EP2401747B1 - Elektrisches bauteil und verfahren zur herstellung eines elektrischen bauteils - Google Patents

Elektrisches bauteil und verfahren zur herstellung eines elektrischen bauteils Download PDF

Info

Publication number
EP2401747B1
EP2401747B1 EP09776414.6A EP09776414A EP2401747B1 EP 2401747 B1 EP2401747 B1 EP 2401747B1 EP 09776414 A EP09776414 A EP 09776414A EP 2401747 B1 EP2401747 B1 EP 2401747B1
Authority
EP
European Patent Office
Prior art keywords
electric
electric component
nanostructures
conductor
inner part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09776414.6A
Other languages
English (en)
French (fr)
Other versions
EP2401747A1 (de
Inventor
Jörg FINDEISEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2401747A1 publication Critical patent/EP2401747A1/de
Application granted granted Critical
Publication of EP2401747B1 publication Critical patent/EP2401747B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Definitions

  • the invention relates to an electrical component with an electrical conductor, wherein within the electrical conductor, a current path is predetermined with a current flow direction due to the connection of the ends of the electrical conductor to two electrical connection points within the electrical component. Furthermore, the invention relates to a method for producing an electrical component with a conductor.
  • an electrical component in particular a transformer with a winding as an electrical conductor
  • the electrical conductors of the electrical component are made of an electrically conductive copper wire or of an aluminum foil.
  • the processing and manufacturing costs for the production of the electrical conductor and for introducing the electrical conductor into the electrical component is very high.
  • Component such as heat generation and delivery during operation.
  • the resulting during operation of the electrical component heat is ensured by means of known cooling configurations for electrical components, in particular transformers.
  • electrical components in particular transformers.
  • the use of heat-conducting materials around the heat-generating windings and the introduction of vertical cooling channels within the electrical component allow the circulation of an ambient medium inside and outside the electrical component and thus a heat transfer from the electrical component to the surrounding medium.
  • the electrical properties of the electrical conductor of the electrical component are also crucial.
  • some replacement materials for the electrical conductor such as copper or aluminum, are known, which have a similar or better electrical conductivity, such as copper or aluminum windings.
  • EP 1 246 205 A1 an electrically conductive nanocomposite material. Due to an intrinsic nanostructure matrix within a polymer, an electrically conductive composite body is produced according to the aforementioned patent application.
  • US 2003/096104 A1 discloses carbon nanotubes in various orientations in a matrix to obtain different anisotropic thermal and electrical properties.
  • the object of the present invention is therefore to provide an electrical component and a method for producing an electrical component, which ensures a reduced construction compared to conventional electrical components with simultaneously improved heat dissipation.
  • the electrical conductor has a mixture of carbon nanostructures with a preferred orientation with regard to the electrical conductivity along the direction of current flow and the heat arising during operation in the electrical conductor can be dissipated with an inner part to at least one outer surface of the electrical component, wherein the inner part a mixture of nanostructures with a preferred orientation with respect to the thermal conductivity on at least one of the outer surfaces of the electrical component comprises.
  • Nanostructures for the purposes of the present invention may be, in addition to carbon nanostructures, also other nanostructures, such as boron nitride nanostructures.
  • the electrical component can be designed smaller and at the same time the associated increased or worse Heat dissipation be ensured by an overall improved thermal conductivity of the inner part and thus of the electrical component.
  • the inner part of the electrical component at least partially surrounds the electrical conductor.
  • the inner part at least partially electrically isolates the electrical conductor.
  • the inner part of the electrical component forms not only as a connection for heat dissipation to at least one of the outer surfaces of the electrical component, but also serves for electrical insulation of the electrical conductor on the basis of a nanostructure. An additional expense for the insulation of the electrical conductor is eliminated when using the inner part as an insulator.
  • the inner part comprises a semiconductive shield arranged around the electrical conductor.
  • a semiconductive shield arranged around the electrical conductor.
  • the inner part forms at least one of the outer surfaces of the electrical component and has a structured surface for improved heat dissipation to the surrounding medium.
  • the formation of ribs and wavy surfaces serves to increase the heat-emitting surface and thus improves the heat transfer from the electrical component to the surrounding medium.
  • the inner part comprises a polymer, wherein in the polymer, the mixture of carbon nanostructures and / or nanostructures can be introduced.
  • the carbon nanostructures with a preferred orientation with respect to the electrical conductivity a mixture of nanostructures with a preferred orientation with respect to the thermal conductivity.
  • an outer surface of the electrical component in direct contact with the inner part may have a moisture and / or dirt-repellent nanostructure.
  • the use of a film as a polymer can be applied to the inner part, so that the electrically conductive and / or thermally conductive and / or moisture / dirt-repellent properties of the carbon nanostructures and / or nanostructures can be applied to the inner part, in particular adhesively bonded.
  • the electrical conductor exclusively of a mixture of carbon nanostructures having a preferred orientation with respect to electrical conductivity along the direction of current flow.
  • the exclusive use of carbon nanostructures makes it possible to dispense with previously conventionally used conductor materials, such as copper and aluminum.
  • the concentration of the mixture of carbon nanostructures and / or nanostructures within the conductor of the electrical component varies. This results in the possibility of adjusting the concentration and orientation of the mixture of carbon nanostructures and / or nanostructures to the required current density and / or heat flux density.
  • the concentration of the mixture of carbon nanostructures and / or nanostructures in mechanically stressed regions within the conductor is increased.
