EP2328159B1 - Method and device for determining the wear on a contact element - Google Patents

Method and device for determining the wear on a contact element Download PDF

Info

Publication number
EP2328159B1
EP2328159B1 EP09177112A EP09177112A EP2328159B1 EP 2328159 B1 EP2328159 B1 EP 2328159B1 EP 09177112 A EP09177112 A EP 09177112A EP 09177112 A EP09177112 A EP 09177112A EP 2328159 B1 EP2328159 B1 EP 2328159B1
Authority
EP
European Patent Office
Prior art keywords
wear
values
value
time
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09177112A
Other languages
German (de)
French (fr)
Other versions
EP2328159A1 (en
Inventor
Daniel Schrag
Kai Hencken
Eldin Smajic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP09177112A priority Critical patent/EP2328159B1/en
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Priority to ES09177112T priority patent/ES2380182T3/en
Priority to AT09177112T priority patent/ATE540415T1/en
Priority to PCT/EP2010/066346 priority patent/WO2011064064A1/en
Priority to CN201080062329.0A priority patent/CN102714101B/en
Priority to RU2012126118/07A priority patent/RU2551645C2/en
Priority to BR112012012543-5A priority patent/BR112012012543B1/en
Publication of EP2328159A1 publication Critical patent/EP2328159A1/en
Application granted granted Critical
Publication of EP2328159B1 publication Critical patent/EP2328159B1/en
Priority to US13/480,927 priority patent/US9406451B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0015Means for testing or for inspecting contacts, e.g. wear indicator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0015Means for testing or for inspecting contacts, e.g. wear indicator
    • H01H2001/0031Means for testing or for inspecting contacts, e.g. wear indicator by analysing radiation emitted by arc or trace material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/664Contacts; Arc-extinguishing means, e.g. arcing rings
    • H01H33/6643Contacts; Arc-extinguishing means, e.g. arcing rings having disc-shaped contacts subdivided in petal-like segments, e.g. by helical grooves

Definitions

  • the invention is in the field of electrical switches, in particular the switchgear for high or medium voltage. Aspects of the invention relate to a method for determining wear of a contact element of such a switch. Further aspects of the invention relate to an electronic unit for an electrical switch.
  • Circuit breakers are subject to constant wear and should therefore be inspected and maintained regularly.
  • the arc occurring during a switching operation leads to material wear of the contact pieces and thus contributes considerably to wear.
  • contacts can not be easily verified without costly disassembly and shutdown of performance.
  • a periodic circuit breaker maintenance is made, possibly with early maintenance, when high-level protection trips have occurred. This usually waits for the switch too often. Maintenance causes avoidable costs and an additional risk of causing damage during maintenance.
  • the maintenance intervals are too great, there is a risk that wear or contact wear will not be detected early.
  • EP 1475813 A1 describes methods for determining contact wear in electrical switchgear for high or medium voltage, one during a Switching action is detected by the contact current flowing through the switch with the aid of a current transformer and is evaluated with respect to contact wear.
  • a current measurement signal of the current transformer is first measured as a function of time; if deviations occur between the expected contact current and the current measurement signal, the presence of a measurement error is detected, and upon detection of the measurement error, the current measurement signal becomes at least one characteristic current value determined and used to determine the state quantity.
  • DE 10204849 A1 describes a method for determining contact wear.
  • a method for determining a wear of a contact element of an electrical switch eg a vacuum switch, in particular a switchgear for high or medium voltage.
  • the method comprises detecting electrical values representative of an electrical quantity relevant to an arc occurring during a switching action on the switch as a function of time, the electrical values being detected, for example, as a continuous function or as a data series (vector) with discretely sampled values may include but also virtual values, eg (partially) simulated, interpolated, or fitted values, in which case virtual values are detected.
  • the electrical values are current values representing a contact current flowing through the switch during a switching operation as a function of time.
  • the method further comprises calculating a wear value representing the wear of the contact element from a plurality of wear contribution values, wherein the wear contribution values are calculated from a plurality of value subsets of the detected electrical values using a plurality of wear contribution calculation rules such that each of the wear contribution values a respective one of the wear contribution calculation rules is calculated from a respective one of the value subsets, and wherein at least two of the wear contribution calculation rules differ from each other.
  • a subset of values is understood to include all detected electrical values.
  • an electronic unit in particular a control and / or monitoring system, is provided for an electrical switch (for example a vacuum switch), in particular for a switchgear for high or medium voltage.
  • the electronic unit includes a value input module for obtaining electrical values (e.g., current values) representing an electrical quantity relevant to an arc occurring during a switching action on the switch as a function of time.
  • the value input module can thus be e.g. for obtaining detected electrical values from a value meter, but possibly also from (electrical) simulating or interpolating, etc. of detected electrical values.
  • the electronic unit further comprises a wear determination module having a computing unit and a data memory with program code executable by the computing unit.
  • the program code includes a plurality of wear contribution calculation rules that are provided for calculating respective wear contribution values from respective value subsets of the detected electric values, at least two of the wear contribution calculation rules differ from each other, and a wear value calculation routine for calculating the wear of the contact element representing the wear value from the wear contribution values.
  • the program code includes rules for carrying out any of the methods mentioned herein.
  • the invention also relates to an apparatus for carrying out the disclosed methods and also comprises apparatus parts for carrying out individual ones Process steps. These method steps may be performed by hardware components, by a computer programmed by appropriate software, by a combination of both, or in some other way.
  • the invention is further directed to methods according to which the devices described in each case operate. It includes method steps for performing each function of the devices.
  • the wear contributions can also be calculated from other electrical values.
  • electrical values are understood to be any values of variables which are relevant for an arc occurring during a switching operation on the switch.
  • the electrical values may be current values, voltage values, and / or combinations thereof (e.g., arc power levels formed by a product of current and voltage).
  • the calculation instructions mentioned here, based on the current can also be applied analogously on the basis of such further electrical values by replacing the current values I in the same calculation rules with the other electrical values.
  • Electrical switches such as e.g. used as a circuit breaker in a switchgear for high or medium voltage, usually have two or more contacts. When the switch is closed, these contacts are in electrically conductive direct contact with each other. When opening the switch, the contact pieces are moved away from each other and separated, so that no more current can flow from one contact piece to the other contact piece. If a current flows during the switching operation, the current flow is not immediately completely interrupted during the separation of the two contact pieces from each other, but an arc is formed between the two contact pieces, which carries the current for a certain time. Such an arc also occurs with circuit breakers, i.
  • switch types designed to switch under load, and more particularly for high voltage circuit breakers (i.e., voltages greater than 50 kV, for example 50-800 kV) or medium voltage (i.e., voltages of 5 kV to 50 kV).
  • high voltage circuit breakers i.e., voltages greater than 50 kV, for example 50-800 kV
  • medium voltage i.e., voltages of 5 kV to 50 kV.
  • FIG. 4 Such a switching operation under load with arc is in Fig. 4 illustrated by the example of a vacuum circuit breaker.
  • the vacuum circuit breaker 1 has a first contact piece 10 and a second contact piece 20.
  • the contact pieces 10, 20 each have a shaft 12, 22 and a contact plate 14, 24 arranged at the distal end of the shaft.
  • the contact plate 14, 24 of each of the contact pieces 10, 20 each has a contact surface which contacts a corresponding contact surface of the other contact piece directly when the switch is closed.
  • Define the two contact pieces 10, 20 a switching axis along which they can be moved apart to open the switch relative to each other. In Fig. 4 this axis is the vertical.
  • Fig. 4 the switch 1 is shown during opening, and the contact pieces 10, 20 are already separated from each other along the switching axis.
  • the interruption of the stream is in Fig. 4 not yet completed, and an arc 33 is formed between the contact pieces 10 and 20.
  • a current still flows from the first contact piece 10 to the second contact piece.
  • the current flows through the shaft 12 (current path 31a), via the contact plate 14 (current path 31b), then via the arc 33, and via the contact plate 24 (current path 31c) and over the shaft 22.
  • the arc material of the contacts is removed (this material usually forms the plasma of the arc), resulting in wear of the contacts.
  • the contact pieces 10, 20 designed as a TMF type means that the contact pieces are designed so that the switching current during a switching operation a predominantly transverse magnetic field (perpendicular to the general current flow direction or to a main direction of the arc, ie parallel to a surface defined by the contact surfaces 14 and 24 ). This is achieved here by slots in the contact plates 14 and 24.
  • the slots provide such a current flow direction of the current 31b, 31c in the plates that the current is a transverse magnetic field (in Fig. 4 in the horizontal plane).
  • the in Fig. 4 The switch shown is of the spiral type (ie with helically shaped slots).
  • Other forms of contact pieces are possible.
  • One possible alternative form for TMF-type switches is, for example, cup-shaped contacts.
  • the in Fig. 4 shown switch is a vacuum circuit breaker (ie with a negative pressure in the switch room, in which an arc is expected, in particular with a high vacuum).
  • a vacuum circuit breaker ie with a negative pressure in the switch room, in which an arc is expected, in particular with a high vacuum.
  • aspects of the invention may relate to eg a shielding gas circuit breaker in which the switch compartment is filled with a shielding gas such as SF 6 .
  • a difficulty with switches and in particular with circuit breakers is the wear of the contact pieces (eg contact pieces 10, 20 in Fig. 4 ) through the arc (33 in Fig. 4 ).
  • the problems caused by the wear or the associated wear of the switch are already described above. For the reasons mentioned above, it is desirable to determine the wear as accurately as possible.
  • the wear is indicated by a thickness d (in mm) by which material is removed from the contact surface of the contact piece due to the arc during a switching operation.
  • I (t) represents the contact current flowing through the switch during a switching operation as a function of time t, ie, the current flowing through the arc 33 at time t Fig. 4
  • k and ⁇ are constants that can be determined, for example, by a model or empirically.
  • the time integral in (1) refers to the total switching time during which an arc is present.
  • Eq. (1) Also express a sum for discrete current values that approximates such an integral appropriately.
  • the calculation rule (1) provides inaccurate results, especially for medium or high switching currents. If the parameters k and ⁇ are calibrated for low switching currents, the wear for high switching currents and long arc lengths (phase length 0.75 ⁇ and more) tends to be overestimated by rule (1), and the wear for medium or high switching currents and short arc lengths ( Phase length 0.25 ⁇ and less) tends to be underestimated. Therefore, the question arises of a more realistic or more precise rule to determine the wear d also for a wide range of switching currents and arc lengths. For this purpose, one might be led to replace the integrand in (1) with a more complex expression (with more parameters to be adjusted empirically). However, the accuracy achievable with such an approach is also limited and can not justify the increase in the number of parameters to be adjusted.
  • the current values I (t) representing the contact current flowing through the switch during a switching operation are detected as a function of time t.
  • the current values I (t) can be detected as a continuous function or as a data series (vector) with discretely sampled values.
  • the sampled current values may include not only measured values but also virtual values, e.g. include simulated, interpolated or fit values based on the measurements and / or a suitable model.
  • the current may be assumed to be sinusoidal, and the amplitude and phase and, if necessary, frequency of the signal may be adjusted based on measured values to give a good match of the sinusoidal current with the measured values.
  • the wear contribution values d i are in turn calculated using a plurality of wear contribution calculation rules f i from a plurality of current value subsets of the detected current values I (t) such that each of the wear contribution values according to a respective one of the wear contribution calculation rules f i is from a respective one of the wear contribution values f i
  • Current value subsets is calculated (a sub-set of current values may also include all detected current values, ie may be a real or a spurious subset). At least two of the wear contribution calculation rules differ from each other (as functionals or mappings).
  • One aspect of the invention is based on the recognition that different arc phases occur during a switching operation. These arc phases follow each other in time. These different arc phases lead to different wear of the contact pieces, ie the wear depends, depending on the arc phase, in different ways from the current: While about a diffuse arc leads to a more uniform and low wear of different parts of the contact leads a stationary laced electric arc results in an intensive wear of a limited part of the contact piece, and thus is more relevant for wear overall.
  • the method according to the invention advantageously makes it possible to calculate the contribution of different arc phases for the wear of the contact element as a respective own wear contribution value.
  • Each of the wear contribution values may be calculated by means of a wear contribution calculation rule specific to each arc phase. For this purpose, it is advantageous to select the current value subsets and / or the wear contribution calculation rules such that a certain detected current value, depending on in which arc phase it occurs, leads to a respective different wear contribution.
  • the respective current value subsets As current value subsets, those current values that belong to a respective arc phase can be determined.
  • the time intervals for the respective arc phases can be determined (eg, for the i-th arc phase, the time interval [t i ; t ' i] from t i to t' i ), and the current value subsets than those at the respective time interval [ t i ; t ' i ] corresponding current values current value subsets I ([t i ; t' i ]) are selected.
  • the limit times t i , t ' i are suitably determined for the respective arc phase (see below), and the current value subsets are defined taking these times into account.
  • the temporal delimitation between the individual arc phases can be somewhat blurred, with transitional periods in between. Nevertheless, one can at least approximately determine a limit time for the boundary (beginning or end) of a phase, ie t i for the beginning or t ' i for the end of the ith arc phase.
  • a limit time may be either a start time for the start of the arc (or the first arc phase), or a transition time for the transition from one phase to a respective next phase, or an end time for the end of the arc (or the last arc phase). Accordingly, the transitional time does not refer to the beginning or the end of the arc as such, since no different arc phases merge here.
  • a start timing t 0 (or, more specifically, t open ) for the beginning of the diffused arc
  • a transition timing t ' 0 t 1 for the transition from the diffuse arc to the diffused arc tied stationary arc
  • another transition time t ' 1 t 2 for the transition from the laced stationary arc to the traveling arc
  • the current value subsets may be used as first, second and third current value subset I ([t 0 ; t ' 0 ]), I ([t 1 ; t' 1 )]), I ([t 2 ; t ' 2] ).
  • Fig. 1a and 1b describe how the limit times that limit the arc phases, can be determined in detail.
  • Fig. 1a and 1b shows diagrams with the current I occurring during a switching operation ( Fig. 1a , vertical axis) or the arc voltage U ( Fig. 1b , vertical axis) as a function of time t (horizontal axis).
  • the times t 0 to t 3 are in Fig. 1a and 1b in slightly different positions.
  • the current generally has a roughly sinusoidal shape, with an envelope modulated to a fundamental frequency.
  • Fig. 1a and 1b only a part of a sinusoidal oscillation period is shown, with a zero crossing before the time t 0 .
  • the switch controller Due to this overcurrent, the switch controller outputs a switching signal, which causes the separation of the contact pieces of the switch. A short time thereafter, the switch controller outputs a switching signal, which causes the separation of the contact pieces of the switch. The contacts are then moved apart and separate at about time t 0 . This separation is recognizable by the fact that in Fig. 1b the voltage suddenly rises and an arc occurs. At about the same time, the arc starts as a diffuse arc. As the beginning of the diffuse arc (1st arc phase), which defines the time t 0 , the separation of the contact pieces or the in Fig. 1b recognizable increase in voltage can be used. In some embodiments, the low contact wear during the diffuse arc phase may be neglected.
  • the diffuse arc transitions into a laced stationary arc.
  • This transition can be detected, for example, by the current exceeding a predetermined current threshold I constr .
  • I constr The exact choice of the threshold value I constr depends on the geometry of the contact pieces and on further details, and can be calibrated by measurements, for example. Several observations have shown that I constr can generally be more than 10 kA, ie 15 kA. Alternatively, the transition into the laced stationary arc may be defined otherwise. Other possible alternatives for determination are described below.
  • the stationary arc passes into a moving arc under the influence of the transverse magnetic field generated by the flowing current.
  • the movement of the arc leads to an increased noise component of the measured voltage and the measured current. Therefore, the transition to the moving arc can be detected by the noise component of the voltage (ratio of the variance in a given frequency range to an averaged value of the voltage) exceeding a predetermined threshold.
  • the exact choice of the frequency range and the threshold value depends on the geometry of the contact pieces and on further details, eg the evaluation of the noise signal is particularly meaningful for the spiral TMF type.
  • the threshold etc. can be calibrated by measurements, for example.
  • the transition into the necked stationary arc may be defined in other ways, as described below.
  • This point in time can be recognized, for example, by the fact that the current drops significantly. More generally, the time t 3 may be defined by a decrease in current and / or voltage below a predetermined threshold.
  • the limit time may in particular be selected as the time of a corresponding event.
  • the limit time can also be calculated considering several of the mentioned events, for example by logical or weighted linking of several events or by averaging several corresponding times.
  • the limit timing is a transient time representing a transition from a stationary arc state to a traveling arc state.
  • elements from the above list can be selected and the determination rules for a respective arc phase can be suitably calibrated.
  • several investigative procedures can be applied and their results combined, e.g. by averaging or forming a weighted average.
  • the respective time intervals for the current value subsets may be determined, for example, in the following manner: No. Arc phase Criterion for determining the beginning of the phase 0 Diffuser arc Separation of the contact pieces (eg determined by evaluation of a switching command or by means of mechanical sensors) 1 Constricted stationary arc Contact current exceeds a threshold arc Iconstr, eg 10 kA 2 Laced up rotating arc Noise of the current or voltage exceeds a threshold value
  • the end of the laced rotating arc (phase 2) may be e.g. be determined by the fact that the current falls below a predetermined threshold again.
  • the current values may be divided into different current value subsets based on the determined limit times.
  • a first current value subset comprises the current values I ([t 0 ; t 1 ]) in the time interval [t 0 ; t 1 ] (reference number 1).
  • a second current value subset comprises the current values I ([t 1 ; t 2 ]) in the time interval [t 1 ; t 2 ] (reference 2).
  • a third current value subset comprises the current values I ([t 2 ; t 3 ]) in the time interval [t 2 ; t 3 ] (reference numeral 3).
  • a respective wear contribution value d 1 , d 2, and d 3 is calculated using a respective wear contribution calculation rule.
  • the wear contribution values d 1 , d 2 and d 3 are then combined to the wear value d (eg added).
  • At least one transition point in time is determined, which in particular represents a respective transition between different phases of an arc occurring during the switching operation.
  • the method may include defining an end t ' i of the first time interval; [t i ; t ' i ] and a start t j of the second time interval [t j ; t' j ] taking into account the determined transition time, eg such that the transition time is between the first time interval and the second time interval; in particular, such that the first time interval is earlier than or equal to the transition time, and the second time interval is later than or equal to the transition time.
  • the first time interval then lies before the second time interval, with the transition time in between.
  • the current value subsets are determined taking into account the at least one determined transition time.
  • the current value subsets I ([t i ; t ' i ]) are therefore determined as the current values associated with a respective time interval [t i ; t' i ]. At least one of the time intervals [t i ; t ' i ] is defined taking into account the at least one determined limit or transition time.
  • the individual wear contribution calculation instructions per current value subset or per arc phase
  • at least one, or even all, of the wear contribution calculation rules are evaluated as a respective integral of the form (1) (or as a sum approximating such an integral), the respective time integral being the sum of the respective Time interval or the respective current value subset is limited.
  • the respective parameter k and ⁇ in (1) can then each be selected separately per current value subset (or per arc phase), e.g. determined by a model or calibrated by measurements.
  • the parameter K is written in upper case letters to match the parameter k of Eq.
  • ⁇ i (t) off Fig. 3a the sum of Eq. (4) again into the more specific form of Eq. (2) transferred.
  • ⁇ i (t) is in Fig. 3b shown.
  • the stomata subsets can here comprise all detected current values, and their contribution is weighted only by means of a suitable function ⁇ i (t).
  • ⁇ i (t) ⁇ ((t -t i ) / (t ' i -t i )) with ⁇ as a function that is within the interval [0; 1] has greater values than outside this interval.
  • ⁇ i (t) ⁇ ((t -t i ) / (t ' i -t i )) with ⁇ as a function that is within the interval [0; 1] has greater values than outside this interval.
  • the above calculation rule can also be applied correspondingly for integrals over temporally continuously recorded current values.
  • the integral can be approximated numerically.
  • the wear contribution values for a plurality of the arc phases with similar wear characteristics may be calculated by means of a common wear contribution calculation rule. Nevertheless, not all arc phases should be calculated in the same way, i. at least two of the wear contribution calculation rules are different from each other.
  • the arc voltages U are detected in addition to the currents I and taken into account in the calculation of the wear value.
  • the voltages could be detected, for example, by means of additional voltage sensors.
  • any electrical value representative of a quantity relevant to the power flowing through the switch during a switching operation may be used in the calculation, e.g. the current I, the arc voltage U, a product thereof (as in the above equation).
  • the power P (t) I (t) * U (t) as a function of time instead of I (t) in any of the above equations, for example: (2), (2 '), (3), (3 ').
  • the switch controller includes a current value input module for obtaining current values (eg, obtaining sensed current values from, for example, a current meter, but also from means for simulating, interpolating, etc.) which detects a contact current flowing through the switch during a switching operation as Represent function of time.
  • the switch controller further comprises a wear determination module having a computing unit and a data memory with program code executable by the computing unit.
  • the program code comprises a plurality of wear contribution calculation rules f i provided for calculating respective wear contribution values from respective current value subsets I ([t i ; t ' i ])) of the detected current values, such that each of the wear contribution calculation rules includes a respective one of Wear contribution values are calculated from a respective one of the current value subsets. At least two of the wear contribution calculation rules f i are different from each other.
  • the program code further includes a wear value calculation routine for calculating a wear value d representing the wear of the contact element from the wear contribution values (eg, as a sum thereof).
  • the program code includes instructions for carrying out any method described herein.
  • the wear contribution calculation rules f i for calculating a corresponding plurality of wear contribution values from a corresponding plurality of current value subsets 1 ([t i ; t ' i ]) of the detected current values are provided so that each of the wear contribution calculation rules f i is a respective one the wear contribution values are calculated from a respective one of the current value subsets I ([t i ; t ' i ]).
  • the switchboard is designed for high or medium voltage, and is in particular a circuit breaker, such as a vacuum circuit breaker (but also a gas-insulated circuit breaker is possible).
  • the switchgear comprises the switch control described above.
  • the contact current is in particular an arc current.
  • the switchgear in particular has a contact piece of the TMF type as contact element, since it is here Particularly clear arc phases are.
  • a contact piece of the TMF type is characterized in that its design during the switching operation or in the case of an arc promotes a predominantly transverse magnetic field. The transverse magnetic field promotes the movement of the arc and thus leads to pronounced arc phases.
  • the contact piece may be in particular of the spiral TMF type (as in Fig. 4 shown).
  • the contact element can thus contain a flat contact surface with a round cross-section, for example with a spiral-shaped gap.
  • the contact piece may also be bowl-shaped (bowl-shaped, cup-shaped, type).
  • the switch may include two longitudinally mutually movable contacts.
  • the switchgear may include a plurality of contact elements (e.g., 3 contact elements for 3 phases). In this case, the wear for each of the contact elements may be separate as described herein.
  • a method for determining a wear of a contact element comprises calculating a wear value (d) representing the wear of the contact element from the detected current values (I (t)), wherein a first wear contribution value after a first wear contribution calculation rule (f i ) at least one current value (I (t i ); I ([t i ; t ' i ])) for the first time interval (t i ; [t i ; t' i ]) is calculated, and a second wear contribution value after a second one Abrasion contribution calculation rule (f j ) is calculated from the at least one current value (I (t j ); I ([t j ; t ' j ])) for the second time interval (t j ; [t j ; t' j ]) wherein the first wear contribution calculation rule (f i ) is different from the second wear contribution calculation rule (f j ).
  • the acquisition may include a measurement, in particular a sampling measurement in discrete sampling time intervals, but also a (partial) simulation.
  • the simulation may be based on a model, e.g. Assume that current values are on a sinusoidal curve, or include interpolation between readings. In this way, the current values may be available as a continuous function of time or as a vector of discrete detected values.
  • the wear contribution calculation rule is not identical to zero (as a functional).
  • a computational rule that was functionally identical to zero would yield no wear contribution (i.e., always zero) regardless of the electrical values of the value subset.
  • Such a calculation rule is not considered a wear-contribution calculation rule.

