EP2320090A2 - Hochvakuumpumpe - Google Patents

Hochvakuumpumpe Download PDF

Info

Publication number
EP2320090A2
EP2320090A2 EP10013671A EP10013671A EP2320090A2 EP 2320090 A2 EP2320090 A2 EP 2320090A2 EP 10013671 A EP10013671 A EP 10013671A EP 10013671 A EP10013671 A EP 10013671A EP 2320090 A2 EP2320090 A2 EP 2320090A2
Authority
EP
European Patent Office
Prior art keywords
lubricant
rotor
vacuum pump
high vacuum
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10013671A
Other languages
English (en)
French (fr)
Other versions
EP2320090A3 (de
EP2320090B1 (de
Inventor
Mirko Mekota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Publication of EP2320090A2 publication Critical patent/EP2320090A2/de
Publication of EP2320090A3 publication Critical patent/EP2320090A3/de
Application granted granted Critical
Publication of EP2320090B1 publication Critical patent/EP2320090B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/168Pumps specially adapted to produce a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0292Stop safety or alarm devices, e.g. stop-and-go control; Disposition of check-valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/059Roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/06Lubrication
    • F04D29/063Lubrication specially adapted for elastic fluid pumps

Definitions

  • the invention relates to a high vacuum pump according to the preamble of the first claim.
  • Vacuum pumps of molecular and turbomolecular design have proven to produce high vacuum.
  • a generic vacuum pump has a fast rotating rotor that rotates at tens of thousands of revolutions per minute.
  • Various types of storage are known, including non-contact magnetic bearings and bearings, such as ball bearings with oil or grease lubrication and ceramic balls. These known bearings lead to an electrically insulated suspension of the rotor, so that it can come to a charging of the rotor with appropriate fluids to be pumped.
  • uncontrolled electrical discharge, so-called flashovers, between rotor and stator which lead to mechanical damage to these components and are therefore undesirable.
  • the EP-A 1915512 Suggests two solutions to this problem.
  • the first solution provides a filamentous and conductive body contacting the rotor.
  • the second solution is to generate by geometric design at a specific location flashovers between the rotor and stator.
  • the first solution is disadvantageous in that the body and its contacting point on the rotor are subject to wear due to the contact which occurs even at a low relative speed. The abrasion generated by this wear accumulates in the ball bearing and destroys it.
  • the second solution has the disadvantage that the component to which the flashovers take place, erosion damage occur. This erosion means wear, so that the arrangement lacks long-term stability. After some time, the arrangement does not work anymore and uncontrolled flashovers occur again.
  • the means for lubricating the rolling bearing are adapted such that such a discharge of the rotor is caused to prevent flashovers between the rotor and the stator. Damage to the rotor and stator is thus prevented. Since the already existing means for lubricating the bearing are adjusted and used, this is done advantageously without the use of other components. This is inexpensive and avoids mistakes. In addition, this solution is very low wear compared to the prior art and allows long service life.
  • a further embodiment provides that a conductive feed wick is used. In addition to the advantages mentioned above, this is advantageous because a lasting good discharge due to the constant contact is effected.
  • Another embodiment provides to use a conductive lubricant. This is a virtually completely wear-free solution.
  • the conductive lubricant comprises carbon nanotubes.
  • the addition of these carbon nanotubes causes a well-defined in the sense of the claim formulated to claim 1 sufficiently good conductivity, without a deterioration of the essential properties for use in a high vacuum pump properties of the lubricant occurs.
  • the means is designed as a lubricant circuit. This improves the discharge of the rotor, since an additional transport takes place. This solution is also advantageous in a vibration-decoupled mounting of the rolling bearing in elastomeric bodies, since the discharge via the lubricant circuit and not interrupted by the elastomer body contact from outer ring to housing of the high vacuum pump of the bearing.
  • FIG Fig. 1 A section through a high vacuum pump 100 is shown in FIG Fig. 1 shown.
  • the high vacuum pump has a housing 102 which has a flange 104 and which allows releasable attachment to a container to be evacuated.
  • the flange defines the gas inlet 106.
  • the housing surrounds the components of the stator 120, which includes a bladed stator disk 122 and a spacer 124. Depending on requirements such as pumping speed and compression, the number of stator disks is dimensioned.
  • other molecular pumping principles can be used, for example, according to the Holweck, Siegbahn and 9.kanal principle.
  • the stator cooperates with the rotor 110, which includes a bladed rotor disk 114 and a shaft 112.
  • the number of rotor disks mounted on the shaft corresponds to the number of stator disks.
  • the rotor may also include other pump-active elements that interact with stator elements, such as a Holweck cylinder.
  • a motor coil 128 is disposed in the housing and puts the shaft and thus the rotor in rapid rotation.
