EP2370790A1 - Magnetischer encoder - Google Patents

Magnetischer encoder

Info

Publication number
EP2370790A1
EP2370790A1 EP09764496A EP09764496A EP2370790A1 EP 2370790 A1 EP2370790 A1 EP 2370790A1 EP 09764496 A EP09764496 A EP 09764496A EP 09764496 A EP09764496 A EP 09764496A EP 2370790 A1 EP2370790 A1 EP 2370790A1
Authority
EP
European Patent Office
Prior art keywords
encoder
track
along
magnetic
magnetization directions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09764496A
Other languages
English (en)
French (fr)
Inventor
Heinrich Acker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Teves AG and Co OHG
Original Assignee
Continental Teves AG and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Teves AG and Co OHG filed Critical Continental Teves AG and Co OHG
Publication of EP2370790A1 publication Critical patent/EP2370790A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0215Determination of steering angle by measuring on the steering column
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/80Manufacturing details of magnetic targets for magnetic encoders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]

Definitions

  • the invention relates to a magnetic encoder according to O-berbegriff of claim 1, a method for producing a magnetic encoder according to the preamble of claim 8 and the use of the magnetic encoder in motor vehicle sensor assemblies.
  • Magnetic encoders are known, which are used in sensor arrangements for the direct or indirect measurement of variables such as angle of rotation, length or speed. These magnetic encoders are normally of permanent and hard magnetic design and have an encoder track with a plurality of pole pairs, the magnetic field of these poles being detected by one or more magnetic field sensor elements.
  • the information provided by the encoder about the measurand may generally be coded in the field direction and / or in the field strength.
  • An evaluation of the field direction has the advantage that it is largely independent of temperature, while all permanent magnets show a temperature-dependent field strength.
  • the magnetic field sensor elements also operate temperature-dependent.
  • switching applications state change when crossing a threshold of the measured variable
  • measurements in the narrower sense With regard to the use of such measurements in the strict sense, which can generally be characterized by the fact that a uniform sensitivity, resolution and accuracy in the determination of the measured variable is required over the measuring range, the magnetic encoders discussed and proposed here are preferably provided.
  • a disadvantage of this block-like magnetization consists in the strong cross-sensitivity with respect to the reading distance or the normal distance of the magnetic field sensor element from the encoder track or the encoder surface.
  • the function measured variable f (field direction) is influenced by the fact that at a small distance in relation to the pole length, the magnetic field has magnetization direction changes only in the vicinity of the boundaries between the poles.
  • the field of several poles by superimposing the field of several poles, one obtains a reasonably uniform rotation over the Value range of the measured variable or along the encoder track, as it is metrologically desired.
  • the reading distance or the air gap between the encoder surface or encoder track and magnetic field sensor element should correspond to at least half the pole length of the encoder.
  • the material thickness of the encoder should also be at least half the pole length.
  • Each encoder generates the highest field strength directly on its surface. There, the field direction is also the most precise embossed by the encoder, because external interference fields have a smaller share of the total field - at a distance of half the pole length, the field strength is already much lower and thus the susceptibility higher.
  • a part of the encoder material is used solely to generate a sufficiently strong field so that the magnetic field sensor element can still detect the magnetic field of the poles.
  • Encoders with a high material thickness can be relatively poorly magnetized completely.
  • the object of the invention is to propose a magnetic encoder which at least partially overcomes or at least reduces the above requirements and / or restrictions.
  • the invention is preferably based on the idea of proposing a magnetic encoder with at least one encoder track, which comprises one or more pole pairs, wherein at least one pole has at least one magnetization which comprises monotone and / or continuously changing magnetization directions along the encoder track. These magnetization directions are assigned in particular to adjacent subareas of the pole along the encoder track.
  • the encoder track preferably runs along a measuring direction or a magnetically impressed scale of the encoder and / or is expediently composed of the successive poles.
  • the magnetic encoder is expediently designed as a permanent magnet made of hard magnetic material.
  • the magnetization direction preferably relates to the course direction of the encoder track, that is to say the magnetization direction is always related in particular to a tangent to the encoder track that is applied in the respective subarea.
  • the poles of the magnetic encoder are preferably not block-like and / or homogeneously magnetized.
  • the magnetization directions of the subareas within two successive pole lengths along the encoder track are preferably so pronounced that these magnetization directions essentially represent a rotation through 360 °.
  • the respective changes of the magnetization directions, in particular of all magnetization directions, of adjacent subareas of one or more or all poles along the encoder track are preferably substantially continuous. It is preferred that the respective change in the magnetization directions of adjacent subareas of one or more or all poles along the encoder track is substantially linear with respect to the corresponding path length change along the encoder track.
  • a subregion is preferably understood to mean a region of the one or more or all poles, which is formed infinitely narrow, in particular strip-shaped, along the encoder track.
  • the magnetization directions of these subregions in the middle Segment of this pole substantially a rotation of at least 45 °, in particular at least 70 °, more preferably from 90 ° ⁇ 5 °, imaging and / or that the magnetization directions of the two outermost portions of the middle segment of this Pols at least 45 °, in particular at least 70 °, particularly preferably of 90 ° ⁇ 5 °, are mutually pronounced or rotated against each other, wherein the magnetization directions are always based on the respective course direction of the encoder track.
  • the magnetization directions of these subregions form a rotation of substantially 90 ° in the middle segment of this pole.
  • the encoder track is expediently curved, in particular ring-shaped, formed or alternatively preferably formed substantially straight.
  • the encoder track and / or the encoder are preferably formed substantially corresponding to one of the following geometric shapes: ring, ring segment, flat cylinder, cuboid, long cuboid, flat, disc-shaped cuboid, cylinder, long cylinder or half cylinder, divided along the longitudinal axis.
  • the method be further developed by mechanically moving the raw coder past the field magnet in a rotational movement along the magnetization path and to move the field-generating means in rotation about its own axis in superposition.
  • the magnetizing web is expediently understood to mean a web along the encoder track to be magnetized.
