EP2333269A2 - Mehrwege-Ventil mit geringem Druckverlust - Google Patents

Mehrwege-Ventil mit geringem Druckverlust Download PDF

Info

Publication number
EP2333269A2
EP2333269A2 EP10176789A EP10176789A EP2333269A2 EP 2333269 A2 EP2333269 A2 EP 2333269A2 EP 10176789 A EP10176789 A EP 10176789A EP 10176789 A EP10176789 A EP 10176789A EP 2333269 A2 EP2333269 A2 EP 2333269A2
Authority
EP
European Patent Office
Prior art keywords
valve
short
valve body
circuit
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10176789A
Other languages
English (en)
French (fr)
Other versions
EP2333269B1 (de
EP2333269B8 (de
EP2333269A3 (de
Inventor
Andreas Auweder
Eike Willers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr Kornwestheim GmbH
Original Assignee
Behr Thermot Tronik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr Thermot Tronik GmbH filed Critical Behr Thermot Tronik GmbH
Publication of EP2333269A2 publication Critical patent/EP2333269A2/de
Publication of EP2333269A3 publication Critical patent/EP2333269A3/de
Publication of EP2333269B1 publication Critical patent/EP2333269B1/de
Application granted granted Critical
Publication of EP2333269B8 publication Critical patent/EP2333269B8/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control