  • the shaft is rotatably supported by a permanent magnetic bearing 126.
  • the gas inlet remote end of the shaft is supported by a bearing assembly 170.
  • the bearing assembly comprises a roller bearing 130, which in this example is designed as a grease-lubricated ball bearing.
  • a roller bearing 130 On the shaft sits the inner ring 134 of the ball bearing, the outer ring 132 is supported by means of a Axialschwingringes 140 and a Radialschwingringes 142 in the axial and radial directions swingable in the housing.
  • Axialschwingring and Radialschwingring are designed as electrically non-conductive elastomer rings.
  • Between inner ring and outer ring balls 136 are arranged as rolling elements.
  • a cover plate 144 closes the space between the inner ring and outer ring and holds the lubricant reservoir 144 in the rolling bearing.
  • the lubricant supply contains the grease as a lubricant and is designed as a lifetime lubrication.
  • the described type of bearing with contact-free permanent magnet bearing and roller bearings causes, especially when ceramic balls are used in the rolling bearing, a good electrical insulation of the rotor relative to the stator.
  • the insulation is removed, in which a conductive grease is used in the lubricant supply.
  • the electrical charging of the rotor is prevented because it is earthed via the rolling bearing and the grease.
  • either axial or radial ring or both may be made of electrically conductive material, such as an embedded conductive material elastomer.
  • an electrical conductor may be provided between the outer ring and the housing.
  • Both fat and axial and radial resonant rings can be loaded with carbon nanotubes for improved electrical conductivity.
  • the achieved conductivity must only be so dimensioned that the charging of the rotor is so low that the field strengths between rotor and stator reach no value that allows discharge by flashover or sparks.
  • the Fig. 2 shows a section through the bearing assembly of the high vacuum pump in an alternative embodiment.
  • This alternative bearing arrangement 270 comprises a ball bearing 230 whose inner ring 234 is fixed on the shaft 212.
  • the outer ring 232 is oscillatable by means of a Axialschwingrings 240 and a Radialschwingrings 242 Housing 202 is supported. Between the inner ring and outer ring are the balls 236.
  • the lubrication takes place through a lubricant circuit 268. This is in Fig. 2 illustrated by arrows. Part of this lubricant circuit is the lubricant reservoir 252. It has at least one supply wick 250 which is in sliding contact with a conically shaped and arranged on the shaft spray nut 256.
  • the lubricant 250 shown by dots is transferred from the lubricant reservoir to the spray nut. About the centrifugal force, the lubricant is conveyed along the cone in the space between the bearing inner ring and bearing outer ring and there causes the lubrication. The lubricant falls from the intermediate space back into the lubricant reservoir and can be re-supplied to the ball bearing there by capillary action via the feed wick in the next circulation of the lubricant circuit.
  • grounding of the rotor via the means for lubricating the ball bearing can be done via two alternative ways, whereby both ways can be realized simultaneously.
  • the lubricant itself can be made conductive. This is achieved by the addition of conductive substances to lubricants, such as graphite. Carbon nanotubes prove to be particularly advantageous. Lubricant circulation and filling of the lubricant reservoir then cause a conductive connection from shaft to housing. The charging of the rotor is thereby kept so low that there is no electrical discharge or spark between the rotor and stator.
  • the feed wick can be made of conductive material.
  • Feed wick and lubricant reservoir comprise a felt-like material which stores the lubricant in its pores and promotes it via capillary action. Electrical conductivity is sufficiently effected by admixture of metallic fibers or conductive carbon fiber.
  • the Fig. 3 shows a section through the bearing assembly of the high vacuum pump in a third embodiment.
  • the bearing assembly 370 has a ball bearing 330. Its inner ring 334 is fixed on the shaft 312. Its outer ring 332 is supported in the housing 302 by means of an axial oscillating ring 340 and a radial oscillating ring 342 in the axial and radial directions.
  • a lubricant-containing lubricant circuit 368 is provided, which in Fig. 3 is illustrated by arrows.
  • the lubricant circuit comprises a lubricant pump 352, which contains the lubricant 350, which in Fig. 3 is illustrated by dots through which feed channel 360 feeds into a feed nozzle 362.
  • the lubricant is conveyed to the conically shaped spray nut 356.
  • the lubricant is conveyed by the centrifugal force along the cone in the ball bearing. From there it enters the drainage channel 364 and through this back into the lubricant pump.
  • the adaptation of the means for lubricating the ball bearing in this example is to carry out the lubricant itself conductive. This is achieved in an advantageous variant via the addition of carbon nanotubes.
  • the lubricant circuit then causes a conductive connection from shaft to housing. As a result, the charging of the rotor is kept so low that none of the electrical discharges occurring between the rotor and the stator occur in the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

