même liquide disposé sur ladite surface non traitée. Avantageusement, le procédé selon la présente invention est un procédé qui permet de modifier (i.e. augmenter ou diminuer) la mouillabilité de ladite surface.By "modifying the surface energy" is meant in the context of the present invention both increase and decrease the surface energy (or "interfacial energy") especially with respect to a given liquid that is hydrophilic or hydrophobic . The method according to the present invention allows to modify (i.e. increase or decrease) the contact angle of a liquid disposed on the surface thus treated with respect to the contact angle of the same liquid disposed on said untreated surface. Advantageously, the process according to the present invention is a process which makes it possible to modify (i.e. increase or decrease) the wettability of said surface.

Par « primaire d'adhésion », on entend, dans le cadre de la présente invention, toute molécule organique susceptible, sous certaines conditions non-électrochimiques ou électrochimiques, de former soit des radicaux, soit des ions, et particulièrement des cations, et ainsi de participer à des réactions chimiques. De telles réactions chimiques pourront notamment être une chimisorption et en particulier un greffage chimique ou un électrogreffage. Ainsi, un tel primaire d'adhésion est capable, sous des conditions non-électrochimiques ou électrochimiques, de se chimisorber sur la surface, notamment par réaction radicalaire, et de présenter une autre fonction réactive vis-à-vis d'un autre radical après cette chimisorption.By "adhesion primer" is meant, in the context of the present invention, any molecule organic capable, under certain non-electrochemical or electrochemical conditions, to form either radicals or ions, and particularly cations, and thus to participate in chemical reactions. Such chemical reactions may in particular be chemisorption and in particular chemical grafting or electrografting. Thus, such an adhesion primer is capable, under non-electrochemical or electrochemical conditions, of chemisorbing on the surface, in particular by radical reaction, and of presenting another reactive function with respect to another radical after this chemisorption.

Le primaire d'adhésion est un sel d'aryle clivable. Ainsi, tout ce qui, dans la présente, fait référence à un primaire d'adhésion s'applique également au sel d'aryle clivable. Le sel d'aryle clivable est avantageusement choisi dans le groupe constitué par les sels d'aryle diazonium, les sels d'aryle d'ammonium, les sels d'aryle phosphonium, les sels d'aryle iodonium et les sels d'aryle sulfonium. Dans ces sels, le groupe aryle est un groupe aryle qui peut être représenté par R tel que défini ci-après.The adhesion primer is a cleavable aryl salt. Thus, everything herein referred to an adhesion primer also applies to the cleavable aryl salt. The cleavable aryl salt is advantageously chosen from the group consisting of aryl diazonium salts, ammonium aryl salts, aryl phosphonium salts, aryl iodonium salts and arylsulphonium salts. . In these salts, the aryl group is an aryl group which may be represented by R as defined below.

Parmi les sels d'aryle clivables, on peut en particulier citer les composés de formule (I) suivante :

        R-N2+, A-     (I)

dans laquelle :

  • A représente un anion monovalent et
  • R représente un groupe aryle.
Among the cleavable aryl salts, mention may in particular be made of the compounds of formula (I) below:

RN 2+ , A - (I)

in which :
  • A represents a monovalent anion and
  • R represents an aryl group.

A titre de groupe aryle des sels d'aryle clivables et notamment des composés de formule (I) ci-dessus, on peut avantageusement citer les structures carbonées aromatiques ou hétéroaromatiques, éventuellement mono- ou polysubstituées, constituées d'un ou plusieurs cycles aromatiques ou hétéroaromatiques comportant chacun de 3 à 8 atomes, le ou les hétéroatomes pouvant être N, O, P ou S. Le ou les substituants peuvent contenir un ou plusieurs hétéroatomes, tels que N, O, F, Cl, P, Si, Br ou S ainsi que des groupes alkyles en Cl à C6 ou des groupes thioalkyles en C4 à C12 notamment.As the aryl group of the cleavable aryl salts and in particular the compounds of formula (I) above, mention may advantageously be made of aromatic or heteroaromatic carbon structures, optionally mono- or polysubstituted, consisting of one or more aromatic rings or heteroaromatic compounds each comprising from 3 to 8 atoms, the heteroatom (s) possibly being N, O, P or S. The substituent (s) may contain one or more heteroatoms, such as N, O, F, Cl, P, Si, Br or S as well as C1 to C6 alkyl groups or C4 to C12 thioalkyl groups in particular.

Au sein des sels d'aryle clivables et notamment des composés de formule (I) ci-dessus, R est de préférence choisi parmi les groupes aryles substitués par des groupements attracteurs d'électrons tels que NO2, les cétones, CN, CO2H, et les esters. Les groupes R de type aryle particulièrement préférés sont les radicaux benzène et nitrobenzène éventuellement substitués.In the cleavable aryl salts and in particular the compounds of formula (I) above, R is preferably chosen from aryl groups substituted with electron-withdrawing groups such as NO 2 , ketones, CN, CO 2. H, and the esters. Particularly preferred aryl groups R are the optionally substituted benzene and nitrobenzene radicals.

Au sein des composés de formule (I) ci-dessus, A peut notamment être choisi parmi les anions inorganiques tels que les halogénures comme I-, Br- et Cl-, les halogénoborates tels que le tétrafluoroborate, les perchlorates et les sulfonates et les anions organiques tels que les alcoolates et les carboxylates.Within the compounds of formula (I) above, A may especially be chosen from inorganic anions such as halides such as I - , Br - and Cl - , haloborates such as tetrafluoroborate, perchlorates and sulphonates, and organic anions such as alcoholates and carboxylates.

A titre de composés de formule (I), il est particulièrement avantageux d'utiliser un composé choisi dans le groupe constitué par le tétrafluoroborate de 4-nitrobenzènediazonium, le tétrafluoroborate de tridécylfluorooctylsulfamylbenzène diazonium, le tétrafluoroborate de phényldiazonium, le tétrafluoroborate de 4-nitrophényldiazonium, le tétrafluoroborate de 4-bromophényldiazonium, le chlorure de 4-aminophényldiazonium, le chlorure de 2-méthyl-4-chlorophényldiazonium, le tétrafluoroborate de 4-benzoylbenzènediazonium, le tétrafluoroborate de 4-cyanophényldiazonium, le tétrafluoroborate du 4-carboxyphényldiazonium, le tétrafluoroborate de 4-acétamidophényldiazonium, le tétrafluoroborate de l'acide 4-phénylacétique diazonium, le sulfate de 2-méthyl-4-[(2-méthylphényl)diazényl]benzènediazonium, le chlorure de 9,10-dioxo-9,10-dihydro-l-anthracènediazonium, le tétrafluoroborate de 4-nitronaphtalènediazonium et le tétrafluoroborate de naphtalènediazonium.As compounds of formula (I), it is particularly advantageous to use a compound selected from the group consisting of 4-nitrobenzenediazonium tetrafluoroborate, tridecylfluorooctylsulfamylbenzene tetrafluoroborate diazonium, phenyldiazonium tetrafluoroborate, 4-nitrophenyldiazonium tetrafluoroborate, 4-bromophenyldiazonium tetrafluoroborate, 4-aminophenyldiazonium chloride, 2-methyl-4-chlorophenyldiazonium chloride, 4-benzoylbenzenediazonium tetrafluoroborate, 4-tetrafluoroborate -cyanophenyldiazonium, 4-carboxyphenyldiazonium tetrafluoroborate, 4-acetamidophenyldiazonium tetrafluoroborate, 4-phenylacetic acid diazonium tetrafluoroborate, 2-methyl-4 - [(2-methylphenyl) diazenyl] benzenediazonium sulfate, 9,10-dioxo-9,10-dihydro-1-anthracenediazonium, 4-nitronaphthalenediazonium tetrafluoroborate and naphthalenediazonium tetrafluoroborate.

Par « primaire d'adhésion fluoré », on entend, dans le cadre de la présente invention, un primaire d'adhésion tel que précédemment décrit comprenant au moins un atome de fluor, notamment comprenant entre 1 et 40 atomes de fluor, en particulier entre 5 et 30 atomes de fluor et, plus particulièrement, entre 10 et 20 atomes de fluor. Le primaire d'adhésion fluoré est un sel d'aryle clivable et fluoré. Avantageusement, ledit sel d'aryle clivable fluoré est choisi dans le groupe constitué par les sels d'aryle diazonium fluorés, les sels d'aryle d'ammonium fluorés, les sels d'aryle phosphonium fluorés, les sels d'aryle iodonium fluorés et les sels d'aryle sulfonium fluorés. Dans ces sels, le groupe aryle fluoré est un groupe aryle fluoré qui peut être représenté par R' tel que défini ci-après.For the purposes of the present invention, the term "fluorinated adhesion primer" means an adhesion primer as previously described comprising at least one fluorine atom, especially comprising between 1 and 40 fluorine atoms, in particular between 5 and 30 fluorine atoms and, more particularly, between 10 and 20 fluorine atoms. The fluorinated adhesion primer is a cleavable and fluorinated aryl salt. Advantageously, said fluorinated cleavable aryl salt is selected from the group consisting of fluorinated aryl diazonium salts, fluorinated ammonium aryl salts, fluorinated aryl phosphonium salts, fluorinated aryl iodonium salts and fluorinated aryl sulphonium salts. In these salts, the fluorinated aryl group is a fluorinated aryl group which may be represented by R 'as defined below.

Parmi les sels d'aryle fluorés et clivables, on peut en particulier citer les composés de formule (II') suivante :

        R'-N2+, A-     (II')

dans laquelle :

  • A représente un anion monovalent tel que précédemment défini et
  • R' représente un groupe aryle fluoré.
Among the fluorinated and cleavable aryl salts, mention may in particular be made of the compounds of formula (II ') below:

R'-N 2+ , A - (II ')

in which :
  • A represents a monovalent anion as previously defined and
  • R 'represents a fluorinated aryl group.

A titre de groupe aryle fluoré des sels d'aryle clivables et fluorés et notamment des composés de formule (II) précédemment décrits, on peut citer les structures carbonées aromatiques ou hétéroaromatiques, éventuellement mono- ou polysubstituées, constituées d'un ou plusieurs cycles aromatiques ou hétéroaromatiques comportant chacun de 3 à 8 atomes, le ou les hétéroatomes pouvant être N, O, P ou S et le ou les substituants étant des groupes alkyles C1 à C18, et plus particulièrement en C5 à C12, ou des groupes thioalkyles en C4 à C12, les groupes alkyles et thioalkyles comprenant un ou plusieurs atomes de fluor. Le ou les substituants alkyles ou thioalkyles peuvent comprendre entre 1 et 40 atomes de fluor, notamment entre 5 et 30 atomes de fluor et, en particulier, entre 10 et 20 atomes de fluor.As the fluorinated aryl group, cleavable and fluorinated aryl salts and especially compounds of formula (II) previously described, mention may be made of aromatic or heteroaromatic carbonaceous structures, optionally mono- or polysubstituted, consisting of one or more aromatic rings. or heteroaromatic compounds each comprising from 3 to 8 atoms, the heteroatom (s) possibly being N, O, P or S and the substituent (s) being (C 1 to C 18) alkyl groups, and more particularly C 5 to C 12 alkyl groups, or C 4 thioalkyl groups; at C12, alkyl and thioalkyl groups comprising one or more fluorine atoms. The alkyl or thioalkyl substituent (s) may comprise between 1 and 40 fluorine atoms, especially between 5 and 30 fluorine atoms and, in particular, between 10 and 20 fluorine atoms.

Par « (méth)acrylate fluoré », on entend, dans le cadre de la présente invention, un composé de formule (III) :

        CH2=C(R1)-C(O)O-R2     (III)

dans laquelle R1 représente un atome d'hydrogène ou un groupement méthyle et R2 représente un groupement alkyle, le groupement méthyle et/ou R2 comprenant au moins un atome de fluor. Ce groupement alkyle est un groupement alkyle linéaire, ramifié ou cyclique, de préférence substitué par au moins un atome de fluor, et comprenant de 1 à 20 atomes de carbone, notamment de 2 à 15 atomes de carbone et, en particulier, de 3 à 12 atomes de carbone. Ledit groupement alkyle peut comprendre entre 1 et 40 atomes de fluor, en particulier entre 2 et 30 atomes de fluor et, plus particulièrement, entre 5 et 20 atomes de fluor.
By "fluorinated (meth) acrylate" is meant, in the context of the present invention, a compound of formula (III):

CH 2 = C (R 1 ) -C (O) OR 2 (III)

in which R 1 represents a hydrogen atom or a methyl group and R 2 represents an alkyl group, the methyl group and / or R 2 comprising at least one fluorine atom. This alkyl group is a linear, branched or cyclic alkyl group, preferably substituted by at least one fluorine atom, and comprising from 1 to 20 carbon atoms, in particular from 2 to 15 carbon atoms and, in particular, from 3 to 12 carbon atoms. Said alkyl group can comprise between 1 and 40 fluorine atoms, in particular between 2 and 30 fluorine atoms and, more particularly, between 5 and 20 fluorine atoms.

Par « siloxane à terminaisons vinyliques », on entend, dans le cadre de la présente invention, un hydrure saturé de silicium et d'oxygène formé de chaînes, droites ou ramifiées, d'atomes de silicium et d'oxygène en alternance, comportant des motifs vinyliques. Plus particulièrement, dans le cadre de la présente invention, un siloxane à terminaisons vinyliques est un composé de formule (IV) :

        R3 - [OSi (R4)(R5)]n-R6     (IV)

dans laquelle

  • n représente un nombre entier compris entre 2 et 200, notamment entre 5 et 150 et, en particulier, entre 10 et 100 ;
  • R3 et R6 sont des groupements présentant au moins une insaturation éthylénique et
  • R4 et R5, identiques ou différents, représentent un groupement alkyle linéaire, ramifié ou cyclique, comprenant de 1 à 6 atomes de carbone et notamment de 1 à 3 atomes de carbone.
By "vinyl-terminated siloxane" is meant, in the context of the present invention, a saturated hydride of silicon and oxygen formed of straight or branched chains of alternating silicon and oxygen atoms, comprising vinyl patterns. More particularly, in the context of the present invention, a vinyl-terminated siloxane is a compound of formula (IV):

R 3 - [OSi (R 4 ) (R 5 )] n -R 6 (IV)

in which
  • n represents an integer between 2 and 200, in particular between 5 and 150 and, in particular, between 10 and 100;
  • R 3 and R 6 are groups having at least one ethylenic unsaturation and
  • R 4 and R 5 , which are identical or different, represent a linear, branched or cyclic, comprising from 1 to 6 carbon atoms and in particular from 1 to 3 carbon atoms.