  • the field-generating means is preferably designed as a permanent magnet or alternatively preferably as a coil or coil arrangement, in particular as a superconducting coil or coil arrangement.
  • the raw coder is preferably formed at least partially from ferrite.
  • the method for producing a magnetic encoder is expediently carried out by means of a magnetization device which has two drives or drive means, one of which is the movement of the raw encoder or the field generating means along the magnetization path and the other causes and enables the rotational movement of the field generating means about its own axis.
  • the drives are designed as stepper motors.
  • the magnetization device is expediently designed for prototype production, whereby in each case no special or only for magnetizing a special encoder designed tool must be used to magnetize different encoders, such as differently designed raw encoders and / or different magnetization patterns.
  • the field generating means is rotatably suspended with respect to an axis and in this respect can be rotated so that the field direction changes.
  • the unmagnetized encoder or raw encoder is fastened in a holder in which it can be moved in the same direction as in a finished sensor arrangement in a rotational or translatory manner with respect to the direction of the pole change and the measured variable. Now, the raw encoder and the field generating means are moved so that an angle of the field generating means belongs to each value of the measured quantity, just as in the finished sensor arrangement. If the field generating means is in the immediate vicinity of the encoder surface, the encoder is magnetized in the required manner.
  • the invention also relates to the use of the magnetic encoder in automotive sensor assemblies, particularly in rotary sensor assemblies.
  • the magnetic encoder is preferred for use in sensor Soran angelen provided which are used as path and / or position and / or angle and / or speed sensor arrangements in the automotive sector, in automation technology or in robotics.
  • the use is provided in steering angle sensor assemblies in motor vehicles.
  • FIG. 1 shows an exemplary, annular, magnetic encoder according to the prior art
  • FIG. 3 shows an exemplary annular encoder with magnetization directions rotating continuously along the encoder track
  • FIG. 5 shows an exemplary graph of the magnetization direction as a function of the normalized path length along the encoder track in relation to an encoder with block-like magnetization and to an encoder with an encoder track along the encoder track. continuously rotating magnetization directions, and
  • Fig. 6 is an exemplary magnetization device.
  • Fig. 1 shows an annular encoder with six poles and Fig. 2 is a linear or straight encoder with six poles, both formed in a conventional manner.
  • the magnetization directions 2 of individual portions of the poles 1 are shown by arrows.
  • the poles 1 are magnetized homogeneous or block-like.
  • the encoders therefore have an alternating north-south magnetization.
  • the stringing together of the poles forms, for example, the encoder track.
  • An unrepresented magnetic field sensor element detects the block-like or box-profile-like magnetizations of the poles via their homogeneous magnetic field in the near range or at a relatively small air gap. Only with a relatively large air gap, the magnetic field sensor element can perform an angle measurement in which the detected angle of the magnetic field along the encoder track rotates reasonably evenly, as superimpose the magnetic fields of the adjacent and surrounding poles at a relatively large distance from the encoder track. However, this requires a relatively strong magnetic field of the encoder.
  • Fig. 3 is an exemplary annular encoder with along the encoder track continuously rotating magnetization directions 2, which are isolated or exemplified as arrows illustrated.
  • the encoder track runs thereby exemplarily along the dashed center line 3 of the ring or is by the juxtaposition the pole 1 formed.
  • the magnetization of the encoder and of the poles 1 is designed such that the respective changes in the magnetization directions 2 of adjacent partial regions of the poles 1 along the encoder track are linear and continuous to the path along the encoder track or to the path along the dashed center line 3. Therefore, an unillustrated magnetic field sensor element can detect a uniformly rotating magnetic field along the encoder track even at a relatively small air gap and independently of the air gap length, whereby a radial angle measurement is substantially independent of the air gap length possible.
  • Pol 4 can be subdivided into a middle segment 5 with 50% of the pole length and two border segments 6 delimiting this middle segment 5, each with 25% of the pole length.
  • the magnetization directions 2 of the partial regions form a rotation of substantially 90 °, which is realized in a real encoder by manufacturing inaccuracies, for example as a rotation of 90 ° ⁇ 5 °.
  • the magnetization directions 2 of the two outermost subregions 7 of the middle segment 5 of this pole 4 are mutually pronounced against one another by substantially 90 ° or 90 ° ⁇ 5 °.
  • the subregions are actually formed infinitely narrow along the encoder track, which, however, can not be represented concretely.
  • 4 shows an embodiment of a straight encoder with a magnetization, as explained with reference to FIG. 3. It likewise has corresponding poles 1 and magnetization directions 2 of partial regions whose rotational profile along the encoder track can be seen in detail on the basis of an exemplary pole 4.
  • This pole 4 is likewise subdivided into a corresponding middle segment 5 and two edge segments 6.
  • the field direction ⁇ in degrees is plotted against the normalized encoder track length L / L max , ie the measured variable or the field line profile detected by a magnetic field sensor element along the encoder track of a sensor arrangement (not shown).
  • the solid curve represents a block-like magnetized encoder according to the prior art, measured directly on the surface, with the idealization of block-like poles of FIG. 2.
  • the dashed curve represents the same encoder at the same distance, but taking into account in the Reality always present transition zone between the poles.
  • the dotted curve represents the field direction curve of an exemplary inventive encoder according to FIG. 4 with respect to a relatively freely selectable air gap. This dotted curve likewise represents the field line profile of a conventional block-type magnetized encoder detectable by a magnetic field sensor element in an idealization and at a relatively large air gap if the above rules of thumb regarding the encoder design are met.
  • Fig. 6 is an exemplary magnetizing apparatus for producing a magnetic encoder with along the Encoder track continuously rotating magnetization directions shown.
  • Rozencoder 8 and the unmagnetInstitute encoder is mounted about its center 11 so that it is rotationally movable in the direction of the associated arrow.
  • both motions are carried out coordinated with each other so that each region of the raw encoder 8, when rotated by 11, reaches a point below the field-generating means 9 at a time when the field-generating means 9 is in the proper angular position.
  • Field tool 9 performs exactly three revolutions during one 360 ° revolution of the encoder.
  • the field generating means is additionally arranged displaceable or mounted with respect to its axis, whereby an adjustment in terms of Rozencoder matmessers is easy to carry out.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

