EP2326541A1 - Procede et dispositif de controle d'un stockeur d'energie pour vehicule hybride - Google Patents

Procede et dispositif de controle d'un stockeur d'energie pour vehicule hybride

Info

Publication number
EP2326541A1
EP2326541A1 EP09747896A EP09747896A EP2326541A1 EP 2326541 A1 EP2326541 A1 EP 2326541A1 EP 09747896 A EP09747896 A EP 09747896A EP 09747896 A EP09747896 A EP 09747896A EP 2326541 A1 EP2326541 A1 EP 2326541A1
Authority
EP
European Patent Office
Prior art keywords
threshold
energy
storer
vehicle
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09747896A
Other languages
German (de)
English (en)
Inventor
Melaine Migaud
Nicolas Dollinger
Nicolas Robart
Fabien Mercier-Calvairac
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
Peugeot Citroen Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles SA filed Critical Peugeot Citroen Automobiles SA
Publication of EP2326541A1 publication Critical patent/EP2326541A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/19Control strategies specially adapted for achieving a particular effect for achieving enhanced acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state

Definitions

  • the invention relates to a method and a device for controlling a hybrid vehicle energy storage device comprising an electric storage device and an electric machine.
  • the electric storer contributes to meeting a demand for energy overload to increase the performance of the vehicle, for example during the acceleration phase of the vehicle, or to optimize the energy consumption of the vehicle, by supplying energy to the electric machine which then operates in engine mode to enhance or replace the torque of the engine.
  • Control systems of a hybrid vehicle energy store are already known.
  • US6321143 discloses a system for controlling electrical energy depending on the use of the vehicle defining a plurality of possible states of the vehicle and adapting the use of the energy or the load to these states.
  • the document EP1410481 presents a system for managing the electrical energy of a parallel hybrid vehicle making it possible to adapt the management of the power battery according to the demand and the parameters of the battery (temperature, state of charge, etc.). ).
  • US6223106 discloses a control device for hybrid vehicle for the management of electrical energy. The methods and control devices of the prior art is not entirely satisfactory.
  • an object of the invention is a method of controlling a hybrid vehicle energy store which comprises an electrical storage unit and an electric machine.
  • the method comprises a first step scheduled to allow a discharge of the storer: on detection of a state of charge of the storer greater than a first threshold to optimize consumption; and on detecting a state of charge of the storer greater than a second threshold to increase a performance.
  • the second threshold is set to a minimum energy value reserved for transient compensation.
  • the first threshold delimits an energy range of variable height above the second threshold.
  • An object of the invention is also a control device for a hybrid vehicle energy store which comprises an electrical storage unit and an electric machine.
  • the device comprises: a first threshold arranged to allow to optimize an energy consumption of the vehicle when a state of charge of the storer is higher; and a second threshold arranged to allow the performance of the vehicle to be increased when a state of charge of the storer is higher.
  • the second threshold is set to a minimum energy value reserved for transient compensation.
  • the first threshold delimits an energy range of variable height above the second threshold.
  • FIG. 1 a schematic representation of the essential elements of a hybrid vehicle for implementing the invention
  • FIG. 2 a logic diagram showing process steps in accordance with the invention.
  • a hybrid vehicle comprises an electrical storage unit 11 consisting of a battery, super capacitors or any other element capable of reversibly storing electrical energy.
  • Various electrical consumers 21 such as the lighting headlights, the heating and air conditioning elements of the vehicle, the control members of the gearbox, are connected to the terminals of the electric storage unit 11 and consume the electrical energy they need. timely.
  • a reversible converter 50 of electrical energy into mechanical energy consumes electrical energy supplied by the electrical storer in different life situations.
  • the electric storage can provide additional energy to improve performance, for example in the case of a request for energy surcharge that can be called boost for the circumstance in question.
  • the reversible converter 50 supplies energy to the electrical storer especially when the vehicle is decelerating or downhill, but this is not necessarily sufficient to ensure a zero energy balance.
  • the reversible converter 50 must also provide electrical energy to recharge the electric storage 11 at other times by using the engine.
  • the reversible converter 50 comprises a terminal 51 connected to the positive pole of the electrical storage unit 11 and a terminal 52 connected to the negative pole of the electrical storage unit 11.
  • the reversible converter 50 comprises for example an electric machine 53 which provides the mechanical energy in motor mode when the reversible converter 50 is controlled by a signal element 41 and absorbs mechanical energy in generator mode to charge the electric storage unit 11 when the reversible converter 50 is controlled by a signal element 42.
  • the signal elements 41 and 42 are generated by a generally electronic module 40.