Landscapes

  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Keying Circuit Devices (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

The method involves detecting electric values i.e. current values, which represent an electric variable as a function of time, where the electric variable is relevant to an electric arc. A wear value is computed from wear range values (d1-d3), where the wear value represents wear of a contact element. The wear range values are calculated from the electrical values detected by partial value amounts, so that each wear range value is calculated from the partial value amounts according to wear range calculation specifications, where the wear range calculation specifications differ from each other. An independent claim is also included for an electronic unit i.e. control and/or monitoring system, for an electric switch i.e. switching system for high voltage and medium voltage.

Description

Die Erfindung liegt auf dem Gebiet der elektrischen Schalter, insbesondere der Schaltanlagen für Hoch- oder Mittelspannung. Aspekte der Erfindung betreffen ein Verfahren zum Bestimmen einer Abnutzung eines Kontaktelements eines solchen Schalters. Weitere Aspekte der Erfindung betreffen eine elektronische Einheit für einen elektrischen Schalter.The invention is in the field of electrical switches, in particular the switchgear for high or medium voltage. Aspects of the invention relate to a method for determining wear of a contact element of such a switch. Further aspects of the invention relate to an electronic unit for an electrical switch.

Leistungsschalter unterliegen ständigem Verschleiß und sollten daher regelmäßig kontrolliert und gewartet werden. Insbesondere führt der bei einer Schalthandlung (z.B. Schutzabschaltung) auftretende Lichtbogen zu einer Materialabnutzung der Kontaktstücke und trägt somit erheblich zum Verschleiß bei. Kontakte können im Allgemeinen nicht auf einfache Weise überprüft werden, ohne kostenintensives Zerlegen und Abschalten der Leistung. Üblicherweise wird daher eine periodische Leistungsschalterwartung vorgenommen, gegebenenfalls mit vorgezogener Wartung, wenn Schutzabschaltungen mit hohen Strömen aufgetreten sind. Damit wird in der Regel der Schalter zu häufig gewartet. Die Wartung verursacht vermeidbare Kosten, und ein zusätzliches Risiko, dass bei der Wartung Schäden verursacht werden. Andererseits besteht bei zu großen Wartungsintervallen jedoch ein Risiko, dass ein Verschleiß bzw. eine Kontaktabnutzung nicht frühzeitig erkannt wird. Hier besteht das Risiko einer Fehlfunktion, zumindest aber eines Leistungsverlusts des Schalters.Circuit breakers are subject to constant wear and should therefore be inspected and maintained regularly. In particular, the arc occurring during a switching operation (for example, protective shutdown) leads to material wear of the contact pieces and thus contributes considerably to wear. In general, contacts can not be easily verified without costly disassembly and shutdown of performance. Typically, therefore, a periodic circuit breaker maintenance is made, possibly with early maintenance, when high-level protection trips have occurred. This usually waits for the switch too often. Maintenance causes avoidable costs and an additional risk of causing damage during maintenance. On the other hand, if the maintenance intervals are too great, there is a risk that wear or contact wear will not be detected early. Here there is a risk of malfunction, but at least a loss of power of the switch.

Daher wäre es wünschenswert, die Abnutzung der Kontaktstücke zuverlässiger zu bestimmen. Diese Abnutzung ist jedoch schwierig zu messen oder vorauszusagen, da sie durch eine Vielzahl von Faktoren beeinflusst wird. Es wird allgemein angenommen, dass die Kontaktabnutzung durch den kumulativen Energieumsatz (Verlustleistung) bei dem Auftreten von Lichtbogen bei geöffnetem Leistungsschalter hervorgerufen wird. Allein das Zählen der Anzahl der bei einem Leistungsschalter aufgetretenen Fehler kann daher keine genaue Abschätzung bezüglich der Kontaktabnutzung ergeben.Therefore, it would be desirable to more reliably determine the wear of the contacts. However, this wear is difficult to measure or predict because it is affected by a variety of factors. It is generally believed that the contact wear is caused by the cumulative energy conversion (power dissipation) when arc occurs when the circuit breaker is open. Therefore, counting the number of errors that occurred at a circuit breaker can not give an accurate estimate of contact wear.

EP 1475813 A1 beschreibt Verfahren zur Bestimmung von Kontaktabnutzung in elektrischen Schaltanlagen für Hoch- oder Mittelspannung, wobei ein während einer Schalthandlung durch den Schalter fließender Kontaktstrom mit Hilfe eines Stromwandlers erfasst wird und hinsichtlich Kontaktabnutzung ausgewertet wird. Zur Bestimmung einer die Kontaktabnutzung charakterisierenden Zustandsgröße wird zunächst ein Strommesssignal des Stromwandlers als Funktion der Zeit gemessen, bei Auftreten von Abweichungen zwischen dem erwarteten Kontaktstrom und dem Strommesssignal wird das Vorhandensein eines Messfehlers detektiert, und bei Detektion des Messfehlers wird aus dem Strommesssignal mindestens ein charakteristischer Stromwert bestimmt und zur Bestimmung der Zustandsgröße verwendet. Auch DE 10204849 A1 beschreibt ein Verfahren zur Bestimmung der Kontaktabnutzung. EP 1475813 A1 describes methods for determining contact wear in electrical switchgear for high or medium voltage, one during a Switching action is detected by the contact current flowing through the switch with the aid of a current transformer and is evaluated with respect to contact wear. In order to determine a state variable characterizing the contact wear, a current measurement signal of the current transformer is first measured as a function of time; if deviations occur between the expected contact current and the current measurement signal, the presence of a measurement error is detected, and upon detection of the measurement error, the current measurement signal becomes at least one characteristic current value determined and used to determine the state quantity. Also DE 10204849 A1 describes a method for determining contact wear.

Die bekannten Verfahren zum Bestimmen einer Abnutzung sind jedoch hinsichtlich ihrer Zuverlässigkeit immer noch verbesserungsfähig. Auch ist es wünschenswert, Verfahren zu erhalten, die in einer Vielzahl unterschiedlicher Schaltsituationen so zuverlässige Ergebnisse liefern, dass sie für eine automatisierte (Fern-) Diagnose- und Wartung geeignet sind. Auf diese Weise können kostenintensive Wartungsarbeiten reduziert werden. Gleichzeitig kann eine zuverlässige kontinuierliche Zustandsüberwachung verwirklicht werden. Auch ist es erstrebenswert, Probleme und Abnutzungen zu erkennen und zu beseitigen, bevor sie kritisch werden.However, the known methods of determining wear are still capable of improvement in terms of their reliability. It is also desirable to obtain methods which provide results so reliable in a variety of different switching situations that they are suitable for automated (remote) diagnosis and maintenance. In this way costly maintenance can be reduced. At the same time a reliable continuous condition monitoring can be realized. Also, it is desirable to identify and eliminate problems and wear and tear before they become critical.

Um zumindest einige der oben genannten Punkte zumindest zu verbessern, wird daher ein Verfahren gemäß Anspruch 1, eine Schaltersteuerung gemäß Anspruch 13 und eine Schaltanlage gemäß Anspruch 14 vorgeschlagen. Weitere Vorteile, Merkmale, Aspekte und Details der Erfindung sowie bevorzugte Ausführungen und besondere Aspekte der Erfindung ergeben sich aus den Unteransprüchen, der Beschreibung und den Figuren.To at least improve at least some of the above-mentioned points, therefore, a method according to claim 1, a switch control according to claim 13 and a switchgear according to claim 14 is proposed. Further advantages, features, aspects and details of the invention as well as preferred embodiments and particular aspects of the invention will become apparent from the subclaims, the description and the figures.