Magnetischer Encoder mit wenigstens einer Encoderspur (1, 3), umfassend ein oder mehrere Polpaare, wobei die Magnetisierungsrichtungen (2) von Teilbereichen innerhalb mindestens eines der Pole (1,4) entlang der Encoderspur (1, 3) im Wesentlichen stetig und/oder monoton verändernd ausgeprägt sind.

Description

Magnetischer Encoder
Die Erfindung betrifft einen magnetischen Encoder gemäß O- berbegriff von Anspruch 1, ein Verfahren zur Herstellung eines magnetischen Encoders gemäß Oberbegriff von Anspruch 8 sowie die Verwendung des magnetischen Encoders in Kraftfahrzeug-Sensoranordnungen .
Es sind magnetische Encoder bekannt, welche in Sensoranordnungen zur direkten oder indirekten Messung von Größen, wie beispielsweise Drehwinkel, Länge oder Geschwindigkeit eingesetzt werden. Diese magnetischen Encoder sind normalerweise permanent- und hartmagnetisch ausgebildet und weisen eine Encoderspur mit mehreren Polpaaren auf, wobei das Magnetfeld dieser Pole von einem oder mehreren Magnetfeldsensorelementen erfasst wird.
Die Information, die der Encoder über die Messgröße liefert, kann allgemein in der Feldrichtung und/oder in der Feldstärke codiert sein. Eine Auswertung der Feldrichtung hat den Vorteil, dass diese weitgehend temperaturunabhängig ist, während alle Permanentmagnete eine temperaturabhängige Feldstärke zeigen. Auch die Magnetfeldsensorelemente arbeiten temperaturabhängig . Hinsichtlich der Messaufgaben ist zu unterscheiden zwischen Schaltanwendungen (Zustandswechsel bei Querung einer Schwelle der Messgröße) und Messungen im engeren Sinne. Bezüglich des Einsatzes für solche Messungen im engeren Sinne, die allgemein dadurch charakterisiert werden können, dass über den Messbereich eine gleichmäßige Empfindlichkeit, Auflösung und Genauigkeit bei der Bestimmung der Messgröße gefordert wird, sind die hier diskutierten und vorgeschlagenen magnetischen Encoder bevorzugt vorgesehen.
Aus obiger Forderung nach gleichmäßiger Ausbildung und Wirkung in Verbindung mit der Messung der Feldrichtung ergibt sich, dass die Feldrichtung sich möglichst linear mit der Messgröße ändern sollte. Jede Abweichung davon verursacht einen Fehler oder zumindest Korrekturaufwand im Messsystem. Die übliche Auslegung von Encodern bezüglich deren Berechnung und Magnetisierung betrifft Encoder mit Polen in Form von Blöcken, wobei jeder Pol einer Zone mit im Wesentlichen homogener Magnetisierung hinsichtlich Richtung und Intensität entspricht. Anhand der Fig. 1 und 2 sind solche üblichen magnetischen Encoder veranschaulicht.
Ein Nachteil dieser blockartigen Magnetisierung besteht in der starken Querempfindlichkeit bezüglich des Leseabstands bzw. des Normalenabstandes des Magnetfeldsensorelements von der Encoderspur bzw. der Encoderoberfläche. Die Funktion Messgröße = f (Feldrichtung) wird davon so beeinflusst, dass bei einem geringen Abstand in Relation zur Pollänge, das Magnetfeld nur in der Nähe der Grenzen zwischen den Polen Magnetisierungsrichtungsänderungen aufweist. Bei großem Abstand dagegen erhält man durch Überlagerung des Feldes mehrerer Pole eine einigermaßen gleichmäßige Drehung über den Wertebereich der Messgröße bzw. entlang der Encoderspur, wie es messtechnisch erwünscht ist.
Zur Auslegung von Sensoranordnungen für Feldrichtungsmessungen mit den bekannten blockartig magnetisierten Encodern ist folgenden Anforderungen bzw. Faustregeln zu genügen: Der Leseabstand bzw. der Luftspalt zwischen Encoderoberfläche bzw. Encoderspur und Magnetfeldsensorelement sollte mindestens einer halben Pollänge des Encoders entsprechen. Die Materialstärke des Encoders sollte ebenfalls mindestens die halbe Pollänge betragen.
Diese Anforderungen stehen allerdings in Konflikt zu den nachfolgenden Beschränkungen:
Jeder Encoder erzeugt direkt an seiner Oberfläche die höchste Feldstärke. Dort ist die Feldrichtung auch am präzisesten durch den Encoder geprägt, weil äußere Störfelder einen geringeren Anteil am Gesamtfeld haben - im Abstand der halben Pollänge ist die Feldstärke jedoch bereits deutlich geringer und somit die Störanfälligkeit höher.
Bei einem relativ großen Leseabstand, beispielsweise dem o- ben angesprochenen Luftspalt von mindestens einer halben Pollänge, wird ein Teil des Encodermaterials allein dazu verwendet, ein hinreichend starkes Feld zu erzeugen, damit das Magnetfeldsensorelement das Magnetfeld der Pole noch erfassen kann.
Encoder mit hoher Materialstärke, wie beispielsweise mit einer Stärke von mindestens einer halben Pollänge, lassen sich relativ schlecht vollständig magnetisieren . Je höher die Anforderungen an die Sensoranordnung, desto stärker wird der Zielkonflikt bezüglich des Leseabstandes: Größere Entfernung bedeutet einen Gewinn an Linearität, aber einen Verlust an Feldstärke und damit eine Verschlechterung des Signal-Rausch-Abstandes bzw. Signal-Störungs- Verhältnisses am Magnetfeldsensorelement.