Avantageusement, R3 représente un groupement -C(O)-R7 et/ou R6 représente un groupement -O-(O)-R8 dans lesquels R7 et R8, identiques ou différents, représentent un groupement comprenant de 2 à 12 atomes de carbone et présentant au moins une insaturation éthylénique. Plus particulièrement, R7 et R8, identiques ou différents, correspondent à des groupements de formule (V) :

        C(R9) (R10)=C(R11)-     (V)

dans laquelle R9, R10 et R11, identiques ou différents, représentent un atome d'hydrogène ou un groupement alkyle linéaire, ramifié ou cyclique, comprenant de 1 à 4 atomes de carbone et notamment de 1 ou 2 atomes de carbone. Plus particulièrement, R9 et R10 représentent un atome d'hydrogène et R11 est soit un atome d'hydrogène, soit un groupement méthyle.
Advantageously, R 3 represents a group -C (O) -R 7 and / or R 6 represents a group -O- (O) -R 8 in which R 7 and R 8 , which may be identical or different, represent a group comprising from 2 to 12 carbon atoms and having at least one ethylenic unsaturation. More particularly, R 7 and R 8 , which are identical or different, correspond to groups of formula (V):

C (R 9 ) (R 10 ) = C (R 11 ) - (V)

in which R 9 , R 10 and R 11 , which are identical or different, represent a hydrogen atom or a linear, branched or cyclic alkyl group comprising from 1 to 4 carbon atoms and in particular from 1 or 2 carbon atoms. More particularly, R 9 and R 10 represent a hydrogen atom and R 11 is either a hydrogen atom or a methyl group.

Le film organique mis en oeuvre dans le cadre de la présente invention peut être préparé à partir :

  1. (i) d'un primaire d'adhésion avantageusement non fluoré en mélange avec un siloxane à terminaisons vinyliques tel que précédemment défini ;
  2. (ii) d'un primaire d'adhésion avantageusement non fluoré en mélange avec plusieurs éléments choisis dans le groupe constitué par les primaires d'adhésion fluorés, les (méth) acrylates fluorés, les siloxanes à terminaisons vinyliques tels que précédemment définis et leurs mélanges ;
  3. (iii) d'un mélange contenant, en plus des constituants envisagés aux points (i) et (ii) , un (ou plusieurs) autre(s) composé(s) chimique(s) comme des monomères polymérisables et notammment comme les monomères polymérisables de formule (II) telle que définie dans la demande de brevet FR 2 921 516 .
The organic film used in the context of the present invention can be prepared from:
  1. (i) an advantageously non-fluorinated adhesion primer admixed with a vinyl-terminated siloxane as previously defined;
  2. (ii) advantageously a non-fluorinated adhesion primer admixed with a plurality of elements selected from the group consisting of fluorinated adhesion primers, fluorinated (meth) acrylates, vinyl-terminated siloxanes as previously defined and mixtures thereof ;
  3. (iii) a mixture containing, in addition to the constituents envisaged in points (i) and (ii), one (or more) other chemical compound (s) such as polymerizable monomers and especially the monomers polymerizable compounds of formula (II) as defined in the patent application FR 2 921 516 .

Ainsi, le film organique mis en oeuvre dans le cadre de la présente invention est essentiellement polymère ou copolymère, issu de plusieurs unités monomériques d'espèces chimiques identiques ou différentes et/ou de molécules de primaire d'adhésion. Les films obtenus par le procédé de la présente invention sont « essentiellement » du type polymère dans la mesure où le film incorpore également des espèces issues du primaire d'adhésion et pas uniquement des monomères présents. Le film organique dans le cadre de l'invention et, plus particulièrement, les polymères qui le constituent présentent une séquence en unités (ou motifs) monomériques dans laquelle le premier motif (ou première unité) est constitué (e) par un dérivé du primaire d'adhésion ou issu(e) d'un primaire d'adhésion, les autres motifs (ou unités) étant indifféremment dérivé(e)s ou issu(e)s des primaires d'adhésion fluorés ou non et/ou des monomères polymérisables et notamment des (méth) acrylates fluorés et siloxanes à terminaisons vinyliques tels que précédemment définis. Les motifs du film organique à partir du second motif sont donc issus de la polymérisation notamment radicalaire des éléments présents et choisis parmi les primaires d'adhésion fluorés ou non, les (méth) acrylates fluorés, les siloxanes à terminaisons vinyliques et les monomères polymérisables tels que les monomères polymérisables de formule (II) telle que définie dans la demande de brevet FR 2 921 516 .Thus, the organic film used in the context of the present invention is essentially a polymer or copolymer, derived from several monomeric units of identical or different chemical species and / or adhesion primer molecules. The films obtained by the process of the present invention are "essentially" of the polymer type insofar as the film also incorporates species derived from the adhesion primer and not only monomers present. The organic film in the context of the invention and, more particularly, the polymers which constitute it have a sequence in monomeric units (or units) in which the first unit (or first unit) consists of a primary derivative. adhesion or resulting from an adhesion primer, the other units (or units) being indifferently derived or derived from fluorinated or non-fluorinated adhesion primers and / or monomers polymerizable and especially fluorinated (meth) acrylates and vinyl-terminated siloxanes as previously defined. The patterns of the organic film from the second pattern are therefore derived from the polymerization, in particular radical, of the elements present and chosen from fluorinated or non-fluorinated adhesion primers, fluorinated (meth) acrylates, vinyl-terminated siloxanes and polymerizable monomers such as that the polymerizable monomers of formula (II) as defined in the patent application FR 2 921 516 .

En effet, il convient de remarquer que les molécules de primaire d'adhésion fluoré ou non peuvent être qualifiées de polymérisables dans la mesure où, par réaction radicalaires, elles peuvent conduire à la formation de molécules de masse moléculaire relativement élevée dont la structure est formée essentiellement d'unités à multiples répétitions dérivées, de fait ou d'un point de vue conceptuel, de molécules de primaire d'adhésion.Indeed, it should be noted that the fluoro or non-fluorinated adhesion primer molecules can be qualified as polymerizable insofar as, by radical reaction, they can lead to the formation of relatively high molecular weight molecules whose structure is formed. essentially units with multiple repetitions derived, de facto or conceptually, from adhesion primer molecules.

Dans une première variante de la présente invention, le greffage mis en oeuvre dans le procédé est un greffage chimique.In a first variant of the present invention, the grafting used in the process is a chemical grafting.

Le terme « greffage chimique » se réfère notamment à l'utilisation d'entités moléculaires extrêmement réactives (typiquement radicalaires) capables de former des liaisons de type liaison covalente avec une surface d'intérêt, lesdites entités moléculaires étant générées indépendamment de la surface sur laquelle elles sont destinées à être greffées. Ainsi, la réaction de greffage conduit à la formation de liaisons covalentes entre la zone de la surface à revêtir d'un film organique et le dérivé du primaire d'adhésion.The term "chemical grafting" refers in particular to the use of highly reactive (typically radical) molecular entities capable of forming covalent bond bonds with a surface of interest, said molecular entities being generated independently of the surface on which they are intended to be grafted. Thus, the grafting reaction leads to the formation of covalent bonds between the area of the surface to be coated with an organic film and the derivative of the adhesion primer.

Par « dérivé du primaire d'adhésion », on entend, dans le cadre de la présente invention, une unité chimique résultant du primaire d'adhésion, après que ce dernier a réagi avec la surface, par greffage chimique, et éventuellement avec un autre composé chimique, par réaction radicalaire, ledit autre composé chimique donnant le second motif du film organique. Ainsi, le premier motif du film organique (i.e. des polymères le constituant) est un dérivé du primaire d'adhésion qui a réagi avec la surface et avec un autre composé chimique.By "derivative of the adhesion primer" is meant, in the context of the present invention, a chemical unit resulting from the adhesion primer, after the latter has reacted with the surface, by chemical grafting, and optionally with another chemical compound, by radical reaction, said other chemical compound giving the second pattern of the organic film. Thus, the first organic film pattern (i.e., the constituent polymers thereof) is a derivative of the adhesion primer that has reacted with the surface and with another chemical compound.

Avantageusement, cette première variante comprend les étapes consistant à :

  • a1) mettre en contact ladite surface avec une solution S1 comprenant au moins un primaire d'adhésion (i.e. au moins un sel d'aryle clivable) et au moins un siloxane à terminaisons vinyliques ;
  • b1) soumettre ladite solution S1 à des conditions non-électrochimiques permettant la formation d'entités radicalaires à partir dudit primaire d'adhésion (i.e. à partir dudit sel d'aryle clivable).
Advantageously, this first variant comprises the steps of:
  • a 1 ) contacting said surface with a solution S 1 comprising at least one adhesion primer (ie at least one cleavable aryl salt) and at least one vinyl-terminated siloxane;
  • b 1 ) subjecting said solution S 1 to non-electrochemical conditions allowing the formation of radical entities from said adhesion primer (ie from said cleavable aryl salt).

Toute surface, inorganique ou organique, présentant un ou plusieurs atome(s) ou groupement(s) d'atomes pouvant être impliqué(s) dans une réaction d'addition ou de substitution radicalaire, tel (s) que CH, les carbonyles (cétone, ester, acide, aldéhyde), -OH, les éthers, les amines, les halogènes, comme F, Cl, Br, est notamment concernée par la présente invention.Any surface, inorganic or organic, having one or more atom (s) or group (s) of atoms which may be involved in a radical addition or substitution reaction, such as CH, carbonyls ( ketone, ester, acid, aldehyde), -OH, the ethers, the amines, the halogens, such as F, Cl, Br, is particularly concerned by the present invention.

Les surfaces de nature inorganique peuvent être notamment choisies parmi les matériaux conducteurs comme les métaux, les métaux nobles, les métaux oxydés, les métaux de transition, les alliages métalliques et par exemple Ni, Zn, Au, Pt, Ti ou l'acier. Il peut également s'agir de matériaux semi-conducteurs comme Si, SiC, AsGa, Ga, etc. Il est également possible d'appliquer le procédé à des surfaces non conductrices comme les oxydes non conducteurs tels que SiO2, Al2O3 et MgO. De manière plus générale, une surface inorganique peut être constituée, par exemple, d'un matériau amorphe, tel qu'un verre contenant généralement des silicates ou encore une céramique, aussi bien que cristallin comme le diamant, du graphite pouvant être plus ou moins organisé, comme du graphène, du graphite hautement orienté (HOPG), ou des nanotubes de carbone.The surfaces of inorganic nature can be chosen in particular from conducting materials such as metals, noble metals, oxidized metals, transition metals, metal alloys and for example Ni, Zn, Au, Pt, Ti or steel. It can also be semiconductor materials such as Si, SiC, AsGa, Ga, etc. It is also possible to apply the process to non-conductive surfaces such as non-conductive oxides such as SiO 2 , Al 2 O 3 and MgO. More generally, an inorganic surface may consist of, for example, an amorphous material, such as a glass generally containing silicates or a ceramic, as well as a crystalline one such as diamond, graphite which may be more or less organized, like graphene, highly oriented graphite (HOPG), or carbon nanotubes.

A titre de surface de nature organique, on peut citer notamment des polymères naturels comme le latex ou le caoutchouc, ou artificiels comme les dérivés de polyamide ou de polyéthylène, et notamment les polymères présentant des liaisons de type n comme les polymères portant des liaisons éthyléniques, des groupements carbonyles, imine. Il est également possible d'appliquer le procédé à des surfaces organiques plus complexes telles que du cuir, des surfaces comprenant des polysaccharides, comme la cellulose pour le bois ou le papier, des fibres artificielles ou naturelles, comme le coton ou le feutre, ainsi que des polymères fluorés tels que le polytétrafluoroéthylène (PTFE) ou encore à des polymères porteurs de groupements basiques comme des amines tertiaire ou secondaire et par exemple les pyridines, comme les poly-4 et poly-2-vinylpyridines (P4VP et P2VP) ou plus généralement des polymères porteurs de groupements aromatiques et aromatiques nitrés.As a surface of organic nature, there may be mentioned in particular natural polymers such as latex or rubber, or artificial such as polyamide or polyethylene derivatives, and especially polymers having n-type bonds such as polymers bearing ethylenic bonds, carbonyl groups, imine. It is also possible to apply the process to more complex organic surfaces such as leather, surfaces comprising polysaccharides, such as cellulose for wood or paper, artificial or natural fibers, such as cotton or felt, and fluorinated polymers such as polytetrafluoroethylene (PTFE) or even polymers bearing basic groups such as tertiary or secondary amines and for example pyridines, such as poly-4 and poly-2-vinylpyridines (P4VP and P2VP) or more generally polymers bearing aromatic and aromatic nitro groups.

Plus particulièrement, la surface dont on souhaite modifier l'énergie de surface est une surface en verre tel qu'un verre plat notamment utilisé dans le bâtiment, l'architecture, l'automobile, le vitrage et la miroiterie, un verre d'aquarium, un verre de lunetterie ou un verre optique.More particularly, the surface of which it is desired to modify the surface energy is a glass surface such as a flat glass particularly used in the building, architecture, automotive, glazing and mirrors, an aquarium glass , eyeglass or optical glass.

La solution S1 peut comprendre en outre un solvant. Ce dernier peut être un solvant protique ou un solvant aprotique. Il est préférable que le primaire d'adhésion qui est employé soit soluble dans le solvant de la solution S1.The solution S 1 may further comprise a solvent. The latter may be a protic solvent or an aprotic solvent. It is preferable that the adhesion primer which is employed is soluble in the solvent of the solution S 1 .

Par « solvant protique », on entend, dans le cadre de la présente invention, un solvant qui comporte au moins un atome d'hydrogène susceptible d'être libéré sous forme de proton.By "protic solvent" is meant, in the context of the present invention, a solvent which comprises at least one hydrogen atom capable of being released in the form of a proton.

Le solvant protique est avantageusement choisi dans le groupe constitué par l'eau, l'eau désionisée, l'eau distillée, acidifiées ou non, l'acide acétique, les solvants hydroxylés comme le méthanol et l'éthanol, les glycols liquides de faible poids moléculaire tels que l'éthylèneglycol, et leurs mélanges. Dans une première variante, le solvant protique utilisé dans le cadre de la présente invention n'est constitué que par un solvant protique ou par un mélange de différents solvants protiques. Dans une autre variante, le solvant protique ou le mélange de solvants protiques peut être utilisé en mélange avec au moins un solvant aprotique, étant entendu que le mélange résultant présente les caractéristiques d'un solvant protique.The protic solvent is advantageously chosen from the group consisting of water, deionized water, distilled water, acidified or not, acetic acid, hydroxylated solvents such as methanol and ethanol, and low glycols. molecular weights such as ethylene glycol, and mixtures thereof. In a first variant, the protic solvent used in the context of the present invention consists only of a protic solvent or a mixture of different protic solvents. In another variant, the protic solvent or the mixture of protic solvents may be used in admixture with at least one aprotic solvent, it being understood that the resulting mixture has the characteristics of a protic solvent.

Par « solvant aprotique », on entend, dans le cadre de la présente invention, un solvant qui n'est pas considéré comme protique. De tels solvants ne sont pas susceptibles de libérer un proton ou d'en accepter un dans des conditions non extrêmes.By "aprotic solvent" is meant, in the context of the present invention, a solvent which is not considered as protic. Such solvents are not likely to release a proton or accept one under non-extreme conditions.

