EP2319124B1 - Elektrogerät - Google Patents

Elektrogerät Download PDF

Info

Publication number
EP2319124B1
EP2319124B1 EP09782019.5A EP09782019A EP2319124B1 EP 2319124 B1 EP2319124 B1 EP 2319124B1 EP 09782019 A EP09782019 A EP 09782019A EP 2319124 B1 EP2319124 B1 EP 2319124B1
Authority
EP
European Patent Office
Prior art keywords
antenna unit
locating device
signal
polarization direction
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09782019.5A
Other languages
English (en)
French (fr)
Other versions
EP2319124A1 (de
Inventor
Reiner Krapf
Heiko Braun
Tobias Zibold
Christoph Wieland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2319124A1 publication Critical patent/EP2319124A1/de
Application granted granted Critical
Publication of EP2319124B1 publication Critical patent/EP2319124B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Definitions

  • the invention is based on a hand-held locating device according to the preamble of claim 1.
  • an electrical appliance in particular a locating device, known with an LCR antenna device which has an antenna unit with a first polarization direction and which is provided for transmitting and / or receiving a measuring signal with the first polarization direction.
  • From the US 2001/0033607 A1 is a stationary device and circuit for locating transceivers in the field of radio communication means known.
  • the system of US 2001/0033607 A1 uses an antenna array with an LCR antenna on the order of about 30 cm, using a broadband spectrum to locate the transceivers.
  • the antenna device has the US 2001/0033607 A1 an LCR antenna element in the form of a flat, square plate, which emits a measuring signal with two polarization planes, which are arranged at an angle of 90 ° to each other.
  • the connection of the radiator element to the signal generating circuit is effected by four, substantially dreickförmige sections which are electrically contacted at its pointed side with the circuit board of the signal generating circuit.
  • the invention relates to an electrical appliance, a hand-held locating device, with an LCR Antennenvorrichung, which has an antenna unit with a first polarization direction and which is provided for transmitting and / or receiving a measuring signal with the first polarization direction.
  • the antenna unit has at least one second polarization direction for emitting and / or receiving the measurement signal.
  • the term “proposed” should be understood to mean in particular specially equipped and / or specially designed.
  • an “LCR antenna device (large-current radiator antenna device)” should be understood to mean an antenna device which has a radiating element through which a large current flows during operation Antenna unit aligned symmetrically with respect to a plane of symmetry, wherein the plane of symmetry is aligned perpendicular to the radiating element.
  • the antenna unit is advantageously at least partially formed of a corrosion-resistant metal sheet, in particular of a bent metal sheet, such as a metal sheet of stainless steel and / or a galvanized and / or a gold-plated sheet, etc.
  • a design of the antenna unit as a plastic body is conceivable, wherein Surfaces and / or subregions, in particular for the conduction of signals, are at least partially metallized, wherein a specific dielectric constant of the plastic body is to be considered in a construction and / or calculation of the antenna unit.
  • a "measurement signal” should be understood to mean, in particular, an electromagnetic signal which is preferably formed by a broadband signal, in particular by an ultrabroadband signal (or ultra wide band signal or UWB signal), the ultra wideband signal having a useful frequency range with a center frequency in the frequency range of 1 GHz to 15 GHz and a frequency bandwidth of at least 500 MHz.
  • the ultra-wideband signal particularly advantageously has a spectral power density of -41.3 dBm / MHz at most.
  • signals or electromagnetic waves can be received at least partially independently of their direction of polarization.
  • the emission of the measurement signal can take place independently of receiving a measurement signal in that the emission along the first polarization direction and the reception along the second polarization direction can take place.
  • the electrical appliance is formed by a hand-held locating device, which is provided for locating an object arranged in an examination subject.
  • the received measurement signal is formed by a reflection signal which is reflected by the object and / or the examination subject.
  • the first polarization direction is aligned substantially orthogonal to the second polarization direction.
  • substantially orthogonal is meant in particular a direction perpendicular to the first polarization orientation of the second polarization direction with a maximum deviation of 20 °, preferably of at most 10 ° and more preferably of at most 1 °.
  • signals or waves with different polarization direction and / or circular and / or elliptically polarized signals or waves can be emitted.
  • linearly polarized waves can be emitted at any angle to one of the two polarization directions. This can be used particularly advantageously with locating devices, since here electromagnetic Waves are only reflected by anisotropic objects and thus objects of a homogeneous object of investigation, such as an isotropic wall surface, can be advantageously distinguished or recognized as such.
  • the LCR antenna device has at least two first connection elements, which are provided for feeding in a signal of the first polarization direction, and at least two further connection elements, which are provided for feeding in a signal of the second polarization direction.
  • different signals for the two directions of polarization can be introduced into the antenna unit, such as mutually phase-shifted signals and / or signals having different amplitudes, etc.
  • signals to be transmitted and received signals along the two different polarization directions can be fed separately from the antenna element or removed therefrom become.
  • a signal of the same amplitude phase-shifted by 180 ° with respect to a signal of the further connection element of the polarization direction is applied to one of the connection elements of one of the polarization directions in at least one operating mode.
  • a potential equal to zero can advantageously be achieved at a plane of symmetry between the two connection points, the two further connection elements of the second polarization direction being arranged in the plane of symmetry, and thus the two polarization directions or signals of the two polarization directions being linearly independent of each other.
  • advantageously circular or elliptical polarized waves can be emitted by means of the antenna unit.
  • the two polarization directions are phase-shifted or they have different amplitudes.
  • a locating device proposed with an LCR antenna device, which has a mass surface element and an antenna unit which comprises a first polarization direction and four lower conductor elements and which provides for transmitting and / or receiving a measurement signal with the first polarization direction wherein a distance of the conductor elements to the mass surface element increases continuously along a direction from a respective connection element of the conductor elements to a region of the conductor elements facing away from the connection elements.
  • a shortest distance to the mass surface element which is smaller than a shortest distance between further components of the antenna unit, and which in particular has a connection element to a supply line of a signal.
  • a “mass surface element” should be understood to mean, in particular, an element which is arranged substantially parallel to a radiating element of the antenna unit and preferably in a region adjacent to the antenna unit to shield signals and / or waves and / or particularly advantageously to a reflection of signals and / or waves in a desired emission direction, which are emitted by the antenna unit in an undesired direction, in particular in the direction of the mass surface element. It can be advantageous at least partially a continuous transition from a low characteristic impedance, such as a characteristic impedance of 50 ⁇ in components and lines of high-frequency circuits, in a high characteristic impedance, such as a characteristic impedance of 377 ⁇ for a radiation space of the antenna unit. In addition, in this case abrupt steps in the lower conductors can be avoided and consequently reflections of an electromagnetic wave in the antenna unit can at least be reduced or prevented.
  • Signals or waves are conducted from the connection elements to lateral conductor elements of the antenna unit and from these to the emission element of the antenna unit during operation of the electrical appliance via the lower conductor element.
  • a particularly advantageous continuous transition from the low characteristic impedance into the high characteristic impedance can be achieved if the two lower conductor elements have a width which increases along the direction.
  • the lower conductor elements are symmetrical, in particular trapezoidal, formed.
  • a locating device with an LCR antenna device which has an antenna unit with a first polarization direction and which is provided for transmitting and / or receiving a measuring signal with the first polarization direction, is proposed, wherein the LCR antenna device a the antenna unit has a surrounding enclosure in at least one direction, which forms a cavity around the antenna unit.
  • the sheath surrounds the antenna unit along a circumferential direction of a radiating element, wherein the sheath is preferably arranged at a distance from the antenna unit, so that between the antenna unit and the sheath, the cavity or a free space is formed, in particular Signals and / or waves can be advantageously deflected in a desired direction.
  • the envelope is formed at least partially from a conductive material.
  • the envelope may in this case be formed from a metal and / or be formed from a plastic body with a metallic coating and / or be formed from a conductive plastic material which has, for example, metal-like properties.
  • the sheath has at least one induction coil, whereby additional metallic and / or conductive components and / or elements of the sheath can be saved.
  • the induction coil can be used as an inductive sensor, so that in addition to a detection by means of the antenna unit, a detection of objects, in particular metallic objects, can advantageously be achieved in the examination subject.
  • the envelope has a shape which is aligned symmetrically with respect to at least one plane of symmetry of the antenna unit, whereby a negative influence on a signal emission and / or a reception of a signal along the polarization direction of the antenna unit can be advantageously prevented.
  • the antenna unit has two planes of symmetry, wherein the envelope is arranged in particular rotationally symmetrical with respect to the two planes of symmetry.
  • the enclosure may have an octagonal cross section, so that a particularly space-saving installation of the LCR antenna device can be achieved.
  • a locating device with an LCR antenna device which has an antenna unit with a first polarization direction and which is provided for transmitting and / or receiving a measurement signal with the first polarization direction, is proposed, wherein the LCR antenna device a Holding element which is provided for fixing the antenna unit, in particular in the electrical appliance.
  • the holding element is formed from a plastic, so that a polarization direction of the antenna unit by the holding element remains substantially unaffected.