  • the module 40 establishes the values of the signal elements 41 and 42 as a function of a torque setpoint to be supplied or absorbed by the electric machine 53.
  • the module 40 receives various commands, for example braking units or vehicle acceleration units or a generally electronic module 30 which is arranged to receive a charge level of the storage unit 11 from a sensor 31 which, in a known manner, measures the voltage across the electrical storage unit 11 and estimates its impedance from a current
  • the module 40 more particularly receives a control signal 61 from a generally electronic module 60.
  • the module 60 is arranged to authorize in a controlled manner a discharge of the storage device.
  • the signal 61 contains a setpoint of energy or power to be consumed by the reversible converter 50 from the storage unit 11 following a request for an energy supplement received by a signal 63. to increase the performance of the vehicle or a usable energy demand, received by a signal 62, to optimize the energy consumption of the vehicle.
  • An increase in performance usually consists of adding the couple from the electric machine to the torque of the engine and thus push the acceleration.
  • An optimization of the energy consumption of the vehicle for example at low speed of travel, generally consists in using mainly the torque of the electric machine, even stopping the heat engine so as to lower the fuel consumption.
  • the module 60 is arranged, for example by means of a microprocessor and a digital or analog memory, to execute the method explained now with reference to FIG. 2.
  • control method comprises a first step 806 that is sequenced so as to authorize a discharge of the storer when one of the following three transitions is validated.
  • a transition 805 is validated on detection of a state of charge of the storer higher than a first threshold Lv which is the low limit of a green range of energy more particularly dimensioned to optimize an energy consumption of the vehicle, for example at low speed cruise or urban cycle.
  • a transition 811 is validated on detecting a state of charge of the storer greater than a second threshold Lr which is the low limit of an orange range of energy more particularly dimensioned to increase a vehicle performance, for example in acceleration.
  • a transition 813 is enabled by a transient compensation energy request.
  • the validation of this transition is not necessarily linked to a logical detection but can result naturally from a transient phenomenon.
  • the second threshold Lr is also the upper limit of a red minimum energy range more particularly dimensioned so as to C ⁇ that its energy quantity is quickly refundable in case of reduction, by direct charging via the engine or by recovery on a slow deceleration. Its size determines the guaranteed minimum dynamic performance of the vehicle.
  • the durability of its energy is based on an energy that is inaccessible to the strategy of optimizing consumption, a priority recharge compared to the green beach, a transfer of energy consumption optimization when it is available and a amount of energy easily reimbursable by construction.
  • the second threshold is set to a minimum energy value reserved for transient compensation.
  • the first threshold which is the lower limit of the green beach, is also the upper limit of the orange beach. By making it configurable or function of vehicle life conditions, the first threshold delimits an energy range of variable height above the second threshold.
  • the transition 805 is validated following a step 802 which measures the level or state of charge of the SOC storer (acronym for the foreign expression State Of
  • a transition 803 is validated following step 802 when the level or state of charge of the SOC storer is less than or equal to the threshold Lv, so as to activate a step 804 which then forbids unloading the storer to optimize the energy consumption of the vehicle .
  • the transition 811 is validated following a step 808 which measures the level or state of charge of the SOC storer when a request for a performance increase validates an 807 transition.
  • a transition 809 is validated following step 808 when the level or state of charge of the SOC storer is less than or equal to the threshold Lr, so as to activate a step 810 which then prohibits unloading the storer to increase the performance of the storer. vehicle.
  • a control device of the energy store for a hybrid vehicle which comprises the electric storage unit 11, the electric machine
  • the module 53 and the module 60 comprises for example digital or analog memory (not shown): the first threshold Lv arranged to allow to optimize an energy consumption of the vehicle when a state of charge of the storer is higher; and - the second threshold Lr arranged to allow to increase vehicle performance when a state of charge of the storer is higher.
  • the second threshold is preferably set to a minimum energy value reserved for transient compensation.
  • the first threshold is preferably variable, so as to delimit an energy range of variable height above the second threshold.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Dans un système de véhicule hybride qui comporte un stockeur électrique et une machine électrique, le procédé comprend une première étape (806) ordonnancée de façon à autoriser une décharge du stockeur : sur détection (805) d'un état de charge du stockeur supérieur à un premier seuil (Lv) pour optimiser une consommation; et sur détection (809) d'un état de charge du stockeur supérieur à un deuxième seuil (Lr) pour augmenter une performance.