Le solvant aprotique est avantageusement choisi parmi la diméthylformamide (DMF), l'acétone, le tétrahydrofurane (THF), le dichlorométhane, l'acétonitrile, le diméthyl sulfoxyde (DMSO) et leurs mélanges.The aprotic solvent is advantageously chosen from dimethylformamide (DMF), acetone, tetrahydrofuran (THF), dichloromethane, acetonitrile, dimethyl sulfoxide (DMSO) and mixtures thereof.

La solution S1 comprenant un primaire d'adhésion et un élément tel que précédemment défini peut en outre contenir au moins un tensioactif et ce, notamment pour améliorer la solubilité de cet élément. Une description précise des tensioactifs utilisables dans le cadre de l'invention est donnée dans la demande de brevet FR 2 897 876 à laquelle l'homme du métier pourra se référer. Un seul tensioactif ou un mélange de plusieurs tensioactifs peut être utilisé.Solution S 1 comprising an adhesion primer and an element as defined above may also contain at least one surfactant and this, in particular to improve the solubility of this element. A precise description of the surfactants that can be used in the context of the invention is given in the patent application FR 2,897,876 which the person skilled in the art can refer to. A single surfactant or a mixture of several surfactants can be used.

Il est préférable que le primaire d'adhésion soit soluble dans le solvant de la solution S1. Au sens de l'invention, un primaire d'adhésion est considéré comme soluble dans un solvant donné s'il demeure soluble jusqu'à une concentration de 0,5 M, i.e. que sa solubilité soit au moins égale à 0,5 M dans les conditions normales de température et de pression (CNTP). La solubilité est définie comme la composition analytique d'une solution saturée en fonction de la proportion d'un soluté donné dans un solvant donné ; elle peut notamment s'exprimer en molarité. Un solvant contenant une concentration donnée d'un composé sera considéré comme saturé, lorsque la concentration sera égale à la solubilité du composé dans ce solvant. La solubilité peut être finie comme infinie. Dans ce dernier cas, le composé est soluble en toute proportion dans le solvant considéré.It is preferable that the adhesion primer is soluble in the solvent of the solution S 1 . For the purposes of the invention, an adhesion primer is considered soluble in a given solvent if it remains soluble up to a concentration of 0.5 M, ie its solubility is at least 0.5 M in normal temperature and pressure conditions (CNTP). Solubility is defined as the analytical composition of a saturated solution as a function of the proportion of a given solute in a given solvent; it can in particular express itself in molarity. A solvent containing a given concentration of a compound will be considered saturated, when the concentration will be equal to the solubility of the compound in this solvent. Solubility can be finite as infinite. In the latter case, the compound is soluble in any proportion in the solvent.

La quantité de primaire d'adhésion présente dans la solution S1 utilisée conformément au procédé selon l'invention peut varier en fonction du souhait de l'expérimentateur. Cette quantité est notamment liée à l'épaisseur de film organique désirée ainsi qu'à la quantité de primaire d'adhésion qu'il est possible et envisageable d'intégrer au film. Ainsi pour obtenir un film greffé sur l'ensemble de la surface en contact avec la solution, il faut employer une quantité minimale de primaire d'adhésion qu'il est possible d'estimer par des calculs d'encombrement moléculaire. Selon une forme de réalisation particulièrement avantageuse de l'invention, la concentration en primaire d'adhésion au sein de la solution liquide est comprise entre 10-6 et 5 M environ, de préférence entre 10-3 et 10-1 M.The amount of adhesion primer present in the solution S 1 used according to the process according to the invention may vary according to the wishes of the experimenter. This amount is particularly related to the desired organic film thickness and the amount of adhesion primer it is possible and possible to integrate in the film. Thus to obtain a grafted film on the entire surface in contact with the solution, it is necessary to employ a minimum amount of adhesion primer that can be estimated by molecular size calculations. According to a particularly advantageous embodiment of the invention, the concentration of adhesion primer in the liquid solution is between 10 -6 and 5 M approximately, preferably between 10 -3 and 10 -1 M.

Lorsque le solvant est un solvant protique, et avantageusement, dans le cas où le primaire d'adhésion est un sel d'aryle diazonium, le pH de la solution est typiquement inférieur à 7. Il est recommandé de travailler à un pH compris entre 0 et 3 lorsque la préparation du primaire d'adhésion est effectuée dans le même milieu que celui du greffage. Si nécessaire, le pH de la solution peut être ajusté à la valeur désirée à l'aide d'un ou plusieurs agents acidifiants bien connus de l'homme du métier, par exemple à l'aide d'acides minéraux ou organiques tels que l'acide chlorhydrique, l'acide sulfurique, etc.When the solvent is a protic solvent, and advantageously, in the case where the adhesion primer is an aryl diazonium salt, the pH of the solution is typically less than 7. It is recommended to work at a pH between 0 and 3 when the preparation of the adhesion primer is carried out in the same medium as that of the grafting. If necessary, the pH of the solution can be adjusted to the desired value using one or more acidifying agents well known to those skilled in the art, for example using inorganic or organic acids such as hydrochloric acid, sulfuric acid, etc.

Le primaire d'adhésion peut soit être introduit en l'état dans la solution S1 telle que définie précédemment, soit être préparé in situ dans cette dernière. Ainsi, dans une forme de mise en oeuvre particulière, le procédé selon la présente invention comporte une étape de préparation du primaire d'adhésion, notamment lorsque celui-ci est un sel d'aryle diazonium. De tels composés sont généralement préparés à partir d'arylamine, pouvant comporter plusieurs substituants amine, par réaction avec NaNO2 en milieu acide. Pour un exposé détaillé des modes expérimentaux utilisables pour une telle préparation in situ, l'homme du métier pourra se reporter à l'article de Belanger et al., 2006 (Chem. Mater., vol. 18, pages 4755-4763 ). De préférence, le greffage sera alors réalisé directement dans la solution de préparation du sel d'aryle diazonium.The adhesion primer can either be introduced in the state in the solution S 1 as defined above, or be prepared in situ in the latter. Thus, in one particular embodiment, the process according to the present invention comprises a step for preparing the adhesion primer, especially when the latter is an aryl diazonium salt. Such compounds are generally prepared from arylamine, which may comprise several amine substituents, by reaction with NaNO 2 in an acidic medium. For a detailed description of the experimental modes that can be used for such an in situ preparation , a person skilled in the art can refer to the article of Belanger et al., 2006 (Chem Mater 18, pages 4755-4763). ). Preferably, the grafting will then be carried out directly in the solution for preparing the aryl diazonium salt.

Les éléments choisis dans le groupe constitué par un primaire d'adhésion fluoré, un (méth)acrylate fluoré et un siloxane à terminaisons vinyliques et notamment les (méth)acrylates fluorés et les siloxanes à terminaisons vinyliques peuvent être solubles jusqu'à une certaine proportion dans le solvant de la solution S1, i.e. la valeur de leur solubilité dans ce solvant est finie. Ceci s'applique aux autres éléments que la solution S1 pourrait également contenir tels que les monomères polymérisables de formule (II) telle que définie dans la demande de brevet FR 2 921 516 . Ces éléments (primaires d'adhésion fluorés, (méth)acrylates fluorés, siloxanes à terminaisons vinyliques et autres) peuvent ainsi être choisis parmi les composés dont la solubilité dans le solvant de la solution S1 est finie, notamment inférieure à 0,1 M, et, en particulier, entre 5.10-2 et 10-6 M. L'invention s'applique également à un mélange de deux, trois, quatre ou plus éléments choisis parmi les éléments précédemment décrits.The elements selected from the group consisting of a fluorinated adhesion primer, a fluorinated (meth) acrylate and a vinyl-terminated siloxane and in particular fluorinated (meth) acrylates and vinyl-terminated siloxanes may be soluble to a certain extent. in the solvent of the solution S 1 , ie the value of their solubility in this solvent is finished. This applies to the other elements that the solution S1 could also contain, such as the polymerizable monomers of formula (II) as defined in the patent application. FR 2 921 516 . These elements (fluorinated adhesion primers, fluorinated (meth) acrylates, vinyl-terminated siloxanes and others) can thus be chosen from compounds whose solubility in the solvent of the solution S 1 is finite, in particular less than 0.1 M and in particular between 5.10 -2 and 10 -6 M. The invention also applies to a mixture of two, three, four or more elements selected from the elements previously described.

La quantité de ces éléments dans la solution S1 peut varier en fonction du souhait de l'expérimentateur. Cette quantité peut être supérieure à la solubilité de l'élément considéré dans le solvant de la solution S1 employé et peut représenter par exemple de 18 à 40 fois la solubilité dudit élément dans la solution à une température donnée, généralement la température ambiante ou celle de réaction. Dans ces conditions, il est avantageux d'employer des moyens permettant la dispersion des molécules de monomère dans la solution, tels qu'un tensioactif ou des ultrasons.The quantity of these elements in the solution S 1 can vary according to the wish of the experimenter. This amount may be greater than the solubility of the element in question in the solvent of the solution S 1 used and may represent for example 18 to 40 times the solubility of said element in the solution at a given temperature, generally the ambient temperature or that of reaction. Under these conditions, it is advantageous to employ means for dispersing the monomer molecules in the solution, such as a surfactant or ultrasound.

La solution S1 comprenant un primaire d'adhésion et un siloxane à terminaisons vinyliques et éventuellement un monomère polymérisable de formule (II) telle que définie dans la demande de brevet FR 2 921 516 , peut en outre contenir au moins un tensioactif et ce, notamment pour améliorer la solubilité dudit élément. Une description précise des tensioactifs utilisables dans le cadre de l'invention est donnée dans la demande de brevet FR 2 897 876 à laquelle l'homme du métier pourra se référer. Un seul tensioactif ou un mélange de plusieurs tensioactifs peut être utilisé. La solution S1 peut en outre se présenter sous forme d'une émulsion.Solution S 1 comprising an adhesion primer and a vinyl-terminated siloxane and optionally a polymerizable monomer of formula (II) as defined in the patent application FR 2 921 516 may additionally contain at least one surfactant, in particular to improve the solubility of said element. A precise description of the surfactants that can be used in the context of the invention is given in the patent application FR 2,897,876 which the person skilled in the art can refer to. A single surfactant or a mixture of several surfactants can be used. The solution S 1 can also be in the form of an emulsion.

Par « conditions non-électrochimiques » mises en oeuvre à l'étape (b1) du procédé selon l'invention, on entend dans le cadre de la présente invention en absence de tension électrique. Ainsi, les conditions non-électrochimiques mises en oeuvre à l'étape (b1) du procédé selon l'invention sont des conditions qui permettent la formation d'entités radicalaires à partir du primaire d'adhésion, en l'absence de l'application d'une quelconque tension électrique à la surface sur laquelle le film organique est greffé. Ces conditions impliquent des paramètres tels que, par exemple, la température, la nature du solvant, la présence d'un additif particulier, l'agitation, la pression alors que le courant électrique n'intervient pas lors de la formation des entités radicalaires. Les conditions non-électrochimiques permettant la formation d'entités radicalaires sont nombreuses et ce type de réaction est connu et étudié en détail dans l'art antérieur (Rempp & Merrill, Polymer Synthesis, 1991, 65-86, Hüthig & Wepf).By "non-electrochemical conditions" implemented in step (b 1 ) of the process according to the invention is meant in the context of the present invention in the absence of electrical voltage. Thus, the non-electrochemical conditions used in step (b 1 ) of the process according to the invention are conditions that allow the formation of radical entities from the adhesion primer, in the absence of the application of any electrical voltage to the surface on which the organic film is grafted. These conditions involve parameters such as, for example, the temperature, the nature of the solvent, the presence of a particular additive, stirring, pressure while the electric current does not occur during the formation of radical entities. The non-electrochemical conditions allowing the formation of radical entities are numerous and this type of reaction is known and studied in detail in the prior art (Rempp & Merrill, Polymer Synthesis, 1991, 65-86, Hüthig & Wepf).

Il est ainsi par exemple possible d'agir sur l'environnement thermique, cinétique, chimique, photochimique ou radiochimique du primaire d'adhésion afin de le déstabiliser pour qu'il forme une entité radicalaire. Il est bien entendu possible d'agir simultanément sur plusieurs de ces paramètres.It is thus possible, for example, to act on the thermal, kinetic, chemical, photochemical or radiochemical environment of the adhesion primer in order to destabilize it so that it forms a radical entity. It is of course possible to act simultaneously on several of these parameters.

Dans le cadre de la présente invention, les conditions non-électrochimiques permettant la formation d'entités radicalaires sont typiquement choisies dans le groupe constitué par les conditions thermiques, cinétiques, chimiques, photochimiques, radiochimiques et leurs combinaisons. Avantageusement, les conditions non-électrochimiques sont choisies dans le groupe constitué par les conditions thermiques, chimiques, photochimiques, radiochimiques et leurs combinaisons entre elles et/ou avec les conditions cinétiques. Les conditions non-électrochimiques mises en oeuvre dans le cadre de la présente invention sont plus particulièrement des conditions chimiques.In the context of the present invention, non-electrochemical conditions allowing the formation of radical entities are typically selected from the group consisting of thermal, kinetic, chemical, photochemical, radiochemical conditions and combinations thereof. Advantageously, the non-electrochemical conditions are chosen from the group consisting of thermal, chemical, photochemical and radiochemical conditions and their combinations with each other and / or with the kinetic conditions. The Non-electrochemical conditions used in the context of the present invention are more particularly chemical conditions.

L'environnement thermique est fonction de la température. Son contrôle est aisé avec les moyens de chauffage habituellement employés par l'homme du métier. L'utilisation d'un environnement thermostaté présente un intérêt particulier puisqu'il permet un contrôle précis des conditions de réaction.The thermal environment is a function of the temperature. Its control is easy with the heating means usually employed by those skilled in the art. The use of a thermostated environment is of particular interest since it allows precise control of the reaction conditions.

L'environnement cinétique correspond essentiellement à l'agitation du système et aux forces de frottement. Il ne s'agit pas ici de l'agitation des molécules en elle-même (élongation de liaisons etc.), mais du mouvement global des molécules. L'application d'une pression permet notamment d'apporter de l'énergie au système pour que le primaire d'adhésion soit déstabilisé et puisse former des espèces réactives, notamment radicalaires.The kinetic environment essentially corresponds to the agitation of the system and the friction forces. It is not a question here of the agitation of the molecules in itself (elongation of bonds, etc.), but of the global movement of the molecules. The application of a pressure makes it possible in particular to bring energy to the system so that the adhesion primer is destabilized and can form reactive species, especially radicals.