  • the retaining element is screwed to a housing of the electrical appliance and secured to the antenna unit by means of plastic pins.
  • the retaining element may be glued to the antenna unit, jammed, etc.
  • An attachment of the retaining element to the antenna unit is preferably carried out in a region and / or at a position of the antenna unit, which contribute to a preferably low degree to a particular high-frequency radiation, such as in areas with a low current flow.
  • the locating device has a guide unit with a travel direction, wherein the holding element arranges the antenna unit with an angle of a plane of symmetry of the antenna unit to the direction of travel of approximately 45 °.
  • a "guide unit” should be understood to mean, in particular, a unit which is provided for guiding the locating device on a surface of the examination object or at a distance from the surface of the examination subject.
  • the tracking device is guided in a plane parallel to the surface of the examination subject.
  • a "travel direction” should be understood to mean, in particular, a direction along which the locating device is preferably moved on or parallel to a surface of the examination object, in particular by an operator of the locating device.
  • the direction of travel may in this case be dependent on a rolling direction of rolling bodies of the guide unit and / or on a preferred, in particular a horizontal hand movement direction, which is preferably aligned perpendicular to a gravitational force and / or parallel to a bottom surface. It can be achieved by this embodiment advantageously an alignment of about 45 ° one or more planes of symmetry and / or polarization directions to an object to be detected, and thereby an advantageous separation of the transmission signal and the received signal can be achieved.
  • the transmission signal can be radiated along a first polarization direction and a direction of polarization oriented orthogonally to the first polarization direction can be used to receive a signal reflected by the object, in which case the emitted signal experiences a polarization rotation during reflection.
  • the retaining element is provided for receiving a sheathing of the antenna unit. It is also proposed that the retaining element has recesses which are provided for guiding connecting elements of the antenna unit. In this case, a structurally simple mounting of the LCR antenna device can be achieved, namely by the connection elements can be guided through the recesses and then soldered to a circuit board.
  • FIG. 1 an electric appliance 10 formed by a hand-held locating device 12 is shown.
  • the locating device 12 is provided for locating objects 74, such as conduits, etc., in an examination subject 76, such as a wall ( FIG. 2 ).
  • the locating device 12 is movable by an operator via a surface 78 of the object under examination 76, such as a wall surface, along a preferred travel direction 68.
  • the locating device 12 has a guide unit 66, by means of which the locating device 12 can be moved by an operator on the surface 78.
  • the preferred travel direction 68 is oriented substantially perpendicular to a weight force acting on the locating device 12 and substantially corresponds to a pivoting movement of an arm of the operator.
  • the locating device 12 has a locating unit 80, which is provided for transmitting and receiving a measuring signal 48.
  • the measuring signal 48 is in this case formed by an ultrabroadband signal.
  • the ultra-wideband signal is generated by the locating unit 80, which for this purpose has a signal generating unit, not shown, and radiated via an LCR antenna device 14 of the locating device 12.
  • the LCR antenna device 14 is provided in addition to a radiation of the measurement signal 48 or the ultra wide band signal for receiving the reflected from the object under examination and / or from the object 74 ultrabroadband signal.
  • the LCR antenna device 14 has an antenna unit 16 with a first polarization direction 18 for transmitting and / or receiving a measurement signal 48.
  • the antenna unit 16 has a second polarization direction 20 for emitting and / or receiving the measurement signal 48.
  • the antenna unit 16 is formed in one piece and formed by a bent sheet-metal component 82 (FIG. FIG. 3 ).
  • a thickness of the sheet metal member 82 is formed so as to prevent an undesirable skin effect that reduces a radiation characteristic of the antenna unit 16.
  • the antenna unit 16 has a radiating element 84, four lateral conductor elements 86, 88, 90, 92 and four lower conductor elements 32, 34, 36, 38, each having a connection element 22, 24, 26, 28.
  • the radiating element 84 is square with four equal sides 94 formed and symmetrical with respect to two planes of symmetry 58, 60, which are perpendicular to the radiating element 84 and perpendicular to each other.
  • one of the four lateral conductor elements 86, 88, 90, 92 adjoins each of the four sides 94 of equal size, each having a first partial surface element 96, which is trapezoidal in shape and inclined with respect to the emission element 84.
  • the trapezoidal first partial surface elements 96 extend tapered away from the radiating element 84, wherein a side length 100 of the radiating element corresponds to a large baseline length 98 of the trapezoidal first partial surface elements 96.
  • the lateral conductor elements 86, 88, 90, 92 also have a second, rectangular partial surface element 102, which adjoins the first trapezoidal partial surface element 96 of the lateral conductor elements 86, 88, 90, 92.
  • a width 104 of the second rectangular partial surface elements 102 corresponds to a small baseline length 106 of the trapezoidal first partial surface elements 96.
  • the second, rectangular partial surface elements 102 are arranged on a side of the first trapezoidal partial surface elements 96 facing away from the radiating element 84.
  • a surface normal vector 108 of the second rectangular partial surface elements 102 is aligned substantially perpendicular to a surface normal vector 110 of the radiating element 84.
  • the four lower conductor elements 32, 34, 36, 38 which are likewise trapezoidal in shape, adjoin the four lateral conductor elements 86, 88, 90, 92 ( Figures 3 and 5 ).
  • the four lower conductor elements 32, 34, 36, 38 each extend along a direction 112 from the side conductor element 86, 88, 90, 92 directly adjoining the respective lower conductor element 32, 34, 36, 38 to the opposite lateral conductor element 86 , 88, 90, 92, so that the four lower conductor elements 32, 34, 36, 38 are arranged crosswise converging.
  • the four lower conductor elements 32, 34, 36, 38 are each arranged spaced apart along the direction 112 of the opposite lower conductor element 32, 34, 36, 38, so that in a central region 114 between end regions 116 of the lower conductor elements 32, 34, 36, 38, which are facing away from the four lateral conductor elements 86, 88, 90, 92, a free space 118 is present.
  • a width 46 of the lower conductor elements 32, 34, 36, 38 steadily decreases along the direction 112.
  • the four lower conductor elements 32, 34, 36, 38 also have an inclination relative to the emission element 84, wherein a shortest distance 120 of the lower conductor elements 32, 34, 36, 38 increases along the direction 112 with respect to an extension plane of the emission element 84 ( FIG. 4 ).
  • the four lower conductor elements 32, 34, 36, 38 comprise the four connection elements 22, 24, 26, 28, which are each formed by a connection pin.
  • the four connection pins extend along a direction 122, which is aligned substantially parallel to the surface normal vector 110 of the emission element 84 and, in addition, from the emission element 84 to the lower conductor elements 32, 34, 36, 38.
  • the LCR antenna device 14 has a mass surface element 30 which is aligned parallel to the emission element 84 ( FIGS. 3 and 4 ).
  • the mass surface element 30 is provided for signals emitted by the antenna unit 16 or waves in the direction of the mass surface element 30 to reflect and thus redirect in a desired emission direction.
  • the mass surface element has four recesses 124, through which the four connection elements 22, 24, 26, 28 are guided.
  • a distance 40 of the lower conductor elements 32, 34, 36, 38 to the mass surface element 30 along a direction 42 from a respective connection element 22, 24, 26, 28 of the lower conductor element 32, 34, 36, 38 to a respective connection element 22, 24th , 26, 28 remote area 44 of the conductor elements 32, 34, 36, 38 increases steadily.
  • the four connection elements 22, 24, 26, 28 are provided for supplying a signal, wherein two first connection elements 22, 26 associated with the first polarization direction 18 and the two further connection elements 24, 28 of the second polarization direction 20 are assigned.
  • the connection elements 22, 24, 26, 28 assigned to one polarization direction 18, 20 are arranged on lower conductor elements 32, 34, 36, 38 which are opposite one another.
  • the antenna element 16 may also be formed by a continuous, continuously bent sheet-metal component, so that the individual conductor elements 32, 34, 36, 38, 86, 88, 90, 92 steplessly merge into one another can.
  • an electromagnetic wave is radiated essentially via the emission element 84, wherein a signal supply via the connection elements 22, 24, 26, 28, the lower conductor elements 32, 34, 36, 38 and the lateral conductor elements 86, 88 , 90, 92 to the radiating element 84.
  • a differential signal is applied to each of the connection elements 22, 24, 26, 28 of a polarization direction 18, 20.
  • the two polarization directions 18, 20 each extend between two opposite sides 94 of the emission element 84 and are oriented perpendicular to one another.
  • a signal is supplied to one of the two connection elements 22, 24, 26, 28 for a polarization direction 18, 20, which has an equal amplitude as one on the further connection element 22, 24, 26, 28 for the same polarization direction 18, 20 supplied signal.
  • the two signals are also mutually phase-shifted by 180 °.
  • a potential equal to zero is applied to one of the planes of symmetry 58, 60 between the two connection elements 22, 24, 26, 28, the two further connection elements 22, 24, 26, 28 of the second polarization direction 18, 20 in FIG this symmetry plane 58, 60 are arranged.