Der Erfindung liegt die Aufgabe zu Grunde, einen magnetischen Encoder vorzuschlagen, welcher obige Anforderungen und/oder Beschränkungen zumindest teilweise aufhebt oder wenigstens vermindert.
Diese Aufgabe wird erfindungsgemäß gelöst durch den magnetischen Encoder gemäß Anspruch 1 und das Verfahren gemäß Anspruch 8.
Der Erfindung liegt vorzugsweise der Gedanke zu Grunde, einen magnetischen Encoder mit wenigstens einer Encoderspur vorzuschlagen, die ein oder mehrere Polpaare umfasst, wobei zumindest ein Pol wenigstens eine Magnetisierung aufweist, welcher entlang der Encoderspur monoton und/oder stetig ändernde Magnetisierungsrichtungen umfasst. Diese Magnetisierungsrichtungen sind dabei insbesondere benachbarten Teilbereichen des Pols entlang der Encoderspur zugeordnet.
Hierdurch besteht bereits an der Oberfläche des Encoders ein im Wesentlichen linearer Zusammenhang zwischen Feldwinkel bzw. erfassbarem Magnetfeld und Messgröße bzw. Relativposition zwischen Encoder und einem Magnetfeldsensorelement. Aus diesem Grund kann bei Verwendung des erfindungsgemäßen magnetischen Encoders in einer Sensoranordnung zur Feldwinkel-/ Feldrichtungserfassung der Leseabstand bzw. Luftspalt zwischen Encoder und Magnetfeldsensorelement relativ gering gehalten werden, also deutlich kleiner als eine halbe Pollänge. Außerdem wird deshalb nur eine relativ geringe Mate- rialstärke des Encoders benötigt, was eine Kostenverringerung ermöglicht und die Störfestigkeit bzw. der Signal- Rausch-Abstand der Sensoranordnung wird durch die nun applizierbare geringe Luftspaltlänge ebenfalls verbessert.
Die Encoderspur verläuft vorzugsweise entlang einer Messrichtung bzw. eines magnetisch aufgeprägten Maßstabs des Encoders und/oder setzt sich zweckmäßigerweise aus den aufeinanderfolgenden Polen zusammen.
Der magnetische Encoder ist zweckmäßigerweise als Permanentmagnet aus hartmagnetischem Material ausgebildet.
Die Magnetisierungsrichtung bezieht sich bevorzugt auf die Verlaufsrichtung der Encoderspur, das heißt die Magnetisierungsrichtung ist insbesondere stets auf eine in dem jeweiligen Teilbereich angelegte Tangente zur Encoderspur bezogen .
Die Pole des magnetischen Encoders sind bevorzugt nicht blockartig und/oder homogen magnetisiert .
Die Magnetisierungsrichtungen der Teilbereiche innerhalb von zwei aufeinander folgenden Pollängen entlang der Encoderspur sind bevorzugt so ausgeprägt, dass diese Magnetisierungsrichtungen im Wesentlichen eine Drehung um 360° abbilden.
Die jeweiligen Änderungen der Magnetisierungsrichtungen, insbesondere sämtlicher Magnetisierungsrichtungen, benachbarter Teilbereiche eines oder mehrerer oder aller Pole entlang der Encoderspur sind vorzugsweise im Wesentlichen kontinuierlich verlaufend ausgeprägt. Es ist bevorzugt, dass die jeweilige Änderung der Magnetisierungsrichtungen benachbarter Teilbereiche eines oder mehrerer oder aller Pole entlang der Encoderspur im Wesentlichen linear zur korrespondierenden Weglängenänderung entlang der Encoderspur ausgeprägt ist.
Unter einem Teilbereich wird vorzugsweise ein Bereich des einen oder der mehreren bzw. sämtlicher Pole verstanden, der infinitesimal schmal, insbesondere streifenförmig, entlang der Encoderspur ausgebildet ist.
Es ist bevorzugt, dass zumindest innerhalb der Teilbereiche in einem mittleren Segment eines Pols, welches bezüglich der Pollänge entlang der Encoderspur 50% dieser Länge umfasst und von zwei Randsegmenten dieses Pols umfassend jeweils 25% der Pollänge beidseitig eingegrenzt wird, die Magnetisierungsrichtungen dieser Teilbereiche im mittleren Segment dieses Pols im Wesentlichen eine Drehung von mindestens 45°, insbesondere mindestens 70°, besonders bevorzugt von 90° ± 5°, abbilden und/oder dass die Magnetisierungsrichtungen der beiden beidseitig äußersten Teilbereiche des mittleren Segments dieses Pols um mindestens 45°, insbesondere mindestens 70°, besonders bevorzugt von 90° ± 5°, zueinander bzw. gegeneinander verdreht ausgeprägt sind, wobei die Magnetisierungsrichtungen stets auf die jeweilige Verlaufsrichtung der Encoderspur bezogen sind. Ganz besonders bevorzugt bilden die Magnetisierungsrichtungen dieser Teilbereiche im mittleren Segment dieses Pols eine Drehung von im Wesentlichen 90° ab . Die Encoderspur ist zweckmäßigerweise gekrümmt, insbesondere ringförmig, ausgebildet oder alternativ vorzugsweise im Wesentlichen gerade ausgebildet.
Die Encoderspur und/oder der Encoder sind bevorzugt im Wesentlichen entsprechend einer der folgenden geometrischen Formen ausgebildet: Ring, Ringsegment, Flachzylinder, Quader, langer Quader, flacher, scheibenförmiger Quader, Zylinder, langer Zylinder oder Halbzylinder, entlang der Längsachse geteilt.
Es ist bevorzugt, dass das Verfahren weitergebildet wird, indem der Rohencoder in einer rotatorischen Bewegung entlang der Magnetisierungsbahn am Felderzeugungsmittel mechanisch geführt vorbeibewegt wird und das Felderzeugungsmittel dazu in Überlagerung um die eigene Achse rotierend bewegt wird.