Definitions

  • the invention relates to a multi-way valve, in particular a 3/2-way valve, with a short-circuit channel and arranged between an inlet and a drain main valve unit comprising a valve seat and a cooperating valve body.
  • Multi-way valves are used for a wide variety of applications.
  • two connection channels are referred to as inlet and outlet and a third connection channel as a short-circuit channel in connection with the invention.
  • a connection of inlet and short-circuit channel forms a main flow direction in use.
  • an installation is conceivable in which inlet and outlet are reversed in the function.
  • Multi-way valves are used for example in the cooling circuit in motor vehicles, depending on the use of the valve in an engine exhaust control or an engine entry control coming from the engine or a motor going to the engine coolant flow depending on a use position of the valve via a radiator or bypassing the radiator on a Shorting channel is performed.
  • increasingly less powerful water pumps are used in a cooling circuit, so as to reduce fuel and / or to optimize an energy balance for the motor vehicle.
  • valve units in particular thermostatic valves, with a low flow resistance necessary.
  • thermostatic valve having a main valve unit, comprising a valve seat and a valve disk that is movable relative to it, in such a way that the valve seat and valve disk have pressure-optimized shapes and / or contours.
  • a thermostatic valve wherein a valve plate or Vontilglied is inclined in an opening operation with respect to the longitudinal alignment of a valve housing to achieve an increase in a flow cross-section.
  • a multi-way valve having an inlet, a drain and a short-circuit channel and having a main valve unit arranged between the inlet and the outlet, comprising a valve seat and a valve body cooperating therewith, wherein the main valve unit is designed as an oblique seat valve, such that the valve seat is arranged diagonally between inlet and outlet, forming an angle 0 ° ⁇
  • the object is further achieved by a method for reducing the pressure loss in a multi-way valve, wherein a valve seat of a arranged between an inlet and a drain of a medium main valve unit, diagonally forming an angle 0 ° ⁇
  • Valves which are moved in the flow direction for opening and closing, are referred to in the context of the invention as axial valves.
  • an effective area or flow area is maximized in accordance with the invention.
  • An actuation of the main valve inlet opening designed as an oblique seat valve can be regarded as a combination of actuation of an axial valve with an axially effective surface and a poppet valve with a radially effective surface.
  • the two effective surfaces are responsible for the pressure loss. In the diagonal arrangement, the two surfaces add together as far as possible.
  • the surface viewed in the flow direction is an elliptical, crescent-shaped slider contour surface whose size depends on an angle ⁇ and a valve lift.
  • Transverse to the flow direction is further to consider an additional radial surface, which results in the lifting of the valve body of the associated valve seat at the defined angle ⁇ and with a defined stroke.
  • the surface responsible for the pressure loss is larger than in a conventional axial valve and / or in a conventional poppet valve with the same diameter of the valve body. As a result, the pressure loss is reduced.
  • the short-circuiting channel branches off substantially perpendicularly, so that the valve body is mounted so as to be displaceable substantially perpendicular to a flow direction.
  • various drives such as mechanical drives such as a threaded spindle or a threaded rod
  • electronic drives for example via an electric motor
  • drives with shape memory materials and thermostatic drives are conceivable.
  • the multi-way valve is for any fluids, such as liquids such as engine oils, gear oils or coolants, or gases, such as exhaust gases, advantageous.
  • the valve body is designed as a valve disk, in particular as a valve disk with a substantially circular cross-section.
  • a contour of the valve body is designed for a flow optimization, for example, the valve body has a semi-circular or conical contour.
  • valve body is designed as a valve disk having an elliptical cross section, wherein a main axis of the ellipse extends transversely to the flow direction and to the axial direction. Due to the elliptical cross-section, a further reduction of pressure distortion can be realized.
  • the valve body is displaceably mounted by means of at least one, preferably by means of three guide means.
  • the number of guides is dependent on a shape of the valve body. Particularly in the case of a valve body with a circular cross-section, three guides are preferably provided in order to reliably avoid undesired shifting.
  • a guide nose is provided on a peripheral surface of the valve body, which is guided in a slot on a housing of the multi-way valve to prevent rotation of the valve body.
  • the guide nose is designed, for example prism-shaped.
  • Such a guide lug allows good guidance in the axial direction, i. in the direction of a valve lift, at the same time a rotation is reliably prevented.
  • the angle ⁇ of the valve seat is preferably between 20 ° and 70 °; in particular between 30 ° and 60 °; preferably between 40 ° and 50 °.
  • an angle of 45 ° is particularly advantageous for tool production. Depending on the requirements, however, other angles are conceivable and favorable for a valve behavior.
  • a return spring is provided, wherein the valve body is adjustable against the force of the return spring.
  • the return spring is mounted in one embodiment in the short-circuit channel.
  • the short-circuit spring is supported on a housing cover.
  • a cross member is provided for a holder of the return spring.
  • a valve body of the main valve unit is designed with a valve body of a short-circuit valve unit as a common component. This results in a particularly space-optimized design.
  • the short-circuit valve comprises an annular slide element in one embodiment.
  • the annular slide element is arranged, for example together with the valve body of the main valve on a piston, so that both valves are actuated together.
  • the annular slide element is formed on the valve body of the main valve.
  • the short-circuit valve comprises a differential pressure valve.
  • the differential pressure or overpressure valve is designed such that until reaching a defined opening pressure, a flow is prevented.
  • a thermostatic valve with a multi-way valve according to the invention.
  • a thermostatic valve at least one thermostatic working element is provided, wherein the main valve and the short-circuit valve can be actuated by means of the at least one thermostatic working element.
  • the thermostatic valve can be used for example in a cooling circuit of a vehicle for an engine inlet control and / or an engine outlet control.
  • an identical design of the valve body is possible for an engine inlet control and an engine outlet control.
  • an arrangement of the guide elements for the valve body and the other components is adapted for use in an engine inlet control or engine exhaust control.
  • Fig. 1 schematically shows a multi-way valve 1 with a arranged between an inlet 2 and a drain 3 main valve unit 4 and a short-circuit channel 5, which is closed by a short-circuit valve unit 6.
  • the short-circuit channel 5 branches off substantially perpendicularly from a flow direction S between the inlet 2 and the outlet 3.
  • a short-circuit operation is shown, wherein the main valve unit 4 is closed and the short-circuit valve unit 6 is opened.
  • the Mehrwegew valve 1 is a medium flow from the inlet 2 to the short-circuit channel 5, as shown by arrows I or the short-circuit channel 5 to the inlet, as shown by arrows II, possible.
  • a space in the housing 10 between the main valve unit and the short-circuit valve unit 6 is also referred to as a mixing space or distribution space.
  • the main valve unit 4 comprises a valve seat 41, which is formed in a housing 10 of the multi-way valve 1, and a cooperating with the valve seat 41 valve body 40, which is formed in the illustrated embodiment as a valve disk.
  • the valve body 40 and the associated valve seat 41 are arranged so that they form an angle ⁇ with the flow direction S. In the illustrated Embodiment, the angle ⁇ is about 45 °.
  • the valve body 40 is displaceably mounted in the short-circuit channel 5. An adjustment of the valve body 40 is carried out substantially perpendicular to the flow direction S in the axial direction A of the short-circuiting channel fifth
  • a drive 7 comprising a schematically illustrated threaded spindle 70 is provided.
  • the valve body 40 is guided during displacement by guide grooves 80, 81 in the housing 10.
  • a displacement of the valve body 40 takes place counter to the force of a return spring 9, which is mounted in the short-circuit channel 5 in the illustrated embodiment.
  • the short-circuit valve unit 6 comprises an annular slide element 61, wherein in the illustrated embodiment, the annular slide element 61 and the valve body 40 are designed as a common component.
  • a of the short-circuit channel 5 is responsible for a pressure loss surface compared to embodiments with a perpendicular to the flow direction poppet valve at the same sizes and increases the same valve lift, thereby reducing a pressure drop.
  • the return spring 9 can be made smaller in comparison to a perpendicular to the flow direction S poppet valve.
  • the housing 10 is divided into two parts.
  • the drive 7 is merely exemplary. Of course, other drives, such as an electric motor drive and / or a drive can be used by means of shape memory material.
  • Fig. 2 shows a second embodiment of a multi-way valve 1 according to the invention, which is designed as a thermostatic valve.
  • An actuation of the main valve unit 4 and the short-circuit valve unit 6 takes place by means of a thermostatic working element 7, comprising a piston 73, which is mounted in a housing sch Kunststofflich 73 and expelled depending on a temperature by means of an expansion material, not shown, from the housing 74 becomes.
  • the return spring 9 is supported on a housing cover 11.
  • the annular slide element 61 is operatively connected to the piston 73 by means of a cage 62, so that upon adjustment of the piston 73 and opening of the main valve unit 4, the short-circuit valve unit 6 shoots.
  • Fig. 3 shows a third embodiment of a multi-way valve 1 according to the invention, which essentially according to the embodiment according to Fig. 2 corresponds, In contrast to the embodiment according to Fig. 2
  • the short-circuit valve unit 6 includes a differential pressure valve that opens when it exceeds an opening pressure defined in advance to allow a short circuit current as indicated by the arrow I.
  • Fig. 4 to 7 show a multi-way valve 1 with a thermostatic working element 7, which is arranged for example in a cooling circuit of a motor vehicle.
  • the multi-way valve 1 is similar to the valves of Fig. 1 to 3 and for the same or similar components, the same reference numerals are used.
  • the inlet 2 is connected, for example, to a motor and the outlet 3 to a cooler.
  • the multi-way valve 1 can be used for an engine inlet control or an engine outlet control for cooling water in a motor vehicle.
  • the arrows I show a flow in an engine exhaust control and the arrows II a flow at an engine inlet control, wherein in the 4 to 6 a pressure loss-optimized arrangement of the valve body 40 in the flow direction 5 is given only at an engine entry control (arrows II).
  • the space in which the thermostatic working element 7 is arranged is correspondingly referred to as a distributor space or mixing space.
  • Fig. 4 is a short circuit operation with closed main valve unit 4 is shown.
  • Fig. 5 a mixed operation is shown, wherein the main valve unit 4 and the short-circuit valve unit 6 are partially opened.
  • FIG. 6 shows a cooling operation in which the main valve unit 4 is fully open and the short-circuit valve unit 6 is closed.
  • a reduction of the pressure loss compared to a configuration with a valve disc arranged parallel to the axial direction of the short-circuit channel 5 is in accordance with FIG. 3, in particular in the case of the full openings of the main valve unit 4 Fig. 6 advantageous.
  • the diagonal arrangement of the main valve unit 4 is advantageous because an advantageous opening movement is achieved and forces are reduced to the return spring 9.
  • a displacement of the Vertil stresses 40 takes place in the embodiment by means of the thermostatic working element 7 with a sleeve-shaped piston 73, which is displaceable relative to a fixed housing pin 75.
  • the short-circuit valve unit 6 comprises an annular slide element 61, which is formed integrally with the piston 73.
  • the valve body 40 is operatively connected to the piston 73 and is displaced with this against the force of the return spring 9. Due to the diagonal arrangement of the valve body 40, in particular at an angle of approximately 45 °, and an adjustment perpendicular to the flow direction S is thereby a good opening movement and a low pressure level between inlet 2 and outlet 3 is reached.
  • the trained as a valve plate valve body 40 is the same plate diameter for a pressure loss-optimized arrangement between inlet 2 and 3 flow in the flow direction S identical for both an engine entry control (arrows II) and for an engine outlet control (arrows I) can be used, the arrangement of the components and the opening direction of the valve body 40 for a pressure loss-optimized arrangement with an engine outlet control (arrow I), preferably as in the Fig. 12 to 15 is arranged.
  • the valve body 40 is displaceably mounted in the short-circuit channel 5 and the housing 10.
  • the valve body 40 comprises a guide nose 42 designed as a prism, which in FIG Fig. 7 is shown in more detail.
  • the guide lug 42 protrudes into a guide groove or link 80 on the housing 10, so that the valve body 40 is slidably mounted in the axial direction of the short-circuiting channel 5 and at the same time prevents rotation of the valve body 40.
  • guide elements serve the piston 73 and a guide rib 81st
  • the 8 to 11 show a further embodiment of a multi-way valve 1 according to the invention in a heating operation ( Fig. 8 ), a short-circuit operation ( Fig. 9 ), a mixed operation ( Fig. 10 ) and a cooler operation ( Fig. 11 ).
  • a heating operation Fig. 8
  • a short-circuit operation Fig. 9
  • a mixed operation Fig. 10
  • a cooler operation Fig. 11
  • a diagonally arranged main valve unit 4 is provided between the inlet 2 and the outlet, wherein the main valve unit 4 has a curved in the direction of inlet 2 valve body 40 for flow optimization.
  • a thermostatic working element 7 comprising a housing 10 mounted in the expansion housing 74 and a piston 73, wherein the piston 73 against a force of the expansible during heating of a provided in the Dehnstoffgeophuse 74 expansion material Return spring 9 is driven out.
  • the short-circuit channel 5 is further designed as a differential pressure valve short-circuit valve which opens when an adjustable pressure is exceeded,
  • the Fig. 12 to 15 show a further embodiment of a multi-way valve 1 according to the invention with a designed as an oblique seat valve main valve unit 5 and a Kurz gleichvertil unit 6, which comprises in the dargestellen embodiment, a differential pressure valve.
  • the show Fig. 12 to 15 a heating operation, a shunt operation, a mixed operation and a cooling operation, respectively.
  • the return spring 9 is supported on the housing cover 11.
  • a projection 12 is formed, on which the housing 74 of the thermostatic working element 7 is mounted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)
  • Taps Or Cocks (AREA)
  • Multiple-Way Valves (AREA)