  • the signals of the first polarization direction 18, 20 are linearly independent of the signals of the second polarization direction 18, 20.
  • measuring signals 48 are emitted during operation of the locating device 12 along one of the two polarization directions 18, 20 and received along the other polarization direction 18, 20 from the object 74 and the object under investigation 76 reflected measurement signals 48 .
  • circularly or elliptically polarized electromagnetic waves can be emitted, for which purpose the signals of the two polarization directions 18, 20 must be out of phase with each other or have a different amplitude .
  • linearly polarized electromagnetic waves can be radiated, the plane of polarization of which can assume an arbitrary angle with respect to the two planes of symmetry 58, 60.
  • a characteristic impedance is continuously changed during operation, such as 50 ⁇ for components of High frequency circuits to 377 ⁇ for a free space in which the antenna unit 16 radiates.
  • waves radiated by the lower conductor elements 32, 34, 36, 38 are advantageously conducted outward between the mass surface element 30 and the lower conductor elements 32, 34, 36, 38 and are subsequently deflected in a radiation direction.
  • the LCR antenna device 14 also has an enclosure 52 surrounding the antenna unit 16, which forms a cavity 54 around the antenna unit 16 and which is provided with an undesired lateral radiation which is perpendicular to the surface normal vector 110 of the radiation element 84, the antenna unit 16 to reduce or prevent.
  • the cladding 52 in this case surrounds the antenna unit 16 along a direction 50 formed by a circumferential direction, which is perpendicular to the surface normal vector 110 of the radiating element 84 and aligned therewith, so that an efficiency of radiation of waves or signals along the surface normal vector 110 of the radiating element 84 is increased, wherein the sheath 52 deflects laterally radiated signals and / or waves advantageous in the desired direction of emission or reflected.
  • the sheath 52 is spaced from the antenna unit 16 disposed thereabout.
  • the sheath 52 has a shape 56 or arrangement which is aligned symmetrically with respect to the two planes of symmetry 58, 60 of the antenna unit 16.
  • the sheath 52 has a plastic base body 126 with an octagonal cross-section, which is connected to the antenna unit 16.
  • the enclosure 52 is partially formed of a conductive material and for this purpose has three induction coils 62, which are arranged around the plastic base body 126, wherein the plastic base body 126 serves as a carrier element of the induction coils 62, which thus likewise have an octagonal cross-section.
  • the envelope 52 has a height substantially equal to a distance of the radiating element 84 from the mass surface element 30 ( FIG. 6 ).
  • objects 74 are detected in the object under examination 76 during operation, in that these detect, in particular, metallic objects 74 as such.
  • the plastic base body 126 of the sheath 52 is additionally designed as a holding element 64, which is provided for fixing the LCR antenna device 14 in the locating device 12 ( FIGS. 6 to 8 ).
  • the antenna unit 16 is arranged at an angle 70 of 45 ° to a plane of symmetry 58, 60 of the antenna unit 16 to the travel direction 68 of the guide unit 66 or to a longitudinal axis 128 of the locating device 12 ( FIG. 1 ).
  • the locating device 12 advantageously emitted signals or waves from an object 74, which preferably has an angle of substantially 45 ° to one of the planes of symmetry 58, 60 are reflected, in which case a polarization of the reflected signal rotates, so in that signals or waves are radiated along a first polarization direction 18, 20 of the emission element 84 and signals or waves are received along the second polarization direction 18, 20 of the emission element 84.
  • the retaining element 64 has four retaining struts 130, wherein two retaining struts 130 are arranged along a direction 142 of the sheath 52 inwardly converging and aligned orthogonal to the two further retaining struts 130.
  • the retaining struts 130 have a height which corresponds to a distance of a surface of the emission element 84 facing the mass surface element 30 from a side of the mass surface element 30 facing the emission element 84.
  • Each of the holding struts 130 has a pin 132 which is provided for fixing the emitting element 84 to the holding struts 130 ( FIGS. 7 and 8 ).
  • the radiating element 84 has four pot-shaped depressions 134 on a surface 144 facing away from the mass surface element 30, each having a centrally arranged recess 136, wherein the recess 136 has a smaller cross section than a cross section of the depression 134 (FIG. Figures 3 . 5 to 7 ).
  • the recesses 134 are each arranged in a region 138 of the radiating element 84, in which small currents flow and thus an impairment of radiation can be minimized. These areas 138 can be determined by means of a simulation calculation. These areas 138 are respectively arranged in an edge area and a corner area along diagonals of the emission element 84.
  • the pins 132 of the retaining struts 130 are guided to fix the antenna unit 16 through the recesses 136 of the emission element 84 and then caulked or broadly pressed with the emission element 84.
  • the holding element 64 to a guide of the connection elements 22, 24, 26, 28, a ring member 146 which has four recesses 72.
  • the ring element 146 is disk-shaped and integrally formed with the four retaining struts 130, so that an advantageous stability of the retaining struts 130 and a fixation of the connecting elements 22, 24, 26, 28 is achieved.
  • the ring element 146 has a central radius 148, which corresponds to half a distance from opposing connection elements 22, 24, 26, 28.
  • the ring element 146 also allows a simple attachment, such as a soldering, the connection elements 22, 24, 26, 28 with another component, such as a circuit board ( FIG. 8 ).
  • the holding element 64 For fastening the holding element 64, this has on a side facing away from the antenna unit 16 side 150 extensions 152, which are aligned perpendicular to a surface of the enclosure 52.
  • the projections 152 have recesses 154, by means of which an attachment, such as screwing, with other components of the locating device 12 is achieved ( FIGS. 6 to 8 ).
  • the sheath 52 could be formed entirely of a conductive material as shown in FIG FIG. 9 , an alternative embodiment of the LCR antenna device 14, is shown.
  • the sheath 52 is completely formed of a metallic material and has a square cross section.
  • the design of the antenna unit 16 corresponds to a training in the FIGS. 1 to 8 ,
  • the antenna unit 16 may be provided with a specially shaped dielectric, such as a lens, for example, to change a radiation behavior, in particular an aperture angle.
  • the antenna unit 16 may be provided with a dielectric for decreasing a frequency range at various locations.
  • a bandwidth of the antenna unit 16 may be further increased or an input match of the antenna unit 16 may be attached by, for example, attaching resistors to the antenna unit 16 and / or applying a lossy coating, etc. so that unwanted currents and / or waves can be absorbed ,

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)
  • Support Of Aerials (AREA)

Description

    Stand der Technik
  • Die Erfindung geht aus von einem handgeführten Ortungsgerät nach dem Oberbegriff des Anspruchs 1.
  • Es ist bereits ein Elektrogerät, insbesondere ein Ortungsgerät, bekannt mit einer LCR-Antennenvorrichtung, die eine Antenneneinheit mit einer ersten Polarisationsrichtung aufweist und die zu einem Aussenden und/oder Empfangen eines Messsignals mit der ersten Polarisationsrichtung vorgesehen ist.
  • Aus der US 2001/0033607 A1 ist eine stationäre Vorrichtung und Schaltung zur Lokalisierung von Transceivern im Bereich der Radio Kommunikationsmittel bekannt. Das System der US 2001/0033607 A1 verwendet eine Antennenanordnung mit einer LCR-Antenne in der Größenordnung von ca. 30cm, wobei ein breitbandiges Spektrum zur Lokalisierung der Transceiver verwendet wird. In einer speziellen Ausführungsform besitzt die Antennenvorrichtung der US 2001/0033607 A1 ein LCR-Antennenelement in Form einer ebenen, quadratischen Platte, die ein Messsignal mit zwei Polarisationsebenen, die unter einem Winkel von 90° zueinander angeordnet sind, aussendet. Die Anbindung des Strahlerelementes an den Signalerzeugungskreis erfolgt dabei durch vier, im Wesentlichen dreickförmige Abschnitte, die an ihrer spitzen Seite mit der Leiterplatte des Signalerzeugungskreises elektrisch kontaktiert sind.
  • Aus der DE 10 2005 052 367 A1 , sowie der DE 10 2005 062 874 A1 sind des Weiteren handgeführte Ortungsgeräte bekannt, die mit orthogonal polarisierten Antennensystemen arbeiten.
  • Vorteile der Erfindung
  • Die Erfindung geht aus von einem Elektrogerät, einem handgeführten Ortungsgerät, mit einer LCR-Antennenvorrichung, die eine Antenneneinheit mit einer ersten Polarisationsrichtung aufweist und die zu einem Aussenden und/oder Empfangen eines Messsignals mit der ersten Polarisationsrichtung vorgesehen ist.