Die Erfindung betrifft eine Hochvakuumpumpe (100) mit einem Stator (120), einem schnell drehenden Rotor (110), einem Wälzlager (130; 230; 330) und einem Mittel (144; 268; 368) zur Schmierung des Wälzlagers. Die Erfindung schlägt vor, dass das Mittel angepasst ist, durch Entladung des Rotors Überschläge zwischen Stator (120) und Rotor (110) zu verhindern

Description

  • Die Erfindung betrifft eine Hochvakuumpumpe nach dem Oberbegriff des ersten Anspruchs.
  • Vakuumpumpen nach molekularer und turbomolekularer Bauart haben sich zur Erzeugung von Hochvakuum bewährt. Eine gattungsgemäße Vakuumpumpe weist einen schnell drehenden Rotor auf, der sich mit einigen Zehntausend Umdrehungen pro Minute dreht. Verschiedene Arten der Lagerung sind bekannt, darunter berührungslose Magnetlager und Wälzlager, beispielsweise Kugellager mit Öl- oder Fettschmierung und keramischen Kugeln. Diese bekannten Lagerungen führen zu einer elektrisch isolierten Aufhängung des Rotors, so dass es bei entsprechenden abzupumpenden Fluiden zu einer Aufladung des Rotors kommen kann. In der Folge entstehen unkontrollierte elektrische Entladung, so genannte Überschläge, zwischen Rotor und Stator, die zu einer mechanischen Beschädigung dieser Komponenten führen und daher unerwünscht sind.
  • Die EP-A 1915512 schlägt zur Beseitigung dieses Problems zwei Lösungen vor. Die erste Lösung sieht einen den Rotor berührenden fadenförmigen und leitfähigen Körper vor. Die zweite Lösung besteht darin, durch geometrische Gestaltung an einer gezielten Stelle Überschläge zwischen Rotor und Stator zu erzeugen.
  • Beide Lösungen weisen Nachteile auf. Die erste Lösung ist nachteilig, da der Körper und die mit ihm in Kontakt befindliche Stelle am Rotor aufgrund der Berührung Verschleiss unterliegt, der selbst bei einer geringen Relativgeschwindigkeit auftritt. Der durch diesen Verschleiß erzeugte Abrieb sammelt sich im Kugellager und zerstört dieses.
  • Die zweite Lösung weist den Nachteil auf, dass das Bauteil, an welchem gezielt die Überschläge stattfinden, Erosionsschäden auftreten. Diese Erosion bedeutet Verschleiss, so dass es der Anordnung an Langzeitstabilität mangelt. Nach einiger Zeit funktioniert die Anordnung nicht mehr und es treten erneut unkontrollierte Überschläge auf.
  • Es ist daher Aufgabe der Erfindung, eine Hochvakuumpumpe vorzustellen, in der Überschläge zwischen Rotor und Stator vermieden werden.
  • Diese Aufgabe wird gelöst durch eine Hochvakuumpumpe mit den Merkmalen des ersten Anspruchs. Die abhängigen Ansprüche geben vorteilhafte Weiterbildungen an.
  • Die Mittel zur Schmierung des Wälzlagers sind derart angepasst, dass eine derartige Entladung des Rotors bewirkt wird, dass Überschläge zwischen Rotor und Stator verhindert werden. Die Beschädigung von Rotor und Stator wird somit verhindert. Da die ohnehin vorhandenen Mittel zur Schmierung des Wälzlagers angepasst und verwendet werden, geschieht dies vorteilhaft ohne den Einsatz weiterer Bauteile. Dies ist kostengünstig und vermeidet Fehler. Zudem ist diese Lösung gegenüber dem Stand der Technik sehr verschleißarm und erlaubt lange Standzeiten.