Abstract

Die Erfindung betrifft ein Mehrwege-Ventil (1) mit einem Zulauf (2), einem Ablauf (3) und einem Kurzschlusskanal (5) und mit einer zwischen dem Zulauf (2) und dem Ablauf (3) angeordneten Hauptventil-Einheit (4) umfassend einen Ventilsitz (41) und einen damit zusammenwirkenden Ventilkörper (40), wobei die Hauptventil-Einheit (4) als Schrägsitzventil ausgebildet ist so dass der Ventilsitz (41) diagonal zwischen Zulauf (2) und Ablauf (3) unter Bildung eines Winkels 0°< |±| < 90° mit einer Strömungsrichtung angeordnet ist und der Ventilkörper (40) zumindest teilweise in dem Kurzschlusskanal (5) verschieblich gelagert ist. Die Erfindung betrifft weiter ein Verfahren zum Reduzieren des Druckverlusts in einem Mehrwege-Ventil (1).

Description

  • Die Erfindung betrifft ein Mehrwege-Ventil, insbesondere ein 3/2-Wegeventil, mit einem Kurzschlusskanal und mit einer zwischen einem Zulauf und einem Ablauf angeordneten Hauptventil-Einheit umfassend einen Ventilsitz und einen damit zusammenwirkenden Ventilkörper.
  • Mehrwege-Ventile werden für verschiedenste Anwendungen eingesetzt. Dabei werden im Zusammenhang mit der Erfindung zwei Anschlusskanäle als Zulauf und Ablauf bezeichnet und ein dritter Anschlusskanal als Kurzschlusskanal. Es sind jedoch auch Anwendungen denkbar, in welchen eine Verbindung von Zulauf und Kurzschlusskanal eine Hauptströmrichtung im Gebrauch bildet. Zudem ist ein Einbau denkbar, bei welchem Zulauf und Ablauf in der Funktion vertauscht sind.
  • Mehrwege-Ventile werden beispielsweise im Kühlkreislauf in Kraftfahrzeugen eingesetzt, wobei je nach Einsatz des Ventils in einer Motoraustrittsregelung oder einer Motoreintrittsregelung ein vom Motor kommender bzw. ein zum Motor gehender Kühlmittelstrom in Abhängigkeit einer Gebrauchsstellung des Ventils über einen Kühler oder unter Umgehung des Kühlers über einen Kurzschlusskanal geführt wird.
    Bei Verbrennungsmotoren, beispielsweise für Kraftfahrzeuge, werden vermehrt leistungsschwächere Wasserpumpen in einen Kühlkreislauf eingesetzt, um so Kraftstoff zu reduzieren und/oder einen Energiehaushalt für das Kraftfahrzeug zu optimieren. Um einer leistungsschwachen Wasserpumpe einen geringen Durchflusswiderstand entgegenzusetzen, sind Ventileinheiten, insbesondere Thermostatventile, mit einem geringen Strömungswiderstand notwendig. Es ist beispielsweise aus der EP 1 754 869 A1 bekannt, ein Thermostatventil mit einer Hauptventil-Einheit, umfassend einen Ventilsitz und einen dazu beweglichen Ventilteller, derart zu gestalten, dass Ventilsitz und Ventilteller druckverlustoptimierte Formen und/oder Konturen aufweisen.
  • Aus der DE 10 2006 934 982 A1 ist ein Thermostatventil bekannt, wobei ein Ventilteller oder Vontilglied bei einer Öffnungsbetätigung in Bezug auf die Längsausrichtung eines Ventilgehäuses schräg stellbar ist, um eine Vergrößerung eines Durchflussquerschnittes zu erreichen.
  • Es ist Aufgabe der vorliegenden Erfindung, ein Mehrwege-Ventil mit geringem Druckverlust, insbesondere ein Thermostatventil, und ein Verfahren zum Reduzieren des Druckverlusts in einem Mehrwege-Ventil zu schaffen.
  • Diese Aufgabe wird gelöst durch ein Mehrwege-Ventil mit einem Zulauf, einem Ablauf und einem Kurzschlusskanal und mit einer zwischen dem Zulauf und dem Ablauf angeordneten Hauptventil-Einheit umfassend einen Ventilsitz und einen damit zusammenwirkenden Ventilkörper, wobei die Hauptventil-Einheit als Schrägsitzventil ausgebildet ist, so dass der Ventilsitz diagonal zwischen Zulauf und Ablauf unter Bildung eines Winkels 0°<|α|< 90° mit einer Strömungsrichtung angeordnet ist und der Ventilkörper zumindest teilweise in dem Kurzschlusskanal verschieblich gelagert ist.
    Die Aufgabe wird weiter gelöst durch ein Verfahren zum Reduzieren des Druckverlusts in einem Mehrwegeventil, wobei ein Ventilsitz einer zwischen einem Zulauf und einem Ablauf eines Mediums angeordneten Hauptventil-Einheit, diagonal unter Bildung eines Winkels 0°<|α|<90° mit der Strömungsrichtung angeordnet wird und ein mit dem Ventilsitz zusammenwirkender Ventilkörper, parallel zur Axialrichtung eines Kurzschlusskanals zum Betätigen des Hauptventils verschoben wird.
  • Ventile, welche in Strömungsrichtung zum Öffnen und Schließen bewegt werden, werden im Zusammenhang mit der Erfindung als Axialventile bezeichnet. Ventile mit einem Ventilteller, welcher senkrecht zu einer Durchströmrichtung bewegt wird, werden als Schieber oder Tellerventil bezeichnet.
  • Zum Minimieren eines Druckverlusts wird erfindungsgemäß eine wirksame Fläche oder Durchströmfläche maximiert. Eine Betätigung der als Schrägsitzventil gestalteten Hauptventil-Einlieit zum Öffnen kann dabei als Kombination einer Betätigung eines Axialventils mit einer axialwirksamen Fläche und eines Tellerventils mit einer radialwirksamen Fläche betrachtet werden. Die beiden wirksamen Flächen sind für den Druckverlust verantwortlich. Bei der diagonalen Anordnung addieren sich die beiden Flächen weitestgehend zusammen. Bei einer Gestaltung des Ventilkörpers als Tellerventil ist die Fläche in Strömungsrichtung betrachtet eine elliptische, sichelförmige Schieber-Kontur-Fläche, deren Größe von einem Winkel α und einem Ventilhub abhängt. Quer zur Strömungsrichtung ist weiter eine zusätzliche radiale Fläche zu berücksichtigen, welche sich durch das Abheben des Ventilkörpers von dem zugehörigen Ventilsitz unter dem definierten Winkel α und mit einem definierten Hub ergibt. In Summe ist somit die für den Druckverlust verantwortliche Fläche größer als bei einem üblichen Axialventil und/oder bei einem üblichen Tellerventil mit gleichem Durchmesser des Ventilkörpers. Dadurch ist der Druckverlust verringert.
  • Die Vorteile einer Druckverlustreduzierung treten erst bei voll geöffnetem Ventil ganz in Erscheinung. Jedoch auch bei einer anfänglichen Öffnung des Ventils ist die Diagonalanordnung von Vorteil, da ein allmähliches Öffnen möglich ist, und so - beispielsweise bei Velwendung in einem Kühlkreislauf - verhindert wird, dass zuviel Fluid bereits beim ersten Öffnen durch das Ventil gelangt. Dadurch lassen sich Temperaturschwankungen im Fluidkreislauf verhindern und somit ein Regelverhalten verbessern.
  • Durch ein Verschieben des Ventilkörpers parallel zu einem Kurzschlusskanal ergeben sich besondere bauliche Vorteile. Vorzugsweise zweigt der Kurzschlusskanal im Wesentlichen senkrecht ab, so dass der Ventilkörper im Wesentlichen senkrecht zu einer Strömungsrichtung verschieblich gelagert ist.