Description

"Procédé et dispositif de contrôle d'un stockeur d'énergie pour véhicule hybride".
L' invention concerne un procédé et un dispositif de contrôle d'un stockeur d'énergie pour véhicule hybride qui comporte un stockeur électrique et une machine électrique. Le stockeur électrique contribue à satisfaire une demande de surcharge énergétique pour augmenter les performances du véhicule, par exemple en phase d'accélération du véhicule, ou pour optimiser la consommation énergétique du véhicule, en fournissant de l'énergie à la machine électrique qui fonctionne alors en mode moteur pour renforcer ou remplacer le couple du moteur thermique. On connaît déjà des systèmes de contrôle d'un stockeur d'énergie pour véhicule hybride. Par exemple, le document US6321143 présente un système de contrôle de l'énergie électrique en fonction de l'utilisation du véhicule définissant plusieurs états possibles du véhicule et adaptant l'utilisation de l'énergie ou la charge à ces états.
Le document EP1410481 présente un système de gestion de l'énergie électrique d'un véhicule hybride parallèle permettant d'adapter la gestion de la batterie de puissance en fonction de la demande et des paramètres de la batterie (température, état de charge...) .
Le document US6223106 présente un dispositif de contrôle pour véhicule hybride permettant la gestion de l'énergie électrique. Les procédés et dispositifs de contrôle de l'état antérieur de la technique n'apporte pas entière satisfaction .
Pour améliorer les procédés et dispositifs de contrôle de l'état antérieur de la technique, un objet de l'invention est un procédé de contrôle d'un stockeur d'énergie pour véhicule hybride qui comporte un stockeur électrique et une machine électrique. De façon remarquable, le procédé comprend une première étape ordonnancée de façon à autoriser une décharge du stockeur : sur détection d'un état de charge du stockeur supérieur à un premier seuil pour optimiser une consommation ; et sur détection d'un état de charge du stockeur supérieur à un deuxième seuil pour augmenter une performance . Particulièrement, le deuxième seuil est fixé à une valeur d'énergie minimale réservée à une compensation de transitoires .
Avantageusement, le premier seuil délimite une plage d'énergie de hauteur variable au dessus du deuxième seuil.
Un objet de l'invention est aussi un dispositif de contrôle d'un stockeur d'énergie pour véhicule hybride qui comporte un stockeur électrique et une machine électrique. De façon remarquable, le dispositif comprend : un premier seuil agencé pour autoriser d'optimiser une consommation énergétique du véhicule lorsqu'un état de charge du stockeur lui est supérieur ; et - un deuxième seuil agencé pour autoriser d'augmenter des performances du véhicule lorsqu'un état de charge du stockeur lui est supérieur .
Particulièrement, le deuxième seuil est fixé à une valeur d'énergie minimale réservée à une compensation de transitoires.
Avantageusement, le premier seuil délimite une plage d'énergie de hauteur variable au dessus du deuxième seuil .
L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Ces figures ne sont données qu'à titre illustratif et nullement limitatif de l'invention. Elles montrent : figure 1 : une représentation schématique des éléments essentiels d'un véhicule hybride pour mettre en œuvre 1 ' invention ;
- figure 2 : un logigramme montrant des étapes de procédé conformes à l'invention.