  • Eine Weiterbildung sieht vor, dass ein leitfähiger Zufuhrdocht verwendet wird. Neben den oben genannten Vorteilen ist dies vorteilhaft, da eine dauerthaft gute Entladung aufgrund des ständigen Kontakts bewirkt wird.
  • Eine andere Weiterbildung sieht vor, ein leitfähiges Schmiermittel zu verwenden. Dies ist eine praktisch vollständig verschleißfreie Lösung.
  • Gemäß einer Ausführungsform umfasst das leitfähige Schmiermittel Kohlenstoffnanoröhrchen. Der Zusatz dieser Kohlenstoffnanoröhrchen bewirkt eine im Sinne des zu Anspruch 1 formulierten Zieles ausreichend gute Leitfähigkeit, ohne dass eine Verschlechterung der für den Einsatz in einer Hochvakuumpumpe wesentlichen Eigenschaften des Schmiermittels auftritt.
  • Gemäß einer anderen Weiterbildung wird vorgeschlagen, dass das Mittel als Schmiermittelkreislauf ausgebildet ist. Dies verbessert die Entladung des Rotors, da ein zusätzlicher Transport stattfindet. Diese Lösung ist zudem vorteilhaft bei einer schwingungsentkoppelten Halterung des Wälzlagers in Elastomerkörpern, da die Entladung über den Schmiermittelkreislauf und nicht über den vom Elastomerkörper unterbrochenen Kontakt von Außenring zu Gehäuse der Hochvakuumpumpe des Wälzlagers erfolgt.
  • An Hand von Ausführungsbeispielen und deren Weiterbildungen soll die Erfindung näher erläutert und die Darstellung ihrer Vorteile vertieft werden.
  • Es zeigen:
  • Fig. 1:
    Schnitt durch eine Hochvakuumpumpe mit fettgeschmierten Wälzlager,
    Fig. 2:
    Schnitt durch die Lageranordnung einer Hochvakuumpumpe mit Dochtschmierung,
    Fig. 3:
    Schnitt durch die Lageranordnung einer Hochvakuumpumpe mit Ölumlaufschmierung.
  • Ein Schnitt durch eine Hochvakuumpumpe 100 ist in Fig. 1 gezeigt. Die Hochvakuumpumpe besitzt ein Gehäuse 102, welches einen Flansch 104 aufweist und die lösbare Befestigung an einem auszupumpenden Behälter erlaubt. Der Flansch begrenzt den Gaseinlass 106.
  • Das Gehäuse umgibt die Bauteile des Stators 120, der eine beschaufelte Statorscheibe 122 und ein Distanzelement 124 umfasst. Abhängig von Anforderungen wie Saugvermögen und Kompression ist die Zahl der Statorscheiben bemessen. Neben den oder als Ersatz für die hier gezeigten turbomolekularen Pumpstufen können andere molekulare Pumpprinzipien zum Einsatz kommen, beispielsweise nach Holweck-, Siegbahn- und Seitenkanalprinzip.
  • Der Stator wirkt mit dem Rotor 110 zusammen, welcher eine beschaufelte Rotorscheibe 114 und eine Welle 112 umfasst. Die Zahl der auf der Welle angebrachten Rotorscheiben entspricht der Zahl der Statorscheiben. Der Rotor kann zudem weitere pumpaktive Elemente umfassen, die mit Statorelementen zusammenwirken, beispielsweise ein Holweckzylinder.
  • Eine Motorspule 128 ist im Gehäuse angeordnet und versetzt die Welle und damit den Rotor in schnelle Drehung.