Gemäß einem Aspekt der Erfindung wird ein Verfahren zum Bestimmen einer Abnutzung eines Kontaktelements eines elektrischen Schalters (z.B. eines VakuumSchalters), insbesondere einer Schaltanlage für Hoch- oder Mittelspannung, zur Verfügung gestellt. Das Verfahren umfasst das Erfassen von elektrischen Werten, die eine für einen während einer Schalthandlung an dem Schalter auftretenden Lichtbogen relevante elektrische Größe als Funktion der Zeit darstellen, wobei die elektrischen Werte z.B. als kontinuierliche Funktion oder als Datenreihe (Vektor) mit diskret abgetasteten Werten erfasst werden können, aber auch virtuelle Werte, z.B. (teil-)simulierte, interpolierte, oder gefittete Werte, umfassen können, in welchem Fall virtuelle Werte erfasst werden. Beispielsweise können die elektrische Werte Stromwerte sein, die einen während einer Schalthandlung durch den Schalter fließenden Kontaktstrom als Funktion der Zeit darstellen. Das Verfahren umfasst weiter das Berechnen eines die Abnutzung des Kontaktelements darstellenden Abnutzungswerts aus einer Mehrzahl von Abnutzungsbeitragswerten, wobei die Abnutzungsbeitragswerte unter Verwendung einer Mehrzahl von Abnutzungsbeitrags-Berechnungsvorschriften aus einer Mehrzahl von Werte-Teilmengen der erfassten elektrischen Werte berechnet werden, so dass jeder der Abnutzungsbeitragswerte nach einer jeweiligen der Abnutzungsbeitrags-Berechnungsvorschriften aus einer jeweiligen der Werte-Teilmengen berechnet wird, und wobei sich zumindest zwei der Abnutzungsbeitrags-Berechnungsvorschriften voneinander unterscheiden. Hierbei ist eine Werte-Teilmenge so zu verstehen, dass sie auch alle erfassten elektrischen Werte umfassen kann.According to one aspect of the invention, a method for determining a wear of a contact element of an electrical switch (eg a vacuum switch), in particular a switchgear for high or medium voltage, is provided. The method comprises detecting electrical values representative of an electrical quantity relevant to an arc occurring during a switching action on the switch as a function of time, the electrical values being detected, for example, as a continuous function or as a data series (vector) with discretely sampled values may include but also virtual values, eg (partially) simulated, interpolated, or fitted values, in which case virtual values are detected. For example, the electrical values are current values representing a contact current flowing through the switch during a switching operation as a function of time. The method further comprises calculating a wear value representing the wear of the contact element from a plurality of wear contribution values, wherein the wear contribution values are calculated from a plurality of value subsets of the detected electrical values using a plurality of wear contribution calculation rules such that each of the wear contribution values a respective one of the wear contribution calculation rules is calculated from a respective one of the value subsets, and wherein at least two of the wear contribution calculation rules differ from each other. Here, a subset of values is understood to include all detected electrical values.

Gemäß einem weiteren Aspekt der Erfindung wird eine elektronische Einheit, insbesondere ein Steuerungs- und/oder Überwachungssystem, für einen elektrischen Schalter (z.B. einen Vakuum-Schalter), insbesondere für eine Schaltanlage für Hoch- oder Mittelspannung, zur Verfügung gestellt. Die elektronische Einheit umfasst ein Wert-Eingangs-Modul zum Erhalten von elektrischen Werten (z.B. von Stromwerten) , die eine für einen während einer Schalthandlung an dem Schalter auftretenden Lichtbogen relevante elektrische Größe als Funktion der Zeit darstellen. Das Wert-Eingangs-Modul kann somit z.B. zum Erhalten von erfassten elektrischen Werten von einem Werte-Messgerät, aber möglicherweise auch von durch (Teil-)Simulieren oder Interpolieren usw. von erfassten elektrischen Werten ausgestattet sein. Die elektronische Einheit umfasst weiter ein Abnutzungs-Bestimmungs-Modul, das eine Recheneinheit und einen Datenspeicher mit durch die Recheneinheit ausführbarem Programmcode aufweist. Der Programmcode umfasst eine Mehrzahl von Abnutzungsbeitrags-Berechnungsvorschriften, die zum Berechnen jeweiliger Abnutzungsbeitragswerte aus jeweiligen Werte-Teilmengen der erfassten elektrischen Werte vorgesehen sind, wobei sich zumindest zwei der Abnutzungsbeitrags-Berechnungsvorschriften voneinander unterscheiden, und eine Abnutzungswert-Berechnungs-Routine zum Berechnen eines die Abnutzung des Kontaktelements darstellenden Abnutzungswerts aus den Abnutzungsbeitragswerten. Insbesondere umfasst der Programmcode Vorschriften zum Ausführen von irgendwelchen hierin genannten Verfahren.According to a further aspect of the invention, an electronic unit, in particular a control and / or monitoring system, is provided for an electrical switch (for example a vacuum switch), in particular for a switchgear for high or medium voltage. The electronic unit includes a value input module for obtaining electrical values (e.g., current values) representing an electrical quantity relevant to an arc occurring during a switching action on the switch as a function of time. The value input module can thus be e.g. for obtaining detected electrical values from a value meter, but possibly also from (electrical) simulating or interpolating, etc. of detected electrical values. The electronic unit further comprises a wear determination module having a computing unit and a data memory with program code executable by the computing unit. The program code includes a plurality of wear contribution calculation rules that are provided for calculating respective wear contribution values from respective value subsets of the detected electric values, at least two of the wear contribution calculation rules differ from each other, and a wear value calculation routine for calculating the wear of the contact element representing the wear value from the wear contribution values. In particular, the program code includes rules for carrying out any of the methods mentioned herein.

Die Erfindung bezieht sich auch auf eine Vorrichtung zum Ausführen der offenbarten Verfahren und umfasst auch Vorrichtungsteile zum Ausführen jeweils einzelner Verfahrensschritte. Diese Verfahrensschritte können durch Hardwarekomponenten, durch einen mittels entsprechender Software programmierten Computer, durch eine Kombination von beiden, oder in irgendeiner anderen Weise ausgeführt werden. Die Erfindung ist des Weiteren auch auf Verfahren gerichtet, gemäß denen die jeweils beschriebenen Vorrichtungen arbeiten. Sie beinhaltet Verfahrensschritte zum Ausführen jeder Funktion der Vorrichtungen.The invention also relates to an apparatus for carrying out the disclosed methods and also comprises apparatus parts for carrying out individual ones Process steps. These method steps may be performed by hardware components, by a computer programmed by appropriate software, by a combination of both, or in some other way. The invention is further directed to methods according to which the devices described in each case operate. It includes method steps for performing each function of the devices.

Im Weiteren soll die Erfindung anhand von in Figuren dargestellten Ausführungsbeispielen erläutert werden, aus denen sich weitere Vorteilteile und Abwandlungen ergeben. Dazu zeigen:

Fig. 1a
zeigt ein Diagramm mit dem während einer Schalthandlung auftretenden gemessenen Strom als Funktion der Zeit;
Fig.
1b zeigt ein Diagramm mit der während einer Schalthandlung auftretenden gemessenen Spannung (genauer: Lichtbogenspannung) als Funktion der Zeit;
Fig. 2
zeigt ein Diagramm mit dem während einer Schalthandlung auftretenden Strom als Funktion der Zeit, aus dem verschiedene Lichtbogen-Phasen der Schalthandlung abgeleitet werden;
Fig. 3a und 3b
zeigen jeweilige mögliche Hilfsfunktionen, die zur erfindungsgemäßen Berechnung eines Abnutzungswerts verwendet werden können; und
Fig. 4
zeigt Kontaktelemente eines elektrischen Schalters.
In addition, the invention will be explained with reference to exemplary embodiments illustrated in figures, from which further advantageous parts and modifications result. To show:
Fig. 1a
shows a diagram with the measured current occurring during a switching operation as a function of time;
FIG.
1b shows a diagram with the measured voltage occurring during a switching operation (more precisely: arc voltage) as a function of time;
Fig. 2
shows a diagram with the current occurring during a switching operation as a function of time, are derived from the various arc phases of the switching action;
Fig. 3a and 3b
show respective possible auxiliary functions that can be used to calculate a wear value according to the invention; and
Fig. 4
shows contact elements of an electrical switch.

Bei den im Folgenden beschriebenen Ausführungsformen sind einzelne Aspekte und Merkmale modular mit den Aspekten und Merkmalen anderer Ausführungsformen kombinierbar. Durch eine solche Kombination können wiederum weitere Ausführungsformen erhalten werden, die ebenfalls als zur vorliegenden Offenbarung zugehörig anzusehen sind. Im Folgenden wird ein Schalter für eine einzige Phase beschrieben. Im Allgemeinen sind drei Phasen mit jeweils zugehörigem Leistungsschalter vorhanden. Die jeweiligen Abnutzungen können dann in der Regel unabhängig voneinander bestimmt werden, gemäß irgendeinem der hierin beschriebenen Aspekte.In the embodiments described below, individual aspects and features can be modularly combined with the aspects and features of other embodiments. By such a combination, in turn, further embodiments can be obtained, which are also regarded as belonging to the present disclosure. The following describes a switch for a single phase. In general, there are three phases, each with associated circuit breaker. The respective wear can then be determined, as a rule, independently of one another, according to any of the aspects described herein.

Im Folgenden werden hauptsächlich solche Ausführungsformen beschrieben, in denen Stromwerte erfasst werden, und die Abnutzungsbeiträge aus den Stromwerten berechnet werden. Allgemeiner können die Abnutzungsbeiträge auch aus anderen elektrischen Werten berechnet werden. Als elektrische Werte werden hierbei irgendwelche Werte von Größen verstanden, die für einen während einer Schalthandlung an dem Schalter auftretenden Lichtbogen relevant sind. Insbesondere können die elektrische Werte Stromwerte, Spannungswerte und / oder Kombinationen daraus sein (z.B. Lichtbogenleistungswerte, die durch ein Produkt aus Strom und Spannung gebildet werden). Die hierin genannten Rechenvorschriften ausgehend von dem Strom sind analog auch ausgehend von solchen weiteren elektrischen Werten anwendbar, indem die Stromwerte I in denselben Rechenvorschriften durch die anderen elektrischen Werte ersetzt werden.In the following, mainly embodiments are described in which current values are detected, and the wear contributions are calculated from the current values. More generally, the wear contributions can also be calculated from other electrical values. In this case, electrical values are understood to be any values of variables which are relevant for an arc occurring during a switching operation on the switch. In particular, the electrical values may be current values, voltage values, and / or combinations thereof (e.g., arc power levels formed by a product of current and voltage). The calculation instructions mentioned here, based on the current, can also be applied analogously on the basis of such further electrical values by replacing the current values I in the same calculation rules with the other electrical values.

Elektrische Schalter wie sie z.B. als Leistungsschalter in einer Schaltanlage für Hoch- oder Mittelspannung verwendet werden, haben üblicherweise zwei oder mehrere Kontaktstücke. Bei geschlossenem Schalter sind diese Kontaktstücke in elektrisch leitfähigem direktem Kontakt zueinander. Beim Öffnen des Schalters werden die Kontaktstücke voneinander wegbewegt und getrennt, so dass kein Strom mehr von dem einen Kontaktstück zu dem anderen Kontaktstück fließen kann. Wenn während des Schaltvorgangs ein Strom fließt, so wird während der Trennung der beiden Kontaktstücke voneinander der Stromfluss nicht sofort vollständig unterbrochen, sondern ein Lichtbogen entsteht zwischen den beiden Kontaktstücken, der für eine gewisse Zeit den Strom weiter trägt. Ein solcher Lichtbogen tritt auch bei Leistungsschaltern auf, d.h. besonderen Schaltertypen, die dafür ausgelegt sind, unter Last zu schalten, und ganz besonders bei Leistungsschaltern für Hochspannung (d.h. Spannungen von mehr als 50 kV, z.B. 50-800 kV) oder für Mittelspannung (d.h. Spannungen von 5 kV bis 50 kV).Electrical switches such as e.g. used as a circuit breaker in a switchgear for high or medium voltage, usually have two or more contacts. When the switch is closed, these contacts are in electrically conductive direct contact with each other. When opening the switch, the contact pieces are moved away from each other and separated, so that no more current can flow from one contact piece to the other contact piece. If a current flows during the switching operation, the current flow is not immediately completely interrupted during the separation of the two contact pieces from each other, but an arc is formed between the two contact pieces, which carries the current for a certain time. Such an arc also occurs with circuit breakers, i. particular switch types designed to switch under load, and more particularly for high voltage circuit breakers (i.e., voltages greater than 50 kV, for example 50-800 kV) or medium voltage (i.e., voltages of 5 kV to 50 kV).

Ein solcher Schaltvorgang unter Last mit Lichtbogen ist in Fig. 4 am Beispiel eines Vakuum-Leistungsschalters dargestellt. Der Vakuum-Leistungsschalter 1 hat ein erstes Kontaktstück 10 und ein zweites Kontaktstück 20. Die Kontaktstücke 10, 20 weisen jeweils einen Schaft 12, 22 und einen am distalen Ende des Schafts angeordneten Kontakt-Teller 14, 24 auf. Der Kontakt-Teller 14, 24 jedes der Kontaktstücke 10, 20 hat jeweils eine Kontaktoberfläche, die bei geschlossenem Schalter eine entsprechende Kontaktoberfläche des jeweils anderen Kontaktstücks direkt kontaktiert. Die beiden Kontaktstücke 10, 20 definieren eine Schaltachse, entlang derer sie zum Öffnen des Schalters relativ zueinander auseinanderbewegbar sind. In Fig. 4 ist diese Achse die Vertikale.Such a switching operation under load with arc is in Fig. 4 illustrated by the example of a vacuum circuit breaker. The vacuum circuit breaker 1 has a first contact piece 10 and a second contact piece 20. The contact pieces 10, 20 each have a shaft 12, 22 and a contact plate 14, 24 arranged at the distal end of the shaft. The contact plate 14, 24 of each of the contact pieces 10, 20 each has a contact surface which contacts a corresponding contact surface of the other contact piece directly when the switch is closed. Define the two contact pieces 10, 20 a switching axis along which they can be moved apart to open the switch relative to each other. In Fig. 4 this axis is the vertical.

In Fig. 4 ist der Schalter 1 während des Öffnens dargestellt, und die Kontaktstücke 10, 20 sind bereits entlang der Schaltachse voneinander getrennt. Die Unterbrechung des Stroms ist in Fig. 4 noch nicht vollständig abgeschlossen, und ein Lichtbogen 33 ist zwischen den Kontaktstücken 10 und 20 ausgebildet. Durch den Lichtbogen 33 vermittelt, fließt noch ein Strom vom ersten Kontaktstück 10 zum zweiten Kontaktstück. Der Strom fließt über den Schaft 12 (Stromweg 31 a), über den Kontakt-Teller 14 (Stromweg 31b), sodann über den Lichtbogen 33, und über den Kontakt-Teller 24 (Stromweg 31c) und über den Schaft 22. Unter dem Einfluss des Lichtbogens wird Material der Kontaktstücke abgetragen (dieses Material bildet üblicherweise das Plasma des Lichtbogens), was zu einer Abnutzung der Kontaktstücke führt.In Fig. 4 the switch 1 is shown during opening, and the contact pieces 10, 20 are already separated from each other along the switching axis. The interruption of the stream is in Fig. 4 not yet completed, and an arc 33 is formed between the contact pieces 10 and 20. Mediated by the arc 33, a current still flows from the first contact piece 10 to the second contact piece. The current flows through the shaft 12 (current path 31a), via the contact plate 14 (current path 31b), then via the arc 33, and via the contact plate 24 (current path 31c) and over the shaft 22. Under the influence of the arc material of the contacts is removed (this material usually forms the plasma of the arc), resulting in wear of the contacts.

Im dargestellten Beispiel sind die Kontaktstücke 10, 20 als TMF-Typ gestaltet. TMF-Typ bedeutet, dass die Kontaktstücke so gestaltet sind, dass der Schaltstrom bei einem Schaltvorgang ein überwiegend transversales magnetisches Feld (senkrecht zur allgemeinen Stromfluss-Richtung bzw. zu einer Hauptrichtung des Lichtbogens, d.h. parallel zu einer durch die Kontaktoberflächen 14 und 24 definierten Fläche) hervorruft. Dies wird hier durch Schlitze in den Kontakt-Tellern 14 und 24 erreicht. Die Schlitze geben eine solche Stromflussrichtung des Stroms 31b, 31c in den Tellern vor, dass der Strom ein transversales Magnetfeld (in Fig. 4 in der horizintalen Ebene) induziert. Der in Fig. 4 gezeigte Schalter ist vom Spiral-Typ (d.h. mit spiralförmig gestalteten Schlitzen). Auch andere Formen der Kontaktstücke sind möglich. Eine mögliche alternative Form für Schalter des TMF-Typs sind z.B. schalenförmige (cup-shaped) Kontaktstücke.In the example shown, the contact pieces 10, 20 designed as a TMF type. TMF type means that the contact pieces are designed so that the switching current during a switching operation a predominantly transverse magnetic field (perpendicular to the general current flow direction or to a main direction of the arc, ie parallel to a surface defined by the contact surfaces 14 and 24 ). This is achieved here by slots in the contact plates 14 and 24. The slots provide such a current flow direction of the current 31b, 31c in the plates that the current is a transverse magnetic field (in Fig. 4 in the horizontal plane). The in Fig. 4 The switch shown is of the spiral type (ie with helically shaped slots). Other forms of contact pieces are possible. One possible alternative form for TMF-type switches is, for example, cup-shaped contacts.