  • This offers the advantage that due to the good mechanical strength properties of the carbon nanostructures and / or nanostructures mechanical forces occurring within the conductor can be well received or forwarded.
  • the inclusion of short-term high short-circuit forces within the conductor can be absorbed by appropriate concentration of the mixture of carbon nanostructures and / or nanostructures and thus damage to the conductor or even the electrical component can be avoided.
  • mechanical tension elements can be formed within the conductor and thus static forces, such as, for example, the weight force, can be forwarded to fastening elements located outside the conductor.
  • the resulting heat with an inner part to at least one outer surface of the electrical component can be dissipated, the inner part of a mixture of Nanostructures with a preferred orientation with respect to the thermal conductivity is formed on at least one of the outer surfaces of the electrical component.
  • the electrical conductor is embedded in a support structure, in particular a polyamide structure, wherein in the support structure, the mixture of nanostructures with a preferred orientation of the thermal conductivity is embedded at least in contact with one of the outer surfaces of the electrical component ,
  • the mixture of carbon nanostructures and / or nanostructures is advantageously embedded in the support structure, in particular in a polyamide, by means of electrophoresis.
  • electrophoresis the concentration and the local distribution of the carbon nanostructures and / or nanostructures within the support structure can be specified in a targeted and very precise manner.
  • a semiconducting shield is also integrated into the support structure as part of the inner part.
  • the conductors 5a, windings or winding parts formed from the carbon nanostructures 3 are preferably embedded in a polyamide.
  • the inner part 2a comprises a semiconducting shield 10. This is followed by a layer of a mixture of nanostructures 6 with a preferred orientation with respect to the thermal conductivity on at least one of the outer surfaces 9 of the electrical component 1a, 1b, 1c of the inner part 2a.
  • a mixture of nanostructures 6 with low electrical but high thermal conductivity is used, for example boron nitride carbon nanostructures.
  • FIG. 2 A half-side sectional drawing of an electrical component 1a with two inner parts 2a, 2b and combined carbon nanostructure 3 and nanostructure 6 is shown in FIG FIG. 2 shown.
  • the inner parts 2a, 2b have a layered structure of the electrical conductors 5a, 5b, 5c, 5d, 5e, 5f of a mixture of carbon nanostructures 3 with a preferred orientation with respect to the electrical conductivity along the direction of current flow.
  • Between the electrical conductors 5a, 5b, 5c, 5d, 5e, 5f is a mixture of nanostructures 6 with a preferred orientation with respect to the thermal conductivity on at least one of the outer surfaces 9 of the electrical component 1a, 1b, 1c comprises.
  • a cooling channel 7a for additional cooling of the electrical components 2a, 2b is arranged between the inner parts 2a, 2b.
  • FIG. 3 shows a half-side sectional view with two inner parts 2a, 2b and combined electrical windings 5a, 5b and thermally conductive nanostructures 6 of an electrical component 1a.
  • winding conductors 5a, 5b are embedded with electrically conductive carbon nanostructures 3.
  • FIG. 4 A half-side sectional drawing with three inner parts 2a, 2b, 2c and defined electrically and thermally conductive carbon nanostructure 3 with nanostructure 6 is shown in FIG FIG. 4 shown.
  • the inner parts 2a, 2b, 2c are designed as cylinders and consist of a mixture with thermally conductive nanostructures 6.
  • the cylinders have bays to one of the outer surfaces 9 of the electrical component 1a into which the mixture of electrically conductive carbon nanostructures 3 is introduced and thus an electric Ladder 5a, 5b, 5c, 5d, 5e, 5f forms.
  • the thus formed electrical windings 5a, 5b, 5c, 5d, 5e, 5f of the individual internal parts 2a, 2b, 2c can be electrically connected by means of electrical connectors 8.
  • the individual inner parts 2a, 2b, 2c are spaced apart relative to one another, so that the intermediate spaces thus created serve as cooling channels 7a, 7b.
  • FIG. 5 shows a representation of the electrical and thermally conductive microscopic carbon nanostructure 3 with nanostructure 6 within the inner part 2a.
  • Conductors or winding parts formed from electrically conductive carbon nanostructures 3 preferably oriented in the direction of current flow 5a form a first region within the microscopic structure of the inner part 2a.
  • Thermally conductive nanostructures 6 with high thermal conductivity, preferably in the direction of the desired heat flow, form secondary regions that are clearly separated within the microscopic structure.
  • FIG. 6 is a sectional drawing of the surface structure and in the FIG. 7 a sectional view of the surface structure with a dirt-repellent nanostructure coating on one of the outer surface 9 of the electrical component 2a shown.
  • rib structure 8 are inventively designed so that thermally conductive nanostructures 6 with very good thermal conductivity and high electrical resistance not only in the potting compound of the winding 5a (not shown) are introduced, but are arranged so that they transport the heat into the cooling fins. 8 take.
  • the density of the thermally conductive nanostructures 6 is expediently in the transition zone to the rib 8 particularly high in order to achieve a favorable ratio of increasing the rib efficiency to the cost of the thermally conductive nanostructures 6.
  • the introduction of dirt and / or moisture-repellent nanostructures 11 on the outer surface 9 of the potting compound is possible; similar to so-called easy-toclean coatings). In special cases, this can also take place by means of a film containing dirt and moisture-repellent nanostructures 11 or a lacquer containing dirt and moisture-repellent nanostructures 11. If the electrical components 1a used under water, it comes to a very favorable cooling, so that additional cooling devices can be omitted.
  • the coating with a dirt and moisture-repellent nanostructures 11 prevents the above-mentioned surface processes.
  • FIG. 8 shows a plan view of three electrical components 1a, 1b, 1c combined to a three-phase transformer.
  • the Cores 4 (not visible) are connected by a yoke.
  • the inner and the outer side of the winding body as electrical components 1a, 1b, 1c are coated with a thermally conductive nanostructures 6.
  • novel combination of different carbon nanostructures 3 and nanostructures 6, 11 and as electrical components 2 a, 2 b, 2 c, 5 a, 5 b, 5 c, 5 d, 5 e, 5 f of the electrical component 1 a, 1 b, 2 b affords the possibility of forming the carbon nanostructures 3 and to arrange nanostructures 6, 11 on the basis of different dopings, orientations and spatial distributions in a matrix and thus to provide a compact electrical component.