Enfin, l'action de rayonnements divers tels que rayonnements électromagnétiques, rayonnements γ, rayons UV, faisceaux d'électrons ou d'ions peut également déstabiliser suffisamment le primaire d'adhésion pour qu'il forme des radicaux et/ou des ions. La longueur d'onde employée sera choisie en fonction du primaire utilisé. Par exemple, une longueur d'onde d'environ 306 nm sera utilisée pour le 4-hexylbenzènediazonium.Finally, the action of various radiations such as electromagnetic radiation, γ radiation, UV rays, electron or ion beams may also sufficiently destabilize the adhesion primer to form radicals and / or ions. The wavelength used will be chosen according to the primary used. For example, a wavelength of about 306 nm will be used for 4-hexylbenzenediazonium.

Dans le cadre des conditions chimiques, on emploie dans le milieu réactionnel un ou plusieurs amorceur(s) chimique(s). La présence d'amorceurs chimiques est souvent couplée à des conditions environnementales non chimiques, telles qu'exposées ci-dessus. Typiquement, un amorceur chimique agira sur le primaire d'adhésion et engendrera la formation d'entités radicalaires à partir de ce dernier. Il est également possible d'employer des amorceurs chimiques dont l'action n'est pas liée essentiellement aux conditions environnementales et qui peuvent agir sur de vastes plages de conditions thermiques ou encore cinétiques. L'amorceur sera de préférence adapté à l'environnement de la réaction, par exemple au solvant.In the context of the chemical conditions, one or more chemical initiator (s) is used in the reaction medium. The presence of chemical initiators is often coupled with conditions environmental non-chemical as outlined above. Typically, a chemical initiator will act on the adhesion primer and will generate the formation of radical entities from the latter. It is also possible to use chemical initiators whose action is not essentially related to environmental conditions and which can act over wide ranges of thermal or kinetic conditions. The initiator will preferably be adapted to the environment of the reaction, for example to the solvent.

Il existe de nombreux amorceurs chimiques. On en distingue généralement trois types en fonction des conditions environnementales employées :

  • les amorceurs thermiques dont les plus courants sont les peroxydes ou les composés azoïques. Sous l'action de la chaleur, ces composés se dissocient en radicaux libres. Dans ce cas, la réaction est effectuée à une température minimum correspondant à celle nécessaire à la formation de radicaux à partir de l'amorceur. Ce type d'amorceurs chimiques est en général utilisé spécifiquement dans un certain intervalle de températures, en fonction de leur cinétique de décomposition ;
  • les amorceurs photochimiques ou radiochimiques qui sont excités par le rayonnement déclenché par irradiation (le plus souvent par UV, mais aussi par radiations γ ou par faisceaux d'électrons) permettent la production de radicaux par des mécanismes plus ou moins complexes. Le Bu3SnH et l'I2 appartiennent aux amorceurs photochimiques ou radiochimiques ;
  • les amorceurs essentiellement chimiques, ce type d'amorceurs agissant rapidement et dans des conditions normales de température et de pression sur le primaire d'adhésion pour lui permettre de former des radicaux et/ou des ions. De tels amorceurs ont généralement un potentiel d'oxydoréduction qui est inférieur au potentiel de réduction du primaire d'adhésion utilisé dans les conditions de réaction. Selon la nature du primaire, il peut ainsi s'agir par exemple d'un métal réducteur, tel que du fer, zinc, nickel ; d'un métallocène tel que du ferrocène ; d'un réducteur organique comme l'acide hypophosphoreux (H3PO2) ou l'acide ascorbique ; d'une base organique ou inorganique dans des proportions suffisantes pour permettre une déstabilisation du primaire d'adhésion. Avantageusement, le métal réducteur utilisé en tant qu'amorceur chimique se présente sous forme finement divisée, comme de la laine (également appelée plus communément « paille ») métallique ou de la limaille métallique. Généralement, lorsqu'une base organique ou inorganique est utilisée comme amorceur chimique, un pH supérieur ou égal à 4 est généralement suffisant. Des structures de type réservoir de radicaux, comme des matrices polymériques préalablement irradiées par un faisceau d'électrons ou par un faisceau d'ions lourds et/ou par l'ensemble des moyens d'irradiations cités précédemment, peuvent également être employées en tant qu'amorceurs chimiques pour déstabiliser le primaire d'adhésion et conduire notamment à la formation d'entités radicalaires à partir de ce dernier.
There are many chemical initiators. There are generally three types depending on the environmental conditions used:
  • thermal initiators, the most common of which are peroxides or azo compounds. Under the action of heat, these compounds dissociate into free radicals. In this case, the reaction is carried out at a minimum temperature corresponding to that required for the formation of radicals from the initiator. This type of chemical initiators is generally used specifically in a certain temperature range, depending on their kinetics of decomposition;
  • the photochemical or radiochemical initiators which are excited by radiation triggered by irradiation (most often by UV, but also by γ radiation or by electron beams) allow the production of radicals by more or less complex mechanisms. Bu 3 SnH and I 2 belong to photochemical or radiochemical initiators;
  • essentially chemical initiators, this type of initiators acting quickly and under normal conditions of temperature and pressure on the adhesion primer to enable it to form radicals and / or ions. Such initiators generally have a redox potential which is lower than the reduction potential of the adhesion primer used in the reaction conditions. Depending on the nature of the primer, it may thus be for example a reducing metal, such as iron, zinc, nickel; a metallocene such as ferrocene; an organic reducing agent such as hypophosphorous acid (H3PO2) or ascorbic acid; of an organic or inorganic base in proportions sufficient to allow destabilization of the adhesion primer. Advantageously, the reducing metal used as chemical initiator is in finely divided form, such as wool (also called more commonly "straw") metal or metal filings. Generally, when an organic or inorganic base is used as a chemical initiator, a pH of greater than or equal to 4 is generally sufficient. Radical reservoir-type structures, such as polymer matrices previously irradiated with an electron beam or with a heavy ion beam and / or with all the irradiation means mentioned above, can also be used as chemical initiators to destabilize the adhesion primer and lead in particular to the formation of radical entities from the latter.

Il est utile de se reporter à l'article de Mévellec et al., 2007 (Chem. Mater., vol. 19, pages 6323-6330 ) pour la formation d'espèces actives.It is useful to refer to the article of Mevellec et al., 2007 (Chem Mater, Vol 19, pages 6323-6330 ) for the formation of active species.

Dans une seconde variante de la présente invention, le greffage mis en oeuvre dans le procédé est un électrogreffage.In a second variant of the present invention, the grafting used in the process is electrografting.

Par « électrogreffage », on entend, dans le cadre de la présente invention, un procédé de greffage électro-initié et localisé d'un primaire d'adhésion susceptible d'être électriquement activée, sur une surface composite comprenant des portions conductrices et/ou semi-conductrices de l'électricité, par mise en contact desdits primaires d'adhésion avec ladite surface composite. Dans ce procédé, le greffage est réalisé électrochimiquement en une seule étape sur des zones choisies, définies, desdites portions conductrices et/ou semi-conductrices. Lesdites zones sont portées à un potentiel supérieur ou égal à un potentiel électrique seuil déterminé par rapport à une électrode de référence, ledit potentiel électrique seuil étant le potentiel au-delà duquel se produit le greffage desdits primaires d'adhésion. Une fois lesdits primaires d'adhésion greffés, ces derniers présentent une autre fonction réactive vis-à-vis d'un autre radical et apte à enclencher une polymérisation radicalaire qui ne dépend d'aucun potentiel électrique.By "electrografting" is meant, in the context of the present invention, a method of electro-initiated and localized grafting of an adhesion primer capable of being electrically activated, on a composite surface comprising conductive portions and / or semiconducting electricity, by contacting said adhesion primers with said composite surface. In this method, the grafting is carried out electrochemically in a single step on selected, defined areas of said conductive and / or semiconducting portions. Said zones are brought to a potential greater than or equal to a threshold electric potential determined with respect to a reference electrode, said threshold electrical potential being the potential beyond which grafting of said adhesion primers occurs. Once said grafted adhesion primers, the latter have another reactive function vis-à-vis another radical and able to engage a radical polymerization that does not depend on any electrical potential.

Avantageusement, cette seconde variante comprend les étapes consistant à :

  • a2) mettre en contact ladite surface conductrice ou semi-conductrive avec une solution S2 comprenant au moins un primaire d'adhésion (i.e. au moins un sel d'aryle clivable) et au moins un siloxane à terminaisons vinyliques ;
  • b2) polariser ladite surface à un potentiel électrique plus cathodique que le potentiel de réduction du primaire d'adhésion (i.e. au moins un sel d'aryle clivable) mis en oeuvre à l'étape (a2),
l'ordre des étapes (a2) et (b2) étant quelconque.Advantageously, this second variant comprises the steps of:
  • a 2 ) contacting said conductive or semiconducting surface with an S 2 solution comprising at least one adhesion primer (ie at least one cleavable aryl salt) and at least one vinyl-terminated siloxane;
  • b 2 ) polarizing said surface to an electric potential which is more cathodic than the reduction potential of the adhesion primer (ie at least one cleavable aryl salt) used in step (a 2 ),
the order of steps (a 2 ) and (b 2 ) being arbitrary.

Dans le cadre de la présente invention, on entend par « semi-conducteur », un matériau organique ou inorganique présentant une conductivité électrique intermédiaire entre les métaux et les isolants. Les propriétés de conductivité d'un semi-conducteur sont influencées principalement par les porteurs de charge (électrons ou trous) que présente le semi-conducteur. Ces propriétés sont déterminées par deux bandes d'énergie particulières appelées la bande de valence (correspondant aux électrons impliqués dans les liaisons covalentes) et la bande de conduction (correspondant aux électrons dans un état excité et capables de se déplacer dans le semi-conducteur). Le « gap » représente la différence d'énergie entre la bande de valence et la bande de conduction. Un semi-conducteur correspond également, à la différence des isolants ou des métaux, à un matériau dont la conductivité électrique peut être contrôlée, dans une large mesure, par ajout d'agents dopants qui correspondent à des éléments étrangers insérés dans le semi-conducteur.In the context of the present invention, the term " semiconductor " is understood to mean an organic or inorganic material having an electrical conductivity intermediate between the metals and the insulators. The conductivity properties of a semiconductor are influenced mainly by the charge carriers (electrons or holes) that the semiconductor exhibits. These properties are determined by two particular energy bands called the valence band (corresponding to the electrons involved in the covalent bonds) and the conduction band (corresponding to the electrons in an excited state and able to move in the semiconductor) . The gap represents the difference in energy between the valence band and the conduction band. A semiconductor also, unlike insulators or metals, is a material whose electrical conductivity can be controlled, in a broadly, by adding doping agents that correspond to foreign elements inserted into the semiconductor.

La surface mise en oeuvre dans le cadre du procédé selon l'invention peut être une quelconque surface habituellement utilisée en électrogreffage et avantageusement une surface inorganique. Une telle surface inorganique peut notamment être choisie parmi les matériaux conducteurs comme les métaux, les métaux nobles, les métaux oxydés, les métaux de transition, les alliages métalliques et par exemple Ni, Zn, Au, Ag, Cu, Pt, Ti et l'acier. La surface inorganique peut également être choisie parmi les matériaux semi-conducteurs comme Si, SiC, AsGa, Ga, etc....The surface used in the context of the process according to the invention may be any surface usually used in electrografting and advantageously an inorganic surface. Such an inorganic surface may especially be chosen from conductive materials such as metals, noble metals, oxidized metals, transition metals, metal alloys and, for example, Ni, Zn, Au, Ag, Cu, Pt, Ti and the like. 'steel. The inorganic surface may also be selected from semiconductor materials such as Si, SiC, AsGa, Ga, etc.

Ainsi, ladite surface inorganique mise en oeuvre dans le procédé selon l'invention est généralement constituée d'un matériau choisi parmi les métaux, les métaux nobles, les métaux oxydés, les métaux de transition, les alliages métalliques et les matériaux semi-conducteurs photosensibles ou non.Thus, said inorganic surface used in the process according to the invention generally consists of a material chosen from metals, noble metals, oxidized metals, transition metals, metal alloys and photosensitive semiconductor materials. or not.

Dans le cadre de la présente invention, on entend par « semi-conducteur photosensible », un matériau semi-conducteur dont la conductivité peut être modulée par des variations de champ magnétique, de température ou d'illumination, qui influent sur les paires électrons-trous et la densité des porteurs de charge. Ces propriétés sont dues à l'existence du gap tel que défini précédemment. Ce gap n'excède généralement pas 3,5 eV pour les semi-conducteurs, contre 5 eV dans les matériaux considérés comme isolants. Il est donc possible de peupler la bande de conduction par excitation des porteurs au travers du gap, notamment sous illumination. Les éléments du groupe IV du tableau périodique, tels que le carbone (sous forme diamant), le silicium, le germanium présentent de telles propriétés. Des matériaux semi-conducteurs peuvent être formés de plusieurs éléments, tant du groupe IV, comme le SiGe ou le SiC, que du groupe III et V, comme GaAs, InP ou GaN, ou encore du groupe II et VI, comme CdTe ou ZnSe.In the context of the present invention, the term "photosensitive semiconductor" is understood to mean a semiconductor material whose conductivity can be modulated by variations in magnetic field, temperature or illumination, which influence the electron-electron pairs. holes and the density of charge carriers. These properties are due to the existence of the gap as defined above. This gap generally does not exceed 3.5 eV for semiconductors, against 5 eV in materials considered insulators. It is therefore possible to populate the band of conduction by excitation of carriers through the gap, especially under illumination. The elements of group IV of the periodic table, such as carbon (in diamond form), silicon, germanium have such properties. Semiconductor materials can be formed from several elements, both Group IV, such as SiGe or SiC, Group III and V, such as GaAs, InP or GaN, or Group II and VI, such as CdTe or ZnSe .

Avantageusement, dans le cadre de la présente invention, le substrat semi-conducteur photosensible est de nature inorganique. Ainsi, le semi-conducteur photosensible mis en oeuvre dans le cadre de la présente invention est choisi dans le groupe constitué par les éléments du groupe IV (plus particulièrement, le silicium et le germanium) ; les alliages d'éléments du groupe IV (plus particulièrement, les alliages SiGe et SiC) ; les alliages d'éléments du groupe III et du groupe V (appelés composés « III-V », tels que AsGa, InP, GaN) et les alliages d'éléments du groupe II et du groupe VI (appelés composés « II-VI », tels que CdSe, CdTe, Cu2S, ZnS ou ZnSe). Le semi-conducteur photosensible préféré est le silicium.Advantageously, in the context of the present invention, the photosensitive semiconductor substrate is of inorganic nature. Thus, the photosensitive semiconductor used in the context of the present invention is chosen from the group consisting of Group IV elements (more particularly, silicon and germanium); alloys of group IV elements (more particularly, SiGe and SiC alloys); alloys of group III and group V elements (referred to as "III-V" compounds, such as AsGa, InP, GaN) and alloys of group II and group VI elements (referred to as "II-VI" compounds , such as CdSe, CdTe, Cu 2 S, ZnS or ZnSe). The preferred photosensitive semiconductor is silicon.