Der in Fig. 4 dargestellte Schalter ist ein Vakuum-Leistungsschalter (d.h. mit einem Unterdruck in dem Schaltraum, in dem ein Lichtbogen erwartet wird, insbesondere mit einem Hochvakuum). Auch wenn sich manche Vorteile der Erfindung besonders gut für Vakuum-Leistungsschalter etwa im Mittel- oder Hochspannungsbereich realisieren lassen, so sind sie nicht auf solche Schalter beschränkt. Ebenso können Aspekte der Erfindung sich auf z.B. einen Schutzgas-Leistungsschalter beziehen, in dem der Schaltraum mit einem Schutzgas wie z.B. SF6 gefüllt ist.The in Fig. 4 shown switch is a vacuum circuit breaker (ie with a negative pressure in the switch room, in which an arc is expected, in particular with a high vacuum). Although some advantages of the invention can be realized particularly well for vacuum circuit breakers in the middle or high voltage range, they are not limited to such switches. Likewise, aspects of the invention may relate to eg a shielding gas circuit breaker in which the switch compartment is filled with a shielding gas such as SF 6 .

Eine Schwierigkeit bei Schaltern und insbesondere bei Leistungsschaltern ist die Abnutzung der Kontaktstücke (z.B. Kontaktstücke 10, 20 in Fig. 4) durch den Lichtbogen (33 in Fig. 4). Die durch die Abnutzung bzw. den damit einhergehenden Verschleiß des Schalters hervorgerufenen Probleme sind bereits weiter oben beschrieben. Aus den oben genannten Gründen ist es wünschenswert, den Verschleiß möglichst genau zu bestimmen.A difficulty with switches and in particular with circuit breakers is the wear of the contact pieces (eg contact pieces 10, 20 in Fig. 4 ) through the arc (33 in Fig. 4 ). The problems caused by the wear or the associated wear of the switch are already described above. For the reasons mentioned above, it is desirable to determine the wear as accurately as possible.

Ein hier zu Illustrationszwecken erwähntes Verfahren sieht zu diesem Zweck ein Strom-Integral etwa der folgenden Form vor, um den Verschleiß zu bestimmen: d = k * I t α dt

Figure imgb0001

Hier ist der Verschleiß durch eine Dicke d angegeben (in mm), um die während eines Schaltvorgangs Material von der Kontaktoberfläche des Kontaktstücks aufgrund des Lichtbogens abgetragen wird. Hierbei stellt I(t) den während einer Schalthandlung durch den Schalter fließenden Kontaktstrom als Funktion der Zeit t dar, d.h. den Strom, der zur Zeit t durch den Lichtbogen 33 fließt, siehe Fig. 4. k und α sind Konstanten, die z.B. durch ein Modell oder empirisch ermittelt werden können. Das Zeitintegral in (1) bezieht sich auf die gesamte Schaltzeit, während der ein Lichtbogen vorhanden ist. Hierin soll ein Integral wie in Gl. (1) auch eine Summe für diskrete Stromwerte ausdrücken, die ein solches Integral geeignet annähert.A method mentioned here for illustrative purposes provides for this purpose a current integral of approximately the following shape to determine the wear: d = k * I t α dt
Figure imgb0001

Here, the wear is indicated by a thickness d (in mm) by which material is removed from the contact surface of the contact piece due to the arc during a switching operation. Herein, I (t) represents the contact current flowing through the switch during a switching operation as a function of time t, ie, the current flowing through the arc 33 at time t Fig. 4 , k and α are constants that can be determined, for example, by a model or empirically. The time integral in (1) refers to the total switching time during which an arc is present. Here is an integral as in Eq. (1) Also express a sum for discrete current values that approximates such an integral appropriately.

Die Rechenvorschrift (1) liefert jedoch insbesondere für mittlere oder hohe Schaltströme ungenaue Ergebnisse. Wenn die Parameter k und α für niedrige Schaltströme kalibriert werden, so wird der Verschleiß für hohe Schaltströme und lange Lichtbogendauern (Phasenlänge 0.75 π und mehr) mit der Vorschrift (1) tendenziell überschätzt, und der Verschleiß für mittlere oder hohe Schaltströme und kurze Lichtbogendauern (Phasenlänge 0.25 π und weniger) wird tendenziell unterschätzt. Daher stellt sich die Frage nach einer realistischeren bzw. genaueren Vorschrift, um den Verschleiß d auch für einen breiten Bereich von Schaltströmen und Lichtbogendauern zu ermitteln. Zu diesem Zweck könnte man veranlasst sein, den Integranden in (1) durch einen komplexeren Ausdruck (mit mehr empirisch anzupassenden Parametern) zu ersetzen. Die mit einem solchen Ansatz erreichbare Genauigkeit ist aber ebenfalls begrenzt und kann die Erhöhung der Anzahl der anzupassenden Parameter nicht rechtfertigen.However, the calculation rule (1) provides inaccurate results, especially for medium or high switching currents. If the parameters k and α are calibrated for low switching currents, the wear for high switching currents and long arc lengths (phase length 0.75 π and more) tends to be overestimated by rule (1), and the wear for medium or high switching currents and short arc lengths ( Phase length 0.25 π and less) tends to be underestimated. Therefore, the question arises of a more realistic or more precise rule to determine the wear d also for a wide range of switching currents and arc lengths. For this purpose, one might be led to replace the integrand in (1) with a more complex expression (with more parameters to be adjusted empirically). However, the accuracy achievable with such an approach is also limited and can not justify the increase in the number of parameters to be adjusted.

Erfindungsgemäß werden diese Schwierigkeiten durch das folgende Verfahren zum Bestimmen der Abnutzung des Kontaktelements zumindest gelindert: Zunächst werden die Stromwerte I(t), die den während einer Schalthandlung durch den Schalter fließenden Kontaktstrom darstellen, als Funktion der Zeit t erfasst. Die Stromwerte I(t) können als kontinuierliche Funktion oder als eine Datenreihe (Vektor) mit diskret abgetasteten Werten erfasst werden. Die abgetasteten Stromwerte können nicht nur gemessene Werte, sondern auch virtuelle Werte, z.B. auf Basis der Messwerte und / oder eines geeigneten Modells simulierte, interpolierte oder gefittete Werte umfassen. Beispielsweise kann der Strom als sinusförmig angenommen werden, und die Amplitude und Phase und, falls nötig, Frequenz des Signals kann anhand gemessener Werte angepasst werden, so dass sich eine gute Übereinstimmung des sinusförmigen Stroms mit den gemessenen Werten ergibt.According to the invention, these difficulties are at least alleviated by the following method for determining the wear of the contact element: First, the current values I (t) representing the contact current flowing through the switch during a switching operation are detected as a function of time t. The current values I (t) can be detected as a continuous function or as a data series (vector) with discretely sampled values. The sampled current values may include not only measured values but also virtual values, e.g. include simulated, interpolated or fit values based on the measurements and / or a suitable model. For example, the current may be assumed to be sinusoidal, and the amplitude and phase and, if necessary, frequency of the signal may be adjusted based on measured values to give a good match of the sinusoidal current with the measured values.

Sodann wird der Abnutzungswert d aus einer Mehrzahl von N Abnutzungsbeitragswerten di berechnet, i=1..N (etwa als Summe dieser Abnutzungsbeitragswerte). Die Abnutzungsbeitragswerte di werden wiederum unter Verwendung einer Mehrzahl von Abnutzungsbeitrags-Berechnungsvorschriften fi aus einer Mehrzahl von Stromwerte-Teilmengen der erfassten Stromwerte I(t) berechnet, so dass jeder der Abnutzungsbeitragswerte nach einer jeweiligen der Abnutzungsbeitrags-Berechnungsvorschriften fi aus einer jeweiligen der Stromwerte-Teilmengen berechnet wird (eine Stromwerte-Teilmenge kann auch alle erfassten Stromwerte umfassen, kann also eine echte oder eine unechte Teilmenge sein). Dabei unterscheiden sich zumindest zwei der Abnutzungsbeitrags-Berechnungsvorschriften voneinander (als Funktionale bzw. Abbildungen).Then, the wear value d is calculated from a plurality of N wear contribution values d i , i = 1..N (approximately as the sum of these wear contribution values). The wear contribution values d i are in turn calculated using a plurality of wear contribution calculation rules f i from a plurality of current value subsets of the detected current values I (t) such that each of the wear contribution values according to a respective one of the wear contribution calculation rules f i is from a respective one of the wear contribution values f i Current value subsets is calculated (a sub-set of current values may also include all detected current values, ie may be a real or a spurious subset). At least two of the wear contribution calculation rules differ from each other (as functionals or mappings).

Ein Aspekt der Erfindung beruht auf der Erkenntnis, dass während eines Schaltvorgangs verschiedene Lichtbogen-Phasen auftreten. Diese Lichtbogen-Phasen folgen in etwa zeitlich aufeinander. Diese verschiedenen Lichtbogen-Phasen führen zu jeweils unterschiedlicher Abnutzung der Kontaktstücke, d.h. die Abnutzung hängt, je nach Lichtbogen-Phase, auf unterschiedliche Weise vom Strom ab: Während etwa ein diffuser Lichtbogen zu einer eher gleichmäßigen und geringen Abnutzung verschiedener Teile des Kontaktstücks führt, führt ein stationärer zusammengeschnürter Lichtbogen zu einer intensiven Abnutzung eines begrenzten Teils des Kontaktstücks, und ist damit für die Abnutzung insgesamt relevanter.One aspect of the invention is based on the recognition that different arc phases occur during a switching operation. These arc phases follow each other in time. These different arc phases lead to different wear of the contact pieces, ie the wear depends, depending on the arc phase, in different ways from the current: While about a diffuse arc leads to a more uniform and low wear of different parts of the contact leads a stationary laced electric arc results in an intensive wear of a limited part of the contact piece, and thus is more relevant for wear overall.

Das erfindungsgemäße Verfahren erlaubt es vorteilhafterweise, den Beitrag verschiedener Lichtbogen-Phasen zur Abnutzung des Kontaktelements als jeweils eigenen Abnutzungsbeitragswert zu berechnen. Jeder der Abnutzungsbeitragswerte kann mittels einer für die jeweilige Lichtbogenphase spezifischen Abnutzungsbeitrags-Berechnungsvorschrift berechnet werden. Hierzu ist es vorteilhaft, die Stromwerte-Teilmengen und / oder die Abnutzungsbeitrags-Berechnungsvorschriften so zu wählen, dass ein bestimmter erfasster Stromwert je nachdem, in welcher Lichtbogen-Phase er auftritt, zu einem jeweils unterschiedlichen Abnutzungsbeitrag führt.The method according to the invention advantageously makes it possible to calculate the contribution of different arc phases for the wear of the contact element as a respective own wear contribution value. Each of the wear contribution values may be calculated by means of a wear contribution calculation rule specific to each arc phase. For this purpose, it is advantageous to select the current value subsets and / or the wear contribution calculation rules such that a certain detected current value, depending on in which arc phase it occurs, leads to a respective different wear contribution.

Hierzu sind zunächst die jeweiligen Stromwerte-Teilmengen zu bestimmen. Als Stromwerte-Teilmengen können diejenigen Stromwerte bestimmt werden, die zu einer jeweiligen Lichtbogen-Phase gehören. Hierfür können die Zeitintervalle für die jeweiligen Lichtbogen-Phasen ermittelt (z.B. für die i-te Lichtbogenphase das Zeitintervall [ti;t'i] von ti bis t'i), und die Stromwerte-Teilmengen als die zu dem jeweiligen Zeitintervall [ti;t'i] zugehörigen Stromwerte Stromwerte-Teilmengen I([ti;t'i]) gewählt werden. Zu diesem Zweck werden die Grenz-Zeitpunkte ti, t'i für die jeweilige Lichtbogenphase geeignet ermittelt (siehe weiter unten), und die Stromwerte-Teilmengen werden unter Berücksichtigung dieser Zeitpunkte definiert.To do this, first determine the respective current value subsets. As current value subsets, those current values that belong to a respective arc phase can be determined. For this purpose, the time intervals for the respective arc phases can be determined (eg, for the i-th arc phase, the time interval [t i ; t ' i] from t i to t' i ), and the current value subsets than those at the respective time interval [ t i ; t ' i ] corresponding current values current value subsets I ([t i ; t' i ]) are selected. For this purpose, the limit times t i , t ' i are suitably determined for the respective arc phase (see below), and the current value subsets are defined taking these times into account.

Die zeitliche Abgrenzung zwischen den einzelnen Lichtbogen-Phasen kann etwas unscharf sein, mit Übergangszeiträumen dazwischen. Dennoch kann man zumindest näherungsweise einen Grenz-Zeitpunkt für die Grenze (Beginn oder Ende) einer Phase bestimmen, also ti für den Beginn oder t'i für das Ende der i-ten Lichtbogenphase. Allgemein kann ein solcher Grenz-Zeitpunkt entweder ein Beginn-Zeitpunkt für den Beginn des Lichtbogens (bzw. der ersten Lichtbogen-Phase), oder ein Übergangs-Zeitpunkt für den Übergang von einer Phase zu einer jeweils nächsten Phase, oder ein End-Zeitpunkt für das Ende des Lichtbogens (bzw. der letzten Lichtbogen-Phase) sein. Der Übergangs-Zeitpunkt bezieht sich demnach nicht auf den Beginn oder das Ende des Lichtbogens als solchem, da hier keine verschiedenen Lichtbogen-Phasen ineinander übergehen.The temporal delimitation between the individual arc phases can be somewhat blurred, with transitional periods in between. Nevertheless, one can at least approximately determine a limit time for the boundary (beginning or end) of a phase, ie t i for the beginning or t ' i for the end of the ith arc phase. In general, such a limit time may be either a start time for the start of the arc (or the first arc phase), or a transition time for the transition from one phase to a respective next phase, or an end time for the end of the arc (or the last arc phase). Accordingly, the transitional time does not refer to the beginning or the end of the arc as such, since no different arc phases merge here.

Bei TMF-Schaltern kann die Art und Bewegung des Lichtbogens durch Beobachtungen an besonders geformten Kontaktstücken erfasst werden. Dabei konnten in einem beispielhaften TMF-Schalter die folgenden verschiedenen Lichtbogen-Phasen voneinander unterschieden werden:

  • Phase mit diffusem Lichtbogen: Der Lichtbogen ist räumlich über eine weite Fläche auf dem Kontaktstück verteilt;
  • Phase mit zusammengeschnürtem stationärem Lichtbogen: Der Lichtbogen ist auf einen schmalen Bereich verengt, von dem aus er sich senkrecht zur Kontaktoberfläche erstreckt, und ist stationär, d.h. bewegt sich kaum entlang der Kontaktoberfläche;
  • Phase mit zusammengeschnürtem bewegtem Lichtbogen: Der Lichtbogen ist weiterhin auf einen schmalen Bereich verengt, aber bewegt sich mit hoher Geschwindigkeit (d.h. mit deutlich höherer Geschwindigkeit als in der Phase zuvor) entlang Kontaktoberfläche.
Nach Abschluss der letzten Phase erlischt der Lichtbogen (evtl. mit einer weiteren Phase mit einem diffusen Lichtbogen vor dem vollständigen Erlöschen). Je nach Gestaltung des Schalters und der Kontaktstücke können sich die Phasen von den obengenannten Phasen unterscheiden, und es kann weitere Phasen oder weniger Phasen oder Phasen anderer Art als die oben beschriebenen Phasen geben.For TMF switches, the type and movement of the arc can be detected by observing specially shaped contacts. The following different arc phases could be distinguished from each other in an exemplary TMF switch:
  • Phase with diffuse arc: The arc is spatially distributed over a wide area on the contact piece;
  • Constrained Stationary Arc Phase: The arc narrows to a narrow area from which it extends perpendicular to the contact surface, and is stationary, ie, hardly moves along the contact surface;
  • Convoluted Arc Phase: The arc continues to narrow to a narrow range, but moves along the contact surface at high speed (ie, much faster than in the previous phase).
After completing the last phase, the arc will extinguish (possibly with another phase with a diffused arc before complete extinction). Depending on the design of the switch and the contacts, the phases may differ from the above-mentioned phases, and there may be other phases or fewer phases or phases other than the above-described phases.