Les éléments identiques conservent la même référence d'une figure à l'autre. En référence à la figure 1, un véhicule hybride comprend un stockeur électrique 11 constitué d'une batterie, de super capacités ou de tout autre élément apte à stocker de façon réversible de l'énergie électrique. Divers consommateurs électriques 21 tels que les phares d'éclairage, les éléments de chauffage et de climatisation du véhicule, les organes de pilotage de la boîte de vitesses, sont branchés aux bornes du stockeur électrique 11 et consomment l'énergie électrique dont ils ont besoin au moment opportun. Un convertisseur 50 réversible d'énergie électrique en énergie mécanique consomme de l'énergie électrique fournie par le stockeur électrique dans différents cas de vie. Lorsque la force motrice du véhicule est fournie par un moteur thermique, le stockeur électrique peut apporter un complément d'énergie pour améliorer les performances, par exemple en cas d'une demande de surcharge énergétique que l'on peut nommer boost pour la circonstance en hommage au terme en langue étrangère de signification identique pour accélérer le véhicule. Le convertisseur réversible 50 fournit de l'énergie au stockeur électrique notamment lorsque le véhicule est en décélération ou en pente descendante, mais cela ne suffit pas nécessairement à assurer un bilan énergétique nul. Le convertisseur réversible 50 doit aussi fournir de l'énergie électrique pour recharger le stockeur électrique 11 à d'autres moments en mettant à contribution le moteur thermique. Le convertisseur réversible 50 comprend une borne 51 reliée au pôle positif du stockeur électrique 11 et une borne 52 reliée au pôle négatif du stockeur électrique 11. Entre les bornes 51 et 52, le convertisseur réversible 50 comprend par exemple une machine électrique 53 qui fournit de l'énergie mécanique en mode moteur lorsque le convertisseur réversible 50 est commandé par un élément de signal 41 et absorbe de l'énergie mécanique en mode génératrice pour charger le stockeur électrique 11 lorsque le convertisseur réversible 50 est commandé par un élément de signal 42. Les éléments de signaux 41 et 42 sont générés par un module généralement électronique 40. Le module 40 établit les valeurs des éléments de signaux 41 et 42 en fonction d'une consigne de couple à fournir ou à absorber par la machine électrique 53. Pour ce faire, le module 40 reçoit diverses commandes, par exemple des unités de freinage ou des unités d'accélération du véhicule ou encore d'un module généralement électronique 30 qui est agencé pour recevoir un niveau de charge du stockeur 11 depuis un capteur 31 qui, de façon connue, mesure la tension aux bornes du stockeur électrique 11 et estime son impédance à partir d'un courant électrique traversant le stockeur électrique 11. Le module 40 reçoit plus particulièrement un signal 61 de contrôle commande d'un module généralement électronique 60. Le module 60 est agencé pour autoriser de manière contrôlée une décharge du stockeur. Comme nous allons le voir dans la suite de la description, le signal 61 contient une consigne d'énergie ou de puissance à consommer par le convertisseur réversible 50 à partir du stockeur 11 suite à une demande de complément énergétique, reçue par un signal 63, pour augmenter les performances du véhicule ou à une demande d'énergie utilisable, reçue par un signal 62, pour optimiser la consommation énergétique du véhicule.
Une augmentation de performance, par exemple en accélération, consiste généralement à ajouter le couple de la machine électrique au couple du moteur thermique et pousser ainsi l'accélération. Une optimisation de la consommation énergétique du véhicule, par exemple à faible vitesse de déplacement, consiste généralement à utiliser principalement le couple de la machine électrique en allant jusqu'à arrêter le moteur thermique de façon à baisser la consommation de carburant.
Le module 60 est agencé, par exemple au moyen d'un microprocesseur et d'une mémoire numérique ou analogique, pour exécuter le procédé expliqué à présent en référence à la figure 2.
En référence à la figure 2, le procédé de contrôle comprend une première étape 806 ordonnancée de façon à autoriser une décharge du stockeur lorsque l'une des trois transitions suivantes est validée.