  • Am gaseinlasseitigen Ende ist die Welle durch ein permanentmagnetisches Lager 126 drehbar unterstützt. Das dem Gaseinlass abgelegene Ende der Welle wird von einer Lageranordnung 170 getragen.
  • Die Lageranordnung umfasst ein Wälzlager 130, welches in diesem Beispiel als fettgeschmiertes Kugellager gestaltet ist. Auf der Welle sitzt der Innenring 134 des Kugellagers, der Außenring 132 ist mittels eines Axialschwingringes 140 und eines Radialschwingringes 142 in axialer und radialer Richtung schwingfähig im Gehäuse gehaltert. Axialschwingring und Radialschwingring sind als elektrisch nicht-leitende Elastomerringe ausgeführt. Zwischen Innenring und Außenring sind Kugeln 136 als Wälzkörper angeordnet. Eine Deckscheibe 144 schließt den Raum zwischen Innenring und Außenring ab und hält den Schmiermittelvorrat 144 im Wälzlager.
  • Der Schmiermittelvorrat beinhaltet das Fett als Schmiermittel und ist als Lebensdauerschmierung bemessen.
  • Die beschriebene Art der Lagerung mit kontaktfreiem Permanentmagnetlager und Wälzlager bewirkt, insbesondere wenn Keramikkugeln im Wälzlager zum Einsatz kommen, eine gute elektrische Isolierung des Rotors gegenüber dem Stator.
  • Die Isolierung wird aufgehoben, in dem im Schmiermittelvorrat ein leitfähiges Fett eingesetzt wird. Die elektrische Aufladung des Rotors wird verhindert, da dieser über das Wälzlager und das Fett geerdet ist.
  • Zur Verbesserung der Erdung können Axialschwingring oder Radialschwingring oder beide aus elektrisch leitfähigem Material hergestellt sein, beispielsweise einem Elastomer mit eingebettetem leitfähigen Stoff. Alternativ kann ein elektrischer Leiter zwischen Außenring und Gehäuse vorgesehen sein.
  • Sowohl Fett als auch Axial- und Radialschwingringe können mit Kohlenstoffnanoröhrchen versetzt werden, um eine verbesserte elektrische Leitfähigkeit zu erreichen. Die erreichte Leitfähigkeit muss dabei lediglich so bemessen sein, dass die Aufladung des Rotors so gering ist, dass die Feldstärken zwischen Rotor und Stator keinen Wert erreichen, der eine Entladung durch Überschlag oder Funken zulässt.
  • Die Fig. 2 zeigt einen Schnitt durch die Lageranordnung der Hochvakuumpumpe in einer alternativen Ausführung.
  • Diese alternative Lageranordnung 270 umfasst ein Kugellager 230, dessen Innenring 234 auf der Welle 212 fixiert ist. Der Außenring 232 ist mittels eines Axialschwingrings 240 und eines Radialschwingrings 242 schwingfähig im Gehäuse 202 gehaltert. Zwischen Innenring und Außenring befinden sich die Kugeln 236. Die Schmierung erfolgt durch einen Schmiermittelkreislauf 268. Dieser ist in Fig. 2 durch Pfeile veranschaulicht. Teil dieses Schmiermittelkreislaufs ist der Schmiermittelspeicher 252. Er besitzt wenigstens einen Zufuhrdocht 250, der in gleitendem Kontakt mit einer konisch gestalteteten und auf der Welle angeordneten Spritzmutter 256 steht. Über diesen Zufuhrdocht wird das durch Punkte dargestellte Schmiermittel 250 aus dem Schmiermittelspeicher auf die Spritzmutter übertragen. Über die Fliehkraftwirkung wird das Schmiermittel entlang des Konus in den Raum zwischen Lagerinnenring und Lageraußenring gefördert und bewirkt dort die Schmierung. Das Schmiermittel fällt aus dem Zwischenraum zurück in den Schmiermittelspeicher und kann dort per Kapillarwirkung über den Zufuhrdocht im nächsten Umlauf des Schmiermittelkreislaufs erneut dem Kugellager zugeführt werden.
