EP2374182B1 - Filternanordnung - Google Patents

Filternanordnung Download PDF

Info

Publication number
EP2374182B1
EP2374182B1 EP10718479.8A EP10718479A EP2374182B1 EP 2374182 B1 EP2374182 B1 EP 2374182B1 EP 10718479 A EP10718479 A EP 10718479A EP 2374182 B1 EP2374182 B1 EP 2374182B1
Authority
EP
European Patent Office
Prior art keywords
stub
inner conductor
line
filter arrangement
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10718479.8A
Other languages
English (en)
French (fr)
Other versions
EP2374182A1 (de
Inventor
Thomas Haunberger
Manfred Stolle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kathrein SE
Original Assignee
Kathrein Werke KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kathrein Werke KG filed Critical Kathrein Werke KG
Publication of EP2374182A1 publication Critical patent/EP2374182A1/de
Application granted granted Critical
Publication of EP2374182B1 publication Critical patent/EP2374182B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/202Coaxial filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/04Coaxial resonators

Definitions

  • the invention relates to a filter assembly according to the preamble of claim 1.
  • filter arrangements and, in turn, notch filters are of great importance.
  • Such blocking circuits may be known, e.g. be realized by a parallel connection of a coil and a capacitor in the form of a resonant circuit.
  • the filter arrangements in question may consist, for example, of a high-pass filter (HP), a low-pass filter (TP) or a bandpass filter (BP), which are constructed, for example, from series and / or parallel circuits of L / C components.
  • Such filter arrangements or blocking-circle filters are frequently used in mobile radio technology for operating multiband antennas, for example in order to achieve a decoupling of approximately 50 dB between the frequency bands.
  • such filters can also be used for intersystem decoupling be used in multi-band antennas, since additional blocking filters are needed to achieve the aforementioned 50 dB decoupling between the frequency bands.
  • a good adaptation (VSWR) and a low attenuation must be ensured in the pass band of the frequency band to be transmitted.
  • microstrip filter training is for example also from the VS M ⁇ TT ⁇ NEN ET AL .: "Subharmonic Waveguide Mixer AT 215 GHZ Utilizing Quasivertical Schottky Diodes", Microwave and Optical Technology Letters, Vol. 27, No. 2, Oct. 20, 2000 (2000-10-20), pages 94-97 , XP002589626 as known.
  • a corresponding RF filter arrangement is for example also from the US Pat. No. 6,278,341 B1 to be known as known.
  • the filter is designed so that lead away from an RF inner conductor one or more stubs.
  • the inner conductor is arranged at a distance to the outer conductor.
  • the stub lines leading away from the inner conductor are arranged directly adjacent to an outer conductor section.
  • the stub line is arranged on one side of a substrate, wherein the substrate rests on a corresponding outer conductor surface, so that the stub directly interacts with the outer conductor.
  • one or more branch lines are branched off from a signal line transmitting an HF signal.
  • triple soldered connectors are arranged on the RF signal line, one of these solder joints serves as a branch point for the aforementioned spur line, which ends open, so idle.
  • a plurality of such stub lines can be arranged lying in an offset manner, which also extend towards one another, for example, between two triple solder connections and ends in each case freely.
  • transformation routes can be provided.
  • a high frequency filter which at a distance to a ground surface comprises an inner conductor which sits on a dielectric and thereby at a distance from the ground plane is held.
  • this inner conductor branch off spiral-shaped stub lines, which are formed on a dielectric material as a strip conductor and are thus arranged at a distance from the ground surface.
  • the entire assembly is housed in a conductive housing.
  • a comparable with the above-mentioned prior art solution of a transmission path with a arranged in an outer conductor tube locking pot is for example from the US 3,872,412 known.
  • Object of the present invention is to provide a comparison with the prior art improved filter ago all a simpler and thus cheaper producible filter.
  • a blocking filter i. a barrier circuit filter is provided, which is very simple in construction, can be easily manufactured, while having the desired electrical properties.
  • the filter according to the invention also has advantages insofar as it can easily be adapted to the blocking frequency, etc.
  • the barrier circuit filter according to the invention is characterized in that similar to the construction of a coaxial barrier circuit filter according to the prior art stub lines are used, which branch off from the RF signal-transmitting main, but these locking lines do not have their own outer conductor, so not as a separate coaxial or microstrip -Leititch are constructed, but that the RF signal main line and the branching off branch lines in a common outer conductor, ie are arranged in a common outer conductor arrangement.
  • a favorable and space-saving arrangement of the filter according to the invention can be realized that the only one inner conductor structure having stubs more or less in their essential longitudinal extent are arranged parallel to the signal transmitting main RF line and are only connected via a short elbow electrically-galvanically connected to the main line.
  • the entire arrangement can then be accommodated in an outer conductor tube with arbitrary outer conductor cross-sectional shapes, that is to say in a cylindrical outer conductor, in an outer conductor with an angular cross-section etc. Restrictions do not exist in this respect.
  • the impedance of the blocking filter can be infinitely easily adjusted.
  • a change in the impedance can be easily realized by the distance of the realized only in the form of an inner conductor stub to the outer conductor is changed, which surrounds this stub and the RF main line together. The smaller this distance, the lower / lower the impedance (low impedance).
  • the stub is preferably formed in the form of a sheet, i. in the form of a metal strip. The wider this strip becomes (more or less in parallel alignment with the outer conductor tube surrounding it), the lower / lower the impedance (lower resistance).
  • the solution according to the invention proposes at least two branch lines within the scope of the filter arrangement according to the invention. For a first sense would cause a frequency response that would be overcompensated by the subsequent transformation line. The measures provided for in the context of the invention follow However, the second spur line then compensates for the "overcompensated" frequency response caused by the transformation line. As a result, an optimal adaptation of the filter can be achieved.
  • the stub lines can also be realized in multiple stages, that is to say with different impedances.
  • the stubs may transition from a wider portion to a narrower portion so that their width changes. This allows very large transmission bandwidths to be realized.
  • the stop band is set with the number of stub lines (poles).
  • the stubs can be strengthened not only two or more stages to form different widths, but also have different diameters (material thicknesses).
  • the width of the stub to the open end increases towards.
  • a plurality of stub lines in the longitudinal direction of the RF signal line can be arranged offset from one another, wherein the stubs can for example run towards each other, and are optionally offset in the circumferential direction of the signal main line to each other.
  • a plurality of stub lines can be realized very space-saving. It can even from a common branch point are arranged from several stubs over circumferentially offset to the main signal line elbows that do not affect each other in fact.
  • the solution according to the invention also has great advantages insofar as particularly high RF powers can be transmitted. Because it can be used in the invention very thick inner conductor for the main signal line, which also leads to particularly low resistance values in the DC transmission. In contrast, the solution according to the prior art has often allowed only the use of comparatively thin inner conductor.
  • a mechanical improvement and increase in stability can also be realized by placing electrical spacers, for example in the form of dielectric disks, on the signal main line (ie the transformation line), on the outer circumference of which the stub lines extending parallel to the main signal line rest. If required, dielectric spacers may also be placed on the stub lines, so that they can not contact the outer conductor itself during assembly with the outer conductor and / or also maintain the distance to the signal main or transformation line.
  • an RF inner conductor 1 is shown, which may for example consist of a metallic, rod-shaped inner conductor.
  • the RF inner conductor 1 forms a high-impedance transformation line 1 ', which extends between two inner conductor sections 1 "offset in the longitudinal direction of the HF inner conductor 1.
  • the high-resistance transformation line section 1' coincides a thinner cross-section is provided as the adjoining inner conductor section 1 ", which represent a 50 ⁇ system.
  • the length of the two branch lines 5a and 5b is chosen differently, whereby the number of mutually offset blocking poles is increased, whereby the bandwidth to be blocked is increased.
  • the length of the respective spur line is chosen so that, depending on the desired blocking effect, the open circuit is transformed into a short circuit at the respective connection point 7a, at which the spur line 5 is electrically connected to the RF inner conductor 1.
  • the electrical length of the transformation line 1 ' is chosen such that the frequency response or frequency responses caused by the at least one stub or by the multiple stubs (for example 5a, 5b etc.) are compensated or overcompensated. With an overcompensated frequency response, the "next" spur line compensates.
  • a first spur line would cause a frequency response that would be overcompensated by the subsequent transformation line.
  • the adjoining second stub line then compensates for the "overcompensated" frequency response caused by the transformation line. This makes it possible to achieve optimum adaptation of the filter.
  • the lengths of the transformation lines and the impedance of the transformation line are thereby selected for optimal frequency compensation. As a result, a particularly good VWSR ratio can be achieved overall.
  • the peculiarity of the invention lies in the fact that not only the RF signal line 1, so the Transformation line 1 ', but also the one or more stubs 5 and 5a, 5b, etc. are housed in a common outer conductor assembly 11. In other words, therefore, the stubs do not have any further outer conductor arrangements 11 assigned to them separately.