Description

  • Die Erfindung betrifft ein elektrisches Bauteil mit einem elektrischen Leiter, wobei innerhalb des elektrischen Leiters ein Strompfad mit einer Stromflussrichtung aufgrund des Anschlusses der Enden des elektrischen Leiters an zwei elektrische Anschlusspunkte innerhalb des elektrischen Bauteils vorgegeben ist. Des Weiteren betrifft die Erfindung ein Verfahren zur Herstellung eines elektrischen Bauteils mit einem Leiter.
  • Die Herstellung eines elektrischen Bauteils, insbesondere eines Transformators mit einer Wicklung als elektrischen Leiter, erfordert einen hohen Material- und Fertigungsaufwand. Herkömmlicherweise werden die elektrischen Leiter des elektrischen Bauteils aus einem elektrisch leitenden Kupferdraht oder aus einer Aluminiumfolie hergestellt. Der verarbeitungs- und fertigungstechnische Aufwand zur Herstellung des elektrischen Leiters und zur Einbringung des elektrischen Leiters in das elektrische Bauteil ist sehr hoch.
  • Des Weiteren sind bei der Herstellung und Fertigung des elektrischen Bauteils die Wärmeeigenschaften des elektrischen
  • Bauteils, wie Wärmeerzeugung und -abgabe während des Betriebes, zu berücksichtigen. Die während des Betriebes des elektrischen Bauteils entstehende Wärme ist mittels bekannter Kühlungskonfigurationen für elektrische Bauteile, insbesondere Transformatoren, gewährleistet. Insbesondere der Einsatz von wärmeleitenden Materialien um die wärmeerzeugenden Wicklungen und die Einbringung von vertikalen Kühlkanälen innerhalb des elektrischen Bauteils ermöglichen die Zirkulation eines Umgebungsmediums innerhalb und außerhalb des elektrischen Bauteils und damit eine Wärmeabgabe von dem elektrischen Bauteil an das Umgebungsmedium.
  • Im Rahmen der Konzeption und Fertigung von elektrischen Bauteilen sind ebenfalls die elektrischen Eigenschaften des elektrischen Leiters des elektrischen Bauteils von entscheidender Bedeutung. Im Stand der Technik sind einige Austauschmaterialien für den elektrischen Leiter, wie beispielsweise Kupfer oder Aluminium, bekannt, die eine ähnliche beziehungsweise bessere elektrische Leitfähigkeit, wie Kupfer- oder Aluminiumwicklungen, aufweisen.
  • So beschreibt beispielsweise die EP 1 275 118 B1 ein Energiekabel, das elektrisch leitfähige Nanostrukturen aufweist und hierdurch eine elektrische Leitfähigkeit des Energiekabels gewährleistet.
  • Des Weiteren beschreibt die EP 1 246 205 A1 ein elektrisch leitfähiges Nanoverbundmaterial. Aufgrund einer intrinsischen Nanostrukturmatrix innerhalb eines Polymers wird gemäß der vorgenannten Patentanmeldung ein elektrisch leitfähiger Schichtkörper erzeugt.
  • US 2003/096104 A1 offenbart Kohlenstoffnanoröhrchen in verschiedener Ausrichtung in einer Matrix zur Erzielung unterschiedlicher, anisotroper thermischer und elektrischer Eigenschaften.
  • Problematisch an den Lösungen des Standes der Technik ist, dass die mit Nanostrukturen hergestellten elektrischen Bauteile zwar eine elektrische Leitfähigkeit aufweisen, jedoch nicht eine Lösung zur Abführung der während des Betriebes des elektrischen Bauteils entstehenden Wärme bereitstellen. Insbesondere bei einer verkleinerten Bauweise des elektrischen Bauteils ergibt sich eine damit verbundene erhöhte Wärmeentwicklung bei verschlechterten Wärmeleitfähigkeitseigenschaf-ten aufgrund der möglichen kompakteren Bauweise des elektrischen Bauteils.
  • Aufgabe der vorliegenden Erfindung ist es daher, ein elektrisches Bauteil und ein Verfahren zur Herstellung eines elektrischen Bauteils bereitzustellen, das eine verkleinerte Bauweise im Vergleich zu herkömmlichen elektrischen Bauteilen gewährleistet bei gleichzeitig verbesserter Wärmeabführung.
  • Die Aufgabe wird gelöst durch ein elektrisches Bauteil mit den Merkmalen des Patentanspruchs 1.
  • Die Aufgabe wird ebenfalls durch ein Verfahren zur Herstellung eines elektrischen Bauteils gemäß den Merkmalen des Patentanspruchs 13 gelöst.
  • Erfindungsgemäß ist vorgesehen, dass der elektrische Leiter ein Gemisch von Kohlenstoffnanostrukturen mit einer bevorzugten Ausrichtung bezüglich der elektrischen Leitfähigkeit entlang der Stromflussrichtung aufweist und die während des Betriebes im elektrischen Leiter entstehende Wärme mit einem Innenteil an mindestens eine Außenfläche des elektrischen Bauteils abführbar ist, wobei das Innenteil ein Gemisch aus Nanostrukturen mit einer bevorzugten Ausrichtung bezüglich der Wärmeleitfähigkeit auf mindestens eine der Außenflächen des elektrischen Bauteils umfasst.
  • Im Sinne der vorliegenden Erfindung wird unter Stromflussrichtung der Weg eines Elektrons innerhalb des elektrischen Leiters von einem ersten Anschlusspunkt zu einem zweiten Anschlusspunkt innerhalb des elektrischen Leiters verstanden. Nanostrukturen im Sinne der vorliegenden Erfindung können neben Kohlenstoffnanostrukturen auch weitere Nanostrukturen, wie beispielsweise, Bornitridnanostrukturen sein.
  • Durch die Verbindung von Kohlenstoffnanostrukturen mit einer bevorzugten Ausrichtung bezüglich der elektrischen Leitfähigkeit entlang der Stromflussrichtung in Kombination mit einer Nanostruktur mit einer bevorzugten Ausrichtung der Wärmeleitfähigkeit auf mindestens eine der Außenflächen des elektrischen Bauteils kann das elektrische Bauteil kleiner konzipiert und gleichzeitig die damit verbundene erhöhte bzw. schlechtere Wärmeabgabe durch eine insgesamt verbesserte Wärmeleitfähigkeit des Innenteils und damit des elektrischen Bauteils gewährleistet werden.