  • Die Erdung des Rotors über die Mittel zur Schmierung des Kugellagers kann über zwei Alternative Wege erfolgen, wobei auch beide Wege gleichzeitig realisiert sein können.
  • Zum einen kann das Schmiermittel selbst leitfähig ausgeführt sein. Dies gelingt über den Zusatz von leitfähigen Stoffen um Schmiermittel, beispielsweise Grafit. Besonders vorteilhaft erweisen sich Kohlenstoffnanoröhrchen. Schmiermittelkreislauf und Füllung des Schmiermittelspeichers bewirken dann eine leitfähige Verbindung von Welle zu Gehäuse. Die Aufladung des Rotors wird hierdurch so gering gehalten, dass es zu keinen elektrischen Entladungen oder Funken zwischen Rotor und Stator kommt.
  • Zum anderen kann der Zufuhrdocht aus leitfähigem Material gestaltet sein. Zufuhrdocht und Schmiermittelspeicher umfassen ein filzartiges Material, welches das Schmiermittel in seinen Poren speichert und über Kapillarwirkung fördert. Elektrische Leitfähigkeit in ausreichendem Maße wird durch Beimengung metallischer Fasern oder leitfähiger Karbonfaser bewirkt.
  • Die Fig. 3 zeigt einen Schnitt durch die Lageranordnung der Hochvakuumpumpe in einer dritten Ausführungsform.
  • Die Lageranordnung 370 weist ein Kugellager 330 auf. Dessen Innenring 334 ist auf der Welle 312 fixiert. Sein Außenring 332 ist mittels eines Axialschwingrings 340 und eines Radialschwingrings 342 in axialer und radialer Richtung schwingfähig im Gehäuse 302 gehaltert. Als Mittel zur Schmierung des Kugellagers ist ein Schmiermittel beinhaltender Schmiermittelkreislauf 368 vorgesehen, der in Fig. 3 durch Pfeile veranschaulicht ist. Der Schmiermittelkreislauf umfasst eine Schmiermittelpumpe 352, welche das Schmiermittel 350, welches in Fig. 3 durch Punkte veranschaulicht ist, durch den Zufuhrkanal 360 in eine Zufuhrdüse 362 fördert. Aus der Zufuhrdüse wird das Schmiermittel auf die konisch gestaltete Spritzmutter 356 gefördert. Das Schmiermittel wird durch die Fliehkraft entlang des Konus in das Kugellager weitergefördert. Von dort gelangt es in den Ablaufkanal 364 und durch diesen zurück in die Schmiermittelpumpe.
  • Die Anpassung des Mittels zum Schmieren des Kugellagers besteht in diesem Beispiel darin, das Schmiermittel selbst leitfähig auszuführen. Dies gelingt in einer vorteilhaften Variante über den Zusatz von Kohlenstoffnanoröhrchen. Der Schmiermittelkreislauf bewirkt dann eine leitfähige Verbindung von Welle zu Gehäuse. Die Aufladung des Rotors wird hierdurch so gering gehalten, dass es zu keinen der im Stand der Technik auftretenden elektrischen Entladungen zwischen Rotor und Stator kommt.