  • FIG. 1 the tubular outer conductor arrangement shown in axial section as the inner conductor 1 "separated by an insulator or by a dielectric from the inner conductor, which in FIG. 1 but not further shown.
  • the stubs 5 are not formed of round material (although this is possible), but preferably from a flat material, similar to an electrically conductive metal strip.
  • the metal strip of the stub 5 extends with its leg 7 'in a length of preferably over 60%, in particular more than 70%, 80% or more than 90% more or less parallel to the RF signal-transmitting inner conductor arrangement 1 and is only about a short to the inner conductor 1 radially extending leg 7 "connected to the RF inner conductor 1 and mechanically anchored and held.
  • the stub lines 5, ie in particular the legs 7 'can also be formed from round material, for example also with an almost semicircular cross section. This would open up the possibility that in a same section of the transformation line 1 'at least two in the same direction or in opposite directions running stubs with the transformation line 1 'can be arranged running in the center.
  • the outwardly bow-shaped convex legs 7 ' would then preferably be coaxial with the outer conductor or outer conductor tube to lie. It is so far on FIG. 1a in derogation to FIG.
  • a leg 7 'of the stub 5 extending from the connection point 7a or the radial limb 7 "and extending in the illustrated embodiment along the transformation conductor 1' adjacent to the free end comprises a stub portion 105a having a significantly greater width, this stub portion 105a with its stub larger width B is designed semi-cylindrical, and that coaxial with the inner or transformation conductor 1, 1 ' FIG. 1a
  • the bottom stub is similarly designed so that both stubs overlap without the semicircular stripline portions 105a being able to touch.
  • the stripline sections 105a could also be less than semicircular in cross-section or even be provided with a more than 180 °, part-circular stripline section.
  • the stubs in total or at least the free-ending leg 7 ' may be cylindrical and arranged with lateral offset to the transformation line 1 within the outer conductor.
  • leg 7 'running parallel to the inner conductor 1 in the drawings can also be arranged at an angle to the axial extent of the HF inner conductor 1, in such a way that this leg 7' is at an angle ⁇ to the axial extent of the inner conductor 1 is arranged running.
  • This is in FIG. 2 only indicated by dashed lines for a leg 107.
  • the stub 5 and in particular the free-ending legs 7 ' have different distances to the outer conductor 11 or to the inner conductor arrangement 1 over the length of the stub lines.
  • the arrangement need not be oriented in a continuous angle ⁇ to the axial extent of the inner conductor 1, but it may also step-like subdivisions or sections may be provided in which portions of the leg 7 'of the respective stub 5 have different distances to the inner conductor or the outer conductor ,
  • a common tubular outer conductor assembly 11 which may consist of an electrically conductive metal tube. It can also be seen that between the metallstMailförmingen leg 7 'or the stub 5 (in its parallel section to the RF inner conductor) and the inner wall 11' of the tubular outer conductor assembly 11, a distance 13 is formed, in which a dielectric 19 is inserted.
  • the strip-shaped in the axial direction of the entire arrangement extending portion 7 'of the stub 5 is slightly convex in cross-section, so in its cutout coaxial with the hollow cylindrical in the embodiment shown outer conductor arrangement comes to rest.
  • the width B of the metal strip-shaped leg 7 'of the stub 5 and the distance 13 between the strip-shaped stub section and the outer conductor arrangement can be the impedance set differently.
  • the impedance decreases as the width B becomes larger.
  • the impedance also decreases as the distance 13 becomes smaller.
  • the impedance can in turn be increased in opposite directions.
  • the impedance can be set steplessly different. This also offers great advantages in the context of the invention, since the tolerances with respect to the impedance should be kept as accurately as possible. A slight adjustment is easily possible here in the context of the invention by changing the position of the axially extending stub section.
  • the thickness D across the width B (which is measured transversely to the longitudinal direction of the stub 5) can be significantly smaller than the width B.
  • the thickness can easily be less than 50%, 40%, 30% , 20% or even less than 10% or 5% based on the width of the extending in the axial longitudinal direction leg portion 7 'of the associated stub 5.
  • the thickness can also be made much larger, but this has no significant effect on the electrical effect.
  • FIG. 4 schematically shows that, for example, in the longitudinal direction of the transformation line 1 'offset terminal points 7a each staggered in the circumferential direction lying several stub lines 5a to 5c, with two stubs 5a, 5c not opposite to each other extending as in the embodiment according to FIGS. 1 and 2 are aligned.
  • two, three or more stub lines can easily be provided.
  • the rather radially oriented legs 7 "producing the connection to the transformation line 1 'can also have a different length, ie have a different radial height to the inner conductor 1.
  • the adjoining legs 7' of the stub 5 thus have a different distance from each other Inner or outer conductor 1, 11.
  • This also allows two or more stub lines 5 can be arranged with their free-ending legs 7 'in a same section of the route, and not necessarily have to be offset in the circumferential direction to the inner conductor the same side of the inner conductor or only slightly offset lying in the circumferential direction, since the free-ended leg portions 7 'due to the different ending height of the first leg 7 "do not touch, but in the radial direction to the inner conductor 1, 1' offset.
  • This variant with partial overlapping of the stripline legs 7 ' is in FIG. 4a played.
  • the freely ending legs 7 'of the stub can be arranged to extend in the same direction or in opposite directions.
  • the stubs, in particular the free-ending legs 7 ' completely or partially cover (couple).
  • the overlap can also be realized only partially over different angles of the legs 7 "by the freely ending legs 7 'of the individual stub lines in the circumferential direction around the inner conductor 1 are at least partially offset (thus only a partial overlap of the free-ending leg 7' realized).
  • the stub lines 5 in the longitudinal direction of the inner conductor 1, 1 ' can also be arranged one after another, regardless of whether the freely ending leg 7' of this stub 5 point in the same direction or are arranged in opposite directions on the inner conductor 1.
  • FIG. 5 The principle of the embodiment according to the axial sectional view according to FIG. 1 It is shown that, for example, one or more spacers 17, which consist of an electrically nonconductive dielectric, are arranged in the region of the stub lines on the RF inner conductor 1 forming the HF signal line and its longitudinal direction.
  • the outer circumference of these spacers 7 then serves as a stop surface for the possibly axially adjacent stub lines 5, 5a, 5b, etc., ie the legs 7 '.
  • dielectric spacers 19 may be arranged, whereby a certain distance from the surrounding outer conductor tube 11th can be complied with.
  • These dielectric spacers 19 can also be arranged and / or fixed on the inside of the outer conductor tube 11 in order to obtain the stub line sections 7 'at a predetermined distance from the outer conductor tube 11.
  • the entire interior or large parts of the interior can be filled within the outer conductor arrangement with a dielectric, which can be realized by changing the dielectric constant due to the dielectric used a so-called. Shortening factor for the length of the stubs 5.
  • Such a blocking-circle filter arrangement or the arrangement of such a band-stop filter can be realized on any coaxial RF link.
  • the invention has great advantages, but especially if the filter is installed directly in a socket or socket arrangement (connector). This is for example based on FIG. 6 shown schematically.
  • the great advantage of the invention is that z. B. a corresponding barrier filter through the one or more stub lines (open ends) easily made and then only has to be introduced into a common outer conductor arrangement, which surrounds the signal line, for example in the form of a transformation line and the one or more stubs together. Despite this arrangement, no detrimental alternation of the function of the spur lines is recognizable.
  • FIG. 6 Based on FIG. 6 is now a modification in axial sectional view shown insofar as the solution according to the invention with a socket 100 (coaxial connector) firmly connected or is designed to be handled together.
  • the filter assembly is constructed so that the tubular outer conductor 11 merges into the female outer conductor 111 and the RF inner conductor 1 in the female inner conductor 101.
  • the socket inner conductor 101 is in the embodiment shown not plug-shaped (which would also be possible) but designed bush-shaped and has at its insertion end a plurality of circumferentially longitudinal slots through separate contact fingers.
  • the female inner conductor 101 is held by an insulator (dielectric) 91 as known to the outer conductor 111 at a distance thereto while avoiding a galvanic contact.
  • a stub 5 is shown in a schematic plan view. It may be, for example, the transverse view of in FIG. 6 act below lying drawn stubs.
  • the stub line 5 for example, starting from its connection point 7a has a first stub line section 105a, which then merges via a subsequent stage 106 in a comparatively wider stub section 105b.
  • the width B of the stub line 5 is greater towards the free end than in the first stub line section 105a, which is closer to the connection point 7 'to the RF inner conductor 1 or to the transformation line 1'.
  • a plurality of such gradations 106 may also be provided, that is to say not only a graduation with two stub sections 105a, 105b in different widths but, for example, with three strip lines of different widths or even more.
  • the stub lines can thus be configured in multiple stages, ie with different widths (the extension in the width direction being preferably symmetrical on both sides to the longitudinal direction of the inner conductor.)
  • the diameters and thicknesses can be different Implement filter arrangement, which have advantages in many frequency ranges, especially in many frequency ranges, as used in mobile communications, for example in the range of 694 MHz to 960 MHz or, for example, in the field from 1710 MHz to 2700 MHz. Restrictions on certain frequency ranges, however, do not exist.
  • the individual branch lines in particular if two or more branch lines are provided, can basically also be of the same length, wherein the effective length parallel to the transformation line 1 'can correspond to the length of the parallel running section of the respective branch lines.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