  • Vorteilhafterweise umschließt das Innenteil des elektrischen Bauteils zumindest teilweise den elektrischen Leiter. Hierdurch wird die Wärmeübertragung vom elektrischen Leiter auf das Innenteil und damit auf eine der Außenflächen des elektrischen Bauteils verbessert. In einer vorteilhaften Ausgestaltung des elektrischen Bauteils ist vorgesehen, dass das Innenteil den elektrischen Leiter zumindest teilsweise elektrisch isoliert. In diesem Falle bildet das Innenteil des elektrischen Bauteils nicht nur als Verbindung zur Wärmeabgabe an mindestens eine der Außenflächen des elektrischen Bauteils, sondern dient gleichzeitig zur elektrischen Isolierung des elektrischen Leiters auf der Basis einer Nanostruktur. Ein zusätzlicher Aufwand für die Isolierung des elektrischen Leiters entfällt bei der Nutzung des Innenteils als Isolator.
  • Zur Reduzierung von elektromagnetischen Abstrahlungen des elektrischen Bauteils ist vorgesehen, dass das Innenteil eine um den elektrischen Leiter angeordnete halbleitende Abschirmung umfasst. Durch die Einbringung einer elektromagnetischen Abschirmung um den elektrischen Leiter kann eine effektive elektromagnetische Schirmung des elektrischen Leiters bereitgestellt werden.
  • In einer vorteilhaften Ausgestaltung des elektrischen Bauteils ist vorgesehen, dass das Innenteil mindestens eine der Außenflächen des elektrischen Bauteils bildet und eine strukturierte Oberfläche zur verbesserten Wärmeabgabe an das Umgebungsmedium aufweist. Insbesondere die Ausbildung von Rippen und welligen Oberflächen dient zu einer Vergrößerung der wärmeabgebenden Oberfläche und verbessert somit die Wärmeabgabe vom dem elektrischen Bauteil an das Umgebungsmedium.
  • Vorteilhafterweise ist mindestens eine der Außenflächen des elektrischen Bauteils mit einer Nanostruktur mit feuchtigkeits- und/oder Schmutz abweisenden Eigenschaften beschichtet. Aufgrund einer feuchtigkeits- und/oder Schmutz abweisenden Beschichtung kann das elektrische Bauteil, insbesondere der Transformator, auch in feuchten und Schmutz anfälligen Umgebungen betrieben werden. Vorteilhafterweise umfasst das Innenteil ein Polymer, wobei in dem Polymer das Gemisch aus Kohlenstoffnanostrukturen und/oder Nanostrukturen einbringbar ist. In das Polymer können somit die Kohlenstoffnanostrukturen mit einer bevorzugten Ausrichtung bezüglich der elektrischen Leitfähigkeit, ein Gemisch aus Nanostrukturen mit einer bevorzugten Ausrichtung bezüglich der Wärmeleitfähigkeit eingebracht werden. Auch eine Außenfläche des elektrischen Bauteils in unmittelbarem Kontakt mit dem Innenteil kann eine feuchtigkeits- und/oder schmutzabweisende Nanostruktur aufweisen. Insbesondere die Verwendung einer Folie als Polymer ist auf das Innenteil aufbringbar, so dass die elektrisch leitfähigen und/oder wärmeleitfähigen und/oder feuchtigkeits-/schmutzabweisenden Eigenschaften der Kohlenstoffnanostrukturen und/oder Nanostrukturen auf das Innenteil aufbringbar, insbesondere aufklebbar sind.
  • In einer vorteilhaften Ausgestaltung des elektrischen Bauteils ist vorgesehen, dass der elektrische Leiter ausschließlich aus einem Gemisch aus Kohlenstoffnanostrukturen mit einer bevorzugten Ausrichtung bezüglich der elektrischen Leitfähigkeit entlang der Stromflussrichtung umfasst. Durch die ausschließliche Verwendung von Kohlenstoffnanostrukturen kann auf die bisher herkömmlich genutzten Leitermaterialien, wie Kupfer und Aluminium, verzichtet werden.
  • Vorteilhafterweise variiert die Konzentration des Gemisches aus Kohlenstoffnanostrukturen und/oder Nanostrukturen innerhalb des Leiters des elektrischen Bauteils. Hier ergibt sich die Anpassungsmöglichkeit der Konzentration und Ausrichtung des Gemisches aus Kohlenstoffnanostrukturen und/oder Nanostrukturen an die erforderliche Stromdichte und/oder Wärmestromdichte.
  • Es wird als Vorteil angesehen, dass die Konzentration des Gemisches aus Kohlenstoffnanostrukturen und/oder Nanostrukturen in mechanisch belasteten Regionen innerhalb des Leiters erhöht ist. Hierdurch bietet sich der Vorteil, dass aufgrund der guten mechanischen Festigkeitseigenschaften der Kohlenstoffnanostrukturen und/oder Nanostrukturen auftretende mechanische Kräfte innerhalb des Leiters gut aufgenommen oder weitergeleitet werden können. Insbesondere die Aufnahme von kurzzeitig hohen Kurzschlusskräften innerhalb des Leiters kann durch entsprechende Konzentration des Gemisches aus Kohlenstoffnanostrukturen und/oder Nanostrukturen aufgenommen werden und damit eine Beschädigung des Leiters oder sogar des elektrischen Bauteils vermieden werden. Des Weiteren können mittels einer ausgewählten Konzentration des Gemisches aus Kohlenstoffnanostrukturen und/oder Nanostrukturen mechanische Spannelemente innerhalb des Leiters gebildet und damit statische Kräfte, wie beispielsweise die Gewichtskraft, zu außerhalb des Leiters liegenden Befestigungselementen weitergeleitet werden.
  • Erfindungsgemäß ist weiterhin vorgesehen, dass die während des Betriebes im elektrischen Leiter bestehend aus Kohlenstoffnanostrukturen mit einer bevorzugten Ausrichtung bezüglich der elektrischen Leitfähigkeit entlang der Stromflussrichtung die entstehende Wärme mit einem Innenteil an mindestens eine Außenfläche des elektrischen Bauteils abführbar ist, wobei das Innenteil aus einem Gemisch aus Nanostrukturen mit einer bevorzugten Ausrichtung bezüglich der Wärmeleitfähigkeit auf mindestens eine der Außenflächen des elektrischen Bauteils gebildet wird.
  • In einer vorteilhaften Ausgestaltung des Verfahrens ist vorgesehen, dass der elektrische Leiter in eine Trägerstruktur, insbesondere eine Polyamidstruktur, eingebettet wird, wobei in die Trägerstruktur das Gemisch aus Nanostrukturen mit einer bevorzugten Ausrichtung der Wärmeleitfähigkeit mindestens im Kontakt zu einer der Außenflächen des elektrischen Bauteils eingebettet wird.