Unter der Magnetisierungsbahn wird zweckmäßigerweise eine Bahn entlang der zu magnetisierenden Encoderspur verstanden.
Das Felderzeugungsmittel ist vorzugsweise als Permanentmagnet oder alternativ vorzugsweise als Spule bzw. Spulenanordnung ausgebildet, insbesondere als supraleitende Spule bzw. Spulenanordnung .
Der Rohencoder ist bevorzugt zumindest teilweise aus Ferrit ausgebildet .
Das Verfahren zur Herstellung eines magnetischen Encoders wird zweckmäßigerweise mittels einer Magnetisierungsvorrichtung durchgeführt, welche zwei Antriebe oder Antriebsmittel aufweist, von denen einer die Bewegung des Rohencoders oder des Felderzeugungsmittels entlang der Magnetisierungsbahn und der andere die Rotationsbewegung des Felderzeugungsmittels um die eigene Achse hervorruft und ermöglicht. Dabei sind insbesondere die Antriebe als Schrittmotoren ausgebildet. Die Magnetisierungsvorrichtung ist dabei zweckmäßigerweise zur Prototypenfertigung ausgebildet, wodurch zur Magnetisierung unterschiedlicher Encoder, beispielsweise unterschiedlich ausgebildeter Rohencoder und/oder unterschiedlicher Magnetisierungsmuster, jeweils kein spezielles bzw. nur zur Magnetisierung eines speziellen Encoders ausgelegtes Werkzeug verwendet werden muss.
Es ist zweckmäßig, dass das Felderzeugungsmittel bezüglich einer Achse drehbar aufgehängt ist und diesbezüglich so gedreht werden kann, dass die Feldrichtung sich ändert. Der unmagnetisierte Encoder bzw. Rohencoder wird in einer Halte- rung befestigt, in der er in der gleichen Richtung wie in einer fertigen Sensoranordnung rotatorisch oder translatorisch bewegt werden kann, bezüglich der Richtung des Polwechsels und der Messgröße. Nun werden der Rohencoder und das Felderzeugungsmittel so bewegt, dass zu jedem Wert der Messgröße ein Winkel des Felderzeugungsmittels gehört, genau wie in der fertigen Sensoranordnung. Wenn sich das Felderzeugungsmittel dabei in unmittelbarer Nähe der Encoderoberfläche befindet, wird der Encoder in der geforderten Weise magnetisiert .
Die Erfindung bezieht sich außerdem auf die Verwendung des magnetischen Encoders in Kraftfahrzeug-Sensoranordnungen, insbesondere in Drehwinkelsensoranordnungen.
Der magnetische Encoder ist bevorzugt zur Verwendung in Sen- soranordnungen vorgesehen, welche als Weg- und/oder Positi- ons- und/oder Winkel- und/oder Geschwindigkeitssensoranordnungen im Kfz-Bereich, in der Automatisierungstechnik oder in der Robotik eingesetzt werden. Insbesondere ist die Verwendung in Lenkwinkelsensoranordnungen in Kraftfahrzeugen vorgesehen .
Weitere bevorzugte Ausführungsformen ergeben sich aus den Unteransprüchen und den nachfolgenden Beschreibungen von Ausführungsbeispielen an Hand von Figuren.
Es zeigen in schematischer Darstellung
Fig. 1 einen beispielhaften, ringförmigen, magnetischen Encoder gemäß dem Stand der Technik,
Fig. 2 ein Ausführungsbeispiel eines herkömmlichen stab- förmigen Encoders,
Fig. 3 einen beispielhaften ringförmigen Encoder mit entlang der Encoderspur kontinuierlich drehenden Magnetisierungsrichtungen,
Fig. 4 ein Ausführungsbeispiel eines stabsförmigen, geraden Encoder mit entlang der Encoderspur kontinuierlich drehenden Magnetisierungsrichtungen,
Fig. 5 eine beispielhafte graphische Darstellung der Magnetisierungsrichtung in Abhängigkeit der normierten Weglänge entlang der Encoderspur bezogen auf einen Encoder mit blockartiger Magnetisierung und auf einen Encoder mit entlang der Encoderspur kon- tinuierlich drehenden Magnetisierungsrichtungen, und
Fig. 6 eine beispielhafte Magnetisierungsvorrichtung.
Fig. 1 zeigt einen ringförmigen Encoder mit sechs Polen und Fig. 2 einen linearen bzw. geraden Encoder mit sechs Polen, beide in herkömmlicher Weise ausgebildet. Die Magnetisierungsrichtungen 2 einzelner Teilbereiche der Pole 1 sind durch Pfeile dargestellt. Die Pole 1 sind homogen bzw. blockartig magnetisiert . Die Encoder weisen also eine alternierende Nord- Süd- Magnetisierung auf. Die Aneinanderreihung der Pole bildet beispielgemäß die Encoderspur aus.
Ein nicht dargestelltes Magnetfeldsensorelement erfasst im Nahbereich bzw. bei relativ kleinem Luftspalt die blockartigen bzw. kastenprofilartigen Magnetisierungen der Pole über deren homogenes Magnetfeld. Nur bei einem relativ großen Luftspalt kann das Magnetfeldsensorelement eine Winkelmessung durchführen, bei welcher sich der erfasste Winkel des Magnetfeldes entlang der Encoderspur einigermaßen gleichmäßig dreht, da sich bei relativ großem Abstand zur Encoderspur die Magnetfelder der benachbarten und umliegenden Pole überlagern. Hierzu ist jedoch ein relativ starkes Magnetfeld des Encoders erforderlich.
