EP2354724B1 - Klimaanlage und Verfahren zur Steuerung einer Klimaanlage - Google Patents

Klimaanlage und Verfahren zur Steuerung einer Klimaanlage Download PDF

Info

Publication number
EP2354724B1
EP2354724B1 EP11153578.7A EP11153578A EP2354724B1 EP 2354724 B1 EP2354724 B1 EP 2354724B1 EP 11153578 A EP11153578 A EP 11153578A EP 2354724 B1 EP2354724 B1 EP 2354724B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
heat exchanger
air conditioner
indoor
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11153578.7A
Other languages
English (en)
French (fr)
Other versions
EP2354724A2 (de
EP2354724A3 (de
Inventor
Kiback Kwon
Sunghwan Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of EP2354724A2 publication Critical patent/EP2354724A2/de
Publication of EP2354724A3 publication Critical patent/EP2354724A3/de
Application granted granted Critical
Publication of EP2354724B1 publication Critical patent/EP2354724B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to an air conditioner and a method for controlling the air conditioner, and more particularly, to an air conditioner, which detects refrigerant leak in real time, and a method for controlling the air conditioner.
  • An air conditioner refers to a device for adjusting the condition of air to keep the air in a certain space in a condition which makes it comfortable to live in.
  • Such an air conditioner functions to absorb heat within a certain space or release heat to the space so that the temperature and humidity of the space are kept at a proper level.
  • the air conditioner of this type necessarily needs an indoor unit for absorbing heat within a certain space or releasing heat to the space.
  • EP 1 270 292 (A2) relates to a method for detecting refrigerant loss in a refrigerant circuit and cooling or air conditioning installation.
  • US 2007/204635 (A1) relates to an air conditioning apparatus that judges normality or abnormality based on operation characteristics detected from the air conditioning apparatus at normal time and operation characteristics at the present.
  • JP 2006 292211 (A ) relates to accurately determine the suitability of the amount of refrigerants charged in a separate type air conditioner where the outdoor unit is connected to the indoor unit via a refrigerant communication pipe, even when an outdoor heat exchanger or an indoor heat exchanger ages.
  • US 2004/159114 (A1) relates to a method of monitoring refrigerant level (filling amount of refrigerant) in a refrigerant circuit of an air-conditioning or heat-pump system with a compressor and a refrigerant operated in the supercritical range as a function of the operating point.
  • EP 1 970 651 (A1) relates to a refrigerating air-conditioning system having a refrigerant leakage detection function, refrigerating air-conditioner, and method therefor.
  • EP 1 876 403 (A1) relates to a function to judge the adequacy of the refrigerant quantity charged in a multi-type air conditioner in which a heat source unit and a plurality of utilization units are interconnected via refrigerant communication pipes.
  • FIG. 1 is a configuration diagram of an air conditioner according to an exemplary embodiment of the present invention.
  • the air conditioner according to the exemplary embodiment of the present invention comprises an outdoor unit OU and a plurality of indoor units IUs.
  • the outdoor unit OU comprises a compressor 110, an outdoor heat exchanger 140, an outdoor expansion valve 132, and a super cooler 180.
  • the air conditioner may comprise one or a plurality of outdoor units OUs, and one outdoor unit OU is provided in this exemplary embodiment.
  • the compressor 110 compresses an incoming low-temperature low-pressure refrigerant into a high-temperature high-pressure refrigerant.
  • the compressor 110 may have various structures, and an inverter type compressor or constant-speed compressor may be employed.
  • a discharge temperature sensor 171 and a discharge pressure sensor 151 are installed on a discharge pipe 161 of the compressor 110.
  • a suction temperature sensor 175 and a suction pressure sensor 154 are installed on a suction pipe 168 of the compressor 110.
  • the outdoor unit OU is shown to have one compressor 110, but without being limited thereto, the outdoor unit OU of the present invention may comprise a plurality of compressors, including both an inverter type compressor and a constant-speed compressor.
  • An accumulator 187 may be installed at the suction pipe 168 of the compressor 110 to prevent a liquid refrigerant from being introduced into the compressor 110. Further, an oil separator 113 may be installed at the discharge pipe 161 of the compressor 110 to collect oil in the refrigerant discharged from the compressor 110.
  • a four-way valve 160 is a flow switching valve to switch between cooling and heating operations.