Dans une variante de la présente invention, il est possible que le semi-conducteur photosensible soit dopé par un (ou plusieurs) agent (s) dopant(s). L'agent dopant est choisi en fonction du semi-conducteur, et le dopage est de type p ou n. Le choix de l'agent dopant et les technologies de dopage sont des techniques de routine pour l'homme du métier. De façon plus particulière, l'agent dopant est choisi dans le groupe constitué par le bore, l'azote, le phosphore, le nickel, le soufre, l'antimoine, l'arsenic et les mélanges de ceux-ci. A titre d'exemples, pour un substrat de silicium, parmi les agents dopants les plus employés de type p, on peut notamment citer le bore et, pour les dopants de type n, l'arsenic, le phosphore et l'antimoine.In a variant of the present invention, it is possible for the photosensitive semiconductor to be doped with one or more doping agents. The doping agent is chosen according to the semiconductor, and the doping is of the p or n type. The choice of the doping agent and the doping technologies are routine techniques for those skilled in the art. Of more particularly, the doping agent is selected from the group consisting of boron, nitrogen, phosphorus, nickel, sulfur, antimony, arsenic and mixtures thereof. By way of examples, for a silicon substrate, among the most widely used doping agents of the p type, there may be mentioned boron and, for the n-type dopants, arsenic, phosphorus and antimony.

Si la surface mise en oeuvre dans le cadre de la présente invention est en un matériau semi-conducteur photosensible, le procédé comprend en outre une étape (C2) consistant à exposer ladite surface à un rayonnement lumineux dont l'énergie est au moins égale à celle du gap dudit semi-conducteur. Pour plus de détails sur cette mise en oeuvre particulière, il convient de se reporter à la demande de brevet FR 2 921 516 .If the surface used in the context of the present invention is a photosensitive semiconductor material, the method further comprises a step (C 2 ) of exposing said surface to light radiation whose energy is at least equal to that of the gap of said semiconductor. For more details on this particular implementation, please refer to the patent application FR 2 921 516 .

Tout ce qui a été précédemment décrit pour la solution S1 à savoir le solvant, les quantités de primaires d'adhésion et d'autres éléments, la préparation du primaire d'adhésion in situ, la présence d'un électrolyte support et éventuellement d'un tensioactif s'applique également à la solution S2.All that has been previously described for solution S 1, namely the solvent, the amounts of adhesion primer and other elements, the preparation of the adhesion primer in situ, the presence of a supporting electrolyte and possibly a surfactant also applies to the solution S 2 .

Il convient toutefois de remarquer que le solvant de la solution S2 est avantageusement un solvant protique tel que précédemment défini.It should however be noted that the solvent of the solution S 2 is advantageously a protic solvent as defined above.

Selon l'invention, il est préférable que le potentiel électrique employé à l'étape (b2) du procédé selon la présente invention soit proche du potentiel de réduction du primaire d'adhésion mis en oeuvre et qui réagit en surface. Ainsi la valeur du potentiel électrique appliqué peut être jusqu'à 50% plus élevée que le potentiel de réduction du primaire d'adhésion, plus typiquement elle ne sera pas supérieure à 30%.According to the invention, it is preferable that the electric potential employed in step (b 2 ) of the method according to the present invention is close to the potential of reduction of the adhesion primer used and which reacts on the surface. Thus the value of the electric potential applied can be up to 50% higher than the reduction potential of the adhesion primer, more typically it will not be greater than 30%.

Cette variante de la présente invention peut être mise en oeuvre dans une cellule d'électrolyse comportant différentes électrodes : une première électrode de travail constituant la surface destinée à recevoir le film, une contre électrode, ainsi qu'éventuellement une électrode de référence.This variant of the present invention can be implemented in an electrolysis cell comprising different electrodes: a first working electrode constituting the surface intended to receive the film, a counter electrode, as well as possibly a reference electrode.

La polarisation de ladite surface peut être effectuée par toute technique connue de l'homme du métier et notamment en conditions de voltampérométrie linéaire ou cyclique, en conditions potentiostatiques, potentiodynamiques, intensiostatiques, galvanostatiques, galvanodynamiques ou par chronoampérométrie simple ou pulsée. Avantageusement, le procédé selon la présente invention est réalisé en conditions de chronoampérométrie statique ou pulsée. En mode statique, l'électrode est polarisée pour une durée généralement inférieure à 2 h, typiquement inférieure à 1 h et par exemple moins de 20 min. En mode pulsé, le nombre de pulsations sera compris, de manière préférentielle, entre 1 et 1000 et, encore plus préférentiellement, entre 1 et 100, leur durée étant généralement comprise entre 100 ms et 5 s, typiquement 1 s.The polarization of said surface may be carried out by any technique known to those skilled in the art and in particular under linear or cyclic voltammetric conditions, under potentiostatic, potentiodynamic, intensiostatic, galvanostatic, galvanodynamic or by simple or pulsed chronoamperometry conditions. Advantageously, the process according to the present invention is carried out under conditions of static or pulsed chronoamperometry. In static mode, the electrode is polarized for a duration generally less than 2 h, typically less than 1 h and for example less than 20 min. In pulsed mode, the number of pulses will be included, preferably between 1 and 1000 and, even more preferably, between 1 and 100, their duration generally being between 100 ms and 5 s, typically 1 s.

L'épaisseur du film organique est aisément contrôlable et ce, quelle que soit la variante du procédé de la présente invention mise en oeuvre, comme précédemment expliqué. Pour chacun des paramètres tel que la durée de l'étape (b1) ou (b2) et en fonction des réactifs qu'il emploiera, l'homme du métier sera à même de déterminer par itération les conditions optimales pour obtenir un film, d'épaisseur donnée, ne modifiant pas les propriétés optiques de la surface.The thickness of the organic film is easily controllable, irrespective of the variant of the method of the present invention implemented, as previously explained. For each of the parameters such as the duration of step (b 1 ) or (b 2 ) and depending on the reagents it will use, one skilled in the art will be able to iteratively determine the optimum conditions for obtaining a film , of given thickness, not modifying the optical properties of the surface.

Avantageusement, le procédé selon la présente invention comporte une étape supplémentaire, préalablement au greffage chimique ou à l'électrogreffage, de nettoyage de la surface sur laquelle on souhaite former le film organique, notamment par ponçage et/ou polissage. Un traitement supplémentaire aux ultrasons avec un solvant organique comme l'éthanol, l'acétone ou la diméthylformamide (DMF) est même recommandé.Advantageously, the method according to the present invention comprises an additional step, prior to chemical grafting or electrografting, of cleaning the surface on which it is desired to form the organic film, in particular by sanding and / or polishing. Additional ultrasonic treatment with an organic solvent such as ethanol, acetone or dimethylformamide (DMF) is even recommended.

De même, le procédé selon la présente invention comporte une étape supplémentaire, suite au greffage chimique ou à l'électrogreffage, consistant à soumettre le film organique greffé à un traitement thermique. Avantageusement, ledit traitement thermique consiste à soumettre ledit film greffé à une température comprise entre 60 et 180°C, notamment entre 90 et 150°C et, en particulier, de l'ordre de 120°C (i.e. 120°C ± 10°C) et ce, pendant une durée comprise entre 1 h et 3 j, notamment entre 6 h et 2 j et, en particulier, entre 12 et 24 h. Cette étape de traitement thermique peut être mise en oeuvre dans une étuve ou dans un four.Similarly, the method according to the present invention comprises an additional step, following chemical grafting or electrografting, of subjecting the grafted organic film to heat treatment. Advantageously, said heat treatment consists in subjecting said grafted film to a temperature of between 60 and 180 ° C., in particular between 90 and 150 ° C. and, in particular, of the order of 120 ° C. (ie 120 ° C. ± 10 ° C. C) and this, for a period of between 1 h and 3 d, especially between 6 am and 2 d and, in particular, between 12 and 24 h. This heat treatment step may be carried out in an oven or in an oven.

La présente invention concerne également l'utilisation d'un procédé tel que précédemment défini pour modifier la mouillabilité d'une surface, pour améliorer l'étanchéité d'une surface ou pour protéger ladite surface de la corrosion, Ainsi, la présente invention concerne un procédé pour modifier la mouillabilité d'une surface, pour améliorer l'étanchéité d'une surface et/ou pour protéger une surface de la corrosion, ledit procédé consistant à modifier l'énergie de surface de ladite surface par un procédé tel que précédemment défini.The present invention also relates to the use of a method as previously defined for modifying the wettability of a surface, for improving the sealing of a surface or for protecting said surface from corrosion. Thus, the present invention relates to a method for modifying the wettability of a surface, for improving the sealing of a surface and / or for protecting a surface from corrosion, said method of modifying the surface energy of said surface by a method as defined above .

La présente invention concerne enfin l'utilisation d'un kit d'éléments pour modifier l'énergie de surface d'une surface, ledit kit comprenant :

  • dans un premier compartiment, au moins un primaire d'adhésion et notamment tel que précédemment défini ;
  • dans un deuxième compartiment, un siloxane à terminaisons vinyliques et notamment tel que précédemment défini ;
  • éventuellement, dans un troisième compartiment, un amorceur chimique de polymérisation et notamment tel que précédemment défini ;
  • et éventuellement, dans un quatrième compartiment, des moyens électriques pour générer un potentiel.
The present invention finally relates to the use of a kit of elements for modifying the surface energy of a surface, said kit comprising:
  • in a first compartment, at least one adhesion primer and in particular as previously defined;
  • in a second compartment, a siloxane with vinyl terminations and in particular as defined above;
  • optionally, in a third compartment, a chemical polymerization initiator and in particular as defined above;
  • and optionally, in a fourth compartment, electrical means for generating a potential.

Dans le kit selon la présente invention, le primaire d'adhésion du premier compartiment et l'élément du second compartiment peuvent se trouver en solution. Lesdites solutions sont plus particulièrement des solutions S1 et S2 telles que précédemment définies. L'amorceur chimique du troisième compartiment peut également se trouver en solution. Avantageusement, un solvant identique ou différent est contenu dans chacune des solutions des premier et deuxième compartiments et éventuellement dans la solution du troisième compartiment.In the kit according to the present invention, the adhesion primer of the first compartment and the element of the second compartment may be in solution. Said solutions are more particularly solutions S 1 and S 2 as previously defined. The chemical initiator of the third compartment may also be in solution. Advantageously, an identical or different solvent is contained in each of the solutions of the first and second compartments and optionally in the solution of the third compartment.

Dans une variante du kit selon l'invention, le premier compartiment contient non pas un primaire d'adhésion avantageusement en solution mais au moins un précurseur d'un primaire d'adhésion avantageusement en solution. Au sens de « précurseur de primaire d'adhésion », il faut comprendre une molécule séparée du primaire par une étape opératoire unique et aisée à mettre en oeuvre. Dans ce cas, le kit comprendra éventuellement au moins un autre compartiment dans lequel se trouvera au moins un élément nécessaire pour élaborer le primaire à partir de son précurseur. Ainsi, le kit pourra par exemple contenir une arylamine, précurseur du primaire d'adhésion, avantageusement en solution, et également une solution de NaNO2 pour permettre par ajout la formation d'un sel d'aryle diazonium, primaire d'adhésion. L'homme du métier aura compris que l'utilisation d'un précurseur permet d'éviter de stocker ou transporter des espèces chimiques réactives.In a variant of the kit according to the invention, the first compartment contains not an adhesion primer advantageously in solution but at least one precursor of an adhesion primer advantageously in solution. In the sense of "adhesion primer precursor", it is necessary to understand a molecule separated from the primary by a single operating step and easy to implement. In this case, the kit will possibly include at least one other compartment in which there will be at least one element necessary to develop the primary from its precursor. Thus, the kit may for example contain an arylamine, precursor of the adhesion primer, advantageously in solution, and also a NaNO 2 solution to allow by addition the formation of an aryl diazonium salt, primary adhesion. Those skilled in the art will have understood that the use of a precursor makes it possible to avoid storing or transporting reactive chemical species.

Les solutions des différents compartiments pourront bien entendu contenir différents autres agents identiques ou différents tels que des agents stabilisants ou des tensio-actifs. L'utilisation du kit s'avère simple puisqu'il suffit de placer l'échantillon dont la surface doit être traitée au contact du mélange des solutions préparé de façon extemporanée en mélangeant les solutions des différents compartiments, de préférence sous agitation et notamment sous ultrasons. Avantageusement, seule la solution contenant le monomère, i.e. du deuxième compartiment, est placée sous ultrasons avant d'être mélangée à la solution contenant le primaire d'adhésion préparé extemporanément à partir d'un précurseur ou présent dans le premier compartiment.The solutions of the different compartments may of course contain different other identical or different agents such as stabilizing agents or surfactants. The use of the kit proves to be simple since it suffices to place the sample whose surface is to be treated in contact with the mixture of solutions prepared extemporaneously by mixing the solutions of the different compartments, preferably with stirring and in particular under ultrasound . Advantageously, only the solution containing the monomer, i.e. the second compartment, is placed under ultrasound before being mixed with the solution containing the adhesion primer prepared extemporaneously from a precursor or present in the first compartment.

BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS

LesThe Figures 1 à 6Figures 1 to 6 ci-après ne font pas partie de la présente invention.hereinafter do not form part of the present invention.