  • Das Gemisch aus Kohlenstoffnanostrukturen und/oder Nanostrukturen wird vorteilhafterweise mittels Elektrophorese in die Trägerstruktur, insbesondere in ein Polyamid, eingebettet. Mittels des Elektrophoreseverfahrens lässt sich die Konzentration und die örtliche Verteilung der Kohlenstoffnanostrukturen und/oder Nanostrukturen innerhalb der Trägerstruktur gezielt und sehr genau vorgeben. Vorteilhafterweise wird eine halbleitende Abschirmung in die Trägerstruktur als Bestandteil des Innenteils ebenfalls integriert.
  • Weitere vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen. Es zeigen die Figuren:
  • Fig. 1
    eine halbseitige Schnittzeichnung eines Transformators als elektrisches Bauteil mit zwei separaten Nanostrukturen;
    Fig. 2
    eine halbseitige Schnittzeichnung eines elektrischen Bauteils mit zwei Innenteilen und kombinierten Nanostrukturen;
    Fig. 3
    eine halbseitige Schnittzeichnung mit zwei Innenteilen und kombinierten elektrischen Wicklungen und wärmeleitfähigen Nanostrukturen;
    Fig. 4
    eine halbseitige Schnittzeichnung mit drei Innenteilen und definierten elektrisch und wärmeleitfähigen Nanostrukturen;
    Fig. 5
    eine Darstellung der elektrisch und wärmeleitfähigen mikroskopischen Nanostrukturen innerhalb des Innenteils;
    Fig. 6
    eine Schnittzeichnung der Oberflächenstruktur an einer der Außenfläche des elektrischen Bauteils;
    Fig. 7
    eine Schnittzeichnung der Oberflächenstruktur mit einer schmutzabweisenden Nanostrukturbeschichtung an einer der Außenfläche des elektrischen Bauteils;
    Fig. 8
    eine Aufsicht auf drei elektrische Bauteile kombiniert zu einem Dreiphasen-Transformator.
  • Die FIG 1 zeigt eine halbseitige Schnittzeichnung eines Transformators als elektrisches Bauteil la mit einer Kohlenstoffnanostruktur 3 und einer Nanostruktur 6. Durch einen Kern 4 des Transformators la verläuft die Schnittlinie, die als gestrichelte Linie angedeutet ist. Ein Innenteil 2a weist eine schichtweise elektrisch leitende Struktur auf. Exemplarisch ist eine elektrisch leitende Schicht als elektrischer Leiter 5a in der FIG 1 eingezeichnet. Die einzelnen elektrisch leitenden Schichten sind durch isolierende Schichten von einander getrennt, wobei die dieser schichtweise Aufbau des Innenteils 2a innerhalb einer Matrix mit einem Gemisch von Kohlenstoffnanostrukturen 3 mit einer bevorzugten Ausrichtung bezüglich der elektrischen Leitfähigkeit entlang der Stromflussrichtung realisiert wird.
  • Die aus den Kohlenstoffnanostrukturen 3 gebildeten Leiter 5a, Windungen oder Wicklungsteile werden vorzugsweise in einem Polyamid eingebettet. Das Innenteil 2a umfasst eine halbleitende Abschirmung 10. Hieran schließt sich eine Schicht aus einem Gemisch aus Nanostrukturen 6 mit einer bevorzugten Ausrichtung bezüglich der Wärmeleitfähigkeit auf mindestens eine der Außenflächen 9 des elektrischen Bauteils 1a,1b,1c des Innenteils 2a an. Vorzugsweise wird ein Gemisch aus Nanostrukturen 6 mit geringer elektrischer aber hoher Wärmeleitfähigkeit verwendet, beispielsweise Bornitrid-Kohlenstoffnanostrukturen.
  • Eine halbseitige Schnittzeichnung eines elektrischen Bauteils 1a mit zwei Innenteilen 2a,2b und kombinierter Kohlenstoffnanostruktur 3 und Nanostruktur 6 ist in der FIG 2 dargestellt. Die Innenteile 2a,2b weisen einen schichtweisen Aufbau der elektrischen Leiter 5a,5b,5c,5d,5e,5f aus einem Gemisch von Kohlenstoffnanostrukturen 3 mit einer bevorzugten Ausrichtung bezüglich der elektrischen Leitfähigkeit entlang der Stromflussrichtung auf. Zwischen die elektrischen Leiter 5a,5b,5c,5d,5e,5f ist ein Gemisch aus Nanostrukturen 6 mit einer bevorzugten Ausrichtung bezüglich der Wärmeleitfähigkeit auf mindestens eine der Außenflächen 9 des elektrischen Bauteils 1a,1b,1c umfasst. Zwischen den Innenteilen 2a,2b ist ein Kühlkanal 7a zur zusätzlichen Kühlung der elektrischen Bauteile 2a,2b angeordnet.
  • Die FIG 3 zeigt eine halbseitige Schnittzeichnung mit zwei Innenteilen 2a,2b und kombinierten elektrischen Wicklungen 5a,5b und wärmeleitfähigen Nanostrukturen 6 eines elektrischen Bauteils 1a. Innerhalb einer Matrix aus wärmeleitfähigen Nanostrukturen 6 sind Wicklungsleiter 5a,5b mit elektrisch leitfähigen Kohlenstoffnanostrukturen 3 eingebettet.
  • Eine halbseitige Schnittzeichnung mit drei Innenteilen 2a,2b,2c und definierten elektrisch und wärmeleitfähigen Kohlenstoffnanostruktur 3 mit Nanostruktur 6 ist in der FIG 4 gezeigt. Die Innenteile 2a,2b,2c sind als Zylinder konzipiert und bestehen aus einem Gemisch mit wärmeleitfähigen Nanostrukturen 6. Die Zylinder weisen Ausbuchten zu einer der Außenflächen 9 des elektrischen Bauteils 1a auf in die das Gemisch aus elektrisch leitfähigen Kohlenstoffnanostrukturen 3 eingebracht ist und somit einen elektrischen Leiter 5a,5b,5c,5d,5e,5f bildet. Die so gebildeten elektrischen Wicklungen 5a,5b,5c,5d,5e,5f der einzelnen Innenteile 2a,2b,2c können mittels elektrischer Verbinder 8 elektrisch verbunden werden. Die einzelnen Innenteile 2a,2b,2c sind relativ zueinander beabstandet, so dass die so entstehende Zwischenräume als Kühlkanäle 7a,7b dienen.
  • Die FIG 5 zeigt eine Darstellung der elektrischen und wärmeleitfähigen mikroskopischen Kohlenstoffnanostruktur 3 mit Nanostruktur 6 innerhalb des Innenteils 2a. Aus vorzugsweise in Stromflussrichtung ausgerichteten elektrisch leitfähige Kohlenstoffnanostrukturen 3 gebildete Leiter oder Wicklungsteile 5a bilden innerhalb der mikroskopischen Struktur des Innenteils 2a eine erste Region. Wärmeleitfähige Nanostrukturen 6 mit hoher thermischer Leitfähigkeit vorzugsweise in Richtung des gewünschten Wärmeflusses bilden Nebenregionen, die innerhalb der mikroskopischen Struktur klar voneinander getrennt sind.