In dem obigen Beispiel kann somit als Grenz-Zeitpunkt ein Beginn-Zeitpunkt t0 (oder, genauer, topen) für den Beginn des diffusen Lichtbogens, ein Übergangs-Zeitpunkt t'0 = t1 für den Übergang von dem diffusen Lichtbogen zu dem zusammengeschnürten stationären Lichtbogen, ein weiterer Übergangs-Zeitpunkt t'1 = t2 für den Übergang von dem zusammengeschnürten stationären Lichtbogen zu dem wandernden Lichtbogen, und ein End-Zeitpunkt t'2 = t3 für das Ende des wandernden Lichtbogens bestimmt werden. Wenn diese Übergangs-Zeiträume geeignet ermittelt werden, so können die Stromwerte-Teilmengen als erste, zweite und dritte Stromwerte-Teilmenge I([t0;t'0]), I([t1;t'1)]), I([t2;t'2]) bestimmt werden.Thus, in the above example, as the limit timing, a start timing t 0 (or, more specifically, t open ) for the beginning of the diffused arc, a transition timing t ' 0 = t 1 for the transition from the diffuse arc to the diffused arc tied stationary arc, another transition time t ' 1 = t 2 for the transition from the laced stationary arc to the traveling arc, and an end time t' 2 = t 3 are determined for the end of the traveling arc. If these transient periods are properly determined, the current value subsets may be used as first, second and third current value subset I ([t 0 ; t ' 0 ]), I ([t 1 ; t' 1 )]), I ([t 2 ; t ' 2] ).

Nun soll mit Bezug auf Fig. 1a und 1b beschrieben werden, wie die Grenz-Zeitpunkte, die die Lichtbogen-Phasen begrenzen, im Einzelnen ermittelt werden können.Now, with respect to Fig. 1a and 1b describe how the limit times that limit the arc phases, can be determined in detail.

Fig. 1a und 1b zeigt Diagramme mit dem während einer Schalthandlung auftretenden Strom I (Fig. 1a, vertikale Achse) bzw. der Lichtbogenspannung U (Fig. 1b, vertikale Achse) als Funktion der Zeit t (horizontale Ache). In den schematischen Zeichnungen der Fig. 1a und 1b ist die Zeitachse nicht maßstabsgerecht, deswegen liegen die Zeiten t0 bis t3 in Fig. 1a und 1b an etwas unterschiedlichen Positionen. Der Strom hat einen generell einen in etwa sinusförmigen Verlauf, mit einer auf eine Grundfrequenz aufmodulierten Hüllkurve. In Fig. 1a und 1b ist nur ein Teil einer sinusförmigen Schwingungsperiode dargestellt, mit einem Nulldurchgang vor der Zeit t0. Fig. 1a and 1b shows diagrams with the current I occurring during a switching operation ( Fig. 1a , vertical axis) or the arc voltage U ( Fig. 1b , vertical axis) as a function of time t (horizontal axis). In the schematic drawings of Fig. 1a and 1b if the time axis is not true to scale, the times t 0 to t 3 are in Fig. 1a and 1b in slightly different positions. The current generally has a roughly sinusoidal shape, with an envelope modulated to a fundamental frequency. In Fig. 1a and 1b only a part of a sinusoidal oscillation period is shown, with a zero crossing before the time t 0 .

Der in Fig. 1b dargestellte Strom stellt einen Überstrom dar. Aufgrund dieses Überstroms gibt die Schaltersteuerung ein Schaltsignal aus, das die Trennung der Kontaktstücke des Schalters veranlasst. Kurze Zeit darauf gibt die Schaltersteuerung ein Schaltsignal aus, das die Trennung der Kontaktstücke des Schalters veranlasst. Die Kontaktstücke werden sodann auseinanderbewegt und trennen sich ungefähr zum Zeitpunkt t0. Diese Trennung ist dadurch erkennbar, dass in Fig. 1b die Spannung plötzlich ansteigt, und ein Lichtbogen auftritt. Ungefähr gleichzeitig beginnt der Lichtbogen als ein diffuser Lichtbogen. Als Beginn für den diffusen Lichtbogen (1. Lichtbogen-Phase), der den Zeitpunkt t0 definiert, kann die Trennung der Kontaktstücke oder der in Fig. 1b erkennbare Anstieg der Spannung herangezogen werden. In manchen Ausführungsformen kann die geringe Kontaktabnutzung während der diffusen Lichtbogenphase vernachlässigt werden.The in Fig. 1b Due to this overcurrent, the switch controller outputs a switching signal, which causes the separation of the contact pieces of the switch. A short time thereafter, the switch controller outputs a switching signal, which causes the separation of the contact pieces of the switch. The contacts are then moved apart and separate at about time t 0 . This separation is recognizable by the fact that in Fig. 1b the voltage suddenly rises and an arc occurs. At about the same time, the arc starts as a diffuse arc. As the beginning of the diffuse arc (1st arc phase), which defines the time t 0 , the separation of the contact pieces or the in Fig. 1b recognizable increase in voltage can be used. In some embodiments, the low contact wear during the diffuse arc phase may be neglected.

Zur Zeit t1 = t'0 geht der diffuse Lichtbogen in einen zusammengeschnürten stationären Lichtbogen über. Dieser Übergang kann z.B. dadurch erfasst werden, dass der Strom einen vorgegebenen Strom-Schwellwert Iconstr überschreitet. Die genaue Wahl des Schwellwertes Iconstr hängt von der Geometrie der Kontaktstücke und von weiteren Details ab, und kann z.B. durch Messungen kalibriert werden. Durch verschiedene Beobachtungen wurde festgestellt, dass Iconstr generell mehr als 10 kA, also z.B. 15 kA betragen kann. Alternativ kann der Übergang in den zusammengeschnürten stationären Lichtbogen auch auf andere Weise definiert werden. Weitere mögliche Alternativen zur Bestimmung sind weiter unten beschrieben.At time t 1 = t ' 0 , the diffuse arc transitions into a laced stationary arc. This transition can be detected, for example, by the current exceeding a predetermined current threshold I constr . The exact choice of the threshold value I constr depends on the geometry of the contact pieces and on further details, and can be calibrated by measurements, for example. Several observations have shown that I constr can generally be more than 10 kA, ie 15 kA. Alternatively, the transition into the laced stationary arc may be defined otherwise. Other possible alternatives for determination are described below.

Zur Zeit t2=t'1 geht der stationäre Lichtbogen in einen bewegten Lichtbogen über, unter dem Einfluss des von dem fließenden Strom generierten transversalen Magnetfelds. Die Bewegung des Lichtbogens führt zu einem erhöhten Rauschanteil der gemessenen Spannung und des gemessenen Stroms. Daher kann der Übergang zu dem bewegten Lichtbogen dadurch erfasst werden, dass der Rauschanteil der Spannung (Verhältnis der Varianz in einem vorgegebenen Frequenzbereich zu einem gemittelten Wert der Spannung) einen vorgegebenen Schwellwert überschreitet. Die genaue Wahl des Frequenzbereichs und des Schwellwertes hängt von der Geometrie der Kontaktstücke und von weiteren Details ab, z.B. ist die Auswertung des Rauschsignals besonders aussagekräftig beim Spiral-TMF-Typ. Der Schwellwert usw. kann z.B. durch Messungen kalibriert werden. Alternativ kann der Übergang in den zusammengeschnürten stationären Lichtbogen auch auf andere Weise definiert werden, wie weiter unten beschrieben.At time t 2 = t ' 1 , the stationary arc passes into a moving arc under the influence of the transverse magnetic field generated by the flowing current. The movement of the arc leads to an increased noise component of the measured voltage and the measured current. Therefore, the transition to the moving arc can be detected by the noise component of the voltage (ratio of the variance in a given frequency range to an averaged value of the voltage) exceeding a predetermined threshold. The exact choice of the frequency range and the threshold value depends on the geometry of the contact pieces and on further details, eg the evaluation of the noise signal is particularly meaningful for the spiral TMF type. The threshold etc. can be calibrated by measurements, for example. Alternatively, the transition into the necked stationary arc may be defined in other ways, as described below.

Zur Zeit t3=t'2 erlischt der Lichtbogen, und somit endet auch die Lichtbogen-Phase. Dieser Zeitpunkt ist z.B. dadurch erkennbar, dass der Strom deutlich absinkt. Allgemeiner kann der Zeitpunkt t3 durch ein Sinken des Stroms und / oder der Spannung unter einen vorgegebenen Grenzwert definiert werden.At time t 3 = t ' 2, the arc goes out, and thus the arc phase ends. This point in time can be recognized, for example, by the fact that the current drops significantly. More generally, the time t 3 may be defined by a decrease in current and / or voltage below a predetermined threshold.

Zur Ermittlung der oben genannten Grenz-Zeitpunkte, die die einzelnen Lichtbogen-Phasen begrenzen, können auch weitere Ereignisse herangezogen werden, die mit dem Beginn oder dem Ende einer Lichtbogen-Phase auf irgendeine Weise korreliert sind. Ein solches Ereignis kann beispielsweise sein:

  1. a. Beginn eines Lichtbogens (etwa durch Messung der Helligkeit im Lichtbogenbereich, des Kontaktstroms, der Kontaktspannung, oder einer ähnlichen Größe ermittelbar);
  2. b. Übergang von einem stationären Lichtbogen-Zustand zu einem wandernden Lichtbogen-Zustand (etwa durch Messung der Varianz bzw. des Rauschanteils der oben genannten Größen ermittelbar);
  3. c. Übergang von einem diffusen Lichtbogen zu einem zusammengeschnürten Lichtbogen (etwa durch Messung der räumlichen Helligkeitsverteilung im Lichtbogenbereich ermittelbar);
  4. d. Ende eines Lichtbogens (etwa durch Messung der Helligkeit im Lichtbogenbereich, des Kontaktstroms, der Kontaktspannung, oder einer ähnlichen Größe ermittelbar);
  5. e. Trennen eines Kontaktelements von einem weiteren Kontaktelement des Schalters (etwa durch mechanische Messung oder durch Auswertung eines von einer Kontaktsteuerung gesendeten Schaltsignals ermittelbar; es kann sich um das zu untersuchende Kontaktelement oder aber auch um ein weiteres Kontaktelement handeln);
  6. f. Entfernen des Kontaktelements von einem weiteren Kontaktelement des Schalters um einen Abstand, der einen vorgegebenen Abstands-Schwellwert überschreitet (etwa durch mechanische Messung ermittelbar);
  7. g. Erteilen oder Auswerten eines Schaltbefehls (etwa von einer Schaltersteuerung);
  8. h. Über- oder Unterschreiten einen vorbestimmten Schwellwert durch einen erfassten Wert, wobei der erfasste Wert insbesondere aus einer Liste umfassend die folgenden Mess-Werte ausgewählt ist:
    • Stromwert und / oder Spannungswert und / oder Wert eines elektrischen oder magnetischen Felds (etwa durch Messwandler ermittelbar);
    • Frequenzkomponente eines Stromwerts und / oder eines Spannungswerts;
    • Helligkeitswert eines Lichtbogens;
    • Lagewert, der eine Lage der Kontaktfläche und/oder einen Abstand zweier Kontaktflächen voneinander beschreibt;
    • bisheriger Abnutzungswert des Kontaktstücks, etwa bei einem vorherigen Schaltvorgang;
    • bisheriger Abnutzungsgesamtwert des Kontaktstücks, d.h. die Summe der Abnutzungswerte aller vorherigen Schaltvorgänge;
    • Abgelaufene Zeitspanne seit Eintritt irgendeines weiteren Ereignisses, insbesondere eines der in dieser Aufzählung genannten Ereignisse; und / oder
    • Gegebenenfalls abgelaufene Zeitspanne ab einem früheren Grenz-Zeitpunkt.
In order to determine the abovementioned limit times, which limit the individual arc phases, it is also possible to use other events that are correlated in some way with the beginning or the end of an arc phase. For example, such an event might be:
  1. a. Beginning of an arc (as determined by measuring the brightness in the arc region, the contact current, the contact voltage, or a similar size);
  2. b. Transition from a stationary arc state to a traveling arc state (as determined by measuring the variance or the noise component of the above variables);
  3. c. Transition from a diffuse arc to a laced arc (as determined by measuring the spatial distribution of brightness in the arc region);
  4. d. End of an arc (as determined by measuring the brightness in the arc region, the contact current, the contact voltage, or a similar magnitude);
  5. e. Separating a contact element from a further contact element of the switch (for example by mechanical measurement or by evaluating a switching signal sent by a contact control, which can be the contact element to be examined or else a further contact element);
  6. f. Removing the contact element of a further contact element of the switch by a distance which exceeds a predetermined distance threshold value (as determined by mechanical measurement);
  7. G. Issuing or evaluating a switching command (such as from a switch controller);
  8. H. Exceeds or falls below a predetermined threshold by a detected value, wherein the detected value is selected in particular from a list comprising the following measured values:
    • Current value and / or voltage value and / or value of an electric or magnetic field (as determined by measuring transducers);
    • Frequency component of a current value and / or a voltage value;
    • Brightness value of an arc;
    • Position value, which describes a position of the contact surface and / or a distance between two contact surfaces of each other;
    • previous wear value of the contact piece, such as in a previous switching operation;
    • previous total wear value of the contact piece, ie the sum of the wear values of all previous switching operations;
    • Expired period since occurrence of any further event, in particular one of the events mentioned in this list; and or
    • If applicable, elapsed time from an earlier limit date.

Der Grenz-Zeitpunkt kann insbesondere als der Zeitpunkt eines entsprechenden Ereignisses gewählt sein. Der Grenz-Zeitpunkt kann auch unter Berücksichtigung mehrerer der genannten Ereignisse errechnet werden, etwa durch logische oder gewichtete Verknüpfung mehrerer Ereignisse oder durch Mittelwertbildung mehrerer entsprechender Zeiten. Der Grenz-Zeitpunkt ist insbesondere ein Übergangs-Zeitpunkt, der einen Übergang von einem stationären Lichtbogen-Zustand zu einem wandernden Lichtbogen-Zustand darstellt.The limit time may in particular be selected as the time of a corresponding event. The limit time can also be calculated considering several of the mentioned events, for example by logical or weighted linking of several events or by averaging several corresponding times. Specifically, the limit timing is a transient time representing a transition from a stationary arc state to a traveling arc state.

Der zumindest eine Grenz-Zeitpunkt kann auch unter Berücksichtigung zumindest eines der folgenden Mess-Werte ermittelt werden:

  • Stromwert;
  • Spannungswert;
  • Wert eines elektrischen oder magnetischen Felds
  • Rauschanteil bzw. Frequenzkomponente eines Stromwerts;
  • Rauschanteil bzw. Frequenzkomponente eines Spannungswerts;
  • Rauschanteil bzw. Frequenzkomponente eines elektrischen oder magnetischen Felds;
  • Helligkeitswert eines Lichtbogens;
  • Lagewert, der eine Lage der Kontaktfläche und/oder einen Abstand zweier Kontaktflächen voneinander beschreibt (wobei insbesondere eins der Kontaktelemente das zu untersuchende Kontaktelement ist; es kann sich aber auch um ein weiteres Kontaktelement handeln);
  • bisheriger Abnutzungswert;
  • bisheriger Abnutzungsgesamtwert;
  • Abgelaufene Zeitspanne seit Eintritt irgendeines Ereignisses, insbesondere eines der oben genannten Ereignisse.
  • Gegebenenfalls abgelaufene Zeitspanne ab einem früheren Grenz-Zeitpunkt.
The at least one limit time can also be determined taking into account at least one of the following measured values:
  • Current value;
  • Voltage value;
  • Value of an electric or magnetic field
  • Noise component or frequency component of a current value;
  • Noise component or frequency component of a voltage value;
  • Noise component or frequency component of an electric or magnetic field;
  • Brightness value of an arc;
  • Position value which describes a position of the contact surface and / or a distance between two contact surfaces (in particular one of the contact elements is the contact element to be examined, but it can also be a further contact element);
  • previous wear value;
  • previous erosion value;
  • Expired time since occurrence of any event, in particular one of the above events.
  • If applicable, elapsed time from an earlier limit date.