In Fig. 3 ist ein beispielhafter, ringförmiger Encoder mit entlang der Encoderspur kontinuierlich drehenden Magnetisierungsrichtungen 2, welche vereinzelt bzw. exemplarisch als Pfeile veranschaulicht sind, dargestellt. Die Encoderspur verläuft dabei beispielhaft entlang der gestrichelten Mittellinie 3 des Rings bzw. wird durch die Aneinanderreihung der Pole 1 gebildet. Die Magnetisierung des Encoders und der Pole 1 ist derart ausgebildet, dass die jeweiligen Änderung en der Magnetisierungsrichtungen 2 benachbarter Teilbereiche der Pole 1 entlang der Encoderspur linear und kontinuierlich zur Weglänge entlang der Encoderspur bzw. zur Weglänge entlang der gestrichelten Mittellinie 3 verlaufend ausgeprägt sind. Deshalb kann ein nicht dargestelltes Magnetfeldsensorelement auch bei relativ geringem Luftspalt und unabhängig von der Luftspaltlänge ein gleichmäßig drehend ausgeprägtes Magnetfeld entlang der Encoderspur erfassen, wodurch eine radiale Winkelmessung im Wesentlichen unabhängig von der Luftspaltlänge möglich ist.
Anhand des Pols 4 wird beispielhaft die Magnetisierung der Pole 1 detaillierter erläutert. Pol 4 kann in ein mittleres Segment 5 mit 50% der Pollänge und zwei dieses mittlere Segment 5 eingrenzende Randsegmente 6 mit jeweils 25% der Pollänge unterteilt werden. Innerhalb dieses mittleren Segments 5 bilden die Magnetisierungsrichtungen 2 der Teilbereiche eine Drehung von im Wesentlichen 90° ab, was bei einem realen Encoder durch Fertigungsungenauigkeiten beispielsweise als Drehung von 90° ± 5° realisiert ist. Anders ausgedrückt sind die Magnetisierungsrichtungen 2 der beiden beidseitig äußersten Teilbereiche 7 des mittleren Segments 5 dieses Pols 4 gegeneinander um im Wesentlichen 90° bzw. 90° ± 5° verdreht ausgeprägt.
Die Teilbereiche sind beispielhaft eigentlich infinitesimal schmal entlang der Encoderspur ausgebildet, was allerdings nicht konkret darstellbar ist. Fig. 4 zeigt ein Ausführungsbeispiel eines geraden Encoders mit einer Magnetisierung, wie anhand der Fig. 3 erläutert. Es weist ebenfalls entsprechende Pole 1 und Magnetisierungsrichtungen 2 von Teilbereichen auf, deren drehender Verlauf entlang der Encoderspur anhand eines exemplarischen Pols 4 detailliert erkennbar ist. Dieser Pol 4 ist ebenfalls in ein entsprechendes mittleres Segment 5 und zwei Randsegmente 6 unterteilbar .
In Fig. 5 ist zur Verdeutlichung die Feldrichtung Φ in Grad über die normierte Encoderspurlänge L/Lmax, d.h. die Messgröße bzw. der von einem Magnetfeldsensorelement erfasste Feldlinienverlauf entlang der Encoderspur, einer nicht dargestellten Sensoranordnung, aufgetragen. Die durchgezogene Kurve repräsentiert dabei einen blockartig magnetisierten Encoder nach dem Stand der Technik, direkt an der Oberfläche gemessen, mit der Idealisierung von blockartigen Polen gemäß Fig. 2. Die gestrichelte Kurve stellt den gleichen Encoder in gleichem Abstand dar, aber unter Berücksichtigung einer in der Realität immer vorhandenen Übergangszone zwischen den Polen. Die gepunktete Kurve stellt den Feldrichtungsverlauf eines beispielhaften, erfindungsgemäßen Encoders gemäß Fig. 4 bezüglich eines relativ frei wählbaren Luftspalts dar. Diese gepunktete Kurve stellt ebenfalls den von einem Magnetfeldsensorelement erfassbaren Feldlinienverlauf eines herkömmlichen, blockartig magnetisierten Encoders in einer Idealisierung und bei einem relativ großen Luftspalt dar, falls die weiter oben erläuterten Faustregeln zum Encoderdesign eingehalten werden.
In Fig. 6 ist eine beispielhafte Magnetisierungsvorrichtung zur Herstellung eines magnetischen Encoders mit entlang der Encoderspur kontinuierlich drehenden Magnetisierungsrichtungen dargestellt. Rohencoder 8 bzw. der unmagnetisierte Encoder ist um sein Zentrum 11 so gelagert, dass er in Richtung des zugehörigen Pfeils rotatorisch bewegbar ist. Felderzeugungsmittel 9, beispielgemäß als stabförmiger Permanentmagnet ausgebildet, ist bezüglich der Achse 10 drehbar gelagert .
Zur Magnetisierung werden beide Bewegungen koordiniert zueinander ausgeführt, damit jeder Bereich des Rohencoders 8 bei dessen Drehung um 11 einen Punkt unter Felderzeugsmittel 9 zu einem Zeitpunkt erreicht, zu dem Felderzeugungsmittel 9 sich in der passenden Winkelstellung befindet. Nach einer vollständigen Umdrehung des Encoders ist dessen Magnetisierung, beispielgemäß nach Fig. 3, abgeschlossen. Dazu führt Felderzeugsmittel 9 während der einen 360 ° -Umdrehung des Encoders genau drei Umdrehungen aus. Mittels dieses Verfahrens lassen sich leicht verschiedene Encoder unterschiedlicher Polzahlen mit dem gleichen Aufbau realisieren. Nur das Übersetzungsverhältnis bzw. die relative Winkelgeschwindigkeit der Antriebe müssen geändert werden, was z.B. mit Schrittmotoren leicht zu erzielen ist.
In einem nicht dargestellten Ausführungsbeispiel ist das Felderzeugungsmittel bezüglich seiner Achse zusätzlich verschiebbar angeordnet bzw. gelagert, wodurch auch eine Anpassung hinsichtlich des Rohencoderdurchmessers einfach durchführbar ist.