  • Die wesentliche Baugrößenverringerung lässt die Konzeption kompakter gekapselter und I oder geschirmter Anlagen oder kompletter Anlagenstrukturen zu. Mittels dieses elektrischen Bauteils ergibt sind die Möglichkeit, eine komplette Umspannstationen als Verbund zu konzipieren. Möglich wird die Konzeption kompletter gekapselter Gesamtanlagen, welche zum Beispiel mehrere Transformatoren, Drosseln, Wandler, Strombegrenzer, Sicherungs- und Überwachungseinrichtungen sowie Schalteinrichtungen beinhalten können.
  • In FIG 6 ist eine Schnittzeichnung der Oberflächenstruktur und in der FIG 7 eine Schnittzeichnung der Oberflächenstruktur mit einer schmutzabweisenden Nanostrukturbeschichtung an einer der Außenfläche 9 des elektrischen Bauteils 2a gezeigt.
  • Zur Verbesserung des Wärmeüberganges zum Umgebungsmedium ist es erforderlich, dass die Oberfläche durch eine Rippenstruktur 8 vergrößert wird. Diese Rippen 8 werden erfindungsgemäß derart gestaltet, dass wärmeleitfähigen Nanostrukturen 6 mit sehr guter Wärmeleitfähigkeit und hohem elektrischem Widerstand nicht nur in die Vergussmasse der Wicklung 5a (nicht dargestellt) eingebracht werden, sondern derart angeordnet werden, dass sie den Transport der Wärme in die Kühlrippen 8 übernehmen.
  • Zweckmäßigerweise ist die Dichte der wärmeleitfähigen Nanostrukturen 6 in der Übergangszone zur Rippe 8 besonders hoch, um ein günstiges Verhältnis der Erhöhung des Rippenwirkungsgrades zu den Kosten der wärmeleitfähigen Nanostrukturen 6 zu erreichen.
  • Zur Erzielung einer feuchtigkeits- und/oder schmutzabweisenden Oberfläche ist die Einbringung von schmutz- und/oder feuchtigkeitsabweisenden Nanostrukturen 11 an der Außenfläche 9 der Vergussmasse möglich; ähnlich so genannter easy-toclean-Beschichtungen). Dies kann in besonderen Fällen auch mittels einer schmutz- und feuchtigkeitsabweisenden Nanostrukturen 11 enthaltenden Folie oder eines Schmutz- und feuchtigkeitsabweisenden Nanostrukturen 11 enthaltenden Lackes erfolgen. Werden die elektrischen Bauteile 1a unter Wasser eingesetzt, so kommt es zu einer sehr günstigen Kühlung, so dass zusätzliche Kühlvorrichtungen entfallen können.
  • Aufgrund der Gefahr einer wärmedämmenden Schicht durch Bewuchs, Foulingprozesse oder Krustenbildung verhindert die Beschichtung mit einer schmutz- und feuchtigkeitsabweisenden Nanostrukturen 11 die oben genannten Oberflächenprozesse.
  • Durch interne Streueffekte ist der Kurzschlussstrom innerhalb eines einzelnen elektrischen Leiters 5a aus elektrisch leitfähigen Kohlenstoffnanostrukturen 3 (nicht dargestellt) begrenzt. Durch Reduzierung der Anzahl der sozusagen parallel geschalteten Nanodrähte der elektrisch leitfähigen Kohlenstoffnanostrukturen 3 in einem Übergangsbereich können in der Leitungsführung, Durchführung oder in bestimmten Bereichen der elektrischen Leiter 5a Strombegrenzungselemente in die elektrischen Bauteile 1a (nicht dargestellt) eingebunden werden.
  • Die FIG 8 zeigt eine Aufsicht auf drei elektrische Bauteile 1a,1b,1c kombiniert zu einem Dreiphasen-Transformator. Die Kerne 4 (nicht sichtbar) sind durch ein Joch miteinander verbunden. Die Innen und die Außenseite der Wicklungskörper als elektrische Bauteile 1a,1b,1c sind mit einer wärmeleitfähigen Nanostrukturen 6 überzogen.
  • Durch die neuartige Kombination von unterschiedlichen Kohlenstoffnanostrukturen 3 und Nanostrukturen 6,11 und als elektrischen Komponenten 2a,2b,2c,5a,5b,5c,5d,5e,5f des elektrischen Bauteils 1a,1b,2b ergibt sich die Möglichkeit, die Kohlenstoffnanostrukturen 3 und Nanostrukturen 6,11 auf der Basis unterschiedlicher Dotierungen, Ausrichtungen und räumlicher Verteilungen in einer Matrix anzuordnen und damit ein kompaktes elektrisches Bauteil bereitzustellen.
  • Durch diesen Aufbau ist es beispielsweise möglich, den elektrischen Leiter mit ausgerichteter elektrisch leitfähiger Kohlenstoffnanostrukturen 3 als Ausrichtelektroden zu nutzen.
  • Durch die Platzierung von halbleitenden Abschirmungen in den Innenteilen 2a,2,b,2c ist eine Anlenkung und/oder Feldsteuerung möglich. Durch die Verwendung von elektrisch leitfähigen Kohlenstoffnanostrukturen 3 werden im Vergleich zu herkömmlichen Leitern die elektrischen Verluste gesenkt und gleichzeitig eine gute Ableitung der Verlustwärme nach außen gewährleistet. Der Verzicht auf innere Kühlmedien und die hohe thermische Beständigkeit der wärmeleitfähigen Nanostrukturen 6 lassen den Betrieb des elektrischen Bauteils 1a,1b,1c bei sehr hohen Temperaturen zu. Dadurch wird die Effektivität der Kühlung über die Außenflachen extrem gesteigert.
  • Die Einbettung der elektrischen Leiters 2a,2b,2c,5a,5b,5c,5d,5e,5f in eine wärmeleitfähigen Nanostrukturen 6 führt zu einer hohen mechanischen Festigkeit des gesamten Innenteils 2a,2b,2c.
  • Gleichzeitig ist eine extreme Verringerung der Baugröße und Masse des elektrischen Bauteils möglich, so dass extrem robuste und kompakte elektrischer Geräte - beispielsweise eine Kompakttransformatoren in kleinster Bauform für Hochspannungsanwendungen - gebaut werden können. Darüber hinaus lässt die wesentliche Baugrößenverringerung die Konzeption neuartiger kompakter Gesamtanlagen zu. So sind Kompaktumspannstation oder Kompaktanlage aus Transformatoren, Drosseln, Wandlern, Strombegrenzern und Sicherheitseinrichtungen mit der vorliegenden Erfindung denkbar.