  • Es wird vorgeschlagen, dass die Antenneneinheit zumindest eine zweite Polarisationsrichtung zu einem Aussenden und/oder Empfangen des Messsignals aufweist. In diesem Zusammenhang soll unter "vorgeschen" insbesondere speziell ausgestattet und/oder speziell ausgelegt verstanden werden. Des Weiteren soll unter einer, LCR-Antennenvorrichtung (Large-Current-Radiator-Antennenvorrichtung)" eine Antennenvorrichtung verstanden werden, die ein Abstrahlelement aufweist, durch welches im Betrieb ein großer Strom fließt. Vorzugsweise ist die Antenneneinheit symmetrisch bezüglich einer Symmetrieebene ausgerichtet, wobei die Symmetrieebene senkrecht zu dem Abstrahlelement ausgerichtet ist. Die Antenneneinheit ist vorteilhafterweise zumindest teilweise von einem korrosionsbeständigen Metallblech, insbesondere von einem gebogenen Metallblech, gebildet, wie beispielsweise einem Metallblech aus einem Edelstahl und/oder ein verzinktes und/oder ein vergoldetes Blech usw. Alternativ ist eine Ausbildung der Antenneneinheit als Kunststoffkörper denkbar, wobei Flächen und/oder Teilbereiche, insbesondere zur Leitung von Signalen, zumindest teilweise metallisiert sind, wobei eine spezifische Dielektrizitätskonstante des Kunststoffkörpers bei einer Konstruktion und/oder Berechnung der Antenneneinheit zu berücksichtigen ist. Unter einem "Messsignal" soll hierbei insbesondere ein elektromagnetisches Signal verstanden werden, das vorzugsweise von einem breitbandigem Signal, insbesondere von einem Ultrabreitbandsignal (oder Ultra Wide Band Signal oder UWB-Signal) gebildet ist, wobei das Ultrabreitbandsignal einen Nutzfrequenzbereich mit einer Mittelfrequenz im Frequenzbereich von 1 GHz bis 15 GHz und einer Frequenzbandbreite von zumindest 500 MHz aufweist. Das Ultrabreitbandsignal weist besonders vorteilhaft eine spektrale Leistungsdichte von maximal -41,3 dBm/MHz auf. Es können hierbei vorteilhaft Signale bzw. elektromagnetische Wellen zumindest teilweise unabhängig von ihrer Polarisationsrichtung empfangen werden. Ferner kann das Aussenden des Messsignals unabhängig von einem Empfangen eines Messsignals erfolgen, indem das Aussenden entlang der ersten Polarisationsrichtung und das Empfangen entlang der zweiten Polarisationsrichtung erfolgen können.
  • Das Elektrogerät ist von einem handgeführten Ortungsgerät gebildet, das zu einer Ortung eines in einem Untersuchungsgegenstand angeordneten Objekts vorgesehen ist. Vorzugsweise ist das empfangene Messsignal von einem Reflexionssignal gebildet, das von dem Objekt und/oder dem Untersuchungsgegenstand reflektiert wird.
  • Des Weiteren wird vorgeschlagen, dass die erste Polarisationsrichtung im Wesentlichen orthogonal zur zweiten Polarisationsrichtung ausgerichtet ist. Hierbei soll unter "im Wesentlichen orthogonal" insbesondere eine zur ersten Polarisationsrichtung senkrechte Ausrichtung der zweiten Polarisationsrichtung mit einer maximalen Abweichung von 20°, vorteilhaft von maximal 10° und besonders bevorzugt von maximal 1° verstanden werden. Durch diese Ausgestaltung der Erfindung können Signale bzw. Wellen mit unterschiedlicher Polarisationsrichtung und/oder zirkular und/oder elliptisch polarisierte Signale bzw. Wellen abgestrahlt werden. Zudem können linear polarisierte Wellen mit einem beliebigen Winkel zu einer der beiden Polarisationsrichtungen abgestrahlt werden. Besonders vorteilhaft kann dies bei Ortungsgeräten eingesetzt werden, da hier elektromagnetische Wellen nur von anisotropen Objekten reflektiert werden und damit Objekte von einem homogenen Untersuchungsgegenstand, wie beispielsweise einer isotropen Wandoberfläche, vorteilhaft unterschieden werden können bzw. als solche erkannt werden können.
  • Ferner wird vorgeschlagen, dass die LCR-Antennenvorrichtung zumindest zwei erste Anschlusselemente, die zu einer Einspeisung eines Signals der ersten Polarisationsrichtung vorgesehen sind, und zumindest zwei weitere Anschlusselemente aufweist, die zu einer Einspeisung eines Signals der zweiten Polarisationsrichtung vorgesehen sind. Es können hierdurch unterschiedliche Signale für die beiden Polarisationsrichtungen in die Antenneneinheit eingeleitet werden, wie beispielsweise zueinander phasenverschobene Signale und/oder Signale mit unterschiedlichen Amplituden usw. Zudem können auszusendende Signale und Empfangssignale entlang der beiden unterschiedlichen Polarisationsrichtungen getrennt voneinander dem Antennenelement zugeführt bzw. von diesem abgeführt werden.
  • Es wird weiterhin vorgeschlagen, dass an einem der Anschlusselemente einer der Polarisationsrichtungen ein um 180° phasenverschobenes Signal gleicher Amplitude bezüglich einem Signal des weiteren Anschlusselements der Polarisationsrichtung in wenigsten einem Betriebsmodus angelegt ist. Hierbei kann vorteilhaft ein Potential gleich null an einer Symmetrieebene zwischen den beiden Anschlussstellen erzielt werden, wobei in der Symmetrieebene die beiden weiteren Anschlusselemente der zweiten Polarisationsrichtung angeordnet sind und so die beiden Polarisationsrichtungen bzw. Signale der beiden Polarisationsrichtungen linear unabhängig voneinander ausgebildet sein können. Zudem können durch eine simultane Einleitung von Signalen in beide Polarisationsrichtungen hierbei vorteilhaft zirkulare oder elliptische polarisierte Wellen mittels der Antenneneinheit abgestrahlt werden. Vorteilhafterweise sind hierfür die beiden Polarisationsrichtungen phasenverschoben bzw. diese weisen unterschiedliche Amplituden auf.
  • In einer weiteren Ausgestaltung der Erfindung wird ein Ortungsgerät, vorgeschlagen mit einer LCR-Antennenvorrichtung, die ein Massenflächenelement und eine Antenneneinheit aufweist, die eine erste Polarisationsrichtung und vier untere Leiterelemente umfasst und die zu einem Aussenden und/oder Empfangen eines Messsignals mit der ersten Polarisationsrichtung vorgesehen ist, wobei ein Abstand der Leiterelemente zu dem Massenflächenelement entlang einer Richtung von einem jeweiligen Anschlusselement der Leiterelemente zu einem den Anschlusselementen abgewandten Bereich der Leiterelemente kontinuierlich zunimmt. Hierbei soll unter einem "unteren Leiterelement" insbesondere ein Leiterelement der Antenneneinheit verstanden werden, das insbesondere einen kürzesten Abstand zu dem Massenflächenelement, der kleiner ist als ein kürzester Abstand weiterer Bauteile der Antenneneinheit, und das insbesondere ein Anschlusselement zu einer Zuleitung eines Signals aufweist. Des Weiteren soll unter einem "Massenflächenelement" insbesondere ein Element verstanden werden, das im Wesentlichen parallel zu einem Abstrahlelement der Antenneneinheit angeordnet ist und vorzugsweise in einem Bereich neben der Antenneneinheit zu einer Abschirmung von Signalen und/oder Wellen und/oder besonders vorteilhaft zu einer Reflexion von Signalen und/oder Wellen in eine gewünschte Abstrahlrichtung, die von der Antenneneinheit in eine unerwünschte Richtung, insbesondere in Richtung des Massenflächenelements, abgestrahlt werden. Es kann hierbei vorteilhaft zumindest teilweise ein kontinuierlicher Übergang von einem niedrigen Wellenwiderstand, wie beispielsweise ein Wellenwiderstand von 50 Ω bei Bauteilen und Leitungen von Hochfrequenzschaltungen, in einen hohen Wellenwiderstand, wie beispielsweise ein Wellenwiderstand von 377 Ω für einen Abstrahlraum der Antenneneinheit, erfolgen. Zudem können hierbei abrupte Stufen in den unteren Leitern vermieden werden und damit einhergehend Reflexionen einer elektromagnetischen Welle in der Antenneneinheit zumindest reduziert bzw. unterbunden werden.
  • Es werden über das untere Leiterelement Signale bzw. Wellen von den Anschlusselementen auf seitliche Leiterelemente der Antenneneinheit und von diesen auf das Abstrahlelement der Antenneneinheit im Betrieb des Elektrogeräts geleitet.
  • Ein besonders vorteilhafter kontinuierlicher Übergang von dem niedrigen Wellenwiderstand in den hohen Wellenwiderstand kann erreicht werden, wenn die beiden unteren Leiterelemente eine Breite aufweisen, die entlang der Richtung zunimmt. Vorzugsweise sind hierbei die unteren Leiterelemente symmetrisch, insbesondere trapezförmig, ausgebildet.