Je nach Verfügbarkeit von Messwerten und Ereignissen können Elemente aus der obigen Liste ausgewählt werden und die Ermittlungsvorschriften für eine jeweilige Lichtbogenphase geeignet kalibriert werden. Auch können mehrere Ermittlungsvorschriften angewendet werden und ihre Ergebnisse kombiniert werden, z.B. durch Mitteln oder Bilden eines gewichteten Mittelwerts.Depending on the availability of measured values and events, elements from the above list can be selected and the determination rules for a respective arc phase can be suitably calibrated. Also, several investigative procedures can be applied and their results combined, e.g. by averaging or forming a weighted average.

In einer beispielhaften Ausführungsform können die jeweiligen Zeitintervalle für die Stromwerte-Teilmengen beispielsweise auf folgende Weise ermittelt werden: Nr. Lichtbogen-Phase Kriterium zum Ermitteln des Beginns der Phase 0 Diffuser Lichtbogen Separation der Kontaktstücke (z.B. mittels Auswertung eines Schaltbefehls oder mittels mechanischer Sensoren ermittelt) 1 Zusammengeschnürter stationärer Lichtbogen Kontaktstrom überschreitet einen Schwellwert Lichtbogen Iconstr, z.B. 10 kA 2 Zusammengeschnürter rotierender Lichtbogen Rauschanteil des Stroms oder der Spannung überschreitet einen Schwellwert In an exemplary embodiment, the respective time intervals for the current value subsets may be determined, for example, in the following manner: No. Arc phase Criterion for determining the beginning of the phase 0 Diffuser arc Separation of the contact pieces (eg determined by evaluation of a switching command or by means of mechanical sensors) 1 Constricted stationary arc Contact current exceeds a threshold arc Iconstr, eg 10 kA 2 Laced up rotating arc Noise of the current or voltage exceeds a threshold value

Das Ende des zusammengeschnürten rotierenden Lichtbogens (Phase 2) kann z.B. dadurch ermittelt werden, dass der Strom einen vorgegebenen Schwellwert wieder unterschreitet.The end of the laced rotating arc (phase 2) may be e.g. be determined by the fact that the current falls below a predetermined threshold again.

Die Nummern in der linken Spalte beziehen sich auf die in Fig. 1a und 2 dargestellten Zeitabschnitte. In Fig. 1a und 2 sind die mögliche zugehörige Strom- und Spannungswerte schematisch gezeigt, auf deren Basis die in der Tabelle beschriebene Einteilung zumindest erfolgen könnte.The numbers in the left column refer to those in Fig. 1a and 2 displayed periods. In Fig. 1a and 2 the possible associated current and voltage values are shown schematically, on the basis of which the classification described in the table could at least be made.

Wie in Fig. 2 gezeigt ist, können die Stromwerte auf der Basis der ermittelten Grenz-Zeitpunkte in verschiedene Stromwerte-Teilmengen unterteilt werden. Eine erste Stromwerte-Teilmenge umfasst die Stromwerte I([t0;t1]) im Zeitintervall [t0;t1] (Bezugszeichen 1). Eine zweite Stromwerte-Teilmenge umfasst die Stromwerte I([t1;t2]) im Zeitintervall [t1;t2] (Bezugszeichen 2). Eine dritte Stromwerte-Teilmenge umfasst die Stromwerte I([t2;t3]) im Zeitintervall [t2;t3] (Bezugszeichen 3). Für jede der Stromwerte-Teilmengen wird ein jeweiliger Abnutzungsbeitragswert d1, d2 und d3 unter Verwendung einer jeweiligen Abnutzungsbeitrags-Berechnungsvorschrift berechnet. Die Abnutzungsbeitragswerte d1, d2 und d3 werden anschließend zum Abnutzungswert d zusammengeführt (z.B. addiert).As in Fig. 2 1, the current values may be divided into different current value subsets based on the determined limit times. A first current value subset comprises the current values I ([t 0 ; t 1 ]) in the time interval [t 0 ; t 1 ] (reference number 1). A second current value subset comprises the current values I ([t 1 ; t 2 ]) in the time interval [t 1 ; t 2 ] (reference 2). A third current value subset comprises the current values I ([t 2 ; t 3 ]) in the time interval [t 2 ; t 3 ] (reference numeral 3). For each of the current value subsets, a respective wear contribution value d 1 , d 2, and d 3 is calculated using a respective wear contribution calculation rule. The wear contribution values d 1 , d 2 and d 3 are then combined to the wear value d (eg added).

Allgemein wird zum Berechnen des Abnutzungswerts also mindestens ein Übergangs-Zeitpunkt ermittelt, der insbesondere einen jeweiligen Übergang zwischen verschiedenen Phasen eines während der Schalthandlung auftretenden Lichtbogens darstellt. Die Zeitintervalle sind insbesondere so definiert, dass der Übergangs-Zeitpunkt einen Übergang zwischen einem ersten der Zeitintervalle [ti;t'i] und einem zweiten der Zeitintervalle [tj;t'j] definiert, so dass t'i = tj durch den Übergangs-Zeitpunkt gebildet wird. Insbesondere kann das Verfahren das Definieren eines Endes t'i des ersten Zeitintervalls; [ti;t'i] und eines Beginns tj des zweiten Zeitintervalls [tj;t'j] unter Berücksichtigung des ermittelten Übergangs-Zeitpunkts umfassen, z.B. so dass der Übergangs-Zeitpunkts zwischen dem ersten Zeitintervall und dem zweiten Zeitintervall liegt; insbesondere so dass der erste Zeitintervall früher als der oder gleich dem Übergangs-Zeitpunkt ist, und der zweite Zeitintervall später als der oder gleich dem Übergangs-Zeitpunkt ist. Mit anderen Worten liegt der erste Zeitintervall dann vor dem zweiten Zeitintervall, mit dem Übergangs-Zeitpunkt dazwischen. Sodann werden die Stromwerte-Teilmengen unter Berücksichtigung des zumindest einen ermittelten Übergangs-Zeitpunkts bestimmt.In general, to calculate the wear value, at least one transition point in time is determined, which in particular represents a respective transition between different phases of an arc occurring during the switching operation. In particular, the time intervals are defined such that the transition time defines a transition between a first one of the time intervals [t i ; t ' i ] and a second one of the time intervals [t j ; t' j ] such that t ' i = t j is formed by the transitional time. In particular, the method may include defining an end t ' i of the first time interval; [t i ; t ' i ] and a start t j of the second time interval [t j ; t' j ] taking into account the determined transition time, eg such that the transition time is between the first time interval and the second time interval; in particular, such that the first time interval is earlier than or equal to the transition time, and the second time interval is later than or equal to the transition time. In other words, the first time interval then lies before the second time interval, with the transition time in between. Then the current value subsets are determined taking into account the at least one determined transition time.

Die Stromwerte-Teilmengen I([ti;t'i]) sind demnach als die zu einem jeweiligen Zeitintervall [ti;t'i] zugehörigen Stromwerte bestimmt. Zumindest eines der Zeitintervalle [ti;t'i] wird unter Berücksichtigung des zumindest einen ermittelten Grenz- bzw. Übergangs-Zeitpunkts definiert.The current value subsets I ([t i ; t ' i ]) are therefore determined as the current values associated with a respective time interval [t i ; t' i ]. At least one of the time intervals [t i ; t ' i ] is defined taking into account the at least one determined limit or transition time.

Im Folgenden werden mögliche Ausführungsformen für die einzelnen Abnutzungsbeitrags-Berechnungsvorschriften (pro Stromwerte-Teilmenge bzw. pro Lichtbogen-Phase) beschrieben. In einer Ausführungsform wird zumindest eine, oder auch alle, der Abnutzungsbeitrags-Berechnungsvorschriften als ein jeweiliges Integral der Form (1) ausgewertet (bzw. als Summe, die ein solches Integral annähert), wobei das jeweilige ZeitIntegral bzw. die Summe nur auf das jeweilige Zeitintervall bzw. die jeweilige Stromwerte-Teilmenge beschränkt ist. Der jeweilige Parameter k und α in (1) kann dann jeweils separat pro Stromwerte-Teilmenge (bzw. pro Lichtbogen-Phase) gewählt werden, z.B. anhand eines Modells vorgegeben oder anhand von Messungen kalibriert werden.In the following, possible embodiments for the individual wear contribution calculation instructions (per current value subset or per arc phase) will be described. In one embodiment, at least one, or even all, of the wear contribution calculation rules are evaluated as a respective integral of the form (1) (or as a sum approximating such an integral), the respective time integral being the sum of the respective Time interval or the respective current value subset is limited. The respective parameter k and α in (1) can then each be selected separately per current value subset (or per arc phase), e.g. determined by a model or calibrated by measurements.

Eine Abnutzungsbeitrags-Berechnungsvorschrift fi für die i-te Stromwerte-Teilmenge (hier als die zum Zeitintervall [ti;t'i] zugehörige Stromwerte-Teilmenge dargestellt) kann dann formuliert werden als f i I = k i * t i i I t α i dt als Integral bzw . als

Figure imgb0002
f i I = K i * t t i ; i I t α i als Summe
Figure imgb0003

wobei ki bzw. Ki, αi den Parametern k und α in (1) entsprechen. In Gl. (2') ist der Parameter K in Großbuchstaben geschrieben, um die gegenüber dem Parameter k von Gl. (1) und (2) unterschiedliche physikalische Einheit anzudeuten: [k] = cm A-αi s-1); [K] = cm A-αi. Ansonsten sind die Parameter k und K äquivalent. In einer Ausführungsform kann die Form (2) oder (2') für zwei Stromwerte-Teilmengen (z.B. erste (i=1) und zweite (i=2) Stromwerte-Teilmenge) gewählt werden, mit α1 ≠ α2 oder K 1K 2. Insbesondere ist in Ausführungsformen 0,5 < α12 ≤ 3.A wear contribution calculation rule f i for the i-th current value subset (here as the current value subset associated with the time interval [t i ; t ' i ] can then be formulated as f i I = k i * t i t ' i I t α i dt as an integral respectively , when
Figure imgb0002
f i I = K i * Σ t t i ; t ' i I t α i as a sum
Figure imgb0003

where k i or K i , α i correspond to the parameters k and α in (1). In Eq. (2 '), the parameter K is written in upper case letters to match the parameter k of Eq. (1) and (2) indicate different physical units: [k] = cm A -αi s -1 ); [K] = cm A -αi . Otherwise, the parameters k and K are equivalent. In one embodiment, the form (2) or (2 ') may be selected for two current value subsets (eg, first (i = 1) and second (i = 2) current value subset) with α 1 ≠ α 2 or K 1 2 K 2 . In particular, in embodiments, 0.5 <α 1 , α 2 ≤ 3.

Es sind jedoch auch andere Berechnungsvorschriften als (2), (2') möglich. Im Allgemeinen beinhaltet die Berechnungsvorschrift das Bilden eines Beitrags der Form f i I = t i i ϕ i I t dt

Figure imgb0004
f i I = t t i ; i ϕ i I t
Figure imgb0005

zu zumindest zweien der Abnutzungsbeiträge (mit i=1 für einen ersten Abnutzungsbeitrag und i=2 für einen zweiten Abnutzungsbeitrag, so dass ϕ1, ≠ ϕ2 , wobei das Ungleichheitszeichen hier bedeutet: "nicht gleich als Funktionen"). Hier bezeichnet jeweils I(t) einen Stromwert, der in der zu dem i-ten Abnutzungsbeitrag zugehörigen Stromwerte-Teilmenge umfasst ist. Die Gleichungen (2) und (2') sind Spezialfälle von (3) bzw. (3'), z.B. mit ϕi(I(t))=Ki *I(t)αi .However, other calculation rules than (2), (2 ') are possible. In general, the calculation rule involves forming a contribution of the form f i I = t i t ' i φ i I t dt
Figure imgb0004
f i I = Σ t t i ; t ' i φ i I t
Figure imgb0005

at least two of the wear contributions (with i = 1 for a first wear contribution and i = 2 for a second wear contribution such that φ 1 , ≠ φ 2 , where the inequality sign here means "not equal to functions"). Here, I (t) denotes a current value that is included in the current value subset associated with the ith wear contribution. Equations (2) and (2 ') are special cases of (3) and (3'), eg with φ i (I (t)) = K i * I (t) α i .

Der Abnutzungswert kann dann als Summe der einzelnen Abnutzungsbeiträge di=fi[I] berechnet werden, i=0..(N-1), etwa in der Form d = i d i = i f i I

Figure imgb0006
, mit fi als einer der hierin beschriebenen Abnutzungsbeitrags-Berechnungsvorschriften.The wear value can then be calculated as the sum of the individual wear contributions d i = f i [I], i = 0 .. (N-1), approximately in the form d = Σ i d i = Σ i f i I
Figure imgb0006
, with f i as one of the wear contribution calculation rules described herein.

In (2') für die Abnutzungsbeitrags-Berechnungsvorschrift fi wird nur innerhalb der Grenzen ti bis t'i summiert. Statt einer harten Grenze für diese Summen kann auch über einen größeren Zeitraum summiert werden, wobei die Beiträge mit einer zeitabhängigen Funktion γi(t) gewichtet werden, die innerhalb eines Zeitintervalls [ti, t'i] größer ist als außerhalb dieses Zeitintervalls. Eine entsprechend verallgemeinerte Gleichung (2') hat dann die folgende Gestalt: f i I = K i * t γ i t * I t α i

Figure imgb0007
In (2 ') for the wear contribution calculation rule f i is summed only within the limits t i to t' i . Instead of a hard limit for these sums, it is also possible to sum over a longer period of time, the contributions being weighted with a time-dependent function γ i (t) that is greater within a time interval [t i , t ' i ] than outside this time interval. A correspondingly generalized equation (2 ') then has the following form: f i I = K i * Σ t γ i t * I t α i
Figure imgb0007

Beispiele für Funktionen γi(t) sind in Fig. 3 dargestellt. Fig. 3a zeigt Funktionen γi(t) als Stufenfunktionen, die innerhalb eines Zeitintervalls zwischen ti und t'i = ti+1 den Wert 1, und außerhalb dieses Zeitintervalls den Wert 0 haben. Mit diesen Funktionen γi(t) aus Fig. 3a wird die Summe von Gl. (4) wieder in die speziellere Form der Gl. (2) überführt.Examples of functions γ i (t) are in Fig. 3 shown. Fig. 3a shows functions γ i (t) as step functions which have the value 1 within a time interval between t i and t ' i = t i + 1, and the value 0 outside this time interval. With these functions γ i (t) off Fig. 3a the sum of Eq. (4) again into the more specific form of Eq. (2) transferred.

Eine alternative Funktion γi(t) ist in Fig, 3b dargestellt. Hier ist γi(t) innerhalb des Zeitintervalls zwischen ti und t'i = ti+1 größer als außerhalb dieses Zeitintervalls, aber γi(t) fällt kontinuierlich ab und hat auch außerhalb des Zeitintervalls einen endlichen Wert. Die Stomwerte-Teilmengen verschiedener Abnutzungsbeiträge, über die in Gl. (3) unter Verwendung von der in Fig. 3b skizzierten Funktionen γi(t) summiert wird, überlappen sich dann. Insbesondere können die Stomwerte-Teilmengen hier sämtliche erfassten Stromwerte umfassen, und ihr Beitrag wird lediglich mittels einer geeigneten Funktion γi(t) gewichtet.An alternative function γ i (t) is in Fig. 3b shown. Here, γ i (t) is greater within the time interval between t i and t ' i = t i + 1 than outside this time interval, but γ i (t) decreases continuously and also has a finite value outside the time interval. The stomeware subsets of various wear contributions over which in Eq. (3) using the in Fig. 3b sketched functions γ i (t) are then overlapped. In particular, the stomata subsets can here comprise all detected current values, and their contribution is weighted only by means of a suitable function γ i (t).

Die Funktion γi(t) kann wie folgt ausgedrückt werden: γ i(t) = γ̃((t - ti) / (t'i -ti)) mit γ̃ als einer Funktion, die innerhalb des Intervalls [0;1] größere Werte hat als außerhalb dieses Intervalls. Die in Fig. 3a und Fig. 3b skizzierten Funktionen sind im Wesentlichen äquivalent und führen zu sehr ähnlichen Ergebnissen.The function γ i (t) can be expressed as follows: γ i (t) = γ ((t -t i ) / (t ' i -t i )) with γ as a function that is within the interval [0; 1] has greater values than outside this interval. In the Fig. 3a and Fig. 3b Outlined features are essentially equivalent and give very similar results.