Claims

Patentansprüche
1. Magnetischer Encoder mit wenigstens einer Encoderspur
(1, 3), umfassend ein oder mehrere Polpaare, dadurch gekennzeichnet, dass die Magnetisierungsrichtungen (2) von Teilbereichen innerhalb mindestens eines der Pole (1,4) entlang der Encoderspur (1, 3) im Wesentlichen stetig und/oder monoton verändernd ausgeprägt sind.
2. Magnetischer Encoder nach Anspruch 1, dadurch gekennzeichnet, dass die Magnetisierungsrichtungen (2) der Teilbereiche innerhalb von zwei aufeinander folgenden Pollängen entlang der Encoderspur (1, 3) so ausgeprägt sind, dass diese Magnetisierungsrichtungen (2) im Wesentlichen eine Drehung um 360° abbilden.
3. Magnetischer Encoder nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die jeweiligen Änderungen der Magnetisierungsrichtungen (2) benachbarter Teilbereiche eines oder mehrerer Pole (1, 4) entlang der Encoderspur (1, 3) im Wesentlichen kontinuierlich verlaufend ausgeprägt sind.
4. Magnetischer Encoder nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die jeweilige Änderung der Magnetisierungsrichtungen (2) benachbarter Teilbereiche eines oder mehrerer Pole (1, 4) entlang der Encoderspur (1, 3) im Wesentlichen linear zu einer korrespondierenden Weglängenänderung entlang der Encoderspur (1, 3) ausgeprägt ist.
5. Magnetischer Encoder nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Teilbereiche des einen oder der mehreren Pole (1, 4) infinitesimal schmal entlang der Encoderspur (1, 3) ausgebildet sind.
6. Magnetischer Encoder nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zumindest innerhalb der Teilbereiche in einem mittleren Segment (5) eines Pols (4), welches bezüglich der Pollänge entlang der Encoderspur (1, 3) 50% dieser Länge umfasst und von zwei Randsegmenten (6) dieses Pols (4) umfassend jeweils 25% der Pollänge beidseitig eingegrenzt wird, die Magnetisierungsrichtungen (2) dieser Teilbereiche im mittleren Segment (5) dieses Pols im Wesentlichen eine Drehung von mindestens 45°, insbesondere mindestens 70°, abbilden und/oder dass die Magnetisierungsrichtungen (2) der beiden beidseitig äußersten Teilbereiche (7) des mittleren Segments (5) dieses Pols um mindestens 45°, insbesondere mindestens 70°, zueinander bzw. gegeneinander verdreht ausgeprägt sind, wobei die Magnetisierungsrichtungen stets auf die jeweilige Verlaufsrichtung der Encoderspur bezogen sind.
7. Magnetischer Encoder nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Encoderspur (1, 3) gekrümmt, insbesondere ringförmig, oder im Wesentlichen gerade ausgebildet ist.
8. Verfahren zu Herstellung eines magnetischen Encoders, insbesondere eines magnetischen Encoders gemäß mindestens einem der Ansprüche 1 bis 7, wobei ein Rohencoder (8), welcher zumindest teilweise magnetisierbar ausge- bildet ist, dem Magnetfeld eines Felderzeugungsmittels
(9) ausgesetzt wird, dadurch gekennzeichnet, dass das Felderzeugungsmittel (9) drehbar gelagert ist, wobei der Rohencoder (8) magnetisiert wird, indem das Felderzeugungsmittel (9) und/oder der Rohencoder (8) in einem definierten Abstand relativ zueinander zur Erzeugung einer Encoderspur (1, 3) auf einer definierten Magnetisierungsbahn bewegt wird/werden und das Felderzeugungsmittel (9) dabei in definierter Weise um sich selbst gedreht wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der Rohencoder (8) in einer rotatorischen Bewegung entlang der Magnetisierungsbahn am Felderzeugungsmittel (9) mechanisch geführt vorbeibewegt wird und das Felderzeugungsmittel (9) dazu in Überlagerung um die eigene Achse
(10) rotierend bewegt wird.
10. Verwendung des magnetischen Encoders nach mindestens einem der Ansprüche 1 bis 7 in Kraftfahrzeug- Sensoranordnungen, insbesondere in Drehwinkelsensoranordnungen .
EP09764496A 2008-12-01 2009-12-01 Magnetischer encoder Withdrawn EP2370790A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008059774A DE102008059774A1 (de) 2008-12-01 2008-12-01 Magnetischer Encoder
PCT/EP2009/066137 WO2010063712A1 (de) 2008-12-01 2009-12-01 Magnetischer encoder

Publications (1)

Publication Number Publication Date
EP2370790A1 true EP2370790A1 (de) 2011-10-05

Family

ID=42025829

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09764496A Withdrawn EP2370790A1 (de) 2008-12-01 2009-12-01 Magnetischer encoder

Country Status (6)