  • Für eine Ventilbetätigung sind verschiedene Antriebe, beispielsweise mechanische Antriebe wie eine Gewindespindel oder eine Gewindestange, elektronische Antriebe, beispielsweise über einen Elektromotor, Antriebe mit Formgedächtnismaterialien und thermostatische Antriebe denkbar. Das Mehrwegeventil ist für beliebige Fluide, beispielsweise für Flüssigkeiten wie Motorenöle, Getriebeöle oder Kühlflüssigkeiten, oder Gase, wie Abgase, vorteilhaft.
  • Bei der Öffnung des diagonal angeordneten Ventilkörpers senkrecht zur Strömungsrichtung ergibt sich im Vergleich zu einer Öffnung des ebenfalls diagonal angeordneten Ventilkörpers senkrecht auf den Ventilkörper der Vorteil, dass der wirksame Ventilhub senkrecht zur Strömungsrichtung stets dem Ventilhub der Ventilbetätigung entspricht. Bei der Öffnung senkrecht auf den Ventilkörper ist der wirksame Ventilhub senkrecht zur Strömungsrichtung nur cos Winkel α multipliziert mit dem Ventilhub der Ventilbetätigung.
  • In einer Ausgestaltung ist der Ventilkörper als Ventilteller, insbesondere als Ventilteller mit einem im Wesentlichen kreisrunden Querschnitt ausgebildet. Eine derartige Form lässt sich kostengünstig herstellen, da an einem Werkzeug nur einfache Formen wie Kreise oder Zylinder umzusetzen sind. Alternativ oder zusätzlich ist eine Kontur des Ventilkörpers für eine Strömungsoptimierung gestaltet, beispielsweise weist der Ventilkörper eine halbkungelförmige oder kegelige Kontur auf.
  • In einer anderen Ausgestaltung ist der Ventilkörper als Ventilteller mit einem elliptischen Querschnitt ausgebildet, wobei eine Hauptachse der Ellipse quer zur Strömungsrichtung und zur Axialrichtung verläuft. Durch den elliptischen Querschnitt ist eine weitere Reduzierung eines Druckveriusts realisierbar.
  • In einer vorteilhaften Ausgestaltung ist der Ventilkörper mittels mindestens einer, vorzugsweise mittels drei Führungseinrichtungen verschieblich gelagert. Die Anzahl der Führungen ist dabei abhängig von einer Form des Ventilkörpers. Insbesondere bei einem Ventilkörper mit einem kreisrunden Querschnitt sind vorzugsweise drei Führungen vorgesehen, um ein ungewünschtes Verschieben sicher zu vermeiden.
  • Vorzugsweise ist an einer Umfangsfläche des Ventilkörpers eine Führungsnase vorgesehen, welche in einer Kulisse an einem Gehäuse des Mehrwege-Ventils geführt ist, um ein Verdrehen des Ventilkörpers zu verhindern. Die Führungsnase ist beispielsweise prismenförmig gestaltet. Eine derartige Führungsnase ermöglicht eine gute Führung in Axialrichtung, d.h. in Richtung eines Ventilhubs, wobei gleichzeitig ein Verdrehen sicher verhindert wird.
  • In einer Ausgestaltung beträgt der Winkel α des Ventilsitzes vorzugsweise zwischen 20° und 70°; insbesondere zwischen 30° und 60°; vorzugsweise zwischen 40° und 50°. Insbesondere ein Winkel von 45° ist für die Werkzeugherstellung besonders vorteilhaft. Je nach Anforderungen sind jedoch auch andere Winkel denkbar und für ein Ventilverhalten günstig.
  • In einer weiteren Ausgestaltung ist eine Rückstellfeder vorgesehen, wobei der Ventilkörper entgegen Kraft der Rückstellfeder verstellbar ist. Die Rückstellfeder ist in einer Ausgestaltung in dem Kurzschlusskanal gelagert. In anderen Ausgestaltungen ist die Kurzschlussfeder an einem Gehäusedeckel abgestützt. In wieder anderen Ausgestaltungen ist eine Traverse für eine Halterung der Rückstellfeder vorgesehen.
  • Durch die Diagonal- oder Schrägsitzanordnung ist auch ein Krafteinfluss auf die Rückstellfeder, welche die Strömung des Fluids durch das Ventil verursacht wird, reduziert, da die wirksamen Kräfte entsprechend dem Winkel α aufgeteilt werden. Zudem ist bei einem Schrägsitzventil auch die wirksame Fläche für einen angreifenden Druck und damit eine resultierende Kraft geringer. Im Vergleich zu einem herkömmlichen Tellerventil, welches quer zur Strömungsrichtung verstellt wird, kann somit eine Rückstellfeder mit einem kleineren Drahtdurchmesser und einer geringeren Vorspannkraft eingesetzt werden.
  • In noch einer weiteren Ausgestaltung ist ein Ventilkörper der Hauptventil-Einheit mit einem Ventilkörper einer Kurzschlussventil-Einheit als gemeinsames Bauteil gestaltet. Dadurch ergibt sich eine besonders bauraumoptimierte Bauform.
  • Das Kurzschlussventil umfasst in einer Ausgestaltung ein Ringschieber-element. Das Ringschieberelement ist beispielsweise gemeinsam mit dem Ventilkörper des Hauptventils an einem Kolben angeordnet, so dass beide Ventile gemeinsam betätigbar sind. In einer anderen Ausgestaltung ist das Ringschieberelement an dem Ventilkörper des Hauptventils ausgebildet.
  • In wieder einer anderen Ausgestaltung umfasst das Kurzschlussventil ein Differenzdruckventil auf. Das Differenzdruck- oder Überdruckventil ist derart ausgebildet, dass bis Erreichen eines definierten Öffnungsdrucks ein Durchfluss verhindert ist.
  • Die Aufgabe wird weiter gelöst durch ein Thermostatventil mit einem erfindungsgemäßen Mehrwege-Ventil. Bei einem Thermostatventil ist mindestens ein thermostatisches Arbeitselement vorgesehen, wobei das Hauptventil und das Kurzschlussventil mittels dem mindestens einen thermostatischen Arbeitselement betätigbar sind. Das Thermostatventil ist beispielsweise in einem Kühlkreislauf eines Fahrzeugs für eine Motoreintrittsregelung und/oder eine Motoraustrittsregelung einsetzbar. Dabei ist für eine Motoreintrittsregelung und eine Motoraustrittsregelung eine baugleiche Gestaltung des Ventilkörpers möglich. Vorzugsweise ist jedoch eine Anordnung der Führungselemente für den Ventilkörper und der weiteren Bauteile auf die Verwendung in einer Motoreintrittsregelung oder einer Motoraustrittsregelung angepasst.
  • Weitere Vorteile der Erfindung ergeben sich aus den Unteransprüchen und aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, die in den Zeichnungen schematisch dargestellt sind. Für gleiche oder ähnliche Bauteile werden in den Zeichnungen einheitliche Bezugszeichen verwendet. Als Teil eines Ausführungsbeispiels beschriebene oder dargestellte Merkmale können ebenso in einem anderen Ausführungsbeispiel verwendet werden, um eine weitere Ausführungsform der Erfindung zu erhalten.
  • Die Figuren zeigen in schematischen:
  • Fig. 1:
    eine Schnittdarstellung eines ersten Ausführurigsbeispiels eines erfindungsgemäßen Mehrwege-Ventils;
    Fig. 2:
    eine Schnittdarstellung eines zweiten Ausführungsbeispiels eines erfindungsgemäßen Mehrwege-Ventils mit einem thermostatischen Arbeitselement;
    Fig. 3:
    eine Schnittdarstellung eines dritten Ausführungsbeispiels eines erfindungsgemäßen Mehrwege-Ventils mit einem Dif- ferenzdruckventil;
    Fig. 4:
    eine Schnittdarstellung eines vierten Ausführungsbeispiels eines erfindungsgemäßen Mehrwege-Ventils in einem Kurz- schlussbetrieb;
    Fig. 5:
    das Mehrwege-Ventil gemäß Fig. 4 in einem Mischbetrieb;
    Fig. 6:
    das Mehrwege-Ventil gemäß Fig. 4 in einem Kühlerbetrieb;
    Fig. 7:
    eine perspektivische Unteransicht eines Ventilkörpers des Mehrwege-Ventils gemäß Fig. 4;
    Fig. 8:
    eine Schnittdarstellung eines fünften Ausführungsbeispiels eines erfindungsgemäßen Mehrwege-Ventils in einem Heiz- betrieb;
    Fig. 9:
    das Mehrwege-Ventil gemäß Fig. 8 in einem Kurzschlussbe- trieb;
    Fig. 10:
    das Mehrwege-Ventil gemäß Fig. 8 in einem Mischbetrieb;
    Fig. 11:
    das Mehrwege-Ventil gemäß Fig. 8 in einem Kühlerbetrieb;
    Fig. 12:
    eine Schnittdarstellung eines sechsten Ausführungsbeispiels eines erfindungsgemäßen Mehrwege-Ventils in einem Heiz- betrieb;
    Fig. 13:
    das Mehrwege-Ventil gemäß Fig. 12 in einem Kurzschluss- betrieb;
    Fig. 14:
    das Mehrwege-Ventil gemäß Fig. 12 in einem Mischbetrieb;
    Fig. 5:
    das Mehrwege-Ventil gemäß Fig. 12 in einem Kühlerbetrieb;
  • Fig. 1 zeigt schematisch ein Mehrwege-Ventil 1 mit einer zwischen einem Zulauf 2 und einem Ablauf 3 angeordneten Hauptventil-Einheit 4 und einem Kurzschlusskanal 5, welcher durch eine Kurzschlussventil-Einheit 6 verschließbar ist. In dem dargestellten Ausführungsbeispiel zweigt der Kurzschlusskanal 5 im Wesentlichen senkrecht von einer Strömungsrichtung S zwischen dem Zulauf 2 und dem Ablauf 3 ab. In Fig. 1 ist ein Kurzschlussbetrieb dargestellt, wobei die Hauptventil-Einheit 4 geschlossen und die Kurzschlussventil-Einheit 6 geöffnet ist. Je nach Verwendung des Mehrwegew-Ventils 1 ist dabei ein MediumFluss vom Zulauf 2 zum Kurzschlusskanal 5, wie durch Pfeile I dargestellt oder vom Kurzschlusskanal 5 zu dem Zulauf, wie durch Pfeile II dargestellt, möglich. Ein Raum in dem Gehäuse 10 zwischen der Hauptventil-Einheit und der Kurzschlussventil-Einheit 6 wird auch als Mischraum oder Verteilerraum bezeichnet.
  • Die Hauptventil-Einheit 4 umfasst einen Ventilsitz 41, weicher in einem Gehäuse 10 des Mehrwege-Ventils 1 ausgebildet ist, und einen mit dem Ventilsitz 41 zusammenwirkenden Ventilkörper 40, welcher in dem dargestellten Ausführungsbeispiel als Ventilteller ausgebildet ist. Der Ventilkörper 40 und der zugehörige Ventilsitz 41 sind so angeordnet, dass sie mit der Strömungsrichtung S einen Winkel α einschließen. In dem dargestellten Ausführungsbeispiel ist der Winkel α etwa 45°. Der Ventilkörper 40 ist in dem Kurzschlusskanal 5 verschieblich gelagert. Ein Verstellen des Ventilkörpers 40 erfolgt dabei im Wesentlichen senkrecht zu der Strömungsrichtung S in Axialrichtung A des Kurzschlusskanals 5.
  • Zum Verstellen des Ventilkörpers 40 ist in dem Ausführungsbeispiel gemäß Fig. 1 ein Antrieb 7 umfassend eine schematisch dargestellte Gewindespindel 70 vorgesehen. Der Ventilkörper 40 ist beim Verschieben durch Führungsnuten 80, 81 in dem Gehäuse 10 geführt. Ein Verschieben des Ventilkörpers 40 erfolgt entgegen der Kraft einer Rückstellfeder 9, weicher in dem dargestellten Ausführungsbeispiel in dem Kurzschlusskanal 5 gelagert ist.
  • Die Kurzschlussventil-Einheit 6 umfasst ein Ringschieberelement 61, wobei in dem dargestellten Ausführungsbeispiel das Ringschieberelement 61 und der Ventilkörper 40 als gemeinsames Bauteil gestaltet sind.
  • Durch die diagonale Anordnung des Ventilkörpers 40 in dem Strömungskanal zwischen Zulauf 2 und Ablauf 3 und ein Verschieben quer zur Strömungsrichtung S in Axialrichtung A des Kurzschlusskanals 5 wird eine für einen Druckverlust verantwortliche Fläche im Vergleich zu Ausführungsformen mit einem senkrecht zur Strömungsnchtung angeordneten Tellerventil bei gleichen Baugrößen und gleichem Ventilhub vergrößert und dadurch ein Druckverlust verringert. Gleichzeitig Wirken aufgrund der Lagerung geringere Kräfte auf die Rückstellfeder 9, so dass die Rückstellfeder 9 im Vergleich zu einem senkrecht zur Strömungsnchtung S angeordneten Tellerventil kleiner ausgelegt werden kann.
  • Um eine einfache Montage und eine gute Bearbeitbarkeit der Ventilsitze 41 zu ermöglichen, ist das Gehäuse 10 zweigeteilt.
  • Der Antrieb 7 ist lediglich beispielhaft. Selbstverständlich sind andere Antriebe, beispielsweise ein elektromotorischer Antrieb und/oder ein Antrieb mittels Formgedächtnismaterial einsetzbar.
  • Fig. 2 zeigt ein zweites Ausführungsbeispiel eines erfindungsgemäßen Mehrwege-Ventils 1, welches als Thermostatventil ausgebildet ist. Ein Betätigen der Hauptventil-Einheit 4 und der Kurzschlussventil-Einheit 6 erfolgt dabei mittels einem thermostatischem Arbeitselement 7, umfassend einen Kolben 73, welcher in einem Gehäuse 74 verschlieblich gelagert ist und in Abhängigkeit von einer Temperatur mittels einem nicht dargestellten Dehnstoff aus dem Gehäuse 74 ausgetrieben wird.
  • Bei dem Ausführungsbeispiel gemäß Fig. 2 stützt sich die Rückstellfeder 9 an einem Gehäusedeckel 11 ab. Das Ringschieberelement 61 ist mittels einem Käfig 62 mit dem Kolben 73 wirkverbunden, so dass beim Verstellen des Kolbens 73 und einem Öffnen der Hauptventil-Einheit 4 die Kurzschlussventil-Einheit 6 schießt.
  • Fig. 3 zeigt ein drittes Ausführungsbeispiel eines erfindungsgemäßen Mehrwege-Ventils 1, welches im Wesentlichen dem Ausführungsbeispiel gemäß Fig. 2 entspricht, Im Unterschied zu dem Ausführungsbeispiel gemäß Fig. 2 umfasst die Kurzschlussventil-Einheit 6 ein Differenzdruckventil, weiches bei Überschreiten eines im Vorfeld definierten Öffnungsdruck öffnet, um einen Kurzschlussstrom wie durch den Pfeil I dargestellt zu ermöglichen.
  • Fig. 4 bis 7 zeigen ein Mehrwege-Ventil 1 mit einem thermostatischen Arbeitselement 7, welches beispielsweise in einem Kühlkreislauf eines Kraftfahrzeugs angeordnet ist. Das Mehrwege-Ventil 1 ist ähnlich den Ventilen der Fig. 1 bis 3 und für gleiche oder ähnliche Bauteile werden einheitliche Bezugszeichen verwendet. Der Zulauf 2 ist dabei beispielsweise an einen Motor und der Ablauf 3 an einen Kühler angeschlossen.