Une transition 805 est validée sur détection d'un état de charge du stockeur supérieur à un premier seuil Lv qui est la limite basse d'une plage verte d'énergie plus particulièrement dimensionnée pour optimiser une consommation énergétique du véhicule, par exemple à faible vitesse de croisière ou en cycle urbain.
Une transition 811 est validée sur détection d'un état de charge du stockeur supérieur à un deuxième seuil Lr qui est la limite basse d'une plage orange d'énergie plus particulièrement dimensionnée pour augmenter une performance du véhicule, par exemple en accélération.
Une transition 813 est validée par une demande d'énergie de compensation de transitoires. La validation de cette transition n'est pas nécessairement liée à une détection logique mais peut résulter naturellement d'un phénomène transitoire. Le deuxième seuil Lr est aussi la limite haute d'une plage rouge d'énergie minimale plus particulièrement dimensionnée de manière à Cβ que sa quantité d'énergie soit rapidement remboursable en cas de diminution, par de la recharge directe via le moteur thermique ou par de la récupération sur une faible décélération . Sa taille détermine les performances dynamiques minimales garanties du véhicule.
La pérennité de son énergie repose sur une énergie inaccessible à la stratégie d'optimisation de la consommation, une recharge prioritaire par rapport à la plage verte, un transvasement de l'énergie d'optimisation de la consommation lorsque celle-ci est disponible et une quantité d'énergie facilement remboursable par construction. Dans ce but, le deuxième seuil est fixé à une valeur d'énergie minimale réservée à une compensation de transitoires.
Le premier seuil qui est la limite basse de la plage verte, est aussi la limite haute de la plage orange. En le rendant paramétrable ou fonction de conditions de vie du véhicule, le premier seuil délimite une plage d'énergie de hauteur variable au dessus du deuxième seuil.
La transition 805 est validée à la suite d'une étape 802 qui mesure le niveau ou état de charge du stockeur SOC (acronyme de l'expression étrangère State Of
Charge) lorsqu'une demande d'optimisation de consommation valide une transition 801.
Une transition 803 est validée à la suite de l'étape 802 lorsque le niveau ou état de charge du stockeur SOC est inférieur ou égal au seuil Lv, de façon à activer une étape 804 qui interdit alors de décharger le stockeur pour optimiser la consommation énergétique du véhicule .
La transition 811 est validée à la suite d'une étape 808 qui mesure le niveau ou état de charge du stockeur SOC lorsqu'une demande d'augmentation de performance valide une transition 807.
Une transition 809 est validée à la suite de l'étape 808 lorsque le niveau ou état de charge du stockeur SOC est inférieur ou égal au seuil Lr, de façon à activer une étape 810 qui interdit alors de décharger le stockeur pour augmenter la performance du véhicule. Pour mettre en œuvre le procédé, un dispositif de contrôle du stockeur d'énergie pour véhicule hybride qui comporte le stockeur électrique 11, la machine électrique
53 et le module 60, comprend par exemple en mémoire numérique ou analogique (non représentée) : le premier seuil Lv agencé pour autoriser d'optimiser une consommation énergétique du véhicule lorsqu'un état de charge du stockeur lui est supérieur ; et - le deuxième seuil Lr agencé pour autoriser d'augmenter des performances du véhicule lorsqu'un état de charge du stockeur lui est supérieur .
Le deuxième seuil est de préférence fixé à une valeur d'énergie minimale réservée à la compensation des transitoires.
Le premier seuil est de préférence variable, de façon à délimiter une plage d'énergie de hauteur variable au dessus du deuxième seuil.