  • the four-way valve 160 guides the refrigerant, compressed by the compressor 110, to the outdoor heat exchanger 140 during the cooling operation, and to an indoor heat exchanger 120 during the heating operation.
  • the four-way valve 160 is in an A state in the cooling operation, and is in a B state in the heating operation.
  • the outdoor heat exchanger 140 is disposed in an outdoor space, and the refrigerant passing through the outdoor heat exchanger 140 exchanges heat with outdoor air.
  • the outdoor heat exchanger 140 serves as a condenser in the cooling operation and serves as an evaporator in the heating operation.
  • An outdoor outlet temperature sensor 179 is installed on an inlet pipe 166 connecting a liquid pipe 165 and the outdoor heat exchanger 140.
  • the outdoor expansion valve 132 throttles the incoming refrigerant flow in the heating operation, and is installed on the inlet pipe 166. Further, a first bypass pipe 167 to allow the refrigerant to bypass the outdoor expansion valve 132 is installed on the inlet pipe 166, and a check valve 133 is installed on the first bypass pipe 167 to allow refrigerant to only flow in one direction.
  • the check valve 133 causes the refrigerant to flow from the outdoor heat exchanger 140 to the plurality of indoor units IUs in the cooling operation, but shuts off the flow of the refrigerant in the heating operation.
  • the supercooler 180 includes a supercooling heat exchanger 184, a second bypass pipe 181, a supercooling expansion valve 182, and a discharge pipe 185.
  • the supercooling heat exchanger 184 is disposed on the inlet pipe 166.
  • the second bypass pipe 181 serves to cause the refrigerant discharged from the supercooling heat exchanger 184 to be fed into the supercooling expansion valve 182.
  • the supercooling expansion valve 182 is disposed on the second bypass pipe 181.
  • the supercooling expansion valve 182 throttles the refrigerant flow in a liquid state fed into the second bypass pipe 181 to lower the pressure and temperature of the refrigerant, and then feeds the refrigerant in the low-pressure and low-temperature state into the supercooling heat exchanger 184.
  • the supercooling expansion valve 182 may employ various types of valves, but the present embodiment employs a linear expansion valve for convenience of use.
  • a supercooler inlet temperature sensor 177 to measure the temperature of the refrigerant throtteld by the supercooling expansion valve 182 may be installed on the second bypass pipe 181.
  • the condensed refrigerant passing through the outdoor heat exchanger 140 is supercooled by exchanging heat with the refrigerant in the low-temperature state fed through the second bypass pipe 181 in the supercooling heat exchanger 184, and then is fed to the plurality of indoor units IUs.
  • the refrigerant passing through the second bypass pipe 181 is fed to the accumulator 187 through the discharge pipe 185, after undergoing heat-exchange in the supercooling heat exchanger 184.
  • a supercooler outlet temperature sensor 178 to measure the temperature of the refrigerant fed to the accumulator 187 is installed on the discharge pipe 185.
  • a liquid pipe temperature sensor 174 and a liquid pipe pressure sensor 156 are installed on the liquid pipe 165 connecting the supercooler 180 and the plurality of indoor units IUs.
  • each of the plurality of indoor units IUs comprises an indoor heat exchanger 120, an indoor air blower 125, and an indoor expansion valve 131.
  • the air conditioner may include one indoor unit IU or a plurality of indoor units IUs. In this exemplary embodiment, a plurality of IUs (1 to n) are provided.
  • the indoor heat exchanger 120 is disposed in an indoor space, and the refrigerant passing through the indoor heat exchanger 120 exchanges heat with indoor air.
  • the indoor heat exchanger 120 serves as an evaporator in the cooling operation, and serves as a condenser in the heating operation.
  • the indoor air blower 125 blows indoor air that undergoes heat exchange in the indoor heat exchanger 120.
  • the indoor expansion valve 131 throttles the incoming refrigerant flow in the cooling operation.
  • the indoor expansion valve 131 is installed on an indoor inlet pipe 163 of the indoor unit IU.
  • the indoor expansion valve 131 may employ various types of valves, but the present embodiment employs a linear expansion valve for convenience of use.
  • the indoor expansion valve 131 is opened to a set opening degree during the cooling operation, and is completely opened during the heating operation.
  • the indoor expansion valve 131 may be closed during the blowing operation.
  • the closing of the indoor expansion valve 131 does not mean complete physical closing, but means an opening degree of the indoor expansion valve 131 such that the refrigerant does not flow through the indoor expansion valve 131.