  • Das Mehrwege-Ventil 1 ist dabei für eine Motoreintrittsregelung oder eine Motoraustrittsregelung für Kühlwasser in einem Kraftfahrzeug verwendbar. In den Fig. 4 bis 7 zeigen die Pfeile I eine Strömung bei einer Motoraustrittsregelung und die Pfeile II eine Strömung bei einer Motoreintrittsregelung, wobei bei den Fig. 4 bis 6 eine druckverlustoptimierte Anordnung des Ventilkörpers 40 in Strömungsrichtung 5 nur bei einer Motoreintrittsregelung (Pfeile II) gegeben ist. Der Raum, in welchem das thermostatische Arbeitselement 7 angeordnet ist, wird entsprechend als Verteilerraum oder Mischraum bezeichnet. In Fig. 4 ist ein Kurzschlussbetrieb mit geschlossener Hauptventil-Einheit 4 dargestellt. In Fig. 5 ist ein Mischbetrieb dargestellt, wobei die Hauptventil-Einheit 4 und die Kurzschlussventil-Einheit 6 teilweise geöffnet sind. Fig. 6 zeigt einen Kühlbetrieb, bei welchem die Hauptventil-Einheit 4 vollständig geöffnet ist und die Kurzschlussventil-Einheit 6 geschlossen ist. Eine Reduzierung des Druckverlusts gegenüber einer Ausgestaltung mit einem parallel zur Axialrichtung des Kurzschlusskanals 5 angeordneten Ventilteller ist insbesondere bei den vollen Öffnungen der Hauptventil-Einheit 4 gemäß Fig. 6 vorteilhaft. Doch auch bei einem Mischbetrieb gemäß Fig. 5 ist die diagonale Anordnung der Hauptventil-Einheit 4 vorteilhaft, da eine vorteilhafte Öffnungsbewegung erreicht wird und Kräfte auf die Rückstellfeder 9 reduziert werden.
  • Ein Verschieben des Vertilkörpers 40 erfolgt in dem Ausführungsbeispiel mittels dem thermostatischen Arbeitselement 7 mit einem hülsenförmigen Kolben 73, welcher relativ zu einem feststehenden Gehäusezapfen 75 verschiebbar ist. Die Kurzschlussventil-Einheit 6 umfasst ein Ringschieberelement 61, welches einteilig mit dem Kolben 73 ausgebildet ist. Der Ventilkörper 40 ist mit dem Kolben 73 wirkverbunden und wird mit diesem entgegen der Kraft der Rückstellfeder 9 verschoben. Durch die diagonale Anordnung des Ventilkörpers 40, insbesondere in einem Winkel von ca. 45°, und ein Verstellen senkrecht zur Strömungsrichtung S wird dabei eine gute Öffnungsbewegung und ein geringer Druckvelust zwischen Zulauf 2 und Ablauf 3 erreicht. Der als Ventilteller ausgebildete Ventilkörper 40 ist dabei bei gleichem Tellerdurchmesser für eine druckverlustoptimierte Anordnung zwischen Zulauf 2 und Ablauf 3 in Strömungsrichtung S baugleich sowohl für eine Motoreintrittsregelung (Pfeile II) als auch für eine Motoraustrittsregelung (Pfeile I) einsetzbar, wobei die Anordnung der Bauteile und die Öffnungsrichtung des Ventilkörpers 40 für eine druckverlustoptimierte Anordnung bei einer Motoraustrittsregelung (Pfeil I), vorzugsweise wie in den Fig. 12 bis 15 angeordnet ist.
  • Der Ventilkörper 40 ist in dem Kurzschlusskanal 5 und dem Gehäuse 10 verschieblich gelagert, Zur besseren Führung umfasst der \/entilkörper 40 eine als Prisma gestaltete Führungsnase 42, welche in Fig. 7 genauer dargestellt ist. Wie in Fig. 7 erkennbar ist, ragt die Führungsnase 42 in eine Führungsnut oder Kulisse 80 an dem Gehäuse 10 hinein, so dass der Ventilkörper 40 in Axialrichtung des Kurzschlusskanals 5 verschieblich gelagert ist und gleichzeitig eine Drehung des Ventilkörpers 40 verhindert wird. Als weitere Führungselemente dienen der Kolben 73 und eine Führungsrippe 81.
  • Die Fig. 8 bis 11 zeigen ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Mehrwege-Ventils 1 in einem Heizbetrieb (Fig. 8), einem Kurzschlussbetrieb (Fig. 9), einem Mischbetrieb (Fig. 10) und einem Kühlerbetrieb (Fig. 11). Bei dem Ausführungsbeispiel gemäß den Fig. 8 bis 11 ist zwischen dem Zulauf 2 und dem Ablauf ebenfalls eine diagonal angeordnete Hauptventil-Einheit 4 vorgesehen, wobei die Hauptventil-Einheit 4 einen in Richtung Zulauf 2 gewölbten Ventilkörper 40 für eine Strömungsoptimierung aufweist. Zum Betätigen der Hauptventil-Einheit 4 ist ein thermostatisches Arbeitselement 7 vorgesehen, umfassend einen in dem Gehäuse 10 gelagerter Dehnstoffgehäuse 74 und einen Kolben 73, wobei der Kolben 73 bei Erwärmung eines in dem Dehnstoffgehäuse 74 vorgesehenen Dehnstoffs entgegen der Kraft der Rückstellfeder 9 ausgetrieben wird. In dem Kurzschlusskanal 5 ist weiter ein als Differenzdruckventil gestaltetes Kurzschlussventil vorgesehen, welches beim Überschreiten eines einstellbaren Drucks öffnet,
  • In dem in Fig. 8 dargestellten Heizbetrieb sind die Hauptventil-Einheit 4 und die Kurzschlussventil-Einheit 6 geschlossen, wobei das Kühlmittel wie durch Pfeile I angedeutet über eine Heizung geleitet wird. Für den in Fig. 9 dargestellten Kurzschlussbetrieb öffnet das Differenzdruckventil der Kurzschlussventilemheit 6, wobei die Hauptventil-Einheit 4 geschlossen bleibt. Erst bei einer weiteren Erwärmung öffnet die Hauptventil-Einheit 4, wie in den Fig. 10 und 11 schematisch dargestellt Der Ventilkörper 40 wird zum Öffnen in Axialrichtung A des Kurzschlusskanals 5 verschoben, wobei eine Führung des Ventilkörpers 40 mittels einer Führungsnase 42 in einer Führungsnut oder Kulisse 80 an dem Gehäuse 10 erfolgt.
  • Die Fig. 12 bis 15 zeigen ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Mehrwege-Ventils 1 mit einer als Schrägsitzventil ausgebildeten Hauptventil-Einheit 5 und einer Kurzschlussvertil-Einheit 6, welche in dem dargestellen Ausführungsbeispiel ein Differenzdruckventil umfasst. Ein Betätigen der Hauptventil-Einheit 4 erfolgt mittels einem thermostatischen Arbeitselement 7 in Abhängigkeit einer Temperatur des Fluids. Dabei zeigen die Fig. 12 bis 15 einen Heizbetrieb, einen Kuizschlussbetrieb, einen Mischbetrieb bzw. einen Kühlbetrieb.
  • Bei dem Ausführungsbeispiel gemäß den Fig. 12 bis 15 ist die Rückstellfeder 9 an dem Gehäusedeckel 11 abgestützt. In dem Kurzschlusskanal 5 ist ein Vorsprung 12 ausgebildet, an welchem das Gehäuse 74 des thermostatischen Arbeitselements 7 gelagert ist. Bei Erwärmen des Kühknuttekstrins öffnet der Ventilkörper 40 entgegen der Kraft der Rückstellfeder 9 - in der dargestellten Anordnung nach oben - und gibt einen unterhalb des Ventilkörpers 40 angeordneten Kanalabschnitt frei.
  • Dabei ist eine gute Umströmung des thermostatischen Arbeitseleinents 7 sowohl im Kurschlussbetrieb gemäß Fig. 13, als auch im Kühlerbetrieb gemäß Fig. 15 gewährleistet. Zudem ist durch die dargestellte Anordnung des Ventilkörpers 40 eine druckverlustoptimierte Ausführung für den Mediumfluss von Zulauf 2 zu Ablauf 2 (Motoraustrittsregelung umsetzbar.