Claims

REVENDI CATIONS
1. Procédé de contrôle d'un stockeur d'énergie pour véhicule hybride qui comporte un stockeur électrique et une machine électrique, comprenant une première étape (806) ordonnancée de façon à autoriser une décharge du stockeur : sur détection (805) d'un état de charge du stockeur supérieur à un premier seuil (Lv) pour optimiser une consommation ; et
- sur détection (809) d'un état de charge du stockeur supérieur à un deuxième seuil (Lr) pour augmenter une performance, et dans lequel :
- le deuxième seuil est fixé à une valeur d'énergie minimale réservée à une compensation de transitoires.
2. Procédé selon la revendication 1, dans lequel :
- le premier seuil délimite une plage d'énergie de hauteur variable au dessus du deuxième seuil.
3. Dispositif de contrôle d'un stockeur d'énergie pour véhicule hybride qui comporte un stockeur électrique
(11) et une machine électrique (53), comprenant : un premier seuil (Lv) agencé pour autoriser d'optimiser une consommation énergétique du véhicule lorsqu'un état de charge du stockeur lui est supérieur ; et un deuxième seuil (Lr) agencé pour autoriser d'augmenter des performances du véhicule lorsqu'un état de charge du stockeur lui est supérieur, et dans lequel
- le deuxième seuil est fixé à une valeur d'énergie minimale réservée à une compensation de transitoires.
4. Dispositif selon la revendication 3, dans lequel :
- le premier seuil délimite une plage d'énergie de hauteur variable au dessus du deuxième seuil.
EP09747896A 2008-09-23 2009-09-22 Procede et dispositif de controle d'un stockeur d'energie pour vehicule hybride Withdrawn EP2326541A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0856410A FR2936207B1 (fr) 2008-09-23 2008-09-23 Procede et dispositif de controle d'un stockeur d'energie pour vehicule hybride.
PCT/FR2009/051784 WO2010034930A1 (fr) 2008-09-23 2009-09-22 Procede et dispositif de controle d'un stockeur d'energie pour vehicule hybride

Publications (1)

Publication Number Publication Date
EP2326541A1 true EP2326541A1 (fr) 2011-06-01

Family

ID=40585512

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09747896A Withdrawn EP2326541A1 (fr) 2008-09-23 2009-09-22 Procede et dispositif de controle d'un stockeur d'energie pour vehicule hybride

Country Status (5)

Country Link
US (1) US20110163724A1 (fr)
EP (1) EP2326541A1 (fr)
CN (1) CN102164799B (fr)
FR (1) FR2936207B1 (fr)
WO (1) WO2010034930A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2961767B1 (fr) * 2010-06-24 2013-02-08 Sagem Defense Securite Procede de gestion de l'energie electrique sur un vehicule en vue d'accroitre sa surete de fonctionnement, circuit electrique et vehicule pour la mise en oeuvre de ce procede
JP5656736B2 (ja) * 2011-05-16 2015-01-21 トヨタ自動車株式会社 車両および車両の制御方法
JP2013071551A (ja) * 2011-09-27 2013-04-22 Aisin Seiki Co Ltd ハイブリッド車両の制御装置
US9142372B2 (en) 2012-05-21 2015-09-22 General Electric Company Contactor isolation method and apparatus
JP6327356B2 (ja) * 2014-10-21 2018-05-23 東芝三菱電機産業システム株式会社 蓄電池システム
JP2019092279A (ja) * 2017-11-14 2019-06-13 トヨタ自動車株式会社 車両および電力設備