  • In einer vorteilhaften Weiterbildung der Erfindung wird ein Ortungsgerät, mit einer LCR-Antennenvorrichtung, die eine Antenneneinheit mit einer ersten Polarisationsrichtung aufweist und die zu einem Aussenden und/oder Empfangen eines Messsignals mit der ersten Polarisationsrichtung vorgesehen ist, vorgeschlagen, wobei die LCR-Antennenvorrichtung eine die Antenneneinheit in zumindest eine Richtung umgebende Umhüllung aufweist, die einen Hohlraum um die Antenneneinheit bildet. Vorzugsweise umgibt die Umhüllung die Antenneneinheit entlang einer Umfangsrichtung eines Abstrahlelements, wobei die Umhüllung vorzugsweise mit einem Abstand zur Antenneneinheit um diese angeordnet ist, so dass zwischen der Antenneneinheit und der Umhüllung der Hohlraum bzw. ein Freiraum gebildet ist, in dem insbesondere Signale und/oder Wellen vorteilhaft in eine gewünschte Richtung umgelenkt werden können. Es kann eine Abstrahlung in unerwünschte Richtungen zumindest teilweise verhindert werden und eine Abstrahlung, insbesondere senkrecht zu einer Messfläche bzw. einem Abstrahlelement, und damit einhergehend eine Effizienz der LCR-Antennenvorrichtung aufgrund einer Umlenkung der Wellen in eine gewünschte Richtung vorteilhaft erhöht werden. Besonders vorteilhaft kann dies erreicht werden, wenn die Umhüllung zumindest teilweise aus einem leitfähigen Material gebildet ist. Die Umhüllung kann hierbei aus einem Metall gebildet sein und/oder aus einem Kunststoffkörper mit einer metallischen Beschichtung gebildet sein und/oder aus einem leitfähigen Kunststoffmaterial, das beispielsweise metallähnliche Eigenschaften aufweist, gebildet sein.
  • Des Weiteren wird vorgeschlagen, dass die Umhüllung zumindest eine Induktionsspule aufweist, wodurch zusätzliche metallische und/oder leitfähige Bauteile und/oder Elemente der Umhüllung eingespart werden können. Zusätzlich kann die Induktionsspule als Induktivsensor Verwendung finden, so dass zusätzlich zu einer Detektion mittels der Antenneneinheit eine Erfassung von Objekten, insbesondere metallischen Objekten, in dem Untersuchungsgegenstand vorteilhaft erreicht werden kann.
  • Es wird ferner vorgeschlagen, dass die Umhüllung eine Form aufweist, die symmetrisch zu zumindest einer Symmetrieebene der Antenneneinheit ausgerichtet ist, wodurch eine negative Beeinflussung einer Signalabstrahlung und/oder eines Empfangens eines Signals entlang der Polarisationsrichtung der Antenneneinheit vorteilhaft verhindert werden kann. Vorzugsweise weist die Antenneneinheit zwei Symmetrieebenen auf, wobei die Umhüllung insbesondere rotationssymmetrisch bezüglich der beiden Symmetrieebenen angeordnet ist. Beispielsweise kann die Umhüllung bei einer Antenneneinheit mit zwei orthogonal zueinander ausgerichteten Polarisationsrichtungen einen achteckigen Querschnitt aufweisen, so dass eine besonders Platz sparende Montage der LCR-Antennenvorrichtung erreicht werden kann.
  • In einer weiteren Ausbildung der Erfindung wird ein Ortungsgerät, mit einer LCR-Antennenvorrichtung, die eine Antenneneinheit mit einer ersten Polarisationsrichtung aufweist und die zu einem Aussenden und/oder Empfangen eines Messsignals mit der ersten Polarisationsrichtung vorgesehen ist, vorgeschlagen, wobei die LCR-Antennenvorrichtung ein Halteelement aufweist, das zu einer Fixierung der Antenneneinheit, insbesondere in dem Elektrogerät, vorgesehen ist. Es kann hierbei eine Positionierung der Antenneneinheit unverändert beibehalten werden, wobei eine Position bzw. ein Positionsparameter der Antenneneinheit für eine Kalibrierung und/oder eine Isolation zwischen insbesondere zwei Polarisationsrichtungen genutzt werden kann. Vorzugsweise ist das Haltelement aus einem Kunststoff gebildet, so dass eine Polarisationsrichtung der Antenneneinheit durch das Halteelement im Wesentlichen unbeeinflusst bleibt. Vorteilhafterweise ist das Halteelement mit einem Gehäuse des Elektrogeräts verschraubt und mit der Antenneneinheit mittels Kunststoffzapfen befestigt. Alternativ kann das Halteelement mit der Antenneneinheit verklebt, verklemmt, usw. sein. Eine Befestigung des Halteelements mit der Antenneneinheit erfolgt vorzugsweise in einem Bereich und/oder an einer Position der Antenneneinheit, die eine vorzugsweise in einem geringen Maße zu einer insbesondere hochfrequenten Abstrahlung beitragen, wie beispielsweise in Bereichen mit einem geringen Stromfluss.
  • Des Weiteren wird vorgeschlagen, dass das Ortungsgerät eine Führungseinheit mit einer Verfahrrichtung aufweist, wobei das Halteelement die Antenneneinheit mit einem Winkel einer Symmetrieebene der Antenneneinheit zu der Verfahrrichtung von ca. 45° anordnet. In diesem Zusammenhang soll unter einer "Führungseinheit" insbesondere eine Einheit verstanden werden, die zu einem Führen des Ortungsgeräts auf einer Oberfläche des Untersuchungsobjekts bzw. beabstandet zu der Oberfläche des Untersuchungsobjekts vorgesehen ist. Vorzugsweise erfolgt eine Führung des Ortungsgeräts in einer Ebene parallel zu der Oberfläche des Untersuchungsobjekts. Des Weiteren soll unter einer "Verfahrrichtung" insbesondere eine Richtung verstanden werden, entlang welcher das Ortungsgerät bevorzugt auf oder parallel zu einer Oberfläche des Untersuchungsobjekts bewegt wird, insbesondere von einem Bediener des Ortungsgeräts. Die Verfahrrichtung kann hierbei abhängig von einer Rollrichtung von Rollkörpern der Führungseinheit und/oder von einer bevorzugten, insbesondere einer horizontalen Handbewegungsrichtung sein, die vorzugsweise senkrecht zu einer Schwerkraft und/oder parallel zu einer Bodenfläche ausgerichtet ist. Es kann durch diese Ausgestaltung vorteilhaft eine Ausrichtung von ca. 45° einer oder mehreren Symmetrieebenen und/oder Polarisationsrichtungen zu einem zu detektierenden Objekt erreicht und hierdurch eine vorteilhafte Trennung von Sendesignal und Empfangssignal erreicht werden. Das Sendesignal kann hierbei entlang einer ersten Polarisationsrichtung abgestrahlt werden und eine zur ersten Polarisationsrichtung orthogonal ausgerichtete Polarisationsrichtung zu einem Empfangen eines von dem Objekt reflektierten Signals herangezogen werden, wobei hierbei das ausgesandte Signal bei der Reflexion eine Polarisationsdrehung erfährt.
  • Es können besonders vorteilhaft weitere Bauteile und Montageaufwand eingespart werden, wenn das Halteelement zu einer Aufnahme einer Umhüllung der Antenneneinheit vorgesehen ist. Ferner wird vorgeschlagen, dass das Halteelement Ausnehmungen aufweist, die zu einer Führung von Anschlusselementen der Antenneneinheit vorgesehen sind. Es kann hierbei eine konstruktiv einfache Montage der LCR-Antennnenvorrichtung erreicht werden, und zwar indem die Anschlusselemente durch die Ausnehmungen geführt werden können und anschließend auf einer Platine angelötet werden können.
  • Zeichnung
  • Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In der Zeichnung sind Ausführungsbeispiele der Erfindung dargestellt. Die Zeichnung, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen.
  • Es zeigen:
  • Fig. 1
    ein erfindungsgemäßes Ortungsgerät mit einer LCR-Antennenvorrichtung in einer schematischen Darstellung,
    Fig. 2
    das Ortungsgerät zusammen mit einem Untersuchungsobjekt in einer schematischen Ansicht,
    Fig. 3
    die LCR-Antennenvorrichtung mit einer Antenneneinheit in einer schematischen Darstellung,
    Fig. 4
    eine Seitenansicht der Antenneneinheit aus Figur 3,
    Fig. 5
    eine Ansicht der Antenneneinheit von unten,
    Fig. 6
    die LCR-Antennenvorrichtung mit einer Umhüllung der Antenneneinheit in einer schematischen Darstellung,
    Fig. 7
    die LCR-Antennenvorrichtung mit einem Halteelement in einer schematischen Darstellung,
    Fig. 8
    die LCR-Antennenvorrichtung mit dem Halteelement in einer Ansicht von unten und
    Fig. 9
    eine alternative Ausgestaltung der Umhüllung der Antenneneinheit.