Claims (12)

  1. Mehrwege-Ventil (1) mit einem Zulauf (2), einem Ablauf (3) und einem Kurzschlusskanal (5) und mit einer zwischen dem Zulauf (2) und dem Ablauf (3) angeordneten Hauptventil-Einheit (4) umfassend einen Ventilsitz (41) und einen damit zusammenwirkenden Ventilkörper (40), dadurch gekennzeichnet, dass die Hauptventil-Einheit (4) als Schrägsitzventil ausgebildet ist, wobei der Ventilsitz (41) diagonal zwischen Zulauf (2) und Ablauf (3) unter Bildung eines Winkels 0°< |α| < 90° mit einer Strömungsrichtung angeordnet ist und der Ventilkörper (40) zumindest teilweise in dem Kurzschlusskanal (5) verschieblich gelagert ist.
  2. Mehrwege-Ventil (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Ventilkörper (40) im Wesentlichen senkrecht zu einer Strömungscrichtung (S) verschieblich gelagert ist.
  3. Mehrwege-Ventil (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Ventilkörper (40) als Ventilteller, insbesondere als Ventilteller mit einem im Wesentlichen kreisrunden Querschnitt oder einem elliptischen Querschnitt ausgebildet ist.
  4. Mehrwege-Ventil (1) nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass der Ventilkörper (40) mittels mindestens einer, vorzugsweise mittels drei Führungseinrichtungen (80, 81, 73) verschieblich gelagert ist.
  5. Mehrwege-Ventil (1) nach einem der Anspruche 1 bis 4, dadurch gekennzeichnet, dass an einer Umfangsfläche des Ventilkörpers (40) eine Fuhrungsnase (42) vorgesehen ist, welche in einer Kulisse (80) an einem Gehäuse (10) des Mehrwege-Ventils (1) geführt ist, um ein Verdrehen des Ventilkörpers (40) zu verhindern.
  6. Mehrwege-Ventil (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Winkel α des Ventilsitzes (41) vorzugsweise zwischen 20° und 70°; insbesondere zwischen 30° und 60°; vorzugsweise zwischen 40° und 50° beträgt.
  7. Mehrwege-Ventil (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass eine Rückstellfeder (9) vorgesehen ist, WObei der Ventilkörper (40) entgegen Kraft der Rückstellfeder (9) verstellbar ist.
  8. Mehrwege-Ventil (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Ventilkörper (40) der Hauptventil-Einheit (4) mit einem Ringschieber-Element (61) einer Kurzschlussventil-Einheit (6) als gemeinsames Bauteil gestaltet ist.
  9. Mehrwege-Ventil (1) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass eine Kurzschlussventil-Einheit (6) mit einem Ringschieber-Element (61) vorgesehen ist.
  10. Mehrwege-Ventil (1) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass eine Kurzschlussventil-Einheit (6) mit einem Differenzdruckventil vorgesehen ist.
  11. Thermostatventil mit einem Methrwege-Ventil (1) nach einem der Ansprüche 1 bis 10.
  12. Verfahren zum Reduzieren des Druckverlusts in einem Mehrwege-Ventil (1), dadurch gekennzeichnet, dass ein Ventilsitz (41) einer zwischen einem Zulauf (2) und einem Ablauf (3) eines Mediums angeordneten Hauptventil-Einheit(4), diagonal unter Bildung eines Winkels 0°<|α|<90° mit einer Strömungsrichtung angeordnet wird und ein mit dem Ventilsitz (41) zusammenwirkender Ventilkörper (40), parallel zur Axialrichtung eines Kurzschlusskanals (5) zum Betätigen der Hauptventil-Einheit (4) verschoben wird.
EP10176789.5A 2009-09-15 2010-09-15 Mehrwege-Ventil mit geringem Druckverlust Not-in-force EP2333269B8 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009042496A DE102009042496A1 (de) 2009-09-15 2009-09-15 Mehrwege-Ventil mit geringem Druckverlust