  • the indoor expansion valve 131 may be closed or opened in order to detect a malfunction.
  • An indoor inlet pipe temperature sensor 173 may be installed on the indoor inlet pipe 163.
  • the indoor inlet pipe temperature sensor 173 may be installed between the indoor heat exchanger 120 and the indoor expansion valve 131.
  • an indoor outlet pipe temperature sensor 172 may be installed on an indoor outlet pipe 164.
  • the flow of the refrigerant during the cooling operation of the above-described air conditioner is as follows.
  • the refrigerant in a high-temperature and high-pressure vapor state discharged from the compressor 110 is fed into the outdoor heat exchanger 140 via the four-way valve 160.
  • the refrigerant exchanges heat with the outdoor air, thus being condensed.
  • the refrigerant discharged from the outdoor heat exchanger 140 is fed to the supercooler 180 through the completely open outdoor expansion valve 132 and the bypass pipe 133.
  • the refrigerant fed to the supercooler 180 is supercooled by the supercooling heat exchanger 184, and then is fed to the plurality of indoor units IUs.
  • a part of the refrigerant supercooled by the supercooling heat exchanger 184 is throttled by the supercooling expansion valve 182 to supercool the refrigerant passing through the supercooling heat exchanger 184.
  • a part of the refrigerant supercooled by the supercooling heat exchanger 184 is fed to the accumulator 187.
  • the refrigerant fed to each of the indoor units IUs is throttled by the indoor expansion valve 131 that is open to a set opening degree, and the refrigerant is then evaporated by exchanging heat with the indoor air in the indoor heat exchanger 120.
  • the evaporated refrigerant is then fed into the compressor 110 via the four-way valve 160 and the accumulator 187.
  • the flow of the refrigerant during the heating operation of the above-described air conditioner is as follows.
  • the refrigerant in a high-temperature and high-pressure vapor state discharged from the compressor 110 is fed into the plurality of indoor units IUs via the four-way valve 160.
  • the indoor expansion valve 131 of each of the plurality of indoor units IUs is completely open. Therefore, the refrigerant fed from the indoor units IUs is throttled by the outdoor expansion valve 132, and then is evaporated by exchanging heat with outdoor air in the outdoor heat exchanger 140.
  • the evaporated refrigerant is then fed into the suction pipe 168 of the compressor 110 via the four-way valve 160 and the accumulator 187.
  • FIG. 2 is a block diagram of the air conditioner according to an exemplary embodiment of the present invention.
  • the discharge temperature sensor 171 measures the temperature of the refrigerant discharged from the compressor 110.
  • the discharge temperature sensor 171 is installed on the discharge pipe 161 of the compressor 110.
  • a control unit 190 determines through the discharge temperature sensor 171 whether or not a high-pressure condensation temperature has a normal value in a normal operating state.
  • the indoor outlet pipe temperature sensor 172 measures the temperature of the refrigerant discharged from the indoor heat exchanger 120.
  • the indoor outlet pipe temperature sensor 172 is installed on the indoor outlet pipe 164.
  • the control unit 190 determines through the indoor outlet pipe temperature sensor 172 whether or not a low-pressure evaporation temperature is normal in the normal operating state.
  • the indoor inlet pipe temperature sensor 173 measures the temperature of the refrigerant fed to the indoor heat exchanger 120.
  • the indoor inlet pipe temperature sensor 173 is installed on the indoor inlet pipe 163 connecting the indoor heat exchanger 120 and the indoor expansion valve 131.
  • the control unit 190 determines through the indoor inlet pipe temperature sensor 173 whether or not an indoor inlet pipe temperature is normal in the normal operating state. Further, the control unit 190 calculates the difference between a temperature measured by the indoor outlet pipe temperatures sensor 172 and a temperature measured by the indoor inlet pipe temperature sensor 173 to determine whether or not the superheating degree of the indoor heat exchanger is normal in the normal operating state.
  • the liquid pipe temperature sensor 174 measures the temperature of the refrigerant flowing between the supercooler 180 and the indoor heat exchanger 120.
  • the liquid pipe temperature sensor 174 is installed on the liquid pipe 165 connecting the supercooler 180 and the indoor units IUs.
  • the control unit 190 determines through the liquid pipe temperature sensor 174 whether or not a liquid pipe temperature is normal in the normal operating state.
  • the suction temperature sensor 175 measures the temperature of the refrigerant sucked into the compressor 110.
  • the suction temperature sensor 175 is installed on the suction pipe 168 of the compressor 110.