    Beschreibung der Ausführungsbeispiele
  • In Figur 1 ist ein von einem handgeführten Ortungsgerät 12 gebildetes Elektrogerät 10 dargestellt. Das Ortungsgerät 12 ist zu einer Ortung bzw. Erfassung von Objekten 74, wie beispielsweise Leitungen usw., in einem Untersuchungsgegenstand 76, wie beispielsweise einer Wand, vorgesehen (Figur 2). Das Ortungsgerät 12 ist hierzu von einem Bediener über eine Oberfläche 78 des Untersuchungsgegenstands 76, wie beispielsweise eine Wandoberfläche, entlang einer bevorzugten Verfahrrichtung 68 bewegbar. Hierzu weist das Ortungsgerät 12 eine Führungseinheit 66 auf, mittels der das Ortungsgerät 12 von einem Bediener auf der Oberfläche 78 bewegt werden kann. Die bevorzugte Verfahrrichtung 68 ist im Wesentlichen senkrecht zu einer auf das Ortungsgerät 12 wirkenden Gewichtskraft ausgerichtet und entspricht im Wesentlichen einer Schwenkbewegung eines Arms des Bedieners. Das Ortungsgerät 12 weist eine Ortungseinheit 80 auf, die zu einem Aussenden und einem Empfangen eines Messsignals 48 vorgesehen ist. Das Messsignal 48 ist hierbei von einem Ultrabreitbandsignal gebildet. Das Ultrabreitbandsignal wird von der Ortungseinheit 80 generiert, die hierfür eine nicht näher dargestellte Signalerzeugungseinheit aufweist, und über eine LCR-Antennenvorrichtung 14 des Ortungsgeräts 12 abgestrahlt. Die LCR-Antennenvorrichtung 14 ist neben einem Abstrahlen des Messsignals 48 bzw. des Ultrabreitbandsignals zu einem Empfangen des von dem Untersuchungsgegenstand und/oder von dem Objekt 74 reflektierten Ultrabreitbandsignals vorgesehen. Die LCR-Antennenvorrichtung 14 weist hierfür eine Antenneneinheit 16 auf mit einer ersten Polarisationsrichtung 18 zu einem Aussenden und/oder Empfangen eines Messsignals 48. Zudem weist die Antenneneinheit 16 eine zweite Polarisationsrichtung 20 zu einem Aussenden und/oder Empfangen des Messsignals 48 auf.
  • Die Antenneneinheit 16 ist einteilig ausgebildet und von einem gebogenen Blechbauteil 82 gebildet (Figur 3). Vorzugsweise ist eine Dicke des Blechbauteils 82 derart ausgebildet, dass ein unerwünschter Skin-Effekt, der eine Abstrahleigenschaft der Antenneneinheit 16 reduziert, verhindert ist. Ferner weist die Antenneneinheit 16 ein Abstrahlelement 84, vier seitliche Leiterelemente 86, 88, 90, 92 und vier untere Leiterelemente 32, 34, 36, 38 mit jeweils einem Anschlusselement 22, 24, 26, 28 auf. Das Abstrahlelement 84 ist quadratisch mit vier gleich großen Seiten 94 ausgebildet und symmetrisch bezüglich zwei Symmetrieebenen 58, 60, die senkrecht zum Abstrahlelement 84 und senkrecht zueinander ausgerichtet sind. An den vier gleich großen Seiten 94 schließt sich jeweils symmetrisch eines der vier seitlichen Leiterelemente 86, 88, 90, 92 an, die jeweils ein erstes Teilflächenelement 96 aufweisen, das trapezförmig ausgebildet ist und bezüglich des Abstrahlelements 84 geneigt angeordnet ist. Die trapezförmigen ersten Teilflächenelemente 96 erstrecken sich verjüngt von dem Abstrahlelement 84 weg, wobei eine Seitenlänge 100 des Abstrahlelements einer großen Grundlinienlänge 98 der trapezförmigen ersten Teilflächenelemente 96 entspricht. Die seitlichen Leiterelemente 86, 88, 90, 92 weisen zudem ein zweites, rechteckiges Teilflächenelement 102 auf, das sich an dem ersten trapezförmigen Teilflächenelement 96 der seitlichen Leiterelemente 86, 88, 90, 92 anschließt. Eine Breite 104 der zweiten rechteckigen Teilflächenelemente 102 entspricht dabei einer kleinen Grundlinienlänge 106 der trapezförmigen ersten Teilflächenelemente 96. Die zweiten, rechteckigen Teilflächenelemente 102 sind an einer dem Abstrahlelement 84 abgewandten Seite der ersten trapezförmigen Teilflächenelemente 96 angeordnet. Zudem ist ein Flächennormalenvektor 108 der zweiten rechteckigen Teilflächenelemente 102 im Wesentlichen senkrecht zu einem Flächennormalenvektor 110 des Abstrahlelements 84 ausgerichtet.
  • An die vier seitlichen Leiterelemente 86, 88, 90, 92 schließen sich jeweils die vier unteren Leiterelemente 32, 34, 36, 38 an, die ebenfalls trapezförmig ausgebildet sind (Figuren 3 und 5). Die vier unteren Leiterelemente 32, 34, 36, 38 erstrecken sich jeweils entlang einer Richtung 112 von dem sich direkt an dem jeweiligen unteren Leiterelement 32, 34, 36, 38 anschließenden seitlichen Leiterelement 86, 88, 90, 92 zu dem gegenüberliegenden seitlichen Leiterelement 86, 88, 90, 92, so dass die vier unteren Leiterelemente 32, 34, 36, 38 kreuzförmig aufeinander zulaufend angeordnet sind. Die vier unteren Leiterelemente 32, 34, 36, 38 sind jeweils beabstandet zueinander entlang der Richtung 112 von dem gegenüberliegenden unteren Leiterelement 32, 34, 36, 38 angeordnet, so dass in einem mittleren Bereich 114 zwischen Endbereichen 116 der unteren Leiterelemente 32, 34, 36, 38, die den vier seitlichen Leiterelementen 86, 88, 90, 92 abgewandt sind, ein Freiraum 118 vorhanden ist. Zudem nimmt eine Breite 46 der unteren Leiterelemente 32, 34, 36, 38 entlang der Richtung 112 stetig ab. Die vier unteren Leiterelemente 32, 34, 36, 38 weisen zudem bezüglich des Abstrahlelements 84 eine Neigung auf, wobei ein kürzester Abstand 120 der unteren Leiterelemente 32, 34, 36, 38 bezüglich einer Erstreckungsebene des Abstrahlelements 84 entlang der Richtung 112 zunimmt (Figur 4).
  • Die vier unteren Leiterelemente 32, 34, 36, 38 umfassen die vier Anschlusselemente 22, 24, 26, 28, die jeweils von einem Anschlusspin gebildet sind. Die vier Anschlusspins erstrecken sich entlang einer Richtung 122, die im Wesentlichen parallel zu dem Flächennormalenvektor 110 des Abstrahlelements 84 und zudem von dem Abstrahlelement 84 zu den unteren Leiterelementen 32, 34, 36, 38 ausgerichtet ist. Des Weiteren weist die LCR-Antennenvorrichtung 14 ein Massenflächenelement 30 auf, das parallel zu dem Abstrahlelement 84 ausgerichtet ist (Figuren 3 und 4). Das Massenflächenelement 30 ist dazu vorgesehen, von der Antenneneinheit 16 abgestrahlte Signale bzw. Wellen in Richtung des Massenflächenelements 30 zu reflektieren und damit in eine gewünschte Abstrahlrichtung umzuleiten. Ferner weist das Massenflächenelement vier Ausnehmungen 124 auf, durch die die vier Anschlusselemente 22, 24, 26, 28 geführt sind. Ein Abstand 40 der unteren Leiterelemente 32, 34, 36, 38 zu dem Massenflächenelement 30 entlang einer Richtung 42 von einem jeweiligen Anschlusselement 22, 24, 26, 28 des unteren Leiterelements 32, 34, 36, 38 zu einer dem jeweiligen Anschlusselement 22, 24, 26, 28 abgewandten Bereich 44 der Leiterelemente 32, 34, 36, 38 nimmt stetig zu. Die vier Anschlusselemente 22, 24, 26, 28 sind zu einer Zuführung eines Signals vorgesehen, wobei zwei erste Anschlusselemente 22, 26 der ersten Polarisationsrichtung 18 zugeordnet und die zwei weiteren Anschlusselemente 24, 28 der zweiten Polarisationsrichtung 20 zugeordnet sind. Die einer Polarisationsrichtung 18, 20 zugeordneten Anschlusselemente 22, 24, 26, 28 sind an sich gegenüberliegenden unteren Leiterelementen 32, 34, 36, 38 angeordnet.
  • In einer alternativen Ausgestaltung der Erfindung ist es zudem denkbar, dass das Antennenelement 16 auch von einem stufenlosen, kontinuierlich gebogenen Blechbauteil gebildet sein kann, so dass die einzelnen Leiterelemente 32, 34, 36, 38, 86, 88, 90, 92 stufenlos ineinander übergehen können.