Claims (5)

  1. Hochvakuumpumpe (100) mit einem Stator (120), einem schnell drehenden Rotor (110), einem Wälzlager (130; 230; 330) und einem Mittel (144; 268; 368) zur Schmierung des Wälzlagers, dadurch gekennzeichnet, dass das Mittel angepasst ist, durch Entladung des Rotors Überschläge zwischen Stator (120) und Rotor (110) zu verhindern.
  2. Hochvakuumpumpe nach Anspruch 1, dadurch gekennzeichnet, dass das Mittel (268) einen leitfähigen Zufuhrdocht (254) umfasst.
  3. Hochvakuumpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Mittel (144; 268; 368) ein leitfähiges Schmiermittel (144; 250; 350) umfasst.
  4. Hochvakuumpumpe nach Anspruch 3, dadurch gekennzeichnet, dass das leitfähige Schmiermittel (144; 250; 350) Kohlenstoffnanoröhrchen beinhaltet.
  5. Hochvakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Mittel als Schmiermittelkreislauf (268; 368) gestaltet ist.
EP10013671.2A 2009-11-06 2010-10-15 Hochvakuumpumpe Active EP2320090B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200910052180 DE102009052180A1 (de) 2009-11-06 2009-11-06 Hochvakuumpumpe

Publications (3)

Publication Number Publication Date
EP2320090A2 true EP2320090A2 (de) 2011-05-11
EP2320090A3 EP2320090A3 (de) 2017-06-07
EP2320090B1 EP2320090B1 (de) 2019-02-20

Family

ID=43500019

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10013671.2A Active EP2320090B1 (de) 2009-11-06 2010-10-15 Hochvakuumpumpe

Country Status (2)

Country Link
EP (1) EP2320090B1 (de)
DE (1) DE102009052180A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2808549A1 (de) * 2013-05-29 2014-12-03 Pfeiffer Vacuum Gmbh Vakuumpumpe
CN108678975A (zh) * 2018-07-17 2018-10-19 中国工程物理研究院机械制造工艺研究所 一种抗振动分子泵

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011109930A1 (de) * 2011-08-10 2013-02-14 Pfeiffer Vacuum Gmbh Wälzlager und Vakuumpumpe mit Wälzlager
DE102011119907A1 (de) * 2011-12-01 2013-06-06 Pfeiffer Vacuum Gmbh Wälzlager für eine Vakuumpumpe
EP3594498B1 (de) 2019-11-06 2022-01-05 Pfeiffer Vacuum Gmbh System mit einer gasrezirkulationseinrichtung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1915512A2 (de) 2005-08-16 2008-04-30 Edwards Vacuum, Inc. Turbomolekulare pumpe mit statischer ladungskontrolle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10037423A1 (de) * 2000-07-21 2002-02-07 Atecs Mannesmann Ag Wälzlageranordnung für einen Elektromotor (stromisoliertes Wälzlager
DE102006053237A1 (de) * 2006-11-11 2008-05-29 Pfeiffer Vacuum Gmbh Lagermodul für eine Vakuumpumpe
GB0712777D0 (en) * 2007-07-02 2007-08-08 Edwards Ltd Vacuum Pump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1915512A2 (de) 2005-08-16 2008-04-30 Edwards Vacuum, Inc. Turbomolekulare pumpe mit statischer ladungskontrolle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2808549A1 (de) * 2013-05-29 2014-12-03 Pfeiffer Vacuum Gmbh Vakuumpumpe
JP2014231835A (ja) * 2013-05-29 2014-12-11 プファイファー・ヴァキューム・ゲーエムベーハー 真空ポンプ
CN104214112A (zh) * 2013-05-29 2014-12-17 普发真空有限公司 真空泵
CN104214112B (zh) * 2013-05-29 2017-08-25 普发真空有限公司 真空泵
CN108678975A (zh) * 2018-07-17 2018-10-19 中国工程物理研究院机械制造工艺研究所 一种抗振动分子泵