In einer Verallgemeinerung von Gl. (4) kann die Abnutzung ausgedrückt werden als Summe d = i f i I mit f i I = t γ i t * ϕ i I t

Figure imgb0008
, wobei im Beispiel von Gl. (3) ϕ i (I(t)) = Ki * I(t)αi ist. Die Funktion ϕ i (I(t)) kann so interpretiert werden, dass sie für jeden Wert von I(t) einen Anteil am Abbrand-Beitrag liefert.In a generalization of Eq. (4) The wear can be expressed as a sum d = Σ i f i I With f i I = Σ t γ i t * φ i I t
Figure imgb0008
, wherein in the example of Eq. (3) φ i (I (t)) = K i * I (t) α i . The function φ i (I (t)) can be interpreted as providing a fraction of the burnup contribution for each value of I (t).

Die obige Berechnungsvorschrift kann entsprechend auch für Integrale über zeitlich kontinuierlich erfasste Stromwerte angewendet werden. In diesem Fall kann gemäß der obigen Verallgemeinerung die Abnutzung ausgedrückt werden als Integral d = i k i γ i t * ϕ i I t dt

Figure imgb0009
. Das Integral kann numerisch approximiert werden.The above calculation rule can also be applied correspondingly for integrals over temporally continuously recorded current values. In this case, according to the above generalization, the wear can be expressed as an integral d = Σ i k i γ i t * φ i I t dt
Figure imgb0009
, The integral can be approximated numerically.

Im Folgenden sollen noch weitere mögliche Abwandlungen beschrieben werden. Gemäß einer Abwandlung können die Abnutzungsbeitragswerte für mehrere der Lichtbogen-Phasen mit ähnlicher Abnutzungs-Charakteristik mittels einer gemeinsamen Abnutzungsbeitrags-Berechnungsvorschrift berechnet werden. Dennoch sollten nicht alle Lichtbogen-Phasen auf die gleiche Weise berechnet werden, d.h. zumindest zwei der Abnutzungsbeitrags-Berechnungsvorschriften unterscheiden sich voneinander.In the following, further possible modifications are described. According to a modification, the wear contribution values for a plurality of the arc phases with similar wear characteristics may be calculated by means of a common wear contribution calculation rule. Nevertheless, not all arc phases should be calculated in the same way, i. at least two of the wear contribution calculation rules are different from each other.

Gemäß einer weiteren Abwandlung werden neben den Strömen I auch die Lichtbogen-Spannungen U erfasst und bei der Berechnung des Abnutzungswerts berücksichtigt. Gemäß einer Ausführungsform könnten die Spannungen z.B. mittels zusätzlicher Spannungssensoren erfasst werden. Eine entsprechende Abnutzungsfunktion könnte dann beispielsweise die folgende Form haben: f i I V = K i * t t i t i + 1 I t α i * U t β i

Figure imgb0010
According to a further modification, the arc voltages U are detected in addition to the currents I and taken into account in the calculation of the wear value. According to one embodiment, the voltages could be detected, for example, by means of additional voltage sensors. A corresponding wear function could then, for example, have the following form: f i I V = K i * Σ t t i t i + 1 I t α i * U t β i
Figure imgb0010

Allgemein kann ein beliebiger elektrischer Wert, der eine für die während einer Schalthandlung durch den Schalter fließende Leistung relevante Größe darstellt, zur Berechnung herangezogen werden, also z.B. der Strom I, die Lichtbogenspannung U, ein Produkt daraus (wie in der obigen Gleichung).In general, any electrical value representative of a quantity relevant to the power flowing through the switch during a switching operation may be used in the calculation, e.g. the current I, the arc voltage U, a product thereof (as in the above equation).

In einer weiteren Ausführungsform kann auch direkt die Leistung P(t) = I(t) * U(t) als Funktion der Zeit anstatt von I(t) in irgendeine der obengenannten Gleichungen, z.B: (2), (2'), (3), (3'), eingesetzt werden.In a further embodiment, the power P (t) = I (t) * U (t) as a function of time instead of I (t) in any of the above equations, for example: (2), (2 '), (3), (3 ').

Gemäß einer weiteren Abwandlung können auch einzelne Lichtbogen-Phasen, die nur einen unerheblichen Beitrag zur Abnutzung liefern, weggelassen werden. Beispielsweise kann im Beispiel der Fig. 1 und 2 die diffuse Lichtbogen-Phase (Nullte Phase zwischen t0 und t1) aus diesem Grund weggelassen werden, so dass die Berechnung erst mit der Phase i=1 beginnt.According to a further modification, it is also possible to omit individual arc phases which only make a negligible contribution to the wear. For example, in the example of Fig. 1 and 2 the diffuse arc phase (zero phase between t0 and t1) are omitted for this reason, so that the calculation begins only with the phase i = 1.

Im Folgenden wird eine Schaltersteuerung und eine Schaltanlage beschrieben, die zur Ausführung des hierin beschriebenen Verfahrens geeignet ist. Die Schaltersteuerung umfasst ein Stromwert-Eingangs-Modul zum Erhalten von Stromwerten (z.B. Erhalten von erfassten Stromwerten von z.B. einem Strom-Messgerät, aber auch von einer Einrichtung zum Simulieren, Interpolieren usw.), die einen während einer Schalthandlung durch den Schalter fließenden Kontaktstrom als Funktion der Zeit darstellen. Die Schaltersteuerung umfasst weiter ein Abnutzungs-Bestimmungs-Modul, das eine Recheneinheit und einen Datenspeicher mit durch die Recheneinheit ausführbarem Programmcode aufweist. Der Programmcode umfasst eine Mehrzahl von Abnutzungsbeitrags-Berechnungsvorschriften fi, die zum Berechnen jeweiliger Abnutzungsbeitragswerte aus jeweiligen Stromwerte-Teilmengen I([ti;t'i])) der erfassten Stromwerte vorgesehen sind, so dass jede der Abnutzungsbeitrags-Berechnungsvorschriften einen jeweiligen der Abnutzungsbeitragswerte aus einer jeweiligen der Stromwerte-Teilmengen berechnet wird. Zumindest zwei der Abnutzungsbeitrags-Berechnungsvorschriften fi unterscheiden sich voneinander. Der Programmcode umfasst weiter eine Abnutzungswert-Berechnungs-Routine zum Berechnen eines die Abnutzung des Kontaktelements darstellenden Abnutzungswerts d aus den Abnutzungsbeitragswerten (z.B: als Summe derselben).Hereinafter, a switch control and a switchgear suitable for carrying out the method described herein will be described. The switch controller includes a current value input module for obtaining current values (eg, obtaining sensed current values from, for example, a current meter, but also from means for simulating, interpolating, etc.) which detects a contact current flowing through the switch during a switching operation as Represent function of time. The switch controller further comprises a wear determination module having a computing unit and a data memory with program code executable by the computing unit. The program code comprises a plurality of wear contribution calculation rules f i provided for calculating respective wear contribution values from respective current value subsets I ([t i ; t ' i ])) of the detected current values, such that each of the wear contribution calculation rules includes a respective one of Wear contribution values are calculated from a respective one of the current value subsets. At least two of the wear contribution calculation rules f i are different from each other. The program code further includes a wear value calculation routine for calculating a wear value d representing the wear of the contact element from the wear contribution values (eg, as a sum thereof).

Der Programmcode umfasst insbesondere Instruktionen zum Ausführen irgendeines hierin beschriebenen Verfahrens. Insbesondere sind die Abnutzungsbeitrags-Berechnungsvorschriften fi zum Berechnen einer entsprechenden Mehrzahl von Abnutzungsbeitragswerten aus einer entsprechenden Mehrzahl von Stromwerte-Teilmengen 1([ti;t'i]) der erfassten Stromwerte vorgesehen, so dass jede der Abnutzungsbeitrags-Berechnungsvorschriften fi einen jeweiligen der Abnutzungsbeitragswerte aus einer jeweiligen der Stromwerte-Teilmengen I([ti;t'i]) berechnet wird.In particular, the program code includes instructions for carrying out any method described herein. Specifically, the wear contribution calculation rules f i for calculating a corresponding plurality of wear contribution values from a corresponding plurality of current value subsets 1 ([t i ; t ' i ]) of the detected current values are provided so that each of the wear contribution calculation rules f i is a respective one the wear contribution values are calculated from a respective one of the current value subsets I ([t i ; t ' i ]).

Die Schaltanlage ist für Hoch- oder Mittelspannung ausgelegt, und ist insbesondere ein Leistungsschalter, z.B. ein Vakuum-Leistungsschalter (aber auch ein gasisolierter Leistungsschalter ist möglich). Die Schaltanlage umfasst die oben beschriebene Schaltersteuerung. Der Kontaktstrom ist insbesondere ein Lichtbogen-Strom. Die Schaltanlage hat insbesondere als Kontaktelement ein Kontaktstück vom TMF-Typ, da es hier besonders deutliche Lichtbogen-Phasen gibt. Ein Kontaktstück vom TMF-Typ ist dadurch gekennzeichnet, dass seine Gestaltung bei dem Schaltvorgang bzw. bei einem Lichtbogen ein überwiegend transversales magnetisches Feld begünstigt. Das transversale magnetische Feld begünstigt die Bewegung des Lichtbogens und führt damit zu ausgeprägten Lichtbogen-Phasen. Das Kontaktstück kann insbesondere vom Spiral-TMF-Typ sein (wie in Fig. 4 dargestellt). Das Kontaktelement kann somit eine ebene Kontaktfläche mit rundem Querschnitt enthalten, z.B. mit spiralförmiger Spalte. Alternativ kann das Kontaktstück auch schüsselförmig, gestaltet sein (vom schüsselförmigen, cup-shaped, Typ). Allgemein kann der Schalter zwei in Längsrichtung gegeneinander bewegliche Kontaktstücke enthalten.The switchboard is designed for high or medium voltage, and is in particular a circuit breaker, such as a vacuum circuit breaker (but also a gas-insulated circuit breaker is possible). The switchgear comprises the switch control described above. The contact current is in particular an arc current. The switchgear in particular has a contact piece of the TMF type as contact element, since it is here Particularly clear arc phases are. A contact piece of the TMF type is characterized in that its design during the switching operation or in the case of an arc promotes a predominantly transverse magnetic field. The transverse magnetic field promotes the movement of the arc and thus leads to pronounced arc phases. The contact piece may be in particular of the spiral TMF type (as in Fig. 4 shown). The contact element can thus contain a flat contact surface with a round cross-section, for example with a spiral-shaped gap. Alternatively, the contact piece may also be bowl-shaped (bowl-shaped, cup-shaped, type). Generally, the switch may include two longitudinally mutually movable contacts.

Die Schaltanlage kann mehrere Kontaktelemente (z.B. 3 Kontaktelemente für 3 Phasen) enthalten. In diesem Fall kann die Abnutzung für jedes der Kontaktelemente wie hierin beschrieben separat erfolgen.The switchgear may include a plurality of contact elements (e.g., 3 contact elements for 3 phases). In this case, the wear for each of the contact elements may be separate as described herein.

Die Schaltanlage kann weiter ein Diagnose-System umfassen, das mit der Schaltersteuerung verbunden ist, um die berechneten Abnutzungswerte zu empfangen. Das Diagnose-System kann etwa folgende Funktionen beinhalten (pro Phase separat):

  • Addieren des Abnutzungswerts zu einem Abnutzungsgesamtwert, der die Gesamt-Abnutzung des Kontaktstücks als Summe für mehrere Schaltvorgänge darstellt;
  • Auslösen eines Alarms, einer Warnung oder eines Blockierbefehls, wenn der Abnutzungswert bzw. Abnutzungsgesamtwert einen vorgegebenen Alarm-Schwellwert bzw. Warn-Schwellwert bzw. Blockier-Schwellwert überschreitet:
  • Berechnen einer prozentualen Abnutzung als Anteil der gegenwärtigen Abnutzung (Abnutzungswerts zu einem Abnutzungsgesamtwert) von einer zulässigen Maximalabnutzung;
  • Berechnen einer voraussichtlich verbleibenden Betriebsdauer des Schalters basierend auf dem Abnutzungswert bzw. Abnutzungsgesamtwert;
  • Weiterleiten des ermittelten Abnutzungswerts oder einer daraus abgeleiteten Größe (z.B. Abnutzungsgesamtwert) an einen Online-Diagnose-Server.
The switchgear may further include a diagnostic system connected to the switch controller to receive the calculated wear values. The diagnostic system may include the following functions (separate per phase):
  • Adding the wear value to a total wear value representing the total wear of the contact as a sum for a plurality of shifts;
  • Triggering an alarm, a warning or a blocking command when the total wear value exceeds a predetermined alarm threshold or warning threshold or blocking threshold value:
  • Calculating a percentage wear as a proportion of the current wear (wear value to a wear total value) from a maximum allowable wear;
  • Calculating a presumably remaining life of the switch based on the wear value;
  • Forwarding the determined wear value or a quantity derived therefrom (eg total wear value) to an online diagnostic server.

Im Folgenden sollen noch weitere allgemeine Aspekte der Erfindung genannt werden. Gemäß einem Aspekt umfasst ein Verfahren zum Bestimmen einer Abnutzung eines Kontaktelements das Berechnen eines die Abnutzung des Kontaktelements darstellenden Abnutzungswerts (d) aus den erfassten Stromwerten (I(t)), wobei ein erster Abnutzungsbeitragswert nach einer ersten Abnutzungsbeitrags-Berechnungsvorschrift (fi) aus dem zumindest einen Stromwert (I(ti); I([ti;t'i])) für den ersten Zeitintervall (ti; [ti;t'i]) berechnet wird, und ein zweiter Abnutzungsbeitragswert nach einer zweiten Abnutzungsbeitrags-Berechnungsvorschrift (fj) aus dem zumindest einen Stromwert (I(tj); I([tj;t'j])) für den zweiten Zeitintervall (tj; [tj;t'j]) berechnet wird, wobei sich die erste Abnutzungsbeitrags-Berechnungsvorschrift (fi) von der zweiten Abnutzungsbeitrags-Berechnungsvorschrift (fj) unterscheidet.In the following, further general aspects of the invention will be mentioned. According to one aspect, a method for determining a wear of a contact element comprises calculating a wear value (d) representing the wear of the contact element from the detected current values (I (t)), wherein a first wear contribution value after a first wear contribution calculation rule (f i ) at least one current value (I (t i ); I ([t i ; t ' i ])) for the first time interval (t i ; [t i ; t' i ]) is calculated, and a second wear contribution value after a second one Abrasion contribution calculation rule (f j ) is calculated from the at least one current value (I (t j ); I ([t j ; t ' j ])) for the second time interval (t j ; [t j ; t' j ]) wherein the first wear contribution calculation rule (f i ) is different from the second wear contribution calculation rule (f j ).

Allgemein braucht die Abnutzungsbeitrags-Berechnungsvorschrift nicht einheitlich innerhalb der jeweiligen Stromwerte zu sein. Das Erfassen kann eine Messung, insbesondere eine Abtast-Messung in diskreten Abtast-Zeitintervallen, aber auch eine (teilweise) Simulation umfassen. Die Simulation kann auf einem Modell basieren, z.B. Annahme, dass Stromwerte auf einer Sinus-Kurve liegen, oder eine Interpolation zwischen Messwerten beinhalten. Auf diese Weise können die Stromwerten als kontinuierliche Funktion der Zeit oder als Vektor diskreter erfasster Werte zur Verfügung stehen.Generally, the wear contribution calculation rule need not be uniform within the respective current values. The acquisition may include a measurement, in particular a sampling measurement in discrete sampling time intervals, but also a (partial) simulation. The simulation may be based on a model, e.g. Assume that current values are on a sinusoidal curve, or include interpolation between readings. In this way, the current values may be available as a continuous function of time or as a vector of discrete detected values.