  • Im Betrieb der LCR-Antennenvorrichtung 14 wird im Wesentlichen über das Abstrahlelement 84 eine elektromagnetische Welle abgestrahlt, wobei eine Signalzuführung über die Anschlusselemente 22, 24, 26, 28, die unteren Leiterelemente 32, 34, 36, 38 und die seitlichen Leiterelemente 86, 88, 90, 92 zu dem Abstrahlelement 84 erfolgt. Des Weiteren wird im Betrieb der LCR-Antennenvorrichtung 14 bzw. in einem Betriebsmodus der LCR-Antennenvorrichtung 14 an jeweils den Anschlusselementen 22, 24, 26, 28 einer Polarisationsrichtung 18, 20 ein differentielles Signal angelegt. Die beiden Polarisationsrichtungen 18, 20 erstrecken sich jeweils zwischen zwei gegenüberliegenden Seiten 94 des Abstrahlelements 84 und sind senkrecht zueinander ausgerichtet. Zur Erzeugung des differentiellen Signals wird an einem der beiden Anschlusselemente 22, 24, 26, 28 für eine Polarisationsrichtung 18, 20 ein Signal zugeführt, das eine gleiche Amplitude aufweist wie ein an dem weiteren Anschlusselement 22, 24, 26, 28 für die gleiche Polarisationsrichtung 18, 20 zugeführtes Signal. Die beiden Signale sind zudem zueinander um 180° phasenverschoben. Dies hat zur Folge, dass zwischen den beiden Anschlusselementen 22, 24, 26, 28 ein Potential von gleich null an einer der Symmetrieebenen 58, 60 anliegt, wobei die beiden weiteren Anschlusselemente 22, 24, 26, 28 der zweiten Polarisationsrichtung 18, 20 in dieser Symmetrieebene 58, 60 angeordnet sind. Es sind hierdurch die Signale der ersten Polarisationsrichtung 18, 20 linear unabhängig zu den Signalen der zweiten Polarisationsrichtung 18, 20.
  • Aufgrund einer linearen Unabhängigkeit der Signale der beiden Polarisationsrichtungen 18, 20 werden im Betrieb des Ortungsgeräts 12 entlang einer der beiden Polarisationsrichtungen 18, 20 Messsignale 48 ausgesendet und entlang der anderen Polarisationsrichtung 18, 20 von dem Objekt 74 bzw. dem Untersuchungsgegenstand 76 reflektierte Messsignale 48 empfangen. Des Weiteren ist es denkbar, dass im Betrieb mittels einer simultanen Signalzuführung für die beiden Polarisationsrichtungen 18, 20 zirkular oder elliptisch polarisierte elektromagnetische Wellen abgestrahlt werden können, wobei hierfür die Signale der beiden Polarisationsrichtungen 18, 20 phasenverschoben zueinander sein müssen bzw. eine unterschiedliche Amplitude aufweisen. Zudem können mittels der Antenneneinheit 16 linear polarisierte elektromagnetische Wellen abgestrahlt werden, deren Polarisationsebene einen beliebigen Winkel zu den beiden Symmetrieebenen 58, 60 einnehmen können.
  • Aufgrund des sich ändernden Abstands 40 der unteren Leiterelemente 32, 34, 36, 38 zu dem Massenflächenelement 30 und der trapezförmigen Ausbildung der unteren Leiterelemente 32, 34, 36, 38 wird im Betrieb ein Wellenwiderstand kontinuierlich geändert, wie beispielsweise von 50 Ω für Bauteile von Hochfrequenzschaltungen auf 377 Ω für einen Freiraum, in dem die Antenneneinheit 16 abstrahlt. Zudem werden von den unteren Leiterelementen 32, 34, 36, 38 abgestrahlte Wellen vorteilhaft zwischen dem Massenflächenelement 30 und den dem unteren Leiterelementen 32, 34, 36, 38 nach außen geleitet und anschließend in eine Abstrahlrichtung umgelenkt.
  • Die LCR-Antennenvorrichtung 14 weist zudem eine die Antenneneinheit 16 umgebende Umhüllung 52 auf, die einen Hohlraum 54 um die Antenneneinheit 16 bildet und die dazu vorgesehen ist, eine unerwünschte seitliche Abstrahlung, die senkrecht zu dem Flächennormalenvektor 110 des Abstrahlelements 84 erfolgt, der Antenneneinheit 16 zu reduzieren oder zu verhindern. Die Umhüllung 52 umgibt dabei die Antenneneinheit 16 entlang einer von einer Umfangsrichtung gebildeten Richtung 50, die senkrecht zu dem Flächennormalenvektor 110 des Abstrahlelements 84 und um diesen ausgerichtet ist, so dass eine Effizienz einer Abstrahlung von Wellen bzw. Signalen entlang des Flächennormalenvektors 110 des Abstrahlelements 84 erhöht wird, wobei die Umhüllung 52 seitlich abgestrahlte Signale und/oder Wellen vorteilhaft in die gewünschte Abstrahlrichtung umlenkt bzw. reflektiert. Zudem ist die Umhüllung 52 beabstandet zur Antenneneinheit 16 um diese angeordnet. Die Umhüllung 52 weist eine Form 56 bzw. Anordnung auf, die symmetrisch zu den beiden Symmetrieebenen 58, 60 der Antenneneinheit 16 ausgerichtet ist. Die Umhüllung 52 weist einen Kunststoffgrundkörper 126 mit einem achteckigen Querschnitt auf, der mit der Antenneneinheit 16 verbunden ist. Zudem ist die Umhüllung 52 teilweise aus einem leitfähigen Material gebildet und weist hierfür drei Induktionsspulen 62 auf, die um den Kunststoffgrundkörper 126 angeordnet sind, wobei der Kunststoffgrundkörper 126 als Trägerelement der Induktionsspulen 62 dient, die somit ebenfalls einen achteckigen Querschnitt aufweisen. Die Umhüllung 52 weist eine Höhe auf, die im Wesentlichen einem Abstand des Abstrahlelements 84 zu dem Massenflächenelement 30 entspricht (Figur 6).
  • Mittels der Induktionsspulen 62 werden im Betrieb zusätzlich zu der Antenneneinheit 16 Objekte 74 in dem Untersuchungsgegenstand 76 erfasst, indem diese insbesondere metallische Objekte 74 als solche erkennen.
  • Der Kunststoffgrundkörper 126 der Umhüllung 52 ist zusätzlich als Halteelement 64 ausgebildet, das zu einer Fixierung der LCR-Antennenvorrichtung 14 in dem Ortungsgerät 12 vorgesehen ist (Figuren 6 bis 8). Mittels des Halteelements 64 ist die Antenneneinheit 16 mit einem Winkel 70 von 45° einer Symmetrieebene 58, 60 der Antenneneinheit 16 zu der Verfahrrichtung 68 der Führungseinheit 66 bzw. zu einer Längsachse 128 des Ortungsgeräts 12 angeordnet (Figur 1). Hierdurch können im Betrieb des Ortungsgeräts 12 vorteilhaft ausgesandte Signale bzw. Wellen von einem Objekt 74, das vorzugsweise einen Winkel von im Wesentlichen 45° zu einer der Symmetrieebenen 58, 60 aufweist, reflektiert werden, wobei sich hierbei eine Polarisation des reflektierten Signals dreht, so dass entlang einer ersten Polarisationsrichtung 18, 20 des Abstrahlelements 84 Signale bzw. Wellen abgestrahlt werden und entlang der zweiten Polarisationsrichtung 18, 20 des Abstrahlelements 84 Signale bzw. Wellen empfangen werden.
  • Das Halteelement 64 weist vier Haltestreben 130 auf, wobei zwei Haltestreben 130 entlang einer Richtung 142 von der Umhüllung 52 nach innen aufeinander zulaufend angeordnet und orthogonal zu den beiden weiteren Haltestreben 130 ausgerichtet sind. Die Haltestreben 130 weisen eine Höhe auf, die einem Abstand einer dem Massenflächenelement 30 zugewandten Oberfläche des Abstrahlelements 84 zu einer dem Abstrahlelement 84 zugewandten Seite des Massenflächenelements 30 entspricht. Jede der Haltestreben 130 weist einen Zapfen 132 auf, der zu einer Fixierung des Abstrahlelements 84 mit den Haltestreben 130 vorgesehen ist (Figuren 7 und 8). Hierzu weist das Abstrahlelement 84 an einer dem Massenflächenelement 30 abgewandten Oberfläche 144 vier topfförmige Vertiefungen 134 auf mit jeweils einer mittig angeordneten Ausnehmung 136, wobei die Ausnehmung 136 einen kleineren Querschnitt aufweist wie ein Querschnitt der Vertiefung 134 (Figuren 3, 5 bis 7). Die Vertiefungen 134 sind jeweils in einem Bereich 138 des Abstrahlelements 84 angeordnet, in dem kleine Ströme fließen und damit eine Beeinträchtigung einer Abstrahlung minimiert werden kann. Diese Bereiche 138 können mittels einer Simulationsrechnung bestimmt werden. Diese Bereiche 138 sind jeweils in einem Randbereich bzw. einem Eckbereich entlang von Diagonalen des Abstrahlelements 84 angeordnet. Bei einer Montage werden die Zapfen 132 der Haltestreben 130 zu einer Fixierung der Antenneneinheit 16 durch die Ausnehmungen 136 des Abstrahlelements 84 geführt und anschließend mit dem Abstrahlelement 84 verstemmt bzw. breit gedrückt.