  • Die Erfindung betrifft eine Filteranordnung nach dem Oberbegriff des Anspruches 1.
  • In vielen Bereichen der Elektrotechnik und insbesondere auch in der Kommunikations- und Mobilfunktechnik kommen Filteranordnungen und dabei wiederum Sperrfiltern große Bedeutung zu. Derartige Sperrkreise können bekanntermaßen z.B. durch eine Parallelschaltung einer Spule und eines Kondensators in Form eines Schwingkreises realisiert werden. Die in Rede stehenden Filteranordnungen können dabei beispielsweise aus einem Hochpass (HP), einem Tiefpass (TP) oder einem Bandpass (BP) bestehen, die beispielsweise aus Serien- und/oder Parallelschaltungen von L/C-Komponenten aufgebaut sind.
  • Derartige Filteranordnungen oder Sperrkreisfilter werden in der Mobilfunktechnik häufig zum Betrieb von Multiband-Antennen eingesetzt, um beispielsweise eine Entkopplung von ca. 50 dB zwischen den Frequenzbändern zu erreichen. So können derartige Filter beispielsweise auch für die Intersystem-Entkopplung bei Multiband-Antennen eingesetzt werden, da hier zusätzliche Sperrfilter benötigt werden, um die vorstehend erwähnte 50 dB Entkopplung zwischen den Frequenzbändern zu erreichen. Zudem muss im Durchlassbereich des zu übertragenden Frequenzbandes eine gute Anpassung (VSWR) und eine niedrige Dämpfung gewährleistet sein.
  • Schließlich sind daneben auch Lösungen bekannt geworden, bei der eine Transformationsleitung sowie zugehörige Stichleitungen als Microstrip-Leitungen auf einer Leiterplatine ausgebildet sind. Derartige Lösungen sind beispielsweise aus der Vorveröffentlichung "Microstrip Filters for RF/Microwave Applications", Wiley Series in Microwave and Optical Engineering, by John Wiley & Sons, Inc., 2001, Jia-Sheng Hong and M.J. Lancaster, Chapter 6, Seiten 161 - 190 sowie aus Chapter 5 "Lowpass and Bandpass Filters" der gleichen Vorveröffentlichung, nämlich aus den Seiten 109 bis 121 als bekannt zu entnehmen.
  • Eine insoweit vergleichbare Microstrip Filterausbildung ist beispielsweise auch aus der V.S. MÖTTÖNEN ET AL.: "Subharmonic Waveguide Mixer AT 215 GHZ Utilizing Quasivertical Schottky Diodes", Microwave and Optical Technology Letters, Bd. 27, Nr. 2, 20. Oktober 2000 (2000-10-20), Seiten 94-97, XP002589626 als bekannt zu entnehmen.
  • Eine dementsprechende HF-Filteranordnung ist beispielsweise auch aus der US 6 278 341 B1 als bekannt zu entnehmen. Das Filter ist so aufgebaut, dass von einem HF-Innenleiter eine oder mehrere Stichleitungen wegführen. Der Innenleiter ist im Abstand zum Außenleiter angeordnet. Die vom Innenleiter wegführenden Stichleitungen sind unmittelbar benachbart zu einem Außenleiter-Abschnitt angeordnet.
  • Mit anderen Worten ist die Stichleitung auf der einen Seite eines Substrates angeordnet, wobei das Substrat auf einer entsprechenden Außenleiterfläche aufliegt, so dass die Stichleitung unmittelbar mit dem Außenleiter zusammen wirkt.
  • Dabei ist es auch bekannt, anstelle der vorstehend erläuterten, mit einem eigenen Außenleiter unmittelbar zusammenwirkenden Microstrip-Stichleitungen Sperrkreisfilter unter Verwendung von Koaxialkabeln aufzubauen. In diesem Fall werden von einer ein HF-Signal übertragenden Signalleitung eine oder mehrere Stichleitungen abgezweigt. Dazu sind auf der HF-Signalleitung beispielsweise Dreifach-Lötverbinder angeordnet, wobei eine dieser Lötverbindungen als Verzweigungsstelle für die erwähnte Stichleitung dient, die offen endet, also im Leerlauf. Dabei können in Längsrichtung der HF-Signalleitung mehrere derartige Stichleitungen versetzt liegend angeordnet sein, die beispielsweise zwischen zwei Dreifach-Lötverbindern auch aufeinander zu verlaufen und jeweils frei enden. Daneben können dann auch noch Transformationsstrecken vorgesehen sein.
  • Derartige Filter unter Verwendung von Koaxialkabeln (auch für die Stichleitungen) sind sehr toleranzempfindlich und können aufgrund ihrer Bauweise (unter Verwendung der diskreten Kabelimpedanzen und der Lötverbinder) nicht optimal abgestimmt werden.
  • Ferner ist beispielsweise aus der US 2,751,558 ein Hochfrequenzfilter bekannt geworden, welches im Abstand zu einer Massefläche einen Innenleiter umfasst, der auf einem Dielektrikum sitzt und dadurch im Abstand zur Massefläche gehalten ist. In diesem Innenleiter zweigen schneckenförmig verlaufende Stichleitungen ab, die auf einem dielektrischen Material als Streifenleiter ausgebildet sind und dadurch im Abstand zur Massefläche angeordnet sind. Die gesamte Anordnung ist in einem leitenden Gehäuse untergebracht. Somit liegt also der Innenleiter und die schneckenförmig angeordnete Stichleitung in einer gemeinsamen Ebene in einem gleichbleibenden Abstand gegenüber der Massefläche, wobei dieser Abstand durch die erwähnte dielektrische Schicht vorgegeben ist.
  • Schließlich wird auch noch auf die US 2 392 664 A verwiesen. Diese Vorveröffentlichung beschreibt einen UltraHochfrequenz-Filter mit einem Innenleiter und einem Außenleiter, wobei der Innenleiter auf einer Längsstrecke des Innenleiters von einem den Innenleiter völlig umgebenden Topf versehen ist. Der Innenleiter durchsetzt dabei den Topfboden, der elektrisch-galvanisch mit dem Innenleiter verbunden ist. Die zylinderförmige Wandung des Topfes liegt zwischen dem Innenleiter und dem Außenleiter. In einer Abwandlung können mehrere derartig ineinander verschachtelt angeordnete Töpfe vorgesehen sein, was zur Folge hat, dass der HF-Strom die so gebildeten Sperrtöpfe nacheinander durchläuft. Die Sperrtöpfe sind somit seriell angeordnet, d.h. deren Wirkungsweise ist seriell.
  • Eine mit dem vorstehend genannten Stand der Technik vergleichbare Lösung einer Übertragungsstrecke mit einem in einem Außenleiterrohr angeordneten Sperrtopf ist beispielsweise aus der US 3 872 412 bekannt geworden.
  • Aufgabe der vorliegenden Erfindung ist es, ein gegenüber dem Stand der Technik verbessertes Filter zu schaffen, vor allem ein einfacheres und damit kostengünstiger herstellbares Filter.
  • Die Aufgabe wird erfindungsgemäß entsprechend den im Anspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
  • Es muss als ausgesprochen überraschend bezeichnet werden, dass im Rahmen der Erfindung ein Sperrfilter, d.h. ein Sperrkreisfilter geschaffen wird, das sehr einfach aufgebaut ist, einfachst hergestellt werden kann, und dabei die gewünschten elektrischen Eigenschaften aufweist. Das erfindungsgemäße Filter weist Vorteile auch insoweit auf, also problemlos Anpassungen an die Sperrfrequenz etc. vorgenommen werden kann.
  • Das erfindungsgemäße Sperrkreisfilter zeichnet sich dadurch aus, dass ähnlich wie beim Aufbau eines koaxialen Sperrkreisfilters nach dem Stand der Technik Stichleitungen verwendet werden, die von der HF-signalübertragenden Hauptleitung abzweigen, wobei allerdings diese Sperrleitungen keinen eigenen Außenleiter haben, also nicht als separate Koaxialleitungen oder Microstrip-Leitungen aufgebaut sind, sondern dass die HF-Signalhauptleitung und die davon abzweigenden Stichleitungen in einem gemeinsamen Außenleiter, d.h. in einer gemeinsamen Außenleiteranordnung angeordnet sind.
  • Eine günstige und raumsparende Anordnung des erfindungsgemäßen Filter lässt sich dadurch realisieren, dass die lediglich eine Innenleiterstruktur aufweisenden Stichleitungen in ihrer wesentlichen Längserstreckung mehr oder weniger parallel zu der das Signal übertragenden Haupt-HF-Leitung angeordnet sind und lediglich über ein kurzes Winkelstück elektrisch-galvanisch mit der Hauptleitung verbunden sind. Die gesamte Anordnung kann dann in einem Außenleiterrohr mit beliebigen Außenleiterquerschnittsformen untergebracht sein, also in einem zylinderförmigen Außenleiter, in einem Außenleiter mit eckigem Querschnitt etc. Einschränkungen bestehen insoweit nicht.
  • Die Impedanz des Sperrfilters lässt sich stufenlos problemlos einstellen. Eine Veränderung der Impedanz lässt sich leicht dadurch realisieren, dass der Abstand der lediglich in Form eines Innenleiters realisierten Stichleitung zu dem Außenleiter verändert wird, der diese Stichleitung und die HF-Hauptleitung gemeinsam umgibt. Je kleiner dieser Abstand ist, umso niedriger/kleiner wird die Impedanz (niederohmig). Die Stichleitung wird bevorzugt in Form eines Flachmaterials ausgebildet, d.h. in Form eines Metallstreifens. Je breiter dieser Streifen wird (mehr oder weniger in paralleler Ausrichtung zu dem ihn umgebenden Außenleiterohr), umso niedriger/kleiner wird auch hierdurch die Impedanz (niederohmiger). Durch Veränderung des vorstehend genannten Abstandes zwischen Stichleitung und gemeinsamen Außenleiter zum einen bzw. durch Vergrößerung der Breite der Stichleitung lässt sich somit die Impedanz vergrößern oder verkleinern.