Claims (18)

  1. Elektrisches Bauteil (1a,1b,1c) mit einem elektrischen Leiter (5a,5b,5c,5d,5e,5f), wobei innerhalb des elektrischen Leiters (5a,5b,5c,5d,5e,5f) ein Strompfad mit einer Stromflussrichtung aufgrund des Anschlusses der Enden des elektrischen Leiters (5a,5b,5c,5d,5e,5f)an zwei elektrische Anschlusspunkte innerhalb des elektrischen Bauteils (1a,1b,1c) vorgegeben sind,
    dadurch gekennzeichnet, dass
    der elektrische Leiter (5a,5b,5c,5d,5e,5f) ein Gemisch von Kohlenstoffnanostrukturen (3) mit einer bevorzugten Ausrichtung bezüglich der elektrischen Leitfähigkeit entlang der Stromflussrichtung aufweist und die während des Betriebs im elektrischen Leiter (5a,5b,5c,5d,5e,5f) entstehende Wärme mit einem Inneneinteil (2a,2b,2c) an mindestens eine Außenfläche (9) des elektrischen Bauteils (1a,1b,1c) abführbar ist, wobei das Innenteil (9) ein Gemisch aus Nanostrukturen (6) mit einer bevorzugten Ausrichtung bezüglich der Wärmeleitfähigkeit auf mindestens eine der Außenflächen (9) des elektrischen Bauteils (1a,1b,1c) umfasst.
  2. Elektrisches Bauteil (1a,1b,1c) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    das Innenteil (2a,2b,2c) zumindest teilweise den elektrischen Leiter (5a,5b,5c,5d,5e,5f) umschließt.
  3. Elektrisches Bauteil (1a,1b,1c) nach Anspruch 2,
    dadurch gekennzeichnet, dass
    das Innenteil (2a,2b,2c) den elektrischen Leiter zumindest teilsweise elektrisch isoliert.
  4. Elektrisches Bauteil (1a,1b,1c) nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass
    das Innenteil (2a,2b,2c) eine um den elektrischen Leiter (5a,5b,5c,5d,5e,5f) angeordnete elektrische Abschirmung (10) umfasst.
  5. Elektrisches Bauteil (1a,1b,1c) nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass
    das Innenteil (2a,2b,2c) mindestens eine der Außenflächen (9) des elektrischen Bauteils (1a,1b,1c) bildet und eine strukturierte Oberfläche (8) zur verbesserten Wärmeabgabe an ein Umgebungsmedium aufweist.
  6. Elektrisches Bauteil (1a,1b,1c) nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass
    mindestens eine der Außenflächen (9) des elektrischen Bauteils (1a,1b,1c) mit einer Nanostruktur (11) mit feuchtigkeits- und/oder Schmutz abweisenden Eigenschaften beschichtet ist.
  7. Elektrisches Bauteil (1a,1b,1c) nach einem der Ansprüche 3 bis 6,
    dadurch gekennzeichnet, dass
    das Innenteil (2a,2b,2c) ein Polymer umfasst, wobei in das Polymer Kohlenstoffnanostrukturen (3) und/oder Nanostrukturen (6,11) einbringbar ist.
  8. Elektrisches Bauteil (1a,1b,1c) nach Anspruch 7,
    dadurch gekennzeichnet, dass
    das Polymer als Folie auf das Innenteil (2a,2b,2c) aufbringbar ist.
  9. Elektrisches Bauteil (1a,1b,1c) nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet, dass
    der elektrische Leiter (5a,5b,5c,5d,5e,5f) ausschließlich aus dem Gemisch aus Kohlenstoffnanostrukturen (3) mit einer bevorzugten Ausrichtung bezüglich der elektrischen Leitfähigkeit entlang der Stromflussumrichtung umfasst.
  10. Elektrisches Bauteil (1a,1b,1c) nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet, dass die Konzentration des Gemisches aus Kohlenstoffnanostrukturen (3) und/oder Nanostrukturen (6,11) innerhalb des Leiters (5a,5b,5c,5d,5e,5f) variiert.
  11. Elektrisches Bauteil (1a,1b,1c) nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet, dass
    die Konzentration des Gemisches aus Kohlenstoffnanostrukturen (3) und/oder Nanostrukturen (6,11) in mechanisch belasteten Regionen innerhalb des Leiters (5a,5b,5c,5d,5e,5f) erhöht ist.
  12. Elektrisches Bauteil (1a,1b,1c) nach einem der Ansprüche 1 bis 11,
    dadurch gekennzeichnet, dass
    das elektrische Bauteil (1a,1b,1c) ein Transformator, eine Drossel oder eine Spule ist und der elektrische Leiter (5a,5b,5c,5d,5e,5f) mindestens eine Teilwicklung umfasst.
  13. Verfahren zur Herstellung eines elektrischen Bauteils (1a,1b,1c) mit einem elektrischen Leiter (5a,5b,5c,5d,5e,5f), wobei innerhalb des elektrischen Leiters (5a,5b,5c,5d,5e,5f) ein Strompfad mit einer Stromflussrichtung aufgrund des Anschlusses der Enden des elektrischen Leiters (5a,5b,5c,5d,5e,5f) an zwei Anschlusspunkte innerhalb des elektrischen Bauteils (1a,1b,1c) gebildet wird und die während des Betriebes im elektrischen Leiter (5a,5b,5c,5d,5e,5f) entstehende Wärme mit einem Innenteil (2a,2b,2c) an mindestens eine Außenfläche (9) des elektrischen Bauteils (1a,1b,1c) abführbar ist, wobei das Innenteil (2a,2b,2c) aus einem Gemisch aus Nanostrukturen (6) mit einer bevorzugten Ausrichtung bezüglich der Wärmeleitfähigkeit auf mindestens eine der Außenflächen (9) des elektrischen Bauteils (1a,1b,1c) gebildet wird.
  14. Verfahren nach Anspruch 13,
    dadurch gekennzeichnet, dass
    der elektrische Leiter (5a,5b,5c,5d,5e,5f) in eine Trägerstruktur, insbesondere Polyamidstruktur, eingebettet wird, wobei in die Trägerstruktur das Gemisch aus Nanostrukturen (6) mit einer bevorzugten Ausrichtung bezüglich der Wärmeleitfähigkeit auf mindestens eine der Außenflächen (9) des elektrischen Bauteils (1a,1b,1c) eingebettet wird.
  15. Verfahren nach einem der Ansprüche 13 bis 14,
    dadurch gekennzeichnet, dass
    das eine halbleitende Abschirmung (10) in die Trägerstruktur als Bestandteil des Innenteils (2a,2b,2c) integriert wird.
  16. Verfahren nach einem der Ansprüche 13 bis 15,
    dadurch gekennzeichnet, dass mindestens eine der Außenflächen (9) des elektrischen Bauteils (1a,1b,1c) mit einer Nanostruktur (11) mit feuchtigkeits- und/oder Schmutz abweisenden Eigenschaften beschichtet wird.
  17. Verfahren nach einem der Ansprüche 13 bis 16,
    dadurch gekennzeichnet, dass
    das Gemisch auf Kohlenstoffnanostrukturen (3) und/oder Nanostrukturen (6,11) mittels Elektrophorese in die Trägerstruktur definiert eingebracht wird.
  18. Verfahren nach einem der Ansprüche 13 bis 17 zur Herstellung eines elektrischen Bauteils (1a,1b,1c) nach einem der Ansprüche 1 bis 12.
EP09776414.6A 2009-02-27 2009-02-27 Elektrisches bauteil und verfahren zur herstellung eines elektrischen bauteils Not-in-force EP2401747B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2009/001606 WO2010097099A1 (de) 2009-02-27 2009-02-27 Elektrisches bauteil und verfahren zur herstellung eines elektrischen bauteils