  • the control unit 190 determines through the suction temperature sensor 175 whether or not a suction temperature is normal in the normal operating state.
  • the supercooler inlet temperature sensor 177 measures the temperature of the refrigerant throttled for supercooling in the supercooler 180.
  • the supercooler inlet temperature sensor 177 is installed on the second bypass pipe 181.
  • the supercooler outlet temperature sensor 178 measures the temperature of the refrigerant heat-exchanged after being throttled for supercooling in the supercooler 180.
  • the supercooler outlet temperature sensor 178 is installed on the discharge pipe 185.
  • the control unit 190 calculates the difference between a temperature measured by the supercooler inlet temperature sensor 177 and a temperature measured by the supercooler outlet temperature sensor 178 to determine whether or not the superheating degree of a supercooling circuit is normal in the normal operating state.
  • the outdoor outlet temperature sensor 179 measures the temperature of the refrigerant to be condensed in the outdoor heat exchanger 140 during the cooling operation or to be evaporated in the outdoor heat exchanger 140 during the heating operation.
  • the outdoor outlet temperature sensor 179 is installed on the inlet pipe 166.
  • the control unit 190 determines through the outdoor outlet temperature sensor 179 whether or not an outdoor heat exchanger outlet temperature is normal in the normal operating state.
  • An opening degree of the indoor expansion valve 131 is transmitted to the control unit 190 so that the control unit 190 determines whether or not the opening degree of the indoor expansion valve is normal in the normal operating state.
  • An opening degree of the supercooling expansion valve 182 is transmitted to the control unit 190 so that the control unit 190 determines whether or not the opening degree of the supercooling expansion valve is normal in the normal operating state.
  • the high-pressure pressure sensor 151 measures the pressure of the refrigerant discharged from the compressor 110.
  • the high-pressure sensor 151 is installed on the discharge pipe 161 of the compressor 110.
  • the control unit 190 determines through the high-pressure sensor 151 whether or not a discharge superheating degree has a normal value in the normal operating state by calculating the saturation temperature of the discharged refrigerant and calculating the difference with the discharge temperature measured by the discharge temperature sensor 171.
  • the low-pressure sensor 154 measures the pressure of the refrigerant sucked into the compressor 110.
  • the low-pressure sensor 154 is installed on the suction pipe 162 of the compressor 110.
  • the control unit 190 determines through the low-pressure sensor 154 whether or not a suction superheating degree is normal in the normal operating state by calculating the saturation temperature of the sucked refrigerant and calculating the difference with the suction temperature measured by the suction temperature sensor 175.
  • the liquid pipe pressure sensor 156 measures the pressure of the refrigerant flowing between the supercooler 180 and the indoor heat exchanger 120.
  • the liquid pipe pressure sensor 156 is installed on the liquid pipe 165 connecting the supercooler 180 and the indoor unit IU.
  • the control unit 190 determines through the liquid pipe pressure sensor 156 whether or not a supercooling degree is normal in the normal operating state by calculating the saturation temperature of the supercooled refrigerant and calculating the difference with the liquid temperature measured by the liquid pipe temperature sensor 174.
  • the control unit 190 tracks a cycle change from operating variables measured in real time in the normal operating state to detect refrigerant leak from the cycle change.
  • the operating variables include a discharge superheat degree at the discharge side of the compressor and may further include at least one of a suction superheating degree, an indoor inlet pipe temperature, a suction temperature, a condensation temperature, an evaporation temperature, a supercooling temperature, a liquid pipe temperature, the opening degree of the superheating expansion valve, the overheating degree of the supercooling circuit, the superheating degree of the indoor heat exchanger, and an outdoor heat exchanger outlet temperature.
  • the normal operating state refers to a state where a general cooling or heating operation is performed normally by superheating degree control, rather than by start-up control or by direct control of the outdoor unit.
  • the control unit 190 tracks a change in cooling cycle or heating cycle from a change on a Pressure Enthalpy(P-H) diagram (Mollier diagram). Upon detecting refrigerant leak, the control unit 190 transmits the detection result to the display unit 192 or the communication unit 194 to notify the outside of this detection result.