  • Die erfindungsgemäße Lösung schlägt zumindest zwei Stichleitungen im Rahmen der erfindungsgemäßen Filteranordnung vor. Denn eine erste Sichleitung würde einen Frequenzgang verursachen, der von der sich daran anschließenden Transformationsleitung überkompensiert werden würde. Die im Rahmen der Erfindung vorgesehene sich daran anschließende zweite Stichleitung kompensiert dann jedoch den von der Transformationsleitung verursachten "überkompensierten" Frequenzgang. Dadurch lässt sich also eine optimale Anpassung des Filter erzielen.
  • Die Stichleitungen können ferner auch mehrstufig, das heißt mit unterschiedlichen Impedanzen realisiert werden. Mit anderen Worten können die Stichleitungen von einem breiteren Abschnitt in einen demgegenüber schmäler Abschnitt übergehen, so dass sich ihre Breite verändert. Hiermit können sehr große Durchlass-Bandbreiten realisiert werden. Der Sperrbereich wird mit der Anzahl der Stichleitungen (Pole) eingestellt. Ebenso können die Stichleitungen nicht nur zwei- oder mehrstufig unter Ausbildung unterschiedlicher Breiten gestärkt sein, sondern auch unterschiedliche Durchmesser (Materialstärken) aufweisen.
  • Bevorzugt nimmt dabei die Breite der Stichleitung zu deren offenen Ende hin zu.
  • Soll die Bandbreite, die gesperrt werden soll, vergrößert werden, so muss gegebenenfalls die Anzahl der Stichleitungen erhöht werden. Mit anderen Worten muss die Anzahl der Pole in Abhängigkeit der Bandbreite, die gesperrt werden soll, entsprechend erhöht werden. Dabei können mehrere Stichleitungen in Längsrichtung der HF-Signalleitung versetzt zueinander angeordnet werden, wobei die Stichleitungen beispielsweise aufeinanderzu verlaufen können, und dabei gegebenenfalls in Umfangsrichtung der Signalhauptleitung versetzt zueinander angeordnet sind. Dadurch können also sehr raumsparend mehrere Stichleitungen realisiert werden. Es können sogar von einem gemeinsamen Verzweigungspunkt aus mehrere Stichleitungen über in Umfangsrichtung zur Signalhauptleitung versetzt liegende Winkelstücke angeordnet werden, die sich faktisch gegenseitig nicht beeinflussen.
  • Die erfindungsgemäße Lösung weist vor allem auch insoweit große Vorteile auf, als besonders hohe HF-Leistungen übertragen werden können. Denn es können im Rahmen der Erfindung sehr dicke Innenleiter für die Signalhauptleitung verwendet werden, was auch zu besonders niedrigen Widerstandswerten bei der Gleichstromübertragung führt. Im Gegensatz dazu hat die Lösung gemäß dem Stand der Technik häufig nur die Verwendung vergleichsweise dünner Innenleiter erlaubt.
  • Eine mechanische Verbesserung und Erhöhung der Stabilität kann bei Bedarf auch dadurch realisiert werden, dass beispielsweise auf der Signal-Hauptleitung (also der Transformationsleitung) elektrische Abstandshalter beispielsweise in Form von dielektrischen Scheiben aufgesetzt sind, an deren Außenumfang dann die parallel zur Signalhauptleitung verlaufenden Stichleitungen aufliegen. Bei Bedarf können auch auf die Stichleitungen dielektrische Abstandshalter aufgesetzt sein, damit diese beim Zusammenbau mit dem Außenleiter den Außenleiter selbst nicht kontaktieren können und/oder auch hierdurch den Abstand zur Signal-Haupt- oder Transformationsleitung beibehalten.
  • Schließlich führt die Verwendung eines derartigen Dielektrikums auch zu einem Verkürzungsfaktor für die Stichleitungen. Zusammenfassend lassen sich also im Rahmen der Erfindung folgende Vorteile realisieren:
    • es lässt sich im Rahmen der Erfindung eine besonders einfache Bauweise dadurch verwirklichen, dass die eine oder mehreren Stichleitungen in einem gemeinsamen Außenleiter angeordnet sind;
    • bei mehreren Stichleitungen können diese ineinander verschachtelt, d.h. in Umfangsrichtung zur Signalhauptleitung versetzt zueinander angeordnet sein, wodurch nur ein sehr geringer Platzbedarf benötigt wird (dadurch lässt sich auch die Gesamtlänge des Sperrfilters minimieren);
    • die Stichleitungen können in Umfangsrichtung versetzt zueinander so angeordnet werden, dass beispielsweise zwei Sichtleitungen in einem gleichen Abschnitt des Außenleiters eingebracht werden können;
    • die erfindungsgemäße Sperrkreisfilteranordnung kann direkt in einen HF-Verbinder eingebaut werden (und zwar integrierbar);
    • die Stichleitungen können aber müssen nicht voneinander durch getrennte bzw. eigene Außenleiter entkoppelt werden;
    • die erfindungsgemäßen Sperrfilter erlauben eine hohe Sperrdämpfung, insbesondere für Mobilfunkbänder (30 dB). Ferner ist ein sehr gutes VSWR-Verhältnis realisierbar (von z.B. > 30 dB im Durchlassbereich), also ein sehr günstiges Stehwellenverhältnis (voltage standing wave ratio);
    • durch den koaxialen Aufbau des Filters ist dieses sehr unempfindlich gegen Einstrahlung;
    • keine Abstrahlung nach außen, da die Stichleitungen innerhalb des nach außen geschlossenen koaxialen Außenleiters angeordnet sind;
    • die Dimensionen des Filters können auch durch Auffüllen des Leerraumes innerhalb des Außenleiters mit geeignetem Dielektrikum verringert werden;
    • insgesamt ist dadurch eine sehr kompakte Bauform möglich;
    • das Filter kann beispielsweise aus Spritzgussteil hergestellt werden, so dass die Herstellung mit geringsten Fertigungstoleranzen möglich ist;
    • die Innenleiter-Stichleitungen können als Stanz-/Biegeteil ausgeführt sein, aus Rundmaterial oder Flachmaterial bestehen etc.;
    • die Außenleiterbauformen können differieren, d.h. sie können im Querschnitt kreisförmig sein, quadratisch, U- oder rechteckförmig;
    • durch entsprechende Gestaltung und Lageveränderung der Stichleitungen (beispielsweise Bildung von Endkapazitäten) lassen sich verschiedene Wellenwiderstände und sehr große Bandbreiten realisieren;
    • die Stichleitungen können mehrstufig aufgebaut sein, das heißt über ihre Länge hinweg unterschiedliche Abschnitte mit verschiedenen Breiten aufweisen, wobei die Breite bevorzugt zu deren offenen Ende hin zunimmt; dadurch lässt sich eine besonders gute Breitbandigkeit realisieren;
    • da kein Serien-Kondensator benötigt wird, ist das erfindungsgemäße Filter vor allem auch für die Übertragung von Gleichstrom- und von Datensignalen geeignet, z. B. Modem-Signale.
  • Weitere Vorteile, Einzelheiten und Merkmale der Erfindung ergeben sich nachfolgend aus den anhand von Zeichnungen dargestellten Ausführungsbeispielen. Dabei zeigen im Einzelnen:
  • Figur 1 :
    ein erstes erfindungsgemäßen Ausführungsbeispiel in schematischer Axialschnittdarstellung;
    Figur 1a :
    ein zu Figur 1 abgewandeltes Ausführungsbeispiel mit Streifenleitungsabschnitten in Halbzylinder- oder Teilzylinderform;
    Figur 2 :
    eine räumliche Darstellung des Ausführungsbeispiels nach Figur 1 unter Weglassung des Außenleiters;
    Figur 3a :
    eine Axialschnittdarstellung durch das Ausführungsbeispiel nach den Figuren 1 und 2;
    Figur 3b :
    eine ausschnittsweise räumliche Darstellung bezüglich des Ausführungsbeispiels nach den Figuren 1 bis 3;
    Figur 4 :
    eine Abwandlung zu den vorausgegangenen Ausführungsbeispielen in räumlicher Darstellung unter Weglassung der Außenleiteranordnung mit insgesamt drei in Längsrichtung des HF-Leiters versetzt abzweigenden Stichleitungen;
    Figur 4a :
    ein zu den Figuren 1 bis 1a abgewandeltes Ausführungsbeispiel im Axialschnitt, bei welchem sich die freien Enden zweier Stichleitungen im unterschiedlichen Radialabstand zueinander angeordnet überlappen;
    Figur 5 :
    eine entsprechende axiale Schnittdarstellung vergleichbar der axialen Schnittdarstellung nach Figur 1, wobei jedoch auf den Stichleitungen Abstandshalter aufgesetzt sind, um den Abstand zwischen den einzelnen Stichleitungen zur HF-Leitung zum einen bzw. zur Innenwandung des Außenleiters zum anderen zu beschränken bzw. einzuhalten;
    Figur 6 :
    ein weiteres Ausführungsbeispiel in schematisch auszugsweise axialer Schnittdarstellung, bei welchem die erfindungsgemäße Filteranordnung in einer Buchsenanordnung eingebaut bzw. integriert ist;
    Figur 7 :
    eine schematische Seitenansicht einer Stichleitung, die im gezeigten Ausführungsbeispiel in Längsrichtung der Stichleitung mit zumindest einem Stufenabsatz unter Ausbildung von zwei Streifenleitungsabschnitten mit unterschiedlicher Breite ausgebildet ist; und
    Figur 8 :
    ein zur Figur 2 abgewandeltes Ausführungsbeispiel mit gleich langen Stichleitungen.
  • In Figur 1 ist ein HF-Innenleiter 1 gezeigt, der beispielsweise aus einem metallischen, stabförmigen Innenleiter bestehen kann.
  • Der HF-Innenleiter 1 bildet dabei eine hochohmige Transformationsleitung 1', die sich im gezeigten Ausführungsbeispiel zwischen zwei in Längsrichtung des HF-Innenleiters 1 versetzt zueinander liegenden Innenleiterabschnitten 1" erstreckt. Aus der Zeichnung ist dabei zu ersehen, dass der hochohmige Transformationsleitungsabschnitt 1' mit einem dünneren Leitungsquerschnitt ausgestattet ist, als die sich daran anschließenden Innenleiterabschnitt 1", die ein 50 Ω System darstellen.