  • La Figure 1 présente l'analyse par spectrométrie IR de lames d'or sur lesquelles a été greffé, par greffage chimique radicalaire, pendant 30 min ou 60 min, un film à partir de 4-nitrobenzène diazonium tétrafluoroborate (4-NBDT) et d'hexafluorobutylméthacrylate (HFBM) en utilisant comme amorceur chimique du ferrocène, une lame d'or plongée dans une solution de HFBM servant de contrôle (HFBM pur) (.The Figure 1 presents the analysis by IR spectrometry of gold plates on which was grafted, by radical chemical grafting, for 30 min or 60 min, a film starting from 4-nitrobenzene diazonium tetrafluoroborate (4-NBDT) and hexafluorobutyl methacrylate ( HFBM) using as a chemical initiator of ferrocene, a gold plate immersed in a solution of HFBM serving as a control (pure HFBM) (.
  • La Figure 2 présente l'angle de contact mesuré (7 mesures indépendantes) pour une goutte d'eau sur des lames de verre sur lesquelles a été greffé, par greffage chimique radicalaire, pendant 30 min ou 60 min, un film à partir de 4-NBDT et d'HFBM en utilisant comme amorceur chimique du ferrocène, une lame de verre vierge servant de contrôle.The Figure 2 presents the contact angle measured (7 independent measurements) for a drop of water on glass slides on which was grafted, by radical chemical grafting, for 30 min or 60 min, a film from 4-NBDT and HFBM using as a chemical initiator of ferrocene, a blank glass slide serving as a control.
  • La Figure 3 présente la photographie d'une goutte d'eau sur une lame de verre sur laquelle a été greffé, par greffage chimique radicalaire, un film à partir de 4-NBDT et d'HFBM (Figure 3A) et celle d'une goutte d'eau sur une lame de verre vierge (Figure 3B).The Figure 3 presents the photograph of a drop of water on a glass slide on which has been grafted, by radical chemical grafting, a film from 4-NBDT and HFBM ( Figure 3A ) and that of a drop of water on a blade of virgin glass ( Figure 3B ).
  • La Figure 4 présente l'analyse par spectrométrie IR de lames d'or sur lesquelles a été greffé, par greffage chimique radicalaire, pendant 30 min ou 60 min, un film à partir de tridecyl-fluorooctylsulfamylbenzène diazonium tétrafluoroborate (MB83) en utilisant comme amorceur chimique du ferrocène.The Figure 4 presents the analysis by IR spectrometry of gold plates on which was grafted, by radical chemical grafting, for 30 min or 60 min, a film starting from tridecyl-fluorooctylsulfamylbenzene diazonium tetrafluoroborate (MB83) using as chemical initiator of ferrocene .
  • La Figure 5 présente l'angle de contact mesuré (11 mesures indépendantes) pour une goutte d'eau sur des lames de verre sur lesquelles a été greffé, par greffage chimique radicalaire, pendant 30 min ou 60 min, un film à partir de MB83 en utilisant comme amorceur chimique du ferrocène, une lame de verre vierge servant de contrôle.The Figure 5 shows the measured contact angle (11 independent measurements) for a drop of water on glass slides on which was grafted, by radical chemical grafting, for 30 min or 60 min, a film from MB83 using chemical initiator of ferrocene, a blank glass slide serving as a control.
  • La Figure 6 présente la photographie d'une goutte d'eau sur une lame de verre sur laquelle a été greffé, par greffage chimique radicalaire, un film à partir de MB83 (Figure 6A) et celle d'une goutte d'eau sur une lame de verre vierge (Figure 6B).The Figure 6 presents the photograph of a drop of water on a glass slide on which has been grafted, by radical chemical grafting, a film from MB83 ( Figure 6A ) and that of a drop of water on a blade of virgin glass ( Figure 6B ).
  • La Figure 7 présente l'analyse par spectrométrie IR de lames d'or sur lesquelles a été greffé, par greffage chimique radicalaire, pendant 30 min ou 60 min, un film à partir de 4-NBDT et de polydiméthylsiloxane à terminaisons vinyliques (PDMS) en utilisant comme amorceur chimique du ferrocène.The Figure 7 presents the analysis by IR spectrometry of gold plates on which was grafted, by radical chemical grafting, during 30 min or 60 min, a film starting from 4-NBDT and of Vinyl-terminated polydimethylsiloxane (PDMS) using ferrocene as a chemical initiator.
  • La Figure 8 présente l'angle de contact mesuré (10 mesures indépendantes) pour une goutte d'eau sur des lames de verre sur lesquelles a été greffé, par greffage chimique radicalaire, pendant 30 min ou 60 min, un film à partir de 4-NBDT et de PDMS en utilisant comme amorceur chimique du ferrocène, une lame de verre vierge servant de contrôle.The Figure 8 shows the contact angle measured (10 independent measurements) for a drop of water on glass slides on which was grafted, by radical chemical grafting, for 30 min or 60 min, a film from 4-NBDT and of PDMS using as a chemical initiator of ferrocene, a blank glass slide serving as a control.
  • La Figure 9 présente la photographie d'une goutte d'eau sur une lame de verre sur laquelle a été greffé, par greffage chimique radicalaire, un film à partir de 4-NBDT et de PDMS (Figure 9A) et celle d'une goutte d'eau sur une lame de verre vierge (Figure 9B).The Figure 9 presents the photograph of a drop of water on a glass slide on which has been grafted, by radical chemical grafting, a film from 4-NBDT and PDMS ( Figure 9A ) and that of a drop of water on a blade of virgin glass ( Figure 9B ).
  • La Figure 10 présente l'analyse par spectrométrie IR de lames de verre et d'or sur lesquelles a été greffé, par greffage chimique radicalaire en émulsion, un film à partir de NBDT et de vinylpolydiméthylsiloxane (vinylPDMS), une lame de verre vierge servant de contrôle.The Figure 10 presents the IR spectrometric analysis of glass and gold plates on which was grafted, by radical chemical emulsion grafting, a film from NBDT and vinylpolydimethylsiloxane (vinylPDMS), a blank glass slide serving as a control.
  • La Figure 11 présente l'analyse par spectrométrie IR d'un film de PDMS greffé sur une lame d'or par greffage chimique radicalaire appliquée au vinyl-PDMS en émulsion.The Figure 11 presents the analysis by IR spectrometry of a PDMS film grafted on a gold plate by radical chemical grafting applied to vinyl-PDMS in emulsion.
  • La Figure 12 présente l'analyse par spectrométrie IR d'un film de PDMS greffé sur une lame de verre comparé à celui d'un film de PDMS greffé sur lame d'or.The Figure 12 presents the IR spectroscopic analysis of a PDMS film grafted onto a glass slide compared to that of a PDMS film grafted onto a gold slide.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERSDETAILED PRESENTATION OF PARTICULAR EMBODIMENTS

Les Exemples I et II ci-après ne font pas partie de la présente invention.Examples I and II below are not part of the present invention.

Exemple I : Greffage du couple 4-NBDT/PHFBM sur or et verre avec du ferrocèneExample I: Grafting of the 4-NBDT / PHFBM pair on gold and glass with ferrocene I.1. Réactifs. I.1. Reagents.

Les réactifs utilisés dans l'exemple I sont .

  • du 4-NBDT : F.W. = 236,92 ; m = 0,099 g ; n = 0,42 mmol ; 1 eq.
  • du DMF : v = 3 mL.
  • du THF : v = 60 mL.
  • HFBM : F.W. = 268,13 ; d = 1,345 ; 97%, v = 0,5 mL ; n = 2,4 mmols.
  • Ferrocène : F.W. = 186,034 ; 97%, m = 0,1 g ; n = 0,5 mmols ; 1 eq.
The reagents used in Example I are.
  • 4-NBDT: FW = 236.92; m = 0.099 g; n = 0.42 mmol; 1 eq.
  • DMF: v = 3 mL.
  • THF: v = 60 mL.
  • HFBM: FW = 268.13; d = 1.345; 97%, v = 0.5 mL; n = 2.4 mmols.
  • Ferrocene: FW = 186.034; 97%, m = 0.1 g; n = 0.5 mmol; 1 eq.

1.2. Protocole. 1.2. Protocol.

Les lames de verre ont été préalablement rincées à l'eau, éthanol et acétone avec ultra-sons.The glass slides were rinsed beforehand with water, ethanol and acetone with ultrasound.

Dans un bécher de 100 mL, le 4-NBDT (99 mg, 4,2 10-4 mol) a été solubilisé dans un mélange 20:1 de THF/DMF (60 mL) sous agitation magnétique à température ambiante. A cette solution jaune, l'HFBM (0,5 mL, 2,4 10-3 mol) dans 10 mL de THF a été ajouté. Deux lames en verre ainsi que deux lames d'or utilisées comme référence pour vérifier par IR l'efficacité du greffage ont été ensuite immergées dans le bain. Une solution de ferrocène (100 mg, 5 10-4 mol) dans le THF (10 mL) a été ajoutée (couleur vert-noir du bain). Une lame en verre et une autre en or ont été retirées respectivement au bout de 30 et 60 min puis rincées successivement à l'eau MQ, éthanol, acétone et plongées dans un bain de THF à 60°C pendant 15 min avant de commencer les analyses IR.In a 100 mL beaker, 4-NBDT (99 mg, 4.2 × 10 -4 mol) was solubilized in a 20: 1 mixture of THF / DMF (60 mL) with magnetic stirring at room temperature. To this yellow solution, HFBM (0.5 mL, 2.4 × 10 -3 mol) in 10 mL of THF was added. Two glass slides as well as two gold plates used as a reference for IR verification of the grafting efficiency were then immersed in the bath. A solution of ferrocene (100 mg, 10 -4 mol) in THF (10 mL) was added (green-black color of the bath). One glass slide and one gold slide were removed after 30 and 60 min respectively and then rinsed successively with MQ water, ethanol and acetone and immersed in a bath of water. THF at 60 ° C for 15 min before starting the IR analyzes.

1.3. Résultats. 1.3. Results.

L'analyse par spectrométrie IR des lames en or confirme la présence du film attendu dont l'épaisseur est constante pour les échantillons immergés pendant 30 et 60 min (Figure 1). Les bandes spécifiques du copolymère à 1724 cm-1 (déformation C=0), 1452 cm-1 (déformation N=O), 1263 cm-1 (déformation CF3), 1155 cm-1 (déformation CF2) sont visibles. Une estimation des épaisseurs (% de greffage) de revêtement est obtenue par la mesure du pourcentage d'absorption de la bande la plus intense du spectre, ici le C=O.The IR spectrometry analysis of the gold plates confirms the presence of the expected film whose thickness is constant for the immersed samples for 30 and 60 min ( Figure 1 ). The specific bands of the copolymer at 1724 cm -1 (strain C = 0), 1452 cm -1 (strain N = O), 1263 cm -1 (strain CF 3 ), 1155 cm -1 (strain CF 2 ) are visible. An estimation of the coating thicknesses (% grafting) is obtained by measuring the absorption percentage of the most intense band of the spectrum, here C = O.

Fichiers :Files:

  • 1610085 (t = 30 min, or) 0,4% de greffage1610085 (t = 30 min, gold) 0.4% grafting
  • 1610085' (t = 30 min, verre) Non déterminé1610085 '(t = 30 min, glass) Not determined
  • 1610086 (t = 60 min, or) 0,5% de greffage1610086 (t = 60 min, gold) 0.5% grafting
  • 1610086' (t = 60 min, verre) Non déterminé1610086 '(t = 60 min, glass) Not determined

Le Tableau 1 ci-dessous et la figure 2 reprennent les valeurs de l'angle de contact obtenu pour une goutte d'eau disposée sur une lame de verre vierge ou sur une lame de verre sur laquelle a été greffé un film organique obtenu à partir de 4-NBDT et d'HFBM pendant 30 min ou 60 min (7 mesures indépendantes). La Figure 3 est une photographie de cette goutte sur une telle lame de verre greffée (Figure 3A) ou sur une lame de verre vierge (Figure 3B). Tableau 1 Mesure N° Verre vierge θ (°) Verre greffé 30 min θ (°) Verre greffé 60 min θ (°) 1 28 52 54 2 22 50 57 3 20 48 62 4 21 47 62 5 22 47 62 6 23 49 64 7 24 49 56 Table 1 below and the figure 2 take the values of the contact angle obtained for a drop of water placed on a blank glass slide or on a glass slide on which was grafted an organic film obtained from 4-NBDT and HFBM for 30 minutes. min or 60 min (7 independent measurements). The Figure 3 is a photograph of this drop on such a grafted glass slide ( Figure 3A ) or on a blank glass slide ( Figure 3B ). <u> Table 1 </ u> Measure N ° Blank glass θ (°) Grafted glass 30 min θ (°) Grafted glass 60 min θ (°) 1 28 52 54 2 22 50 57 3 20 48 62 4 21 47 62 5 22 47 62 6 23 49 64 7 24 49 56

Exemple II : Greffage d'un diazonium fluoré sur or et verre avec du ferrocèneExample II Grafting of a fluorinated diazonium on gold and glass with ferrocene II.1. Réactifs. II.1. Reagents.

Les réactifs utilisés dans l'exemple II sont :

  • du MB83, F.W. = 570,07 ; m = 0,055 g ; n = 9,6 10-2 mmols ; 1 eq.
  • de l'acétonitrile : v = 50 mL.
  • du ferrocène : F.W. = 186,034 ; 97%, m = 0,1 g; n = 0,52 mmols ; 5,4 eq.
The reagents used in Example II are:
  • MB83, FW = 570.07; m = 0.055 g; n = 9.6 10 -2 mmols; 1 eq.
  • acetonitrile: v = 50 mL.
  • ferrocene: FW = 186.034; 97%, m = 0.1 g; n = 0.52 mmol; 5.4 eq.

11.2. Protocole. 11.2. Protocol.

Dans un bécher de 100 mL, le MB83 (55 mg, 9,6 10-5 mol) a été solubilisé dans de l'acétonitrile (50 mL) sous agitation magnétique à température ambiante. A cette solution jaune, deux lames en verre ainsi que deux lames d'or utilisées comme référence pour vérifier par IR l'épaisseur du film déposé ont été ensuite immergées dans le bain. Une solution de ferrocène (100 mg, 5,2 10-4 mol) dans l'acétonitrile (10 mL) a été ajoutée (couleur rouge foncé du bain). Une lame en verre préalablement traitée au piranha (mélange 2:1 de H2SO4 et H2O2) et une autre en or ont été retirées respectivement au bout de 30 et 60 min puis rincées successivement à l'eau MQ, éthanol, acétone et plongées dans un bain de THF à 60°C pendant 15 min. Les échantillons ont également été soumis à un traitement aux ultrasons dans leur bain de THF pendant 2-3 min avant de réaliser les analyses IR et les mesures d'angle de contact.In a 100 mL beaker, MB83 (55 mg, 9.6 ± 10 -5 mol) was solubilized in acetonitrile (50 mL) with magnetic stirring at room temperature. To this yellow solution, two glass slides and two gold plates used as a reference for IR-checking the thickness of the deposited film were then immersed in the bath. A solution of ferrocene (100 mg, 5.2 × 10 -4 mol) in acetonitrile (10 mL) was added (dark red color of the bath). A glass slide previously treated with piranha (2: 1 mixture of H 2 SO 4 and H 2 O 2 ) and another in gold were removed respectively after 30 and 60 min and then rinsed successively with MQ water, ethanol. acetone and dipped in a THF bath at 60 ° C for 15 min. The samples were also sonicated in their THF bath for 2-3 min before performing the IR and contact angle measurements.

II.3. Résultats. II.3. Results.

L'analyse par spectrométrie IR des lames en or confirme la présence du film attendu dont l'épaisseur est constante pour les échantillons immergés pendant 30 et 60 min (Figure 4). Les bandes spécifiques du revêtement à 1264 cm-1 (déformation CF3), 1105 cm-1 (déformation CF2) sont visibles. Une estimation des épaisseurs (% de greffage) de revêtement est obtenue par la mesure du pourcentage d'absorption de la bande la plus intense du spectre, ici la bande du CF3 à 1264 cm-1.The IR spectrometry analysis of the gold plates confirms the presence of the expected film whose thickness is constant for the immersed samples for 30 and 60 min ( Figure 4 ). The specific strips of the coating at 1264 cm -1 (CF 3 deformation), 1105 cm -1 (CF 2 deformation) are visible. An estimation of the coating thicknesses (% grafting) is obtained by measuring the absorption percentage of the most intense band of the spectrum, here the CF 3 band at 1264 cm -1 .