  • P-H Pressure Enthalpy
  • the display unit 192 externally displays result of the detecting the refrigerant leak.
  • the display unit 192 can aurally or visually represent refrigerant leak, preferably, visually displays the refrigerant leak by 7 segment or LED.
  • the communication unit 194 externally transmits result of the detecting the refrigerant leak via a network.
  • the communication unit 194 transmits the result of the detecting the refrigerant leak to a control center or the terminal of a service engineer at a distance via the network and displays it.
  • FIG. 3 is a view showing a P-H diagram of the air conditioner according to the present invention.
  • the cycle obtained at a normal refrigerant amount and the cycle obtained during refrigerant leak are different.
  • a method of determining the normality of a discharge superheating degree will be discussed.
  • the discharge superheating degree at the normal refrigerant amount is T1
  • the discharge superheating degree during the refrigerant leak is T2. That is, the normal value of the discharge superheating degree is T1.
  • the control unit 190 tracks whether or not the discharge superheating degree is T2 in the normal operating state to detect refrigerant leak.
  • FIG. 4 is a flowchart showing a method for controlling an air conditioner according to an exemplary embodiment of the present invention.
  • the operating variables include a discharge superheat degree at the discharge side of the compressor and may further include at least one of a suction superheating degree, an indoor inlet pipe temperature, a suction temperature, a condensation temperature, an evaporation temperature, a supercooling temperature, a liquid pipe temperature, the opening degree of the superheating expansion valve, the overheating degree of the supercooling circuit, the superheating degree of the indoor heat exchanger, and an outdoor heat exchanger outlet temperature.
  • the normal operating state refers to a state where a general cooling operation is performed normally by means of superheating degree control, rather than by means of start-up control or direct control of the outdoor unit.
  • a cycle change is tracked from the operating variables to detect refrigerant leak (S220).
  • the control unit 190 determines normality by tracking a change in cooling cycle from a change on the P-H diagram.
  • a self-supercooling degree of the outdoor heat exchanger attains a reference value (S230).
  • the self-supercooling degree of the outdoor heat exchanger is the difference between a condensation temperature measured by the discharge temperature sensor 171 and an outdoor heat exchanger outlet temperature measured by the outdoor outlet temperature sensor 179. If there is any refrigerant left in the accumulator 187, this can be considered as refrigerant leak, and therefore the control unit 190 determines whether or not the self-supercooling degree of the outdoor heat exchanger attains the reference value.
  • control unit 190 measures the operating variables again in the normal operating state (S270).
  • a target superheating degree of the indoor heat exchanger is increased (S240).
  • the superheating degree of the indoor heat exchanger is the difference between a temperature measured by the indoor outlet pipe temperature sensor 172 and a temperature measured by the indoor inlet pipe temperature sensor 173.
  • the control unit 190 increases the target superheating degree of the indoor heat exchanger to empty the refrigerant left in the accumulator 187.
  • the timer is increased (S250), and the control unit 190 determines if the timer exceeds a reference time (S260). If the timer does not exceed the reference time, the control unit 190 determines whether or not the self-supercooling degree of the outdoor heat exchanger attains the reference value (S230).
  • the control unit 190 increases accuracy by detecting the refrigerant leak once again.
  • a refrigerant leak state is displayed or transmitted (S290).
  • the control unit 190 transmits the detection result to the display unit 192 or the communication unit 194 to represent result of the detecting refrigerant leak.
  • the display unit 192 externally displays the result of the detecting refrigerant leak.
  • the communication unit 194 externally transmits the result of the detecting refrigerant leak via a network.
  • refrigerant leak can be detected in real time by self-monitoring of the air conditioner.
  • the accuracy of detection of refrigerant leak of the air conditioner can be increased.
  • refrigerant leak of the air conditioner can be quickly detected, thereby preventing additional failures and minimizing environmental contamination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Claims (6)