Die Abnutzungsbeitrags-Berechnungsvorschrift ist nicht identisch Null (als Funktional). Eine Berechnungsvorschrift, die als Funktional identisch Null wäre, würde unabhängig von den elektrischen Werten der Werte-Teilmenge überhaupt keinen Abnutzungsbeitrag (d.h. immer Null) ergeben. Eine solche Berechnungsvorschrift wird nicht als Abnutzungsbeitrags-Berechnungsvorschrift angesehen.The wear contribution calculation rule is not identical to zero (as a functional). A computational rule that was functionally identical to zero would yield no wear contribution (i.e., always zero) regardless of the electrical values of the value subset. Such a calculation rule is not considered a wear-contribution calculation rule.

Claims (15)

  1. Method for determining the wear on a contact element of an electrical switch, in particular a vacuum switch, and in particular a switch of a switching installation for high or medium voltage, the method involving:
    - recording electrical values (I(t), U(t)) which represent an electrical variable, which is relevant to an arc occurring at the switch during a switching operation, as a function of time; and
    - calculating a wear value (d), which represents the wear on the contact element, from a plurality of wear contribution values, characterized in that the wear contribution values are calculated from a plurality of subsets (I(ti); I([ti;t'i])) of the recorded electrical values using a plurality of wear contribution calculation rules (fi), with the result that each of the wear contribution values is calculated from a respective one of the subsets of values (I(ti); I([ti;ti])) according to a respective one of the wear contribution calculation rules (fi), at least two of the wear contribution calculation rules (fi) differing from one another.
  2. Method according to Claim 1, the calculation involving: determining a transition time (ti, t'i) which is characteristic of a change in the wear contribution calculation rule, the at least one transition time representing, in particular, a respective transition between different phases of an arc occurring during the switching operation.
  3. Method according to Claim 2, the calculation involving: defining at least one of the subsets of values (I(ti); I([ti;t'i])) taking into account the at least one transition time (ti, t'i) which has been determined.
  4. Method according to one of the preceding claims, the calculation involving: determining at least one limit time (ti, t'i), the at least one limit time being, in particular, the at least one transition time, and the at least one limit time being determined taking into account at least one respective event selected from the list comprising the following events:
    a. the start of an arc;
    b. a transition from a stationary arc state to a wandering arc state;
    c. a transition from a diffuse arc to a constricted arc;
    d. the end of an arc;
    e. the separation of a contact element from a further contact element of the switch;
    f. the removal of the contact element from a further contact element of the switch by a distance which exceeds a predefined distance threshold value;
    g. the issue or evaluation of a switching command;
    h. the overshooting or undershooting of a predetermined threshold value by a recorded value, the recorded value being selected, in particular, from a list comprising the following values:
    - current value;
    - voltage value;
    - value of an electrical or magnetic field;
    - noise component or frequency component of a current value;
    - noise component or frequency component of a voltage value;
    - noise component or frequency component of an electrical or magnetic field;
    - brightness value of an arc;
    - position value which describes a position of the contact surface and/or a distance between two contact surfaces;
    - previous wear value or previous total wear value;
    - period of time elapsed since the occurrence of any further event, in particular one of the events mentioned in this list;
    - possibly the period of time elapsed since an earlier limit time.
  5. Method according to any of the preceding claims, the calculation involving: determining at least one limit time (ti, t'i), the at least one limit time being, in particular, the at least one transition time, and the at least one limit time being determined taking into account at least one respective value selected from the list comprising the following values:
    - current value;
    - voltage value;
    - value of an electrical or magnetic field;
    - noise component or frequency component of a current value;
    - noise component or frequency component of a voltage value;
    - noise component or frequency component of an electrical or magnetic field;
    - brightness value of an arc;
    - position value which describes a position of the contact surface and/or a distance between two contact surfaces;
    - previous wear value;
    - previous total wear value;
    - period of time elapsed since the occurrence of any event, in particular one of the events mentioned in Claim 5;
    - possibly period of time elapsed since an earlier limit time.
  6. Method according to one of Claims 2 to 5, the subsets of values (I([ti;t'i])) comprising the electrical values associated with a respective interval of time ([ti;t'i]), the method also involving for each of the intervals of time: stipulating the start (ti), the end (t'i) or the start and the end of the respective interval of time ([ti;t'i]) by means of at least one respective limit time (ti, t'i), the at least one limit time being, in particular, the at least one transition time.
  7. Method according to one of Claims 2 to 6, the at least one transition time comprising a first transition time (t1) and a second transition time (t2), and the plurality of subsets of values comprising at least a first, a second and a third subset of values (I([t0;t1]) ; I([t1;t2]) , I([t2;t3])).
  8. Method according to one of the preceding claims, the subsets of values (I(ti); I([ti;t'i])) being determined as the electrical values associated with a respective interval of time ([ti;t'i]), and the calculation of the wear value involving the formation of a sum or an integral of the wear contribution values.
  9. Method according to one of the preceding claims, the calculation involving:
    forming a contribution in the form Ki*I(t)α i for at least one, in particular for at least two, of the wear contributions, i indicating a respective one of the at least one wear contribution as an ith wear contribution, Ki respectively denoting an ith coefficient factor, I(t) respectively denoting an electrical value included in the subset of values associated with the ith wear contribution, and αi respectively denoting any desired exponent.
  10. Method according to one of the preceding claims, the wear value (d) containing an expression of the form d = i f i I mit f i I = t γ i t * ϕ i I t
    Figure imgb0013

    in particular being calculated or being able to be represented in this form, fi(I) denoting an ith of the wear contribution calculation rules,
    Figure imgb0014
    denoting a sum of time values t with recorded electrical values I(t), γi(t) denoting a respective [ith] t-dependent weighting factor which provides values of a larger magnitude for t [every t value] inside the respective [ith] subset of values than for t [any t value] outside the respective subset of values, and ϕi(I(t)) denoting a respective [ith] function of I, where ϕi(I(t)) = Ki*I(t)α i in particular.
  11. Method according to one of the preceding claims, also involving adding the calculated wear value to a total wear value which represents the total wear possibly for a plurality of switching processes.
  12. Method according to one of the preceding claims, the electrical values comprising at least one of the values from the following group:
    - current values (I(t)) which represent the contact current flowing through the switch during the switching operation as a function of time;
    - voltage values (U(t)) which represent the arc voltage present at the switch during the switching operation as a function of time; and
    - arc power values (P(t)) which represent the arc power present at the switch as a function of time.
  13. Electronic unit, in particular control and/or monitoring system, for an electrical switch, in particular for a switching installation for high or medium voltage, the switch controller comprising:
    - a value input module for obtaining electrical values which represent a variable, which is relevant to the power flowing through the switch during a switching operation, as a function of time; and
    - a wear determination module having a computation unit and a data memory with program code which can be executed by the computation unit, the program code comprising:
    a plurality of wear contribution calculation rules (fi) which are intended to calculate respective wear contribution values from respective subsets (I(ti); I([ti;t'i])) of the recorded electrical values, at least two of the wear contribution calculation rules (fi) differing from one another, and
    a wear value calculation routine for calculating a wear value (d), which represents the wear on the contact element, from the wear contribution values in accordance with the method according to Claim 1.
  14. Switching installation for high or medium voltage, in particular vacuum circuit breaker, comprising a switch controller according to Claim 13 and/or equipped to carry out a method according to one of Claims 1-12.
  15. Switching installation for high or medium voltage according to Claim 14, the contact element being a contact piece of the TMF type.
EP09177112A 2009-11-25 2009-11-25 Method and device for determining the wear on a contact element Active EP2328159B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
ES09177112T ES2380182T3 (en) 2009-11-25 2009-11-25 Procedure and device for determining wear of a contact element
AT09177112T ATE540415T1 (en) 2009-11-25 2009-11-25 METHOD AND DEVICE FOR DETERMINING WEAR OF A CONTACT ELEMENT
EP09177112A EP2328159B1 (en) 2009-11-25 2009-11-25 Method and device for determining the wear on a contact element
CN201080062329.0A CN102714101B (en) 2009-11-25 2010-10-28 Method and apparatus for determination of wear to a contact element
PCT/EP2010/066346 WO2011064064A1 (en) 2009-11-25 2010-10-28 Method and apparatus for determination of wear to a contact element
RU2012126118/07A RU2551645C2 (en) 2009-11-25 2010-10-28 Method and device for determination of wear of contact elements
BR112012012543-5A BR112012012543B1 (en) 2009-11-25 2010-10-28 method for determining wear on a contact element of an electrical switch, electronics unit and switching installation for high or medium voltage
US13/480,927 US9406451B2 (en) 2009-11-25 2012-05-25 Method and apparatus for determining the wear on a contact element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09177112A EP2328159B1 (en) 2009-11-25 2009-11-25 Method and device for determining the wear on a contact element

Publications (2)

Publication Number Publication Date
EP2328159A1 EP2328159A1 (en) 2011-06-01
EP2328159B1 true EP2328159B1 (en) 2012-01-04

Family

ID=42061006

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09177112A Active EP2328159B1 (en) 2009-11-25 2009-11-25 Method and device for determining the wear on a contact element

Country Status (8)

Country Link
US (1) US9406451B2 (en)
EP (1) EP2328159B1 (en)
CN (1) CN102714101B (en)
AT (1) ATE540415T1 (en)
BR (1) BR112012012543B1 (en)
ES (1) ES2380182T3 (en)
RU (1) RU2551645C2 (en)
WO (1) WO2011064064A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10147572B2 (en) 2016-03-11 2018-12-04 Abb Schweiz Ag Embedded pole and method of assembling same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011080826B4 (en) * 2011-08-11 2016-01-21 Siemens Aktiengesellschaft Method for determining the arc performance of a switch, method for triggering a switch based on the arc power and method for determining the load of the contacts of a switch based on the arc energy
FR3060758B1 (en) 2016-12-16 2021-01-08 Schneider Electric Ind Sas METHOD AND DEVICE FOR DIAGNOSING THE WEAR OF AN ELECTRIC SWITCHING APPARATUS, AND ELECTRICAL APPARATUS INCLUDING SUCH A DEVICE
US10332698B2 (en) * 2016-12-21 2019-06-25 Eaton Intelligent Power Limited System and method for monitoring contact life of a circuit interrupter
EP3460822B1 (en) * 2017-09-26 2021-04-07 ABB Schweiz AG Method for operating a medium voltage circuit breaker or recloser and medium voltage circuit breaker or recloser itself
CN111933459A (en) * 2020-07-20 2020-11-13 西安热工研究院有限公司 Method for detecting electrical wear state of breaker contact by utilizing arc power
DE102020209645A1 (en) 2020-07-30 2022-02-03 Siemens Aktiengesellschaft Method for determining the status of an electrical switchgear, monitoring unit for an electrical switchgear and electrical switchgear
CN114577452B (en) * 2021-06-17 2024-02-23 正泰集团研发中心(上海)有限公司 Method, device, electronic equipment and computer medium for predicting service life of switch contact
US11874314B2 (en) * 2022-02-09 2024-01-16 Caterpillar Inc. Electrical contact wear monitoring system
DE102022203697B3 (en) 2022-04-12 2023-07-27 Knick Elektronische Messgeräte GmbH & Co. KG Monitoring device for highly dynamic currents, in particular for monitoring railway currents

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1029250A1 (en) * 1981-12-16 1983-07-15 Ленинградское Электромашиностроительное Объединение "Электросила" Им.С.М.Кирова Device for automatic measuring time of arcing on switching apparatus contacts
DE19544926C1 (en) * 1995-12-01 1997-04-30 Siemens Ag Method and device for monitoring the erosion of the contact pieces in a switching device
US6466023B2 (en) 1998-12-28 2002-10-15 General Electric Company Method of determining contact wear in a trip unit
EP1318533A1 (en) * 2001-12-07 2003-06-11 ABB Schweiz AG Method for determining the state of contact wear in a circuit breaker
FR2834120B1 (en) * 2001-12-21 2004-02-06 Schneider Electric Ind Sa METHOD FOR DETERMINING THE WEAR OF CONTACTS OF A SWITCHING APPARATUS
ATE456853T1 (en) * 2003-05-07 2010-02-15 Abb Technology Ag METHOD AND DEVICE FOR MONITORING SWITCHING DEVICES IN ELECTRICAL SWITCHGEARS
DE10345183B4 (en) * 2003-09-29 2005-10-13 Siemens Ag Device for detecting contact erosion in switching devices
DE112005001085B4 (en) * 2004-05-13 2014-01-23 Mitsubishi Denki K.K. A state detecting device and a switching control device of a power switching device using the state detecting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10147572B2 (en) 2016-03-11 2018-12-04 Abb Schweiz Ag Embedded pole and method of assembling same

Also Published As

Publication number Publication date
ES2380182T3 (en) 2012-05-09
CN102714101B (en) 2015-04-08
EP2328159A1 (en) 2011-06-01
CN102714101A (en) 2012-10-03
BR112012012543A2 (en) 2020-08-11
WO2011064064A1 (en) 2011-06-03
ATE540415T1 (en) 2012-01-15
RU2012126118A (en) 2013-12-27
US20120253695A1 (en) 2012-10-04
RU2551645C2 (en) 2015-05-27
US9406451B2 (en) 2016-08-02
BR112012012543B1 (en) 2021-01-12

Similar Documents

Publication Publication Date Title
EP2328159B1 (en) Method and device for determining the wear on a contact element
EP3379273B1 (en) Method, device and system for determining the location a fault on a line of an electrical energy supply network
EP3351949B1 (en) Method and device for determining the error location of an earth fault relating to a line of a three phase electrical energy supply network with non-grounded star point
DE102004056436B4 (en) Method and device for detecting residual current arcs in electrical circuits
EP1844484B1 (en) Method and device for determining a switching time of an electric switching device
EP3193420A1 (en) Method, device and system for determining the location a fault on a line of an electrical energy supply network
EP3046197B1 (en) Method and device for detecting the earth fault direction in a three phase alternating electric current network
EP2593754B1 (en) Method of detecting a switching position of a switching device
DE102016107598B3 (en) DEVICE AND METHOD FOR MONITORING A HIGH-VOLTAGE PROTECTOR IN A VEHICLE
WO2014060218A1 (en) Detecting conductors in a cable-stripping process
WO2020011858A1 (en) Method and device for the contactless, non-invasive measurement of electrical power quantities
EP1454332B1 (en) Method for predicting a future voltage and/or current curve
EP3719510A1 (en) Method, device and system for determining the location of a fault on a line of an electrical energy supply network
WO2012072810A1 (en) Method and device for monitoring switching devices
DE102016209443B4 (en) Arc fault detection unit
DE102012209019B3 (en) Device for detection and notification of errors in current- and voltage curve of high- or medium-voltage line of electrical energy supply network, has detection part for measuring current and voltage of high-or medium-voltage line
EP2057726B1 (en) Differential protection method and differential protection unit
DE4111831A1 (en) Release method for overcurrent protection switch - using measured current values and corresponding current gradients obtained by differentiation to trigger switch
EP1348970A1 (en) Check for plausibility of current transformers in substations
EP2329580B1 (en) Method and protective device for producing an error signal indicating a winding error in a transformer
DE102019202039B3 (en) Arc detection in the DC network
EP0239965B1 (en) Method and circuit for excitation of a multiphase distance protection
DE112020007232T5 (en) ENGINE DIAGNOSTIC DEVICE
DE102020112035B3 (en) Method for detecting an electric arc in an on-board network by means of a visibility graph, control device and on-board network
EP0658290B1 (en) Process for obtaining triggering signals by the comparison of currents at the ends of a power transmission path

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20110616

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01H 33/66 20060101ALN20110707BHEP

Ipc: H01H 1/00 20060101AFI20110707BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 540415

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009002368

Country of ref document: DE

Effective date: 20120301

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120104

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2380182

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120504

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120404

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120504

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

26N No opposition filed

Effective date: 20121005

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009002368

Country of ref document: DE

Effective date: 20121005

BERE Be: lapsed

Owner name: ABB RESEARCH LTD.

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121125

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091125

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120104

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 540415

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141125

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: ABB SCHWEIZ AG

Effective date: 20191030

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009002368

Country of ref document: DE

Representative=s name: ZIMMERMANN & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009002368

Country of ref document: DE

Owner name: ABB SCHWEIZ AG, CH

Free format text: FORMER OWNER: ABB RESEARCH LTD., ZUERICH, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20200206 AND 20200212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231124

Year of fee payment: 15

Ref country code: FR

Payment date: 20231120

Year of fee payment: 15

Ref country code: DE

Payment date: 20231121

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240126

Year of fee payment: 15