Country Link
US (1) US20110304324A1 (de)
EP (1) EP2370790A1 (de)
KR (1) KR20110106329A (de)
CN (1) CN102227614A (de)
DE (1) DE102008059774A1 (de)
WO (1) WO2010063712A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2568259B1 (de) * 2011-09-06 2019-04-03 Carl Freudenberg KG Encoderring und Anordnung
DE102012111653A1 (de) * 2012-11-30 2014-06-05 Conti Temic Microelectronic Gmbh Erfassung einer Position auf einer Verfahrstrecke
JP6323699B1 (ja) * 2017-03-22 2018-05-16 Tdk株式会社 角度センサおよび角度センサシステム
FR3078775B1 (fr) * 2018-03-12 2020-04-03 Ntn-Snr Roulements Systeme de determination d'au moins un parametre de rotation d'un organe tournant
FR3082615B1 (fr) 2018-06-15 2020-10-16 Electricfil Automotive Methode de determination d'une position angulaire relative entre deux pieces
FR3087256B1 (fr) 2018-10-15 2020-10-30 Electricfil Automotive Methode et systeme capteur de determination d'une position angulaire relative entre deux pieces, et procede de fabrication d'un corps magnetique

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501105A (en) * 1991-10-02 1996-03-26 Monitoring Technology Corp. Digital signal processing of encoder signals to detect resonances in rotating machines
DE19849613A1 (de) * 1998-10-28 2000-05-04 Philips Corp Intellectual Pty Anordnung zur Messung einer relativen linearen Position
KR100337359B1 (ko) * 1999-12-15 2002-05-21 이계안 차량의 주행단 밀림 방지장치 및 그 제어방법
JP2004012190A (ja) * 2002-06-04 2004-01-15 Sumitomo Electric Ind Ltd 回転検出センサ
DE102004004025A1 (de) * 2004-01-20 2004-10-28 Valeo Schalter Und Sensoren Gmbh Lenkwinkelsensor
JP4586800B2 (ja) * 2004-07-12 2010-11-24 Nok株式会社 磁気エンコーダ
JP4605352B2 (ja) * 2004-08-17 2011-01-05 Nok株式会社 磁気ロータリエンコーダ用パルサーリング
WO2006076968A1 (en) * 2005-01-21 2006-07-27 Bourns Inc. A sensor
CN1677047A (zh) * 2005-04-28 2005-10-05 成都依姆特高科技有限责任公司 机动车踏板位置传感装置
FR2898189B1 (fr) * 2006-03-02 2008-10-17 Moving Magnet Tech Capteur de position a direction d'aimantation variable et procede de realisation
DE102007013755B4 (de) * 2007-03-22 2020-10-29 Te Connectivity Germany Gmbh Indikatorelement für einen magnetischen Drehwinkelgeber
EP2225142B1 (de) * 2007-11-30 2011-04-13 Continental Teves AG & Co. oHG Absolut messende lenkwinkelsensoranordnung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010063712A1 *

Also Published As

Publication number Publication date
US20110304324A1 (en) 2011-12-15
CN102227614A (zh) 2011-10-26
WO2010063712A1 (de) 2010-06-10
DE102008059774A1 (de) 2010-06-02
KR20110106329A (ko) 2011-09-28

Similar Documents

Publication Publication Date Title
EP2225142B1 (de) Absolut messende lenkwinkelsensoranordnung
EP2122303B1 (de) Anordnung und verfahren zur absolutbestimmung der linearposition oder der durch einen winkel ausgedrükten drehposition
DE102012202404B4 (de) Drehwinkelsensor zur absoluten Drehwinkelbestimmung auch bei mehrfachen Umdrehungen
EP3563116B1 (de) Wegsensor
EP0990120A1 (de) Winkelgeber und verfahren zur winkelbestimmung
DE102012109787B4 (de) Lenkwinkelsensor für Kraftfahrzeuge
EP2180296A1 (de) Drehwinkelbestimmungsvorrichtung, insbesondere für die Lenkungswelle eines Kraftfahrzeugs
WO2013186001A1 (de) Magnetgeberring einer rotorlagesensorik eines elektrisch kommutierten elektromotors
DE19630764A1 (de) Meßvorrichtung zur berührungslosen Erfassung einer Relativbewegung
EP2370790A1 (de) Magnetischer encoder
EP1832851B1 (de) Positionsgeber für ein Stellelement, Linearmotor und Verfahren zum Herstellen eines Linearmotors
EP3936828B1 (de) Gebersystem für einen antrieb
WO2021069014A1 (de) Sensorvorrichtung zur erfassung der drehwinkelstellung einer drehbeweglichen welle sowie lenkungsanordnung eines fahrzeugs
EP0715151A1 (de) Massverkörperung und Verfahren zur Herstellung dieser Massverkörperung
DE10360613B4 (de) Verfahren zur Herstellung eines magnetischen Multipolencoders
DE102006060622A1 (de) Vorrichtung zur Stellungserfassung eines sich bewegenden Bauteils
EP2834601B1 (de) Verfahren und anordnung zur positionsbestimmung eines bauteils
DE10309027A1 (de) Absolut messende Winkelmeßeinrichtung
DE112018000654T5 (de) Magnetkodierer und Verfahren zu dessen Herstellung
DE102004001570B4 (de) Messverfahren sowie Messvorrichtung zum Durchführen des Messverfahrens
DE112018000646T5 (de) Magnetkodierer und Verfahren und Vorrichtung zu dessen Herstellung
EP1321743B1 (de) Absolutlängenmesssystem, bei dem ein Massstab relativ zur Position von beabstandeten Längesensoren bewegt wird
DE102012221327A1 (de) Sensorvorrichtung zur Bestimmung mindestens einer Rotationseigenschaft eines rotierenden Elements
DE112018000642T5 (de) Magnetkodierer und Verfahren zu dessen Herstellung
EP3557188B1 (de) Magnetisierte kolbenstange zur wegmessung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140701