Publications (4)

Publication Number Publication Date
EP2333269A2 true EP2333269A2 (de) 2011-06-15
EP2333269A3 EP2333269A3 (de) 2014-01-08
EP2333269B1 EP2333269B1 (de) 2015-11-11
EP2333269B8 EP2333269B8 (de) 2015-12-30

Family

ID=43064633

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10176789.5A Not-in-force EP2333269B8 (de) 2009-09-15 2010-09-15 Mehrwege-Ventil mit geringem Druckverlust

Country Status (2)

Country Link
EP (1) EP2333269B8 (de)
DE (1) DE102009042496A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010062206A1 (de) 2010-11-30 2012-05-31 Behr Thermot-Tronik Gmbh Thermostatventil mit Kühlmittelstillstand-Funktion
DE102013215749A1 (de) * 2013-08-09 2015-02-12 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Fertigung eines Thermostatventils und Thermostatventil

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1754869A1 (de) 2004-05-21 2007-02-21 Nippon Thermostat Co., Ltd. Thermostatvorrichtung
DE102006034982A1 (de) 2006-07-28 2008-01-31 Gustav Wahler Gmbh U. Co. Kg Thermostatventil

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3136337A (en) * 1961-04-17 1964-06-09 Elton B Fox Thermostatically operated diversion valve for engine cooling system
DE1889672U (de) * 1964-01-28 1964-03-19 Behr Thomson Dehnstoffregler Thermostatischer kuehlwasserregler.
DE3226104C2 (de) * 1982-07-13 1985-02-07 Behr-Thomson Dehnstoffregler Gmbh, 7014 Kornwestheim Thermostatventil zur Regelung der Temperatur der Kühlflüssigkeit einer Brennkraftmaschine
DE8702534U1 (de) * 1987-02-19 1988-06-23 Gustav Wahler Gmbh U. Co, 7300 Esslingen Temperaturregeleinrichtung für das Kühlmittel von Brennkraftmaschinen
DE19646295A1 (de) * 1996-11-11 1998-05-14 Wahler Gmbh & Co Gustav Kühlmittelkreislauf einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugmotors
GB9626047D0 (en) * 1996-12-14 1997-01-29 Rover Group A combined bypass and thermostat assembly
CA2477958A1 (en) * 2002-03-01 2003-09-12 Cory Cousineau A fluid valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1754869A1 (de) 2004-05-21 2007-02-21 Nippon Thermostat Co., Ltd. Thermostatvorrichtung
DE102006034982A1 (de) 2006-07-28 2008-01-31 Gustav Wahler Gmbh U. Co. Kg Thermostatventil

Also Published As

Publication number Publication date
DE102009042496A1 (de) 2011-03-24
EP2333269B1 (de) 2015-11-11
EP2333269B8 (de) 2015-12-30
EP2333269A3 (de) 2014-01-08

Similar Documents

Publication Publication Date Title
DE3347002C1 (de) Temperaturregler-Einsatz fuer den Kuehlkreis fluessigkeitsgekuehlter Brennkraftmaschinen
WO2015062752A1 (de) Kühlmittelpumpe mit hydraulisch verstellbarem ventilschieber, mit integrierter sekundärpumpe und elektromagnetischem ventil zur erzeugung und steuerung des regeldrucks
DE102009014050A1 (de) Wärmemanagementmodul mit axial hydraulisch betriebenem Ventilglied
EP2270621B1 (de) Längsschieber-Thermostatventil
EP1793114A2 (de) Vorrichtung, insbesondere Abgasrückführventileinrichtung, zum Steuern oder Regeln eines Fluidstroms
DE102010062206A1 (de) Thermostatventil mit Kühlmittelstillstand-Funktion
EP0165395B1 (de) Regelventil für den Kühlmittelkreislauf eines Verbrennungsmotors
EP2333269B1 (de) Mehrwege-Ventil mit geringem Druckverlust
EP2707590B1 (de) Ventilvorrichtung für eine verbrennungskraftmaschine
EP2551569B1 (de) Thermostatventil
EP3004584B1 (de) Thermostatventil
DE102013001978A1 (de) Ventileinheit für ein Wastegatesystem und Abgasturbolader
DE102018004082A1 (de) Schaltventil zum Einstellen eines Fluidstroms
DE102004035344B4 (de) Thermostatventil
DE102011012703B4 (de) Fluidströmungsventil und Zylinderkopfanordnung mit einem Fluidströmungsventil für verbessertes Fluidströmungsverhalten
DE102014222368A1 (de) Thermostatventil
DE102010062077A1 (de) Ventileinrichtung mit einem wenigstens abschnittsweise zylindrischen Bewegungselement
DE202006000886U1 (de) Abgasklappensteuerung
EP2163797B1 (de) Ventileinrichtung
WO2007031047A1 (de) Ventil für kolbenkühldüsen
EP2816207B1 (de) Thermostat-Ringschieberventil und Kühlsystem
EP1367473A1 (de) Thermostatventil
DE102004042721B4 (de) Thermostatventil
DE102015002725A1 (de) Thermostatventil für ein Kühlsystem einer Verbrennungskraftmaschine, insbesondere eines Kraftwagens
DE102012019715A1 (de) Regulierbare Kühlpumpe für den Kühlungskreislauf eines Verbrennungsmotors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

RIC1 Information provided on ipc code assigned before grant

Ipc: G05D 23/02 20060101ALI20131203BHEP

Ipc: F01P 7/16 20060101AFI20131203BHEP

17P Request for examination filed

Effective date: 20140708

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F01P 7/16 20060101AFI20141128BHEP

Ipc: G05D 23/02 20060101ALI20141128BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150129

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20150909

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MAHLE BEHR KORNWESTHEIM GMBH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 760585

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010010625

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160211

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160311

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010010625

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

26N No opposition filed

Effective date: 20160812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160915

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160915

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160915

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160915

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 760585

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160915

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100915

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181001

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010010625

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200925

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930