  • Im gezeigten Ausführungsbeispiel ist - was aber nicht zwingend notwendig ist - ausgehend an den aufeinander zu weisenden Übergängen von den Innenleiter-Abschnitt 1" zur Transformationsleitung 1' jeweils eine Stichleitung 5, im gezeigten Ausführungsbeispiel eine Stichleitung 5a und 5b elektrisch-galvanisch angeschlossen, die sich über ihre größte Länge hin mehr oder weniger parallel zum HF-Innenleiter 1 erstreckt und über einen Anschluss-Winkel 7 mechanisch und elektrisch mit dem HF-Innenleiter 1 verbunden ist.
  • Im gezeigten Ausführungsbeispiel ist die Länge der beiden Stichleitungen 5a und 5b unterschiedlich gewählt, wodurch sich die Anzahl der versetzt zueinander liegenden Sperrpole erhöht wird, wodurch die Bandbreite, die gesperrt werden soll, vergrößert wird.
  • Die Länge der jeweiligen Stichleitung wird dabei so gewählt, dass in Abhängigkeit der gewünschten Sperrwirkung der Leerlauf in einen Kurzschluss am jeweiligen Anschlusspunkt 7a transformiert wird, an welchem die Stichleitung 5 mit dem HF-Innenleiter 1 elektrisch verbunden ist.
  • Die elektrische Länge der Transformationsleitung 1' wird so gewählt, dass der von der zumindest einen Stichleitung oder die von den mehreren Stichleitungen (z.B. 5a, 5b etc.) verursachte Frequenzgang bzw. verursachten Frequenzgänge kompensiert bzw. überkompensiert werden. Bei einem überkompensierten Frequenzgang bewirkt die "nächste" Stichleitung eine Kompensation.
  • So würde beispielsweise eine erste Stichleitung einen Frequenzgang verursachen, der von der sich daran anschließenden Transformationsleitung überkompensiert werden würde. Die sich daran anschließende zweite Stichleitung kompensiert dann den von der Transformationsleitung verursachten "überkompensierten" Frequenzgang. Dadurch lässt sich eine optimale Anpassung des Filters erzielen.
  • Die Längen der Transformationsleitungen und die Impedanz der Transformations-Leitung wird dadurch für eine optimale Frequenzkompensation gewählt. Dadurch lässt sich insgesamt auch ein besonders gutes VWSR-Verhältnis realisieren.
  • Die Besonderheit im Rahmen der Erfindung liegt nunmehr darin, dass nicht nur die HF-Signalleitung 1, also die Transformationsleitung 1', sondern auch die eine oder mehreren Stichleitungen 5 bzw. 5a, 5b etc. in einer gemeinsamen Außenleiteranordnung 11 untergebracht sind. Mit anderen Worten weisen die Stichleitungen also keine ihnen separat zugeordneten weiteren Außenleiteranordnungen 11 auf. Dabei ist die in Figur 1 im Axialschnitt gezeigte rohrförmige Außenleiteranordnung wie die Innenleiter 1" auch durch einen Isolator oder durch ein Dielektrikum vom Innenleiter getrennt, was in Figur 1 jedoch nicht weiter dargestellt ist.
  • Wie sich aus der räumlichen Darstellung gemäß Figur 2 und vor allem auch aus der axialen Querschnittsdarstellung gemäß Figur 3a bzw. der räumlichen ausschnittsweisen Darstellung gemäß Figur 3b ergibt, sind die Stichleitungen 5 nicht aus Rundmaterial gebildet (obgleich dies möglich ist), sondern bevorzugt aus einem Flachmaterial, ähnlich einem elektrisch leitfähigen Metallstreifen. Der Metallstreifen der Stichleitung 5 erstreckt sich dabei mit seinem Schenkel 7' in einer Länge von bevorzugt über 60%, insbesondere mehr als 70%, 80% oder mehr als 90% mehr oder weniger parallel zu der HF-signalübertragenden Innenleiteranordnung 1 und ist lediglich über einen kurzen zum Innenleiter 1 radial verlaufenden Schenkel 7" am HF-Innenleiter 1 angebunden und mechanisch verankert und gehalten.
  • Wie bereits erwähnt, können die Stichleitungen 5, d.h. insbesondere die Schenkel 7' auch aus Rundmaterial gebildet sein, beispielsweise auch mit einem fast halbkreisförmigen Querschnitt. Dies würde die Möglichkeit eröffnen, dass in einem gleichen Abschnitt der Transformationsleitung 1' zumindest zwei in gleicher Richtung oder gegensinnig verlaufende Stichleitungen mit der Transformations-leitung 1' im Zentrum verlaufend angeordnet sein können. Die nach außen hin bogenförmig-konvex gestalteten Schenkel 7' würden dann bevorzugt koaxial zum Außenleiter bzw. Außenleiterrohr zu liegen kommen. Es wird insoweit auf Figur 1a verwiesen, in der in Abweichung zu Figur 1 ein vom Anschlusspunkt 7a bzw. dem radialen Schenkel 7" ausgehender, im gezeigten Ausführungsbeispiel längs zum Transformationsleiter 1' verlaufender Schenkel 7' der Stichleitung 5 benachbart zum freien Ende hin einen Stichleitungsabschnitt 105a umfasst, der eine deutlich größere Breite aufweist. Dieser Stichleitungsabschnitt 105a mit seiner größeren Breite B ist halbzylinderförmig gestaltet, und zwar koaxial zum Innen- oder Transformationsleiter 1, 1'. Die dazu gegenläufige weitere, in Figur 1a unten liegende Stichleitung ist gleichermaßen gestaltet, so dass sich beide Stichleitungen überlappen, ohne dass sich die halbkreisförmigen Streifenleitungsabschnitte 105a berühren können. Bei dieser Ausgestaltung könnten die Streifenleitungsabschnitte 105a im Querschnitt auch weniger als halbkreisförmig gestaltet sein oder sogar mit einem mehr als 180° umfassenden, teilskreisförmigen Streifenleitungsabschnitt versehen sein.
  • Ebenso können die Stichleitungen insgesamt oder zumindest der frei endende Schenkel 7' zylinderförmig gestaltet sein und mit Seitenversatz zur Transformationsleitung 1 innerhalb des Außenleiters angeordnet sein.
  • Grundsätzlich wäre es auch denkbar, dass der in den Zeichnungen parallel zum Innenleiter 1 verlaufende Schenkel 7' auch winklig zur Axialerstreckung des HF-Innenleiters 1 geordnet sein kann, und zwar so, dass dieser Schenkel 7' in einem Winkel α zur Axialerstreckung des Innenleiters 1 verlaufend angeordnet ist. Dies ist in Figur 2 nur strichliert für einen Schenkel 107 angedeutet. Mit anderen Worten ist es dadurch möglich, dass die Stichleitung 5 und insbesondere die frei endenden Schenkel 7' über die Länge der Stichleitungen hinweg unterschiedliche Abstände zum Außenleiter 11 bzw. zur Innenleiteranordnung 1 aufweisen. Dabei muss die Anordnung nicht in einem kontinuierlichen Winkel α zur Axialerstreckung des Innenleiters 1 verlaufend ausgerichtet sein, sondern es können auch stufenförmige Unterteilungen oder Abschnitte vorgesehen sein, in denen Abschnitte des Schenkels 7' der jeweiligen Stichleitung 5 unterschiedliche Abstände zum Innenleiter bzw. zum Außenleiter aufweisen.
  • Aus der Axialschnittdarstellung gemäß Figur 3 ist auch ein in diesem Ausführungsbeispiel vorgesehene gemeinsame rohrförmige Außenleiteranordnung 11 zu entnehmen, die aus einem elektrisch leitfähigen Metallrohr bestehen kann. Daraus ist auch zu ersehen, dass zwischen der metallstreifenförmingen Schenkel 7' oder der Stichleitung 5 (in ihrem Parallelabschnitt zum HF-Innenleiter) und der Innenwandung 11' der rohrförmigen Außenleiteranordnung 11 ein Abstand 13 gebildet ist, in welchem ein Dielektrikum 19 eingefügt ist. Im gezeigten Ausführungsbeispiel gemäß Figur 3 ist sogar zu entnehmen, dass der streifenförmige in Axialrichtung der gesamten Anordnung verlaufende Abschnitt 7' der Stichleitung 5 im Querschnitt leicht konvex gestaltet ist, also in seinem Ausschnitt koaxial zu der im gezeigten Ausführungsbeispiel hohlzylinderförmigen Außenleiteranordnung zu liegen kommt. Durch die Breite B des metallstreifenförmigen Schenkels 7' der Stichleitung 5 und dem Abstand 13 zwischen dem streifenförmigen Stichleitungsabschnitt und der Außenleiter-Anordnung lässt sich die Impedanz unterschiedlich einstellen. Die Impedanz nimmt dabei ab, wenn die Breite B größer wird. Die Impedanz nimmt auch dann ab, wenn der Abstand 13 kleiner wird. Somit kann selbst bei größerer Breite B einer Stichleitung 5 durch Vergrößerung des Abstandes zum Außenleiterrohr die Impedanz wiederum gegensinnig erhöht werden. Somit lässt sich die Impedanz stufenlos unterschiedlich einstellen. Dies bietet im Rahmen der Erfindung auch deshalb große Vorteile, da die Toleranzen bezüglich der Impedanz möglichst genau eingehalten werden sollen. Eine leichte Anpassung ist hier im Rahmen der Erfindung durch Lageveränderung des in Axialrichtung verlaufenden Stichleitungsabschnittes leicht möglich. Wie auch aus der Zeichnung zu ersehen ist, kann die Dicke D quer zur Breite B (die quer zur Längsrichtung der Stichleitung 5 gemessen wird) deutlich geringer ausfallen als die Breite B. Die Dicke kann problemlos weniger als 50%, 40%, 30%, 20% oder sogar weniger als 10% oder 5% bezogen auf die Breite des in axialer Längsrichtung verlaufenden Schenkelabschnittes 7' der zugehörigen Stichleitung 5 betragen. Gleichwohl kann die Dicke auch sehr viel größer ausgestaltet sein, was allerdings keinen wesentlichen Einfluss auf die elektrische Wirkung hat.