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3409523B2 (ja) * 1995-08-02 2003-05-26 アイシン・エィ・ダブリュ株式会社 車両用駆動装置の制御装置
JP3351942B2 (ja) * 1995-11-06 2002-12-03 トヨタ自動車株式会社 動力伝達装置およびその制御方法
US6484833B1 (en) * 2000-03-17 2002-11-26 General Motors Corporation Apparatus and method for maintaining state of charge in vehicle operations
US6583599B1 (en) * 2000-11-03 2003-06-24 Ford Global Technologies, Inc. Method and apparatus for controlling battery charging in a hybrid electric vehicle
DE10318882A1 (de) * 2003-04-17 2004-11-04 Volkswagen Ag Vorrichtung und Verfahren für ein Energiemanagement in einem Kraftfahrzeug
US6994360B2 (en) * 2003-09-22 2006-02-07 Ford Global Technologies, Llc Controller and control method for a hybrid electric vehicle powertrain
JP2005304179A (ja) * 2004-04-12 2005-10-27 Toyota Motor Corp 駆動システムおよびこれを搭載する移動体
CN1986304A (zh) * 2006-12-08 2007-06-27 奇瑞汽车有限公司 一种混合动力汽车的控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010034930A1 *

Also Published As

Publication number Publication date
FR2936207A1 (fr) 2010-03-26
US20110163724A1 (en) 2011-07-07
CN102164799A (zh) 2011-08-24
CN102164799B (zh) 2015-04-22
FR2936207B1 (fr) 2011-07-29
WO2010034930A1 (fr) 2010-04-01

Similar Documents

Publication Publication Date Title
EP2788221B1 (fr) Procede de gestion d'un alternateur associe a au moins une batterie d'alimentation et entraine par un moteur thermique
EP2715909B1 (fr) Procede de rechargement d'un couple de batteries de vehicule de tensions nominales differentes, et systeme associe
EP2326541A1 (fr) Procede et dispositif de controle d'un stockeur d'energie pour vehicule hybride
EP2032405A1 (fr) Systeme micro-hybride pour vehicule automobile incorporant un module de strategies de pilotage
CN102126435B (zh) 混合动力车辆和传统车辆中低电压电路的控制算法
FR2994546A1 (fr) Procede de limitation de couple d'une machine electrique de vehicule hybride comportant un systeme de controle de vitesse
FR2965128B1 (fr) Procede et dispositif de gestion d'un generateur d'un systeme de recuperation d'energie d'un vehicule automobile
FR3027259A1 (fr) Procede de pilotage et de regulation thermique d'un systeme de prolongation d'autonomie d'un vehicule automobile
CN110341504B (zh) 一种增程式电动车动力***及其控制方法
EP3364008A1 (fr) Système de turbo-régénération
EP2108558B1 (fr) Procede et dispositif de controle d'une surcharge energetique
EP2113435B1 (fr) Procédé et dispositif de contrôle d'un stockeur d'énergie pour véhicule hybride
FR2757806A1 (fr) Dispositif d'alimentation electrique d'un moteur electrique de vehicule
EP2105366A2 (fr) Procédé et dispositif de contrôle d'une charge électrique
FR2806979A1 (fr) Groupe motopropulseur comportant un dispositif d'accumulation d'energie a haute puissance specifique
WO2009035630A2 (fr) Assistance à la suralimentation d'une combinaison électrique hybride
WO2012104543A1 (fr) Procede et systeme de gestion de l'energie d'un engin ferroviaire
JP2024094005A (ja) 電動乗り物に用いられるハイブリッドバッテリーの電気エネルギーの出力分配を制御する方法
WO2013124561A2 (fr) Procédé de gestion de l'énergie électrique d'une architecture électrique d'un véhicule automobile et véhicule automobile mettant en œoeuvre un tel procédé
FR2988673A1 (fr) Procede de gestion electrique d'un vehicule automobile et vehicule automobile mettant en oeuvre un tel procede
FR2933355A1 (fr) Procede et systeme de stockage d'une charge electrique
FR3000850A1 (fr) Procede et dispositif de controle d'une consigne interne de courant d'un producteur d'energie electrique pendant un mode de fonctionnement degrade
FR2988672A1 (fr) Procede de gestion electrique d'un vehicule automobile et vehicule automobile mettant en oeuvre un tel procede

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120809

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20121220