Fichiers : Files :

  • 2210081 (or, 30 min) 4,0% de greffage2210081 (gold, 30 min) 4.0% grafting
  • 2210082 (or, 60 min) 5,1% de greffage2210082 (gold, 60 min) 5.1% grafting
  • 2210081' (verre, 30 min) Non déterminé2210081 '(glass, 30 min) Not determined
  • 2210082' (verre, 60 min) Non déterminé2210082 '(glass, 60 min) Not determined

Le Tableau 2 ci-dessous et la figure 5 reprennent les valeurs de l'angle de contact obtenu pour une goutte d'eau disposée sur une lame de verre vierge ou sur une lame de verre sur laquelle a été greffé un film organique obtenu à partir de MB83 pendant 30 min ou 60 min (11 mesures indépendantes). La Figure 6 est une photographie de cette goutte sur une telle lame de verre greffée (Figure 6A) ou sur une lame de verre vierge (Figure 6B). Tableau 2 Mesures N° Verre vierge θ (°) Verre greffé 30 min θ (°) Verre greffé 60 min θ (°) 1 28 90 92 2 27 91 96 3 37 78 99 4 20 84 100 5 28 87 103 6 23 88 94 7 20 87 85 8 29 85 90 9 17 92 85 10 18 89 98 11 19 91 91 Table 2 below and the figure 5 take again the values of the contact angle obtained for a drop of water placed on a blank glass slide or on a glass slide on which has been grafted an organic film obtained from MB83 for 30 min or 60 min (11 independent measurements). The Figure 6 is a photograph of this drop on such a grafted glass slide ( Figure 6A ) or on a blank glass slide ( Figure 6B ). <u> Table 2 </ u> Measures N ° Blank glass θ (°) Grafted glass 30 min θ (°) Grafted glass 60 min θ (°) 1 28 90 92 2 27 91 96 3 37 78 99 4 20 84 100 5 28 87 103 6 23 88 94 7 20 87 85 8 29 85 90 9 17 92 85 10 18 89 98 11 19 91 91

Exemple III : Greffage du couple 4-NBDT/PDMS sur or et verre par du ferrocèneExample III: Grafting of the 4-NBDT / PDMS couple on gold and glass with ferrocene III.1. Réactifs. III.1. Reagents.

Les réactifs utilisés dans l'exemple III sont :

  • du 4-NBDT : F.W. = 236,92 ; m = 2,13 g ; n = 9 mmols ; 1 eq.
  • de l'acétonitrile : v = 75 mL.
  • du CH2Cl2 (DCM) : v = 75 mL.
  • du PDMS F.W. = 25000 ; d = 0,965 ; v = 12,0 mL ; n = 0,46 mmols ; 0,05 eq.
  • du ferrocène: F.W. = 186,034 ; 97% ; m = 1,0 g ; n = 5,2 mmols ; 0,58 eq.
The reagents used in Example III are:
  • 4-NBDT: FW = 236.92; m = 2.13 g; n = 9 mmols; 1 eq.
  • acetonitrile: ν = 75 mL.
  • CH 2 Cl 2 (DCM): ν = 75 mL.
  • PDMS FW = 25000; d = 0.965; v = 12.0 mL; n = 0.46 mmol; 0.05 eq.
  • ferrocene: FW = 186.034; 97%; m = 1.0 g; n = 5.2 mmol; 0.58 eq.

III.2. Protocole. III.2. Protocol.

Dans un bécher de 100 mL, le 4-NBDT (2,13 g, 9 10-3 mol) a été solubilisé dans de l'acétonitrile (75 mL) sous agitation magnétique à température ambiante. A cette solution jaune, le PDMS (polydimethylsiloxane à terminaisons vinyliques) (12,0 mL, 4,6 6 10-4 mol) dans 75 mL de dichlorométhane a été ajouté pour former une émulsion jaune. Deux lames en verre préalablement traitées au piranha ainsi que deux lames d'or utilisées comme référence pour confirmer par IR la présence du polymère greffé ont été ensuite immergées dans le bain. Une solution de ferrocène (1 g, 5,2 10-3 mol) dans le DCM (20 mL) a été ajoutée (couleur vert-noir du bain). Un lot de deux lames de verre et d'or a été retiré au bout de 30 min et un autre à 60 min. Ces lames ont été rincées successivement à l'eau MQ, éthanol, acétone et plongées dans un bain d'hexane à 60°C pendant 15 min. Les échantillons ont également été soumis à un traitement aux ultrasons dans un bain d'hexane pendant 2-3 min avant de réaliser les analyses IR et les mesures d'angle de contact.In a 100 mL beaker, 4-NBDT (2.13 g, 9 10- 3 mol) was dissolved in acetonitrile (75 mL) under magnetic stirring at room temperature. To this yellow solution, PDMS (polydimethylsiloxane with vinyl-terminated) (12.0 mL, 4.6 June 10 -4 mol) in 75 mL of dichloromethane was added to form a yellow emulsion. Two glass slides previously treated with piranha and two gold plates used as a reference to confirm by IR the presence of the graft polymer were then immersed in the bath. A solution of ferrocene (1 g, 5.2 10 -3 mol) in DCM (20 mL) was added (green-black color of the bath). A batch of two glass and gold slides was removed after 30 min and another at 60 min. These slides were rinsed successively with MQ water, ethanol, acetone and immersed in a hexane bath at 60 ° C for 15 min. The samples were also sonicated in a hexane bath for 2-3 min before performing the IR and contact angle measurements.

III.3. Résultats. III.3. Results.

L'analyse par spectrométrie IR des lames en or confirme la présence du film attendu dont l'épaisseur augmente en fonction du temps (Figure 7). Les bandes spécifiques du revêtement à 1264 cm-1 (déformation Si-O), 1107 cm-1 (déformation Si-O) sont visibles. Une estimation des épaisseurs (% de greffage) de revêtement est obtenue par la mesure du pourcentage d'absorption de la bande la plus intense du spectre, ici le Si-O à 1264 cm-1.The IR spectrometry analysis of the gold plates confirms the presence of the expected film whose thickness increases with time ( Figure 7 ). The specific strips of the coating at 1264 cm -1 (Si-O deformation), 1107 cm -1 (Si-O deformation) are visible. An estimation of the coating thicknesses (% grafting) is obtained by measuring the absorption percentage of the most intense band of the spectrum, here the Si-O at 1264 cm -1 .

Fichiers :Files:

  • 2410081 (t = 30 min, or) 1,0% de greffage2410081 (t = 30 min, gold) 1.0% grafting
  • 2410082 (t = 60 min, or) 5% de greffage2410082 (t = 60 min, gold) 5% grafting
  • 2410081' (t = 30 min, verre) Non déterminé2410081 '(t = 30 min, glass) Not determined
  • 2410082' (t = 60 min, verre) Non déterminé2410082 '(t = 60 min, glass) Not determined

Le Tableau 3 ci-dessous et la figure 8 reprennent les valeurs de l'angle de contact obtenu pour une goutte d'eau disposée sur une lame de verre vierge ou sur une lame de verre sur laquelle a été greffé un film organique obtenu à partir de 4-NBDT et de PDMS pendant 30 min ou 60 min (10 mesures indépendantes). La Figure 9 est une photographie de cette goutte sur une telle lame de verre greffée (Figure 9A) ou sur une lame de verre vierge (Figure 9B) . Tableau 3 Mesure N° Verre vierge θ (°) Verre greffé 30 min θ (°) Verre greffé 60 min θ (°) 1 28 100 104 2 27 100 106 3 37 98 107 4 20 102 106 5 28 100 108 6 23 107 108 7 20 108 109 8 29 109 110 9 17 103 110 10 18 107 109 Table 3 below and the figure 8 take the values of the contact angle obtained for a drop of water placed on a blank glass slide or on a glass slide on which was grafted an organic film obtained from 4-NBDT and PDMS for 30 min or 60 min (10 independent measurements). The Figure 9 is a photograph of this drop on such a grafted glass slide ( Figure 9A ) or on a blank glass slide ( Figure 9B ). <u> Table 3 </ u> Measure N ° Blank glass θ (°) Grafted glass 30 min θ (°) Grafted glass 60 min θ (°) 1 28 100 104 2 27 100 106 3 37 98 107 4 20 102 106 5 28 100 108 6 23 107 108 7 20 108 109 8 29 109 110 9 17 103 110 10 18 107 109

Les échantillons de verre traités pendant 60 minutes ont été soumis à un recuit à l'étuve à 120°C pendant 18 h. Ce traitement permet d'augmenter de 10° en moyenne la valeur de l'angle de contact.Glass samples treated for 60 minutes were annealed in an oven at 120 ° C for 18 h. This treatment makes it possible to increase the value of the contact angle by an average of 10 °.

Exemple IV : Greffage du vinylPDMS (vinylpolydiméthylsiloxane) en émulsion sur lames de verreEXAMPLE IV Grafting VinylPDMS (Vinylpolydimethylsiloxane) in Emulsion on Glass Slides

Dans un bécher muni d'un barreau aimanté, ont été versés 20 ml d'eau désionisée, 0,092 g (1,2.10-2 M) de sodium dodecylbenzène sulfonate (SDBS). Après une agitation vigoureuse de 10 min, 1,4 ml de vinylPDMS (Mw∼25.000) sont introduits et l'agitation est poursuivie pendant 10 min. Ensuite, 0,075 g de NBDT (nitrobenzène diazonium tétrafluoroborate, 1,48.10-2 M) ont été ajoutés au milieu. Les lames à traiter (lames de microscope) sont ensuite plongées dans la solution pour une durée de 60 min. Enfin, 0,1 ml d'une solution d'acide ascorbique récemment préparée à 10-2M, soit 1,35.10-3 M, est ajouté au milieu réactionnel.In a beaker equipped with a magnetized bar were poured 20 ml of deionized water, 0.092 g (1.2 × 10 -2 M) of sodium dodecylbenzene sulfonate (SDBS). After vigorous stirring for 10 min, 1.4 ml of vinylPDMS (Mw = 25,000) are introduced and stirring is continued for 10 min. Then, 0.075 g of NBDT (nitrobenzene diazonium tetrafluoroborate, 1.48 × 10 -2 M) was added to the medium. The slides to be treated (microscope slides) are then immersed in the solution for a duration of 60 min. Finally, 0.1 ml of a recently prepared 10 -2 M ascorbic acid solution, ie 1.35 × 10 -3 M, is added to the reaction medium.

L'analyse FTIR du spectre réalisé après avoir soumis la lame aux ultrasons pendant 2 min dans le toluène (bon solvant du PDMS), révèle la présence du PDMS (bande Si-CH3 à 2963 cm-1 et à 1260 cm-1). Le spectre est comparé à celui obtenu avec une lame d'or également traitée et au spectre d'une lame de verre vierge (Figure 10).FTIR analysis of the spectrum carried out after having subjected the slide to ultrasound for 2 min in toluene (good solvent for PDMS), reveals the presence of PDMS (Si-CH 3 band at 2963 cm -1 and at 1260 cm -1 ) . The spectrum is compared to that obtained with a gold leaf also treated and the spectrum of a blade of virgin glass ( Figure 10 ).

Les valeurs des angles de contact d'une lame de verre vierge, d'une lame de verre traitée selon le protocole décrit précédemment et d'une lame d'or qui a subi le même traitement sont respectivement 28,7 ± 4,4 ; 100 ± 4,6 et 96,8 ± 3,8.The values of the contact angles of a blank glass slide, a glass slide treated according to the protocol described above and a gold slide which has undergone the same treatment are respectively 28.7 ± 4.4; 100 ± 4.6 and 96.8 ± 3.8.

Exemple V : Greffage du vinylPDMS en émulsion en présence de SDS ou SDBS sur lames d'or et de verre.EXAMPLE V Grafting VinylPDMS in Emulsion in the Presence of SDS or SDBS on Gold and Glass Slides

Dans un bécher muni d'un barreau aimanté, ont été versés 20 ml d'eau déionisée, 0,050 g (soit 1,3 10-2 M) de SDS. Après une agitation vigoureuse de 10 min, 1,4 ml de vinyl-PDMS (Mw∼25000) sont introduits et l'agitation est poursuivie pendant 10 min. Ensuite, 0,075 g de NBDT (1,48 10-2 M) ont été ajoutés au milieu réactionnel. Les lames d'or ou de verre à traiter sont ensuite plongées dans la solution pour une durée de 60 minutes. Enfin, 0,2 ml d'une solution d'acide ascorbique récemment préparée à 0,3 M, soit 2,7 10-3 M, est ajouté au milieu réactionnel.In a beaker equipped with a magnetized bar were poured 20 ml of deionized water, 0.050 g (ie 1.3 10 -2 M) of SDS. After vigorous stirring for 10 min, 1.4 ml of vinyl-PDMS (Mw-25000) are introduced and stirring is continued for 10 min. Then, 0.075 g of NBDT (1.48 × 10 -2 M) was added to the reaction medium. The gold or glass slides to be treated are then immersed in the solution for a period of 60 minutes. Finally, 0.2 ml of a solution of ascorbic acid recently prepared at 0.3 M, ie 2.7 × 10 -3 M, is added to the reaction medium.

L'analyse FTIR du spectre réalisé après avoir soumis la lame d'or aux ultrasons pendant 2 min dans le toluène révèle la présence du PDMS. Les bandes Si-CH3 apparaissent à 2962 cm-1 (élongation asymétrique), à 1412 cm-1 (élongation symétrique) et à 1260 cm-1 (déformation) (Figure 11). La présence de 2 bandes d'élongation intenses vers 1080 et 1010 cm-1 des fonctions siloxanes SiOSi témoigne de l'emploi d'un polymère à longue chaîne.The FTIR analysis of the spectrum carried out after having subjected the gold plate to ultrasound for 2 min in toluene reveals the presence of PDMS. The strips Si-CH 3 appear at 2962 cm -1 (asymmetrical stretching), 1412 cm -1 (symmetric stretch) and 1260 cm -1 (deformation) ( Figure 11 ). The presence of two intense elongation bands at 1080 and 1010 cm -1 of the SiOSi siloxane functions demonstrates the use of a long-chain polymer.

Sur une lame de verre, le spectre FTIR est moins bien résolu à cause de la présence d'une bande Si-O-Si très importante comme le montre la Figure 12.On a glass slide, the FTIR spectrum is less well resolved because of the presence of a very important Si-O-Si band as shown by Figure 12 .

Les valeurs des angles de contact d'une lame de verre vierge, d'une lame de verre traitée selon le protocole décrit précédemment et d'une lame d'or qui a subi le même traitement sont 28,7 ± 4,4 ; 100 ± 4,6 et 96,8 ± 3,8 respectivement.The values of the contact angles of a blank glass slide, a glass slide treated according to the protocol described above and a gold slide which has undergone the same treatment are 28.7 ± 4.4; 100 ± 4.6 and 96.8 ± 3.8 respectively.

Des expériences ont été réalisées avec le SDS et le SDBS en faisant varier la quantité de vinyl-PDMS dans le milieu réactionnel et également en appliquant ou non un recuit d'une heure à 120°C sur les échantillons avant le traitement par ultrasons dans le toluène. Les résultats sont consignés dans le tableau 4 ci-après.Experiments were carried out with SDS and SDBS by varying the amount of vinyl-PDMS in the reaction medium and also by applying or not annealing for one hour at 120 ° C on the samples before the ultrasound treatment in the reaction medium. toluene. The results are shown in Table 4 below.