  1. Verfahren zum Steuern einer Klimaanlage, wobei die Klimaanlage eine Außeneinheit mit einem Verdichter, einem Außenwärmetauscher und einem Unterkühler und eine Inneneinheit mit einem Innenwärmetauscher aufweist, wobei das Verfahren aufweist:
    während des normalen Kühlbetriebs, Verfolgen einer Zyklusänderung von einem Ausstoßüberhitzungsgrad an der Ausstoßseite des Verdichters der Klimaanlage (S220), wobei sich der normale Kühlbetrieb auf einen Zustand bezieht, in dem ein Kühlbetrieb mittels einer Überhitzungsgradsteuerung durchgeführt wird,
    Ermitteln eines Kältemittellecks aus der Zyklusänderung basierend auf dem Ausstoßüberhitzungsgrad, wobei die Zyklusänderung eine Änderung in einem Druck-Enthalpie-Diagramm (P-H-Diagramm) ist, wobei sich im P-H-Diagramm der Zyklus, der bei einer normalen Kältemittelmenge erhalten wird, und der Zyklus unterscheiden, der während eines Kältemittellecks erhalten wird, wobei sich der Ausstoßüberhitzungsgrad (T1) bei der normalen Kältemittelmenge und der Ausstoßüberhitzungsgrad (T2) während des Kältemittellecks unterscheiden,
    Bestimmen, ob ein Selbstunterkühlungsgrad des Außenwärmetauschers einen Referenzwert erreicht oder nicht, wenn ein Kältemittelleck ermittelt wird (S230);
    wobei der Selbstunterkühlungsgrad des Außenwärmetauschers eine Differenz zwischen einer Temperatur des vom Verdichter abgegebenen Kältemittels und einer Temperatur des Kältemittels am Auslass des Außenwärmetauschers ist;
    Erhöhen eines Zielüberhitzungsgrades des Innenwärmetauschers der Klimaanlage, wenn der Selbstunterkühlungsgrad nicht den Referenzwert (S240) erreicht; und
    erneutes Ermitteln eines Kältemittellecks (S280); und
    Darstellen des Ergebnisses des Ermittelns eines Kältemittellecks (S290).
  2. Verfahren nach Anspruch 1, wobei das Ergebnis des Ermittelns eines Kältemittellecks an der Klimaanlage angezeigt wird.
  3. Verfahren nach Anspruch 1 oder 2, bei dem das Ergebnis des Ermittelns eines Kältemittellecks über ein Netzwerk übertragen wird.
  4. Klimaanlage, die aufweist:
    eine Außeneinheit mit einem Verdichter (110) zum Verdichten von Kältemittel, einem Wärmetauscher (140), der mit dem Verdichter verbunden ist, um Kältemittel zu kondensieren und Wärme mit Außenluft auszutauschen, und einem Unterkühler (180);
    eine Inneneinheit mit einem Wärmetauscher (120), der mit der Außeneinheit verbunden ist, um Wärme mit der Innenluft zu tauschen;
    einen Außenauslass-Temperatursensor (179) zum Messen einer Temperatur des im Außenwärmetauscher zu kondensierenden Kältemittels;
    einen Ausstoßtemperatursensor (171) zum Messen einer Temperatur des vom Verdichter ausgestoßenen Kältemittels; und
    eine Steuereinheit (190), die konfiguriert ist, während des normalen Kühlbetriebs einen Zykluswechsel von einem Ausstoßüberhitzungsgrad an der Ausstoßseite des Verdichters zu verfolgen,
    wobei sich der normale Kühlbetrieb auf einen Zustand bezieht, in dem ein Kühlbetrieb mittels einer Überhitzungsgradsteuerung durchgeführt wird,
    wobei die Steuereinheit konfiguriert ist, ein Kältemittelleck aus der Zyklusänderung basierend auf dem Ausstoßüberhitzungsgrad zu ermitteln, wobei sich im P-H-Diagramm der Zyklus, der bei einer normalen Kältemittelmenge erhalten wird, und der Zyklus unterscheiden, der während des Kältemittellecks erhalten wird, wobei sich der Ausstoßüberhitzungsgrad (T1) bei der normalen Kältemittelmenge und der Ausstoßüberhitzungsgrad (T2) während des Kältemittellecks unterscheiden,
    wobei die Steuereinheit konfiguriert ist:
    zu bestimmen, ob ein Selbstunterkühlungsgrad des Außenwärmetauschers einen Referenzwert erreicht oder nicht,
    wobei die Steuereinheit konfiguriert ist, einen Zielüberhitzungsgrad des Innenraum-Wärmetauschers der Klimaanlage zu erhöhen, wenn der Selbst-Unterkühlungsgrad den Referenzwert nicht erreicht, wobei der Selbstunterkühlungsgrad des Außenwärmetauschers eine Differenz zwischen der vom Ausstoßtemperatursensor gemessenen Temperatur und der Temperatur am Auslass des Außen-Temperatursensors ist,
    ein Kältemittellecks erneut zu ermitteln, und
    das Ergebnis des Ermittelns eines Kältemittellecks zu repräsentieren.
  5. Klimaanlage nach Anspruch 4, die ferner eine Anzeigeeinheit (192) zum Anzeigen des von der Steuereinheit ermittelten Kältemittellecks aufweist.
  6. Klimaanlage nach Anspruch 4 oder 5, die ferner eine Kommunikationseinheit (194) aufweist, um das Ergebnis des von der Steuereinheit ermittelten Kältemittellecks über ein Netzwerk zu übertragen.
EP11153578.7A 2010-02-08 2011-02-07 Klimaanlage und Verfahren zur Steuerung einer Klimaanlage Active EP2354724B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100011515A KR101155345B1 (ko) 2010-02-08 2010-02-08 공기조화기 및 공기조화기의 제어방법