  • Anhand von Figur 4 ist schematisch gezeigt, dass beispielsweise an in Längsrichtung der Transformationsleitung 1' versetzt liegenden Anschlusspunkten 7a jeweils in Umfangsrichtung versetzt liegend mehrere Stichleitungen 5a bis 5c ausgehen, wobei zwei Stichleitungen 5a, 5c nicht gegensinnig zueinander verlaufend wie im Ausführungsbeispiel nach Figuren 1 und 2 ausgerichtet sind. Hier können problemlos zwei, drei oder mehrere Stichleitungen (gegebenenfalls auch in unterschiedlicher Länge zur unterschiedlichen Ausbildung der Bandsperre) vorgesehen sein. Abweichend davon können aber auch die eher radial ausgerichteten die Verbindung zur Transformationsleitung 1' herstellenden Schenkel 7" unterschiedlich lang gestaltet sein, also eine unterschiedliche radiale Höhe zum Innenleiter 1 aufweisen. Damit haben die sich daran anschließenden Schenkel 7' der Stichleitung 5 einen unterschiedlichen Abstand zum Innen- bzw. Außenleiter 1, 11. Dies ermöglicht ebenfalls, dass in einem gleichen Streckenabschnitt zwei oder mehrere Stichleitungen 5 mit ihren frei endenden Schenkel 7' angeordnet werden können, und dabei nicht zwangsläufig in Umfangsrichtung zum Innenleiter versetzt liegen müssen. Sie können auch auf der gleichen Seite des Innenleiters oder nur in Umfangsrichtung gering versetzt liegend angeordnet sein, da sich die frei endenden Schenkelabschnitte 7' aufgrund der unterschiedlich endenden Höhe der ersten Schenkel 7" nicht berühren, sondern in Radialrichtung zum Innenleiter 1, 1' versetzt liegen. Diese Variante mit teilsweiser Überdeckung der Streifenleitungsschenkel 7' ist in Figur 4a wiedergegeben.
  • Insbesondere bei dieser Anordnung wie aber auch bei den Beispielen nach Figur 4 ist zu ersehen, dass die frei endenden Schenkel 7' der Stichleitung in gleicher Richtung oder gegensinnig zueinander verlaufend angeordnet sein können. Dadurch können sich die Stichleitungen, insbesondere die frei endenden Schenkel 7', ganz oder teilweise überdecken (verkoppeln). Die Überdeckung kann auch nur teilweise über unterschiedliche Winkel der Schenkel 7" realisiert sein, indem die frei endenden Schenkel 7' der einzelnen Stichleitungen in Umfangsrichtung um den Innenleiter 1 herum zumindest teilsweise versetzt sind (also dadurch nur eine teilweise Überdeckung der frei endenden Schenkel 7' realisiert ist).
  • Wie Figur 4 auch zeigt, können die Stichleitungen 5 in Längsrichtung des Innenleiters 1, 1' auch nacheinander angeordnet sein, unabhängig davon, ob die frei endenden Schenkel 7' dieser Stichleitung 5 in gleiche Richtung weisen oder gegensinnig am Innenleiter 1 angeordnet sind.
  • Abweichend von dem Ausführungsbeispiel gemäß Figur 1 bis 4 wäre es auch möglich, dass beispielsweise an der Transformationsleitung an einem gemeinsamen Anschlusspunkt 7a lediglich in Umfangsrichtung versetzt liegend zwei oder beispielsweise 3 Stichleitungen 5a, 5b bzw. 5c angeschlossen sind, die unterschiedlich lang sind, die alle drei mit ihrem offenen Ende in eine gemeinsame Richtung oder teilweise in unterschiedlichen Richtungen verlaufend ausgerichtet sein können.
  • Anhand von Figur 5 (die grundsätzlich dem Ausführungsbeispiel gemäß der axialen Schnittdarstellung gemäß Figur 1 entspricht) ist gezeigt, dass beispielsweise auf dem die HF-Signalleitung bildenden HF-Innenleiter 1 und dessen Längsrichtung im Bereich der Stichleitungen ein oder mehrerer Abstandshalter 17 angeordnet sind, die aus einem elektrisch nicht-leitenden Dielektrikum bestehen. Der Außenumfang dieser Abstandshalter 7 dient dann als Anschlagsfläche für die daran gegebenenfalls anliegenden axial verlaufenden Stichleitungen 5, 5a, 5b etc., d.h. der Schenkel 7'.
  • Ebenso können aber - wie in Figur 5 zusätzlich dargestellt ist - alternativ oder ergänzend auch noch auf den Stichleitungsabschnitten 7' elektrisch nicht-leitende dielektrische Abstandshalter 19 angeordnet sein, wodurch ein bestimmter Abstand zu dem sie umgebenden Außenleiterrohr 11 eingehalten werden kann. Diese dielektrischen Abstandshalter 19 können dabei ebenso auch an der Innenseite des Außenleiterrohrs 11 angeordnet und/oder befestigt sein, um die Stichleitungsabschnitte 7' in einem vorbestimmten Abstand zum Außenleiterrohr 11 zu erhalten.
  • Darüber hinaus kann der gesamte Innenraum oder große Teile des Innenraumes innerhalb der Außenleiteranordnung mit einem Dielektrikum aufgefüllt werden, wodurch sich durch Veränderung der dielektrischen Konstante aufgrund des verwendeten Dielektrikums sich ein sog. Verkürzungsfaktor für die Länge der Stichleitungen 5 realisieren lässt.
  • Eine derartige Sperrkreisfilteranordnung oder die Anordnung einer derartigen Bandsperre lässt sich auf einer beliebigen koaxialen HF-Strecke realisieren.
  • Die Erfindung weist große Vorteile aber vor allem auch dann auf, wenn das Filter direkt in eine Buchse oder eine Buchsenanordnung (Verbinder) eingebaut ist. Dies ist beispielsweise anhand von Figur 6 schematisch wiedergegeben.
  • Bei all den gezeigten Ausführungsbeispielen liegt der große Vorteil der Erfindung darin, dass z. B. ein entsprechendes Sperrfilter durch die eine oder mehreren Stichleitungen (die offen enden) problemlos hergestellt und dann lediglich in eine gemeinsame Außenleiteranordnung eingeführt werden muss, die die Signalleitung beispielsweise in Form einer Transformationsleitung und die eine oder mehreren Stichleitungen gemeinsam umgibt. Trotz dieser Anordnung ist keine nachteilige wechselweise Beeinflussung der Funktion der Stichleitungen erkennbar.
  • Anhand von Figur 6 ist nunmehr eine Abwandlung in axialer Schnittdarstellung insoweit gezeigt, als die erfindungsgemäße Lösung mit einer Buchse 100 (Koaxialverbinder) fest verbunden bzw. gemeinsam handhabbar ausgebildet ist.
  • Gemäß Figur 6 ist zu ersehen, dass hier die Filteranordnung so aufgebaut ist, dass der rohrförmige Außenleiter 11 in den Buchsen-Außenleiter 111 und der HF-Innenleiter 1 in den Buchsen-Innenleiter 101 übergeht. Der Buchsen-Innenleiter 101 ist dabei im gezeigten Ausführungsbeispiel nicht steckerförmig (was auch möglich wäre) sondern buchsenförmig gestaltet und weist an seinem Einführende mehrere in Umfangsrichtung durch Längsschlitze voneinander getrennte Kontaktfinger auf.
  • Der Buchsen-Innenleiter 101 ist dabei durch einen Isolator (Dielektrikum) 91 bekannterweise gegenüber dem Außenleiter 111 im Abstand dazu unter Vermeidung eines galvanischen Kontaktes gehalten.
  • Auf der gegenüberliegenden Seite kann der Innenleiter und der Außenleiter unmittelbar in einen Kabelanschluss übergehen, der nicht näher gezeigt ist. Ebenso kann aber auch auf der gegenüberliegenden Seite ein entsprechender Kontaktstecker oder eine entsprechende Kontaktbuchse oder Kontaktstecker (Koaxialverbinder) vorgesehen sein.
  • Im gezeigten Ausführungsbeispiel kann es sich beispielsweise um eine Norm-Buchse gemäß der Norm DIN 7-16 (IEC 60 169-4) handeln. Der grundsätzliche Aufbau ist aber auch für alle anderen Buchsen- oder Steckeranordnungen mit buchsen- oder steckerförmigen Innenleiter bzw. buchsen- oder steckerförmigen Außenleiter realisierbar. Schließlich wird auch noch auf das Ausführungsbeispiel gemäß Figur 7 Bezug genommen, in welchem eine Stichleitung 5 in schematischer Draufsicht wiedergegeben ist. Es kann sich dabei beispielsweise um die Queransicht der in Figur 6 unten liegend eingezeichneten Stichleitungen handeln.
  • Daraus ist zu ersehen, dass die Stichleitung 5 beispielsweise von ihrem Anschlusspunkt 7a ausgehend einen ersten Stichleitungsabschnitt 105a aufweist, der dann über eine nachfolgende Stufe 106 in einen demgegenüber breiteren Stichleitungsabschnitt 105b übergeht. Mit anderen Worten ist die Breite B der Stichleitung 5 zum freien Ende hin größer als in dem ersten Stichleitungsabschnitt 105a, der dem Anschlusspunkt 7' zum HF-Innenleiter 1 bzw. zur Transformationsleitung 1' näher liegt.
  • Bei Bedarf können auch mehrere derartige Abstufungen 106 vorgesehen sein, also nicht nur eine Abstufung mit zwei Stichleitungsabschnitten 105a, 105b in unterschiedlichen Breiten sondern beispielsweise mit drei unterschiedlich breiten Streifenleitungsabschnitten oder noch mehreren.
  • Die Stichleitungen können also mehrstufig ausgebildet sein, d.h. mit unterschiedlichen Breiten (wobei die Erweiterung in Breitenrichtung bevorzugt symmetrisch auf beiden Seiten zur Längsrichtung des Innenleiters vorgesehen ist. Zudem können auch die Durchmesser und Dicken unterschiedlich sein. Durch einen solchen Aufbau lässt sich insgesamt eine sehr breitbandige Filteranordnung realisieren, die in vielen Frequenzbereichen, vor allem in vielen Frequenzbereichen, wie sie im Mobilfunk Anwendung finden, Vorteile aufweisen, beispielsweise in dem Bereich von 694 MHz bis 960 MHz oder beispielsweise auch in dem Bereich von 1710 MHz bis 2700 MHz. Einschränkungen auf bestimmte Frequenzbereiche bestehen allerdings nicht.
  • Abschließend wird unter Bezugnahme auf Figur 8 in Abweichung zur Figur 2 gezeigt, dass grundsätzlich natürlich die einzelnen Stichleitungen, insbesondere wenn zwei oder mehrere Stichleitungen vorgesehen sind, grundsätzlich auch gleich lang ausgebildet sein können, wobei die wirksame Länge parallel zur Transformationsleitung 1' dem parallel dazu verlaufenden Abschnitt der jeweiligen Stichleitungen an der Länge her entsprechen kann.