Publications (2)

Publication Number Publication Date
EP2401747A1 EP2401747A1 (de) 2012-01-04
EP2401747B1 true EP2401747B1 (de) 2014-04-30

Family

ID=40652687

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09776414.6A Not-in-force EP2401747B1 (de) 2009-02-27 2009-02-27 Elektrisches bauteil und verfahren zur herstellung eines elektrischen bauteils

Country Status (3)

Country Link
US (1) US20110309903A1 (de)
EP (1) EP2401747B1 (de)
WO (1) WO2010097099A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8904517B2 (en) * 2011-06-28 2014-12-02 International Business Machines Corporation System and method for contexually interpreting image sequences

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225565B1 (en) * 1999-06-07 2001-05-01 The Untied States Of America As Represented By The Secretary Of The Navy Flexible cable providing EMI shielding
SE0001748D0 (sv) * 2000-03-30 2000-05-12 Abb Ab Induktionslindning
KR100404187B1 (ko) * 2000-07-08 2003-11-01 엘지전자 주식회사 카본 나노 튜브 또는 카본 나노 화이바를 이용한 인덕터
JP4697829B2 (ja) * 2001-03-15 2011-06-08 ポリマテック株式会社 カーボンナノチューブ複合成形体及びその製造方法
WO2004023845A1 (en) * 2002-08-02 2004-03-18 Nanotech Co., Ltd. Seat-like heating units using carbon nanotubes
JP4337396B2 (ja) * 2003-05-14 2009-09-30 東レ株式会社 異方性高分子コンポジット膜
KR100529112B1 (ko) * 2003-09-26 2005-11-15 삼성에스디아이 주식회사 다공성 열전달 시트를 갖는 디스플레이 장치
US7709732B2 (en) * 2006-12-12 2010-05-04 Motorola, Inc. Carbon nanotubes litz wire for low loss inductors and resonators
US9109846B2 (en) * 2007-05-07 2015-08-18 Massachusetts Institute Of Technology Polymer sheets and other bodies having oriented chains and method and apparatus for producing same

Also Published As

Publication number Publication date
WO2010097099A1 (de) 2010-09-02
EP2401747A1 (de) 2012-01-04
US20110309903A1 (en) 2011-12-22

Similar Documents

Publication Publication Date Title
DE69909604T2 (de) Transformator aus amorphem metall mit rechteckiger spule
DE102018115654A1 (de) Aktiv gekühlte Spule
EP2068426B1 (de) Elektrischer Wickelleiter mit rechteckigem Querschnitt
DE102010019721A1 (de) Elektrisches Isoliermaterial, Isolationspapier und Isolationsband für eine Hochspannungsrotationsmaschine
EP3084781B1 (de) Elektrospule und verwendung einer elektrospule
EP2661761B1 (de) Leitungsführung für hgü-transformatorspulen oder hgü-drosselspulen
EP1060485B1 (de) Mehrfachparallelleiter für elektrische maschinen und geräte
DE102009008405A1 (de) Stellantrieb
EP3435493B1 (de) Steckbare hochspannungsdurchführung und hochspannungsanlage mit der steckbaren hochspannungsdurchführung
EP2401747B1 (de) Elektrisches bauteil und verfahren zur herstellung eines elektrischen bauteils
DE112017001208T5 (de) Widerstand
CH347571A (de) Dynamoelektrische Maschine
DE102012205048A1 (de) Endenglimmschutzvorrichtung und Verfahren zum Herstellen einer wärmeleitfähigen Schicht auf einem Endenglimmschutz
DE102019110051B4 (de) Stromleiter zur Bildung eines Wickelkörpers für eine elektrische Spule, z. B. eines Trafos oder einer Drossel
DE2907083C2 (de) Supraleitende Magnetwicklung mit mehrren Wicklungslagen
DE102011079323B3 (de) Supraleitende Spulenanordnung und Verfahren zu deren Herstellung
CH710055A2 (de) Wellfeder mit planaren Enden und Statorstab mit Armierung.
EP2193528B1 (de) Elektrische leistung mit kohlenstoffnanoröhren
DE102006032972B3 (de) Supraleitende Strombegrenzereinrichtung vom resistiven Typ mit mehrteiligem Halteelement
EP3410451B1 (de) Schirmring für eine transformatorspule
DE10223354A1 (de) Teilentladungsbeständiger Draht
DE602004005953T2 (de) Statorspulenanordnung
EP3001436B1 (de) Wicklungsfolie und Wicklung für eine induktive elektrische Vorrichtung
DE202015105768U1 (de) Induktives Bauelement für Hochstromanwendungen
DE102014204416A1 (de) Isolationsband, dessen Verwendung als elektrische Isolation für elektrische Maschinen, die elektrische Isolation und Verfahren zur Herstellung des Isolationsbandes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110426

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131122

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 665591

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009009313

Country of ref document: DE

Effective date: 20140612

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140830

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140731

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009009313

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009009313

Country of ref document: DE

Effective date: 20150202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150227

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150227

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200224

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200420

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009009313

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20210107

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009009313

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210227

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 665591

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220227