Also Published As

Publication number Publication date
EP2320090A3 (de) 2017-06-07
DE102009052180A1 (de) 2011-05-12
EP2320090B1 (de) 2019-02-20

Similar Documents

Publication Publication Date Title
DE102007014142B4 (de) Vakuumpumpe
EP1921322B1 (de) Lagermodul für eine Vakuumpumpe
EP2320090B1 (de) Hochvakuumpumpe
EP1301978B1 (de) Wälzlageranordnung für einen elektromotor
EP1719916B1 (de) Pumpenaggregat
EP2060794B1 (de) Vakuumpumpe mit Schmiermittelpumpe
DE3926577A1 (de) Vakuumpumpe mit einem rotor und mit unter vakuum betriebenen rotorlagerungen
DE102010021945A1 (de) Vakuumpumpe
DE102013223673A1 (de) Kraftfahrzeugantriebsstrang
WO2020064396A1 (de) Gleitlager mit dichtungsanordnung und wasserpumpe mit demselben
DE102011119907A1 (de) Wälzlager für eine Vakuumpumpe
DE102005021354A1 (de) Anordung zum Begrenzen von Überspannungen an Funktionsteilen umrichtergespeister elektrischer Maschinen
DE102010045716A1 (de) Vakuumpumpe
DE69912680T2 (de) Kompakte Vakuumpumpe
EP3650702B1 (de) Verwendung eines synthetischen öls in einer vakuumpumpe und vakuumpumpe
DE102018218432B4 (de) Drehanodenlagerung für eine Röntgenröhre und Drehanode für eine Röntgenröhre
EP3043074B1 (de) Anordnung zur lagerung einer welle einer vakuumpumpe
DE102013226974A1 (de) Taumelpumpe mit im Stator gelagerter Welle
EP2148094A2 (de) Vakuumpumpe
DE102018123909B4 (de) Kompakt-Gleitlager mit Dichtungsanordnung und Wasserpumpe mit demselben
DE102016214861A1 (de) Potentialausgleichsvorrichtung zum Ausgleich von elektrischen Potentialen zweier sich relativ zueinander bewegenden Bauteile
EP3196471A1 (de) Monolithischer permanentmagnet, pemanentmagnetlager, vakuumpumpe und verfahren zur herstellung eines monolithischen permanentmagnets
DE10201956C1 (de) Schiebe-Dreh-Durchführung
DE102018216966A1 (de) Elektromotor mit geerdeter Welle
EP3184835A1 (de) Fanglager

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 29/063 20060101ALI20170428BHEP

Ipc: F04D 17/16 20060101AFI20170428BHEP

Ipc: F04D 29/059 20060101ALI20170428BHEP

Ipc: F04D 27/02 20060101ALI20170428BHEP

Ipc: F04D 19/04 20060101ALI20170428BHEP

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 20170524

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180703

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180829

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010015784

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1098548

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190520

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190521

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010015784

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20191121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191015

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191015

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1098548

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221026

Year of fee payment: 13

Ref country code: GB

Payment date: 20221020

Year of fee payment: 13

Ref country code: CZ

Payment date: 20221011

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221228

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010015784

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20231015