Claims (23)

  1. Koaxiale Filteranordnung mit den folgenden Merkmalen:
    - mit einem HF-Innenleiter (1) mit einer Transformationsleitung (1'), die sich zwischen zwei in Längsrichtung des HF-Innenleiters (1) versetzt zueinander liegenden Innenleiterabschnitten (1") erstreckt,
    - mit einer rohrförmigen Außenleiter-Anordnung (11), die einen runden oder quadratischen Querschnitt aufweist, innerhalb dessen der HF-Innenleiter (1) mit der Transformationsleitung (1') koaxial angeordnet ist,
    - mit zumindest zwei Stichleitungen (5; 5a, 5b, 5c), die an einem Anschlusspunkt (7a) an der Transformationsleitung (1') elektrisch/galvanisch angeschlossen sind, wozu die Stichleitungen (5; 5a, 5b, 5c) mechanisch und elektrisch mit der Transformationsleitung (1') verbunden sind,
    - die zumindest beiden Stichleitungen (5; 5a, 5b, 5c) sind als elektrisch leitfähige Metallstreifen ausgebildet, wobei die Metallstreifen eine Länge, eine Breite (B) und eine Dicke (D) aufweisen, und die Breite (B) quer zur Längserstreckung der Metallstreifen größer ist als dessen Dicke (D),
    - die Transformationsleitung (1') und die zumindest beiden zusätzlichen, jeweils lediglich eine Innenleiterstruktur aufweisenden Stichleitungen (5; 5a, 5b, 5c) sind in der gemeinsamen Außenleiter-Anordnung (11) angeordnet, und
    - zumindest eine der beiden von der Transformationsleitung (1') abzweigenden und nach Art eines Metallstreifens gebildeten Stichleitungen (5; 5a, 5b, 5c) weist einen Abschnitt (7') auf, der mehr als 60% der Gesamtlänge der betreffenden Stichleitung (5; 5a, 5b, 5c) beträgt, wobei dieser Abschnitt (7') parallel zu dem HF-Innenleiter (1) oder in einem Winkel (α) von weniger als 10° gegenüber der HF-Innenleitung (1) verläuft.
  2. Filteranordnung nach Anspruch 1, dadurch gekennzeichnet, dass der im Wesentlichen parallel oder in einem Winkel α von weniger als 10° oder 5° gegenüber der HF-Innenleitung (1) verlaufende Abschnitt (7') der Stichleitung (5; 5a, 5b, 5c) mehr als 70%, insbesondere mehr als 80% und mehr als 90% oder 95% der Gesamtlänge der betreffenden Stichleitung (5; 5a, 5b, 5c) beträgt.
  3. Filteranordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Abschnitt (7') in einem Winkel (α) von weniger als 10° gegenüber der HF-Innenleitung (1) verläuft oder stufenförmige Abschnitte aufweist, die parallel in unterschiedlichen Abständen zum Außenleiter (11) und/oder in einem unterschiedlichen Abstand zum Innenleiter (1) angeordnet sind.
  4. Filteranordnung nach einem der Ansprüche 1, 2 oder 3, dadurch gekennzeichnet, dass der Abschnitt (7') der zumindest einen Stichleitung (5; 5a, 5b, 5c) über einen Anschluss-Winkel (7) an dem Anschlusspunkt (7a) mit dem HF-Innenleiter (1) mechanisch und elektrisch verbunden ist.
  5. Filteranordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der sich im Wesentlichen parallel zum HF-Innenleiter (1) verlaufende Abschnitt (7') der Stichleitung (5) zumindest näherungsweise parallel zur Innenwandung (11') der Außenleiter-Anordnung (11) angeordnet ist.
  6. Filteranordnung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der streifenförmige Abschnitt (7') der Stichleitung (5) im Querschnitt konvex und damit koaxial zu der hohlzylinderförmigen Außenleiter-Anordnung (11) angeordnet ist.
  7. Filteranordnung nach Anspruch 6, dadurch gekennzeichnet, dass die Stichleitung (5) oder zumindest der frei endende Abschnitt (7') der Stichleitung (5) im Querschnitt quer zur Längserstreckung bogenförmig mit einer zur Außenleiter-Anordnung (11) weisenden konvexen Krümmung ausgeführt ist und daher in Breitenrichtung maximal halbzylinderförmig gestaltet ist, so dass vorzugsweise zwei um 180° zum Innenleiter (1) versetzt liegende Stichleitungen (5) vorzugsweise koaxial zum Innenleiter (1) angeordnet sind.
  8. Filteranordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Impedanz der Filteranordnung durch Veränderung des Abstandes (13) zwischen des im Wesentlichen axial verlaufenden Abschnittes (7') der Stichleitung (5; 5a, 5b) und der Innenwandung (11') der Außenleiteranordnung (11) und/oder durch Veränderung der Breite (B) unterschiedlich einstell- und/oder vorwählbar ist.
  9. Filteranordnung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass auf dem HF-Innenleiter (1) und/ oder auf der zumindest einen Stichleitung (5; 5a, 5b, 5c) eine dielektrische Abstandshalterung (17, 19) aufgesetzt ist, wodurch der Abstand zwischen dem im Wesentlichen parallel zum HF-Innenleiter (1) verlaufenden Abschnitt der Stichleitungen (5; 5a, 5b, 5c) zum HF-Innenleiter (1) begrenzt und/oder festgelegt ist.
  10. Filteranordnung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass auf dem im Wesentlichen axial verlaufenden Abschnitt (7') der Stichleitung (5; 5a, 5b, 5c) und/oder auf der Innenwandung (11') der Außenleiter-Anordnung (11) ein dielektrischer Abstandshalter (19) vorgesehen oder aufgesetzt ist, wodurch der Abstand (13) zwischen dem im Wesentlichen axial verlaufenden Abschnitt der Stichleitung (5; 5a, 5b, 5c) zur Innenwandung (11') der Außenleiter-Anordnung (11) begrenzt und/oder festgelegt ist.
  11. Filteranordnung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Länge der Stichleitung (5) so bemessen ist, dass die Filteranordnung einen Sperrpol mit vorgegebener Frequenz erzeugt.
  12. Filteranordnung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der Raum innerhalb der Außenleiter-Anordnung (11) unter Aufnahme des HF-Innenleiters (1) und der zumindest einen Stichleitung (5; 5a, 5b, 5c) ganz oder teilweise mit einem Dielektrikum aufgefüllt ist.
  13. Filteranordnung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass mehrere Stichleitungen (5) vorgesehen sind.
  14. Filteranordnung nach Anspruch 13, dadurch gekennzeichnet, dass mehrere Stichleitungen (5; 5a, 5b, 5c) in Umfangsrichtung versetzt zueinander liegend so angeordnet sind, dass sie sich zumindest in einer Teillänge des HF-Innenleiters (1) überlappen.
  15. Filteranordnung nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass die mehreren Stichleitungen (5; 5a, 5b, 5c) in gleicher Höhe der HF-Innenleitung (1) an einem gemeinsamen Anschlusspunkt (7') und/oder in Längsrichtung des HF-Innenleiters (1) versetzt zueinander liegend mechanisch und elektrisch gehalten sind.
  16. Filteranordnung nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass die mehreren Stichleitungen (5; 5a, 5b, 5c) mit ihrem freien Ende in gleicher Axialrichtung verlaufend oder gegensinnig zueinander ausgerichtet sind.
  17. Filteranordnung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die mehreren Stichleitungen (5; 5a, 5b, 5c) zur Erzielung einer unterschiedlichen Anzahl von Sperrpolen und damit einer unterschiedlichen Bandbreite der Sperrwirkung unterschiedlich lang sind.
  18. Filteranordnung nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass die Stichleitung (5; 5a, 5b, 5c) über ihre Länge mehrstufig ausgebildet ist und zumindest zwei Abschnitte, nämlich einen Stichleitungsabschnitt (105a) und einen weiteren Stichleitungsabschnitt (105b) umfassen, die sich in der Breite unterscheiden.
  19. Filteranordnung nach Anspruch 18, dadurch gekennzeichnet, dass die unterschiedlich breiten Stichleitungsabschnitte (105a, 105b) vom Anschlusspunkt (7a) in Richtung zum freien Ende einer Stichleitung (5) breiter werden.
  20. Filteranordnung nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass der vom Verbindungspunkt (7a) vom Innenleiter (1) ausgehende Schenkel (7") bezüglich zumindest zweier vorgesehener Innenleiter (5) mit unterschiedlicher Höhe ausgebildet und/oder im unterschiedlichen Radialabstand zum Innenleiter (1) enden, so dass die daran anschließenden frei endenden Abschnitte (7') der Stichleitung (5) vorzugsweise sich teilweise überlappend angeordnet sind.
  21. Filteranordnung nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass zumindest zwei Stichleitungen (5) vorgesehen sind, deren frei endende Abschnitte (7') zumindest in teilweiser Überdeckung zueinander angeordnet sind.
  22. Filteranordnung nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, dass zumindest zwei Stichleitungen (5, 5a, 5b, 5c) vorgesehen sind, die zumindest in ihrer Teillänge in einem gleichen Streckenabschnitt des Innenleiters (1) in Axialrichtung des Innenleiters (1) versetzt zueinander angeordnet sind.
  23. Filteranordnung nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass das Filter in eine Buchse eingebaut ist.
EP10718479.8A 2009-04-30 2010-04-22 Filternanordnung Active EP2374182B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910019547 DE102009019547A1 (de) 2009-04-30 2009-04-30 Filteranordnung
PCT/EP2010/002479 WO2010124810A1 (de) 2009-04-30 2010-04-22 Filternanordnung