Publications (3)

Publication Number Publication Date
EP2354724A2 EP2354724A2 (de) 2011-08-10
EP2354724A3 EP2354724A3 (de) 2014-11-26
EP2354724B1 true EP2354724B1 (de) 2024-04-03

Family

ID=44070033

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11153578.7A Active EP2354724B1 (de) 2010-02-08 2011-02-07 Klimaanlage und Verfahren zur Steuerung einer Klimaanlage

Country Status (3)

Country Link
EP (1) EP2354724B1 (de)
KR (1) KR101155345B1 (de)
CN (1) CN102147142B (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103791594B (zh) * 2012-10-30 2017-02-01 珠海格力电器股份有限公司 热泵空调***及防止***内漏的控制方法
CN104567158B (zh) * 2014-12-19 2017-02-22 李宁 控制制冷机***中制冷液泄漏量的***及方法
CN104949411B (zh) * 2015-06-09 2018-07-17 广东美的暖通设备有限公司 一种冷媒量检测装置、具有该检测装置的空调及检测方法
JP6590945B2 (ja) * 2015-12-11 2019-10-16 三菱電機株式会社 冷凍装置
CN105546771B (zh) * 2016-02-29 2018-05-08 美的集团武汉制冷设备有限公司 空调器冷媒泄漏检测的方法和装置
JP6825336B2 (ja) * 2016-11-30 2021-02-03 ダイキン工業株式会社 冷凍装置
JP6875423B2 (ja) * 2017-01-19 2021-05-26 三菱電機株式会社 冷凍サイクル装置
IL252452B (en) * 2017-05-23 2021-12-01 Smartgreen Ltd Methods for identifying cooling shortages in cooling systems with multiple cooling locations
CN107341520B (zh) * 2017-07-10 2019-10-01 美的集团股份有限公司 冰箱故障的判断方法、服务器和计算机可读存储介质
CN110375468B (zh) 2018-04-13 2022-10-11 开利公司 风冷热泵***、用于其的制冷剂泄漏检测方法及检测***
CN110375466B (zh) 2018-04-13 2022-10-28 开利公司 用于空气源热泵***的制冷剂泄露的检测装置和方法
CN110836434B (zh) * 2018-08-16 2021-06-25 奥克斯空调股份有限公司 一种空调器制冷剂泄漏检测方法及装置
CN110836519B (zh) * 2018-08-16 2021-06-22 奥克斯空调股份有限公司 一种空调器冷媒泄漏检测方法及检测***
CN110857804B (zh) * 2018-08-24 2021-04-27 奥克斯空调股份有限公司 一种空调器冷媒泄漏故障的检测方法及其空调器
JP6732862B2 (ja) * 2018-12-06 2020-07-29 三菱電機株式会社 冷凍装置
CN110044033A (zh) * 2019-04-29 2019-07-23 广东美的制冷设备有限公司 空调的制冷剂泄漏检测方法、***及空调
US11231198B2 (en) 2019-09-05 2022-01-25 Trane International Inc. Systems and methods for refrigerant leak detection in a climate control system
CN111520870B (zh) * 2020-03-26 2022-05-10 青岛海信日立空调***有限公司 空调***
JP2020169807A (ja) * 2020-07-08 2020-10-15 三菱電機株式会社 冷凍装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122711A (ja) * 1996-10-18 1998-05-15 Matsushita Electric Ind Co Ltd 冷凍サイクル制御装置
DE10061545A1 (de) * 2000-12-11 2002-06-13 Behr Gmbh & Co Verfahren zur Kältemittel-Füllmengenüberwachung
DE10130986A1 (de) * 2001-06-27 2003-01-16 Behr Gmbh & Co Verfahren zur Erkennung eines Kältemittelverlusts in einem Kältemittelkreislauf und Kälte- oder Klimaanlage
KR100432224B1 (ko) * 2002-05-01 2004-05-20 삼성전자주식회사 공기 조화기의 냉매 누설 검출 방법
CN1566826A (zh) * 2003-06-17 2005-01-19 乐金电子(天津)电器有限公司 一拖多空调器及其控制方法
WO2006090451A1 (ja) * 2005-02-24 2006-08-31 Mitsubishi Denki Kabushiki Kaisha 空気調和装置
CN100580347C (zh) * 2005-04-07 2010-01-13 大金工业株式会社 空调装置的制冷剂量判定***
JP3963190B2 (ja) * 2005-04-07 2007-08-22 ダイキン工業株式会社 空気調和装置の冷媒量判定システム
JP4462096B2 (ja) * 2005-04-07 2010-05-12 ダイキン工業株式会社 空気調和装置
CN1888644A (zh) * 2005-06-27 2007-01-03 乐金电子(天津)电器有限公司 空气调节器的冷媒泄漏感知方法
ES2742529T3 (es) * 2006-09-21 2020-02-14 Mitsubishi Electric Corp Sistema de refrigeración/acondicionamiento de aire con función de detección de fugas de refrigerante, acondicionador de aire/refrigerador y método para detectar fugas de refrigerante
KR100857598B1 (ko) * 2007-02-09 2008-09-09 삼성전자주식회사 공기조화기의 냉매누설 감지방법
JP4806793B2 (ja) * 2007-10-04 2011-11-02 群馬県 冷凍装置の冷媒漏れ検出方法
JP4412385B2 (ja) * 2007-10-22 2010-02-10 三菱電機株式会社 冷凍サイクル装置の冷媒漏れ検知方法
KR101282038B1 (ko) * 2008-03-19 2013-07-04 삼성전자주식회사 멀티 공기조화기 및 그 제어 방법
JP2009236332A (ja) * 2008-03-26 2009-10-15 Gunma Prefecture 冷凍装置の冷媒漏れ検出方法
KR101498621B1 (ko) * 2008-03-28 2015-03-04 엘지전자 주식회사 공기조화 시스템