Les quantités en réactifs et le protocole expérimental identique à celui décrit ci-dessus sont identiques dans tous les cas avec la concentration en émulsifiant de 1,25 10-2 M, la concentration en NBDT de 1,5 10-2 M et la concentration en acide ascorbique de 1,35 10-2 M. Tableau 4 Emulsifiant Quantité PDMS (ml) Sans ou avec recuit 120°C 1h Angle de contact
Sur lame d'or
Angle de contact
Sur lame de verre
SDS 0,6 Sans 100,4 ± 3,6 Avec 100,8 ± 7,2 102,3 ± 2 " 2,8 Sans 101,8 ± 3,8 105,2 ± 2 69,9 ± 4,8 Avec 99,1 ± 3,2 100,5 ± 5,2 SDBS 0,6 Sans Perte de la couche 67,8 ± 3,2 Avec 105,6 ± 2,3 101,6 ± 2,2 " 2,8 Sans 103,8 ± 4 78,4 ± 7 104 ± 2,6 Avec 96,8 ± 3,8 100 ± 4,6 107,1 ± 1,4 103,5 ± 2,9
The quantities of reagents and the experimental protocol identical to that described above are identical in all cases with the emulsifier concentration of 1.25 × 10 -2 M, the NBDT concentration of 1.5 × 10 -2 M and the concentration in ascorbic acid of 1.35 10 -2 M. <u> Table 4 </ u> Emulsifier PDMS quantity (ml) Without or with annealing 120 ° C 1h Contact angle
On gold blade
Contact angle
On a glass slide
SDS 0.6 Without 100.4 ± 3.6 With 100.8 ± 7.2 102.3 ± 2 " 2.8 Without 101.8 ± 3.8 105.2 ± 2 69.9 ± 4.8 With 99.1 ± 3.2 100.5 ± 5.2 SDBS 0.6 Without Loss of the layer 67.8 ± 3.2 With 105.6 ± 2.3 101.6 ± 2.2 " 2.8 Without 103.8 ± 4 78.4 ± 7 104 ± 2.6 With 96.8 ± 3.8 100 ± 4.6 107.1 ± 1.4 103.5 ± 2.9

On peut noter que, pour les 2 émulsifiants, des résultats comparables sont obtenus en utilisant 0,6 ou 2,8 ml de vinyl-PDMS. Cependant, une quantité plus élevée en PDMS améliore l'hydrophobicité de la couche. Par contre, le recuit semble favoriser la formation d'une couche plus homogène, ce qui améliore l'hydrophobicité.It can be noted that for the 2 emulsifiers, comparable results are obtained using 0.6 or 2.8 ml of vinyl-PDMS. However, a higher amount of PDMS improves the hydrophobicity of the layer. On the other hand, the annealing seems to favor the formation of a more homogeneous layer, which improves the hydrophobicity.

Claims (10)

  1. A method for modifying the surface energy of at least one surface of a solid comprising a step consisting of grafting, on said surface, a polymeric organic film consisting of graft polymers, each polymer having a first unit bound directly to said surface derived from a cleavable aryl salt and at least one other unit of the polymer chain derived from a vinyl-terminated siloxane,
    said method consisting of contacting said surface with a solution comprising at least one cleavable aryl salt and at least one vinyl-terminated siloxane and of :
    - either submitting said solution to nonelectrochemical conditions permitting the formation of radical entities from said cleavable aryl salt, said grafting being a chemical grafting;
    - or polarizing said surface at an electric potential that is more cathodic than the reduction potential of the cleavable aryl salt, said grafting being an electrografting and said surface being conducting or semiconducting.
  2. The method according to claim 1, characterized in that said cleavable aryl salt is selected from the group consisting of aryldiazonium salts, arylammonium salts, arylphosphonium salts, aryliodonium salts and arylsulfonium salts.
  3. The method according to claim 1 or 2, characterized in that said vinyl-terminated siloxane is a compound of formula (IV):

            R3-[OSi(R4)(R5)]n-R6     (IV)

    in which
    - n represents an integer between 2 and 200, notably between 5 and 150 and, in particular, between 10 and 100;
    - R3 and R6 are groups having at least one ethylenic unsaturation and
    - R4 and R5, which may be identical or different, represent a linear, branched or cyclic alkyl group, comprising from 1 to 6 carbon atoms and notably from 1 to 3 carbon atoms.
  4. The method according to claim 3, characterized in that said group R3 represents a group -C(O)-R7 and/or said group R6 represents a group -O-C(O)-R8 in which R7 and R8, which may be identical or different, represent a group comprising 2 to 12 carbon atoms and having at least one ethylenic unsaturation.
  5. The method according to claim 4, characterized in that R7 and R8, which may be identical or different, correspond to groups of formula (V):

            C(R9)(R10)=C(R11)-     (V)

    in which R9, R10 and R11, which may be identical or different, represent a hydrogen atom or a linear, branched or cyclic alkyl group, comprising from 1 to 4 carbon atoms and notably 1 or 2 carbon atoms.
  6. The method according to any one of the preceding claims, characterized in that said surface is a glass surface such as flat glass notably used in building, architecture, automobiles, glazing and the mirror industry, an aquarium glass, a glass for mechanical optics or an optical glass.
  7. The method according to any one of the preceding claims, characterized in that said method comprises an additional step, prior to chemical grafting or electrografting, of cleaning said surface.
  8. The method according to any one of the preceding claims, characterized in that said method comprises an additional step, following chemical grafting or electrografting, consisting of submitting the grafted organic film to a thermal treatment.
  9. A method for modifying the wettability of a surface, for improving the sealing of a surface and/or for protecting a surface against corrosion, said method consisting of modifying the surface energy of said surface by a method as defined in any one of the preceding claims.
  10. Use of a kit of parts in order to modify the surface energy of a surface by a method of claim 1, said kit comprising:
    - in a first compartment, at least one cleavable aryl salt and notably as defined in claim 2;
    - in a second compartment, a vinyl-terminated siloxane notably as defined in any one of claims 3 to 5;
    - optionally, in a third compartment, a chemical polymerization initiator;
    - and optionally, in a fourth compartment, electrical means for generating a potential.
EP10713182.3A 2009-04-02 2010-04-02 Method for modifying the surface energy of a solid Not-in-force EP2414108B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0952147A FR2943930B1 (en) 2009-04-02 2009-04-02 METHOD FOR MODIFYING THE SURFACE ENERGY OF A SOLID
PCT/EP2010/054473 WO2010112610A2 (en) 2009-04-02 2010-04-02 Method for modifying the surface energy of a solid

Publications (2)

Publication Number Publication Date
EP2414108A2 EP2414108A2 (en) 2012-02-08
EP2414108B1 true EP2414108B1 (en) 2017-09-27

Family

ID=41459179

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10713182.3A Not-in-force EP2414108B1 (en) 2009-04-02 2010-04-02 Method for modifying the surface energy of a solid

Country Status (5)

Country Link
US (1) US9381541B2 (en)
EP (1) EP2414108B1 (en)
JP (1) JP5889180B2 (en)
FR (1) FR2943930B1 (en)
WO (1) WO2010112610A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2954326B1 (en) * 2009-12-23 2013-01-18 Valois Sas METHOD FOR SURFACE TREATMENT OF A FLUID PRODUCT DISPENSING DEVICE
FR2954328B1 (en) * 2009-12-23 2013-01-18 Valois Sas METHOD FOR SURFACE TREATMENT OF A FLUID PRODUCT DISPENSING DEVICE
FR2954330B1 (en) * 2009-12-23 2013-01-04 Valois Sas METHOD FOR SURFACE TREATMENT OF A FLUID PRODUCT DISPENSING DEVICE
FR2954329B1 (en) * 2009-12-23 2013-01-18 Valois Sas PROCESS FOR TREATING ELASTOMERIC SURFACE OF A DEVICE FOR DISPENSING FLUID PRODUCT
FR2969628B1 (en) * 2010-12-22 2013-09-27 Pegastech METHOD FOR COATING ELECTROCATALYSIS CHEMICAL GRAFTING OF A SURFACE OF A SUBSTRATE BY A POLYMERIC LAYER
FR2980982B1 (en) 2011-10-07 2014-10-24 Commissariat Energie Atomique DEVICE COMPRISING A COMPOSITE MATERIAL HAVING ELECTRIC FIELD SUBSTRATE NANOTUBES AND USES THEREOF
FR3003482B1 (en) 2013-03-19 2016-06-24 Aptar France Sas METHOD FOR SURFACE TREATMENT OF A DOSING VALVE
CN106206252B (en) * 2016-06-30 2019-06-21 上海交通大学 In the method for surface of semiconductor substrates one-step method chemical graft organic film
FR3083618B1 (en) 2018-07-09 2021-03-12 Commissariat Energie Atomique PORTABLE ELECTROCHEMICAL MICROSCOPY DEVICE, KITS INCLUDING IT AND THEIR USES
BE1029387B1 (en) * 2021-05-05 2022-12-06 Flooring Ind Ltd Sarl Method for manufacturing panels; and panels obtained with this
WO2022234404A1 (en) * 2021-05-05 2022-11-10 Flooring Industries Limited, Sarl Method for the manufacture of panels; and panels obtained thereby

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2837842B1 (en) 2002-03-26 2004-06-18 Commissariat Energie Atomique METHOD FOR FIXING MACRO OBJECTS ON A CONDUCTIVE OR SEMICONDUCTOR SURFACE OF ELECTRICITY BY ELECTRO-GRAFTING, SURFACES OBTAINED AND APPLICATIONS
FR2871162B1 (en) * 2004-06-02 2007-06-29 Univ Paris 7 Denis Diderot MODIFIED SURFACE MATERIAL, PROCESS FOR PREPARING THE SAME AND USES THEREOF
FR2892325B1 (en) * 2005-10-26 2008-01-18 Alchimer Sa PROCESS FOR MODIFYING INSULATING, SEMICONDUCTOR OR METALLIC SURFACES, AND PRODUCTS SUCH AS OBTAINED
FR2897876B1 (en) * 2006-02-28 2008-04-18 Commissariat Energie Atomique PROCESS FOR FORMING ORGANIC FILMS ON CONDUCTIVE OR SEMICONDUCTOR SURFACES OF ELECTRICITY FROM AQUEOUS SOLUTIONS
US8405217B2 (en) * 2006-03-06 2013-03-26 Alchimer Coating method and solutions for enhanced electromigration resistance
FR2910010B1 (en) * 2006-12-19 2009-03-06 Commissariat Energie Atomique PROCESS FOR PREPARING AN ORGANIC FILM ON THE SURFACE OF A SOLID SUPPORT UNDER NON-ELECTROCHEMICAL CONDITIONS, SOLID CARRIER THUS OBTAINED AND PREPARATION KIT
FR2921516B1 (en) 2007-09-20 2010-03-12 Commissariat Energie Atomique LOCALIZED ELECTROGREASING METHOD ON PHOTOSENSITIVE SEMICONDUCTOR SUBSTRATES

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2010112610A3 (en) 2010-12-09
US9381541B2 (en) 2016-07-05
JP5889180B2 (en) 2016-03-22
JP2012522663A (en) 2012-09-27
WO2010112610A2 (en) 2010-10-07
FR2943930B1 (en) 2011-09-30
EP2414108A2 (en) 2012-02-08
US20120196035A1 (en) 2012-08-02
FR2943930A1 (en) 2010-10-08

Similar Documents

Publication Publication Date Title
EP2414108B1 (en) Method for modifying the surface energy of a solid
EP2121814B1 (en) Method for preparing an organic film at the surface of a solid substrate in non-electrochemical conditions, solid substrate thus formed and preparation kit
EP2424928B1 (en) Method for preparing an organic film at the surface of a solid substrate with oxidizing processing
WO2003018212A1 (en) Method for grafting and growing a conductive organic film on a surface
FR2860523A1 (en) METHOD FOR FORMING POLYMER FILM ON A CONDUCTIVE OR SEMICONDUCTOR SURFACE OF ELECTRICITY BY ELECTRO-GRAFTING, SURFACES OBTAINED AND APPLICATIONS
FR2907131A1 (en) METHOD FOR FORMING ORGANIC FILMS ON CONDUCTIVE OR SEMICONDUCTOR SURFACES OF ELECTRICITY FROM AQUEOUS SOLUTIONS IN TWO STEPS
FR2883299A1 (en) FORMATION OF ULTRAMINAL FILMS GRAFTED ON CONDUCTIVE OR SEMICONDUCTOR SURFACES OF ELECTRICITY
FR2910006A1 (en) Formation of organic film at surface of solid support, involves contacting solid support surface with liquid solution having protic solvent(s) and adhesion primer(s) under non-electrochemical condition, and forming radical entities
EP1989345B1 (en) Method of forming organic films on electrically conducting or semiconducting surfaces from aqueous solutions
EP2195121B1 (en) Method of localized electrografting onto photosensitive semiconductor substrates
FR2910007A1 (en) PROCESS FOR PREPARING AN ORGANIC FILM ON THE SURFACE OF A SOLID SUPPORT UNDER NON-ELECTROCHEMICAL CONDITIONS, SOLID CARRIER THUS OBTAINED AND PREPARATION KIT
WO2010149719A1 (en) Method for preparing a lubricating film, resulting solid medium, and preparation kit
FR2897876A1 (en) Film-forming process of an organic copolymer on a (semi)conductor surface comprises electrolyzing an electrolytic solution to obtain the organic copolymer film grafted on the surface
EP2155827A1 (en) Method of forming an organic film using a gel, said gel and use thereof
EP2720806B1 (en) Process for functionalizing a surface with an object or molecule of interest
WO2011033091A1 (en) Method for enhancing friction resistance properties
FR2977812A1 (en) Preparing hydrophobic organic film at surface of solid support by radical chemical grafting, comprises applying, on surface, solution containing e.g. fluorinated aryl salt, and a mixture of first protic solvent and second polar solvent
FR2910009A1 (en) Formation of organic film at surface of solid support, involves contacting solid support surface with liquid solution having protic solvent(s) and adhesion primer(s) under non-electrochemical condition, and forming radical entities
EP2262866B1 (en) Method for localised electro-grafting on conducting or semiconducting substrates in the presence of a microelectrode
FR2910008A1 (en) Formation of organic film at surface of solid support, involves contacting solid support surface with liquid solution having protic solvent(s) and adhesion primer(s) under non-electrochemical condition, and forming radical entities

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111010

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MOUANDA, BRIGITTE

Inventor name: DENIAU, GUY

Inventor name: NEKELSON, FABIEN

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130207

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170421

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 931508

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010045531

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENT- UND MARKENANWAELTE, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170927

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 931508

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171228

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180127

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010045531

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

26N No opposition filed

Effective date: 20180628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180402

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190415

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190429

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190424

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190424

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170927

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010045531

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200402