Publications (2)

Publication Number Publication Date
EP2374182A1 EP2374182A1 (de) 2011-10-12
EP2374182B1 true EP2374182B1 (de) 2014-07-09

Family

ID=42261803

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10718479.8A Active EP2374182B1 (de) 2009-04-30 2010-04-22 Filternanordnung

Country Status (7)

Country Link
US (1) US8797125B2 (de)
EP (1) EP2374182B1 (de)
CN (1) CN102318133B (de)
DE (1) DE102009019547A1 (de)
ES (1) ES2511996T3 (de)
HK (1) HK1163368A1 (de)
WO (1) WO2010124810A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009031373A1 (de) 2009-07-01 2011-01-05 Kathrein-Werke Kg Hochfrequenzfilter
CN104078726B (zh) * 2014-06-04 2016-07-06 中国电子科技集团公司第十研究所 并联型单侧椭圆函数传输线滤波器
CN104078727B (zh) * 2014-06-04 2016-08-17 中国电子科技集团公司第十研究所 串联型单侧椭圆函数传输线滤波器
EP3281246A4 (de) * 2015-04-07 2018-12-26 Plasma Igniter LLC Radiofrequenz-richtkoppler und filter
DE102015007503A1 (de) 2015-06-11 2016-12-15 Kathrein-Werke Kg Dipolförmige Strahleranordnung
CN107658533B (zh) * 2017-10-20 2020-12-15 京信通信技术(广州)有限公司 带阻滤波器及射频器件
US11962278B2 (en) 2020-06-29 2024-04-16 Qualcomm Incorporated Programmable baseband filter for selectively coupling with at least a portion of another filter
US12009849B2 (en) * 2021-08-25 2024-06-11 Apple Inc. Distributed-element filter for mmWave frequencies

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6278341B1 (en) * 1998-12-01 2001-08-21 Allgon Ab Microstrip filter device
EP1160910A1 (de) * 1999-02-26 2001-12-05 Fujitsu Limited Supraleitendes filtermodul, supreleitendes filter und hitzeisoliertes koaxialkabel
US6614329B1 (en) * 2002-02-01 2003-09-02 Lucix Corporation Radio frequency/microwave/millimeterwave filter

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2392664A (en) * 1943-12-23 1946-01-08 Gen Electric Ultra high frequency filter
US2465801A (en) * 1944-11-20 1949-03-29 Gen Electric Ultra high frequency apparatus
US2751558A (en) * 1952-04-02 1956-06-19 Itt Radio frequency filter
US3343069A (en) * 1963-12-19 1967-09-19 Hughes Aircraft Co Parametric frequency doubler-limiter
CH466454A (de) * 1967-11-23 1968-12-15 Patelhold Patentverwertung Breitband-Filter am Ausgang eines Hochfrequenz-Generators für dielektrische Erwärmung
US3872412A (en) * 1974-04-26 1975-03-18 Bell Telephone Labor Inc Dielectric-loaded chokes
US4004257A (en) * 1975-07-09 1977-01-18 Vitek Electronics, Inc. Transmission line filter
JPH02152302A (ja) * 1988-12-02 1990-06-12 Fujitsu Ltd 2倍波阻止回路
US5291161A (en) * 1991-07-22 1994-03-01 Matsushita Electric Industrial Co., Ltd. Microwave band-pass filter having frequency characteristic of insertion loss steeply increasing on one outside of pass-band
JP2000151207A (ja) * 1998-11-12 2000-05-30 Mitsubishi Electric Corp 低域通過フィルタ
US7372373B2 (en) * 2004-08-27 2008-05-13 Itron, Inc. Embedded antenna and filter apparatus and methodology
EP1689019A1 (de) * 2005-02-03 2006-08-09 Spinner GmbH Koaxiales abgleichbares Filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6278341B1 (en) * 1998-12-01 2001-08-21 Allgon Ab Microstrip filter device
EP1160910A1 (de) * 1999-02-26 2001-12-05 Fujitsu Limited Supraleitendes filtermodul, supreleitendes filter und hitzeisoliertes koaxialkabel
US6614329B1 (en) * 2002-02-01 2003-09-02 Lucix Corporation Radio frequency/microwave/millimeterwave filter

Also Published As

Publication number Publication date
HK1163368A1 (en) 2012-09-07
US20100277260A1 (en) 2010-11-04
US8797125B2 (en) 2014-08-05
CN102318133B (zh) 2014-07-02
CN102318133A (zh) 2012-01-11
WO2010124810A1 (de) 2010-11-04
ES2511996T3 (es) 2014-10-23
EP2374182A1 (de) 2011-10-12
DE102009019547A1 (de) 2010-11-11

Similar Documents

Publication Publication Date Title
EP2374182B1 (de) Filternanordnung
EP3329545B1 (de) Dual-polarisierte antenne
EP2656435B1 (de) Abstimmbares hochfrequenzfilter
DE102017116920A1 (de) Dual-polarisierter Kreuzdipol und Antennenanordnung mit zwei solchen dual-polarisierten Kreuzdipolen
EP0721697A1 (de) Millimeterwellen-mischer in fenstertechnik
EP2912714B1 (de) Abstimmbares hochfrequenzfilter
DE69715362T2 (de) Doppelantenne, insbesondere für ein Fahrzeug
WO2006029868A1 (de) Hochfrequenzfilter
DE69625054T2 (de) Antennenanordnung
EP2287966B1 (de) Antennenstab für eine Stabantenne für mehrere Funkdienste
DE4005654C2 (de)
DE10325595B3 (de) Hochfrequenzfilter, insbesondere nach Art einer Duplexweiche
WO2007051571A2 (de) Monolithisch integrierte schaltung
DE60318725T2 (de) Helixförmige breitbandantenne
EP2071660A1 (de) Hochpassfilter
DE10328881B3 (de) Kontaktfreier HF-Verbinder
EP1741158B1 (de) Impedanzwandlervorrichtung
DE19920980C2 (de) Speise- oder Auskoppelvorrichtung für eine Koaxialleitung, insbesondere für eine Mehrfach-Koaxialleitung
EP0285879B1 (de) Breitband-Polarisationsweiche
EP2009732A1 (de) Abstimmbare Viertelwellen-Filterbaugruppe
AT502158B1 (de) Antennenanordnung
WO2022038003A1 (de) Antenne
EP2920840B1 (de) Hochfrequenz-sperrfilter
EP2533354B1 (de) Vorrichtung zur Kopplung eines HF- Signals längs eines Signalpfades
DE1591559C3 (de) Hochfrequenzleitungsverbindung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

17Q First examination report despatched

Effective date: 20120620

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140225

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 676858

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010007412

Country of ref document: DE

Effective date: 20140821

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2511996

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20141023

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141110

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141010

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141009

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141109

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010007412

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150410

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E023217

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150422

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150422

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 676858

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150422

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160422

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160422

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150422

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160422

Year of fee payment: 7

Ref country code: HU

Payment date: 20160407

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170501

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170423

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170502

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010007412

Country of ref document: DE

Representative=s name: FLACH BAUER & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010007412

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170423

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010007412

Country of ref document: DE

Owner name: ERICSSON AB, SE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010007412

Country of ref document: DE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010007412

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010007412

Country of ref document: DE

Owner name: KATHREIN SE, DE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20190314 AND 20190320

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010007412

Country of ref document: DE

Owner name: ERICSSON AB, SE

Free format text: FORMER OWNER: KATHREIN SE, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010007412

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010007412

Country of ref document: DE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE

Free format text: FORMER OWNER: KATHREIN SE, 83022 ROSENHEIM, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010007412

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010007412

Country of ref document: DE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE

Free format text: FORMER OWNER: ERICSSON AB, STOCKHOLM, SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20210311 AND 20210317

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20210318 AND 20210324

REG Reference to a national code

Ref country code: FI

Ref legal event code: PCE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20220427

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20220427

Year of fee payment: 13

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230423

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230422

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240429

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240429

Year of fee payment: 15