Also Published As

Publication number Publication date
EP2354724A2 (de) 2011-08-10
KR101155345B1 (ko) 2012-06-11
CN102147142B (zh) 2014-05-07
EP2354724A3 (de) 2014-11-26
KR20110092072A (ko) 2011-08-17
CN102147142A (zh) 2011-08-10

Similar Documents

Publication Publication Date Title
EP2354724B1 (de) Klimaanlage und Verfahren zur Steuerung einer Klimaanlage
EP3205955A1 (de) Klimaanlage
JP5234167B2 (ja) 漏洩診断装置
JP3852472B2 (ja) 空気調和装置
EP2204621B1 (de) Klimaanlage und Verfahren zur Erkennung der Fehlfunktion davon
US9239180B2 (en) Refrigeration and air-conditioning apparatus
EP3279580B1 (de) Klimatisierungsvorrichtung
US11346570B2 (en) Refrigerant leakage determination system and refrigeration cycle apparatus
JP3750457B2 (ja) 冷凍空調装置
US8069682B2 (en) Air conditioner that corrects refrigerant quantity determination based on refrigerant temperature
KR20090033830A (ko) 공기 조화 장치
WO2005121664A1 (ja) 空気調和装置
JP6404727B2 (ja) ヒートポンプ
WO2005019742A1 (ja) 冷凍装置
JP6636151B2 (ja) 空気調和装置
JP7257782B2 (ja) 空気調和システム
US12013139B2 (en) Air conditioning apparatus, management device, and connection pipe
JP7401795B2 (ja) 冷媒漏洩判定システム
JPWO2019053858A1 (ja) 冷凍サイクル装置および冷凍装置
JP2016003848A (ja) 空気調和システムおよびその制御方法
EP3361190B1 (de) Kältekreislaufvorrichtung und steuerungsverfahren zur bestimmung von lecks in einem bypass-ventil einer kältekreislaufvorrichtung
JP5306450B2 (ja) 冷凍空調装置およびその冷媒充填方法
GB2560455A (en) Air-conditioning device
JP7397286B2 (ja) 冷凍サイクル装置
JP2023034884A (ja) 冷凍サイクル装置及び冷媒漏洩を判定する方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110302

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 40/00 20060101ALI20141023BHEP

Ipc: F25B 49/00 20060101ALI20141023BHEP

Ipc: F25B 13/00 20060101AFI20141023BHEP

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191029

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231004

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LG ELECTRONICS INC.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011074683

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D