  • Zudem weist das Halteelement 64 zu einer Führung der Anschlusselemente 22, 24, 26, 28 ein Ringelement 146 auf, das vier Ausnehmungen 72 aufweist. Das Ringelement 146 ist scheibenförmig ausgebildet und einteilig mit den vier Haltestreben 130 ausgebildet, so dass eine vorteilhafte Stabilität der Haltestreben 130 bzw. eine Fixierung der Anschlusselemente 22, 24, 26, 28 erreicht wird. Das Ringelement 146 weist einen mittleren Radius 148 auf, der einen halben Abstand von einander gegenüberliegenden Anschlusselementen 22, 24, 26, 28 entspricht. Das Ringelement 146 ermöglicht zudem ein einfaches Befestigen, wie beispielsweise ein Löten, der Anschlusselemente 22, 24, 26, 28 mit einem weiteren Bauteil, wie beispielsweise einer Platine (Figur 8).
  • Zu einem Befestigen des Halteelements 64 weist dieses an einer der Antenneneinheit 16 abgewandten Seite 150 Fortsätze 152 auf, die senkrecht zu einer Oberfläche der Umhüllung 52 ausgerichtet sind. Die Fortsätze 152 weisen Ausnehmungen 154 auf, mittels denen eine Befestigung, wie beispielsweise ein Verschrauben, mit weiteren Bauteilen des Ortungsgeräts 12 erreicht wird (Figuren 6 bis 8).
  • Alternativ könnte die Umhüllung 52 vollständig aus einem leitfähigen Material gebildet sein, wie dies in Figur 9, einer alternativen Ausbildung der LCR-Antennenvorrichtung 14, dargestellt ist. Hier ist die Umhüllung 52 vollständig von einem metallischen Material gebildet und weist einen quadratischen Querschnitt auf. Die Ausbildung der Antenneneinheit 16 entspricht hierbei einer Ausbildung in den Figuren 1 bis 8.
  • In einer alternativen Ausgestaltung kann zu einer Änderung eines Abstrahlverhaltens, insbesondere eines Öffnungswinkels, der Antenneneinheit 16 diese mit einem speziell geformten Dielektrikum, wie beispielsweise einer Linse, versehen werden. Zudem kann die Antenneneinheit 16 zu einer Erniedrigung eines Frequenzbereichs an verschiedenen Stellen mit einem Dielektrikum versehen werden.
  • Alternativ kann ferner eine Bandbreite der Antenneneinheit 16 erhöht bzw. eine Eingangsanpassung der Antenneneinheit 16 verbessert werden, indem beispielsweise Widerstände an die Antenneneinheit 16 angebracht werden und/oder eine verlustbehaftete Beschichtung aufgebracht wird usw., so dass unerwünschte Ströme und/oder Wellen absorbiert werden können.

Claims (13)

  1. Handgeführtes Ortungsgerät (12), zur Ortung eines in einem Untersuchungsgegenstand angeordneten Objektes, mit einer Large Current Radiator, LCR, Antennenvorrichtung (14), die ein Massenflächenelement (30) und eine Antenneneinheit (16) aufweist, wobei die Antenneneinheit (16) vier untere Leiterelemente (32, 34, 36, 38) umfasst und zu einem Aussenden und/oder Empfangen eines Messsignals (48) mit einer ersten Polarisationsrichtung (18) vorgesehen ist, und
    die Antenneneinheit (16) zumindest eine zweite Polarisationsrichtung (20) zu einem Aussenden und/oder Empfangen des Messsignals (48) aufweist, wobei die erste Polarisationsrichtung (18) im Wesentlichen orthogonal zur zweiten Polarisationsrichtung (20) ausgerichtet ist, wobei die LCR-Antennenvorrichtung (14) zumindest zwei erste Anschlusselemente (22, 26), die zu einer Einspeisung eines Signals der ersten Polarisationsrichtung (18) vorgesehen sind, und zumindest zwei weitere Anschlusselemente (24, 28) aufweist, die zu einer Einspeisung eines Signals der zweiten Polarisationsrichtung (20) vorgesehen sind, dadurch gekennzeichnet, dass ein Abstand (40) der Leiterelemente (32, 34, 36, 38) zu dem Massenflächenelement (30) entlang einer Richtung (42) von einem jeweiligen Anschlusselement (22, 24, 26, 28) der Leiterelemente (32, 34, 36, 38) zu einem den jeweiligen Anschlusselementen (22, 24, 26, 28) abgewandten Bereich (44) der Leiterelemente (32, 34, 36, 38) kontinuierlich zunimmt, wobei im Betrieb des Ortungsgeräts (12) über die unteren Leiterelemente (32, 34, 36, 38) Signale bzw. Wellen von den Anschlusselementen (22, 24, 26, 28) auf seitliche Leiterelemente (86, 88, 90, 92) der Antenneneinheit (16) und von diesen auf ein Abstrahlelement (84) der Antenneneinheit (16) geleitet werden, wobei das Massenflächenelement (30) parallel zu dem Abstrahlelement (84) ausgerichtet ist.
  2. Handgeführtes Ortungsgerät (12) nach Anspruch 1, dadurch gekennzeichnet, dass die beiden unteren Leiterelemente (32, 34, 36, 38) eine Breite (46) aufweisen, die entlang der Richtung (42) zunimmt.
  3. Handgeführtes Ortungsgerät (12), nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die LCR-Antennenvorrichtung (14) eine die Antenneneinheit (16) in zumindest eine Richtung (50) umgebende Umhüllung (52) aufweist, die einen Hohlraum (54) um die Antenneneinheit (16) bildet.
  4. Handgeführtes Ortungsgerät (12), nach Anspruch 3, dadurch gekennzeichnet, dass die Umhüllung (52) zumindest teilweise aus einem leitfähigen Material gebildet ist.
  5. Handgeführtes Ortungsgerät (12), nach Anspruch 4, dadurch gekennzeichnet, dass die Umhüllung (52) zumindest teilweise von einer Induktionsspule (62) gebildet ist.
  6. Handgeführtes Ortungsgerät (12), zumindest nach Anspruch 5, dadurch gekennzeichnet, dass die Umhüllung (52) eine Form (56) aufweist, die symmetrisch zu zumindest einer Symmetrieebene (58, 60) der Antenneneinheit (16) ausgerichtet ist.
  7. Handgeführtes Ortungsgerät (12), nach Anspruch 6, dadurch gekennzeichnet, dass die Umhüllung (52) einen achteckigen Querschnitt aufweist.
  8. Handgeführtes Ortungsgerät (12), nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die LCR-Antennenvorrichtung (14) ein Halteelement (64) aufweist, das zu einer Fixierung der Antenneneinheit (16) vorgesehen ist.
  9. Handgeführtes Ortungsgerät (12), nach Anspruch 8, gekennzeichnet durch eine Führungseinheit (66) mit einer Verfahrrichtung (68), wobei das Halteelement (64) die Antenneneinheit (16) mit einem Winkel (70) einer Symmetrieebene (58, 60) der Antenneneinheit (16) zu der Verfahrrichtung (68) von ca. 45° anordnet.
  10. Handgeführtes Ortungsgerät (12), nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gerät eine Führungseinheit (66) mit einer Verfahrrichtung (68) aufweist, wobei die erste Polarisationsrichtung der Antenneneinheit (16) einen Winkel von ca. 45° zu der Verfahrrichtung (68) einnimmt.
  11. Handgeführtes Ortungsgerät (12), zumindest nach Anspruch 8, dadurch gekennzeichnet, dass das Halteelement (64) zu einer Aufnahme einer Umhüllung (52) der Antenneneinheit (16) vorgesehen ist.
  12. Handgeführtes Ortungsgerät (12), zumindest nach Anspruch 8, dadurch gekennzeichnet, dass das Halteelement (64) Ausnehmungen (72) aufweist, die zu einer Führung von Anschlusselementen (22, 24, 26, 28) der Antenneneinheit (16) vorgesehen sind.
  13. Verfahren zum Betreiben eines handgeführten Ortungsgerät (12) nach Anspruch 1, dadurch gekennzeichnet, dass an einem der Anschlusselemente (22, 24, 26, 28) einer der Polarisationsrichtungen (18, 20) ein um 180° phasenverschobenes Signal gleicher Amplitude bezüglich einem Signal des weiteren Anschlusselements (22, 24, 26, 28) der Polarisationsrichtung (18, 20) in wenigsten einem Betriebsmodus angelegt ist.
EP09782019.5A 2008-08-28 2009-08-20 Elektrogerät Active EP2319124B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008041651A DE102008041651A1 (de) 2008-08-28 2008-08-28 Elektrogerät
PCT/EP2009/060759 WO2010023152A1 (de) 2008-08-28 2009-08-20 Elektrogerät

Publications (2)

Publication Number Publication Date
EP2319124A1 EP2319124A1 (de) 2011-05-11
EP2319124B1 true EP2319124B1 (de) 2019-07-31

Family

ID=41096303

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09782019.5A Active EP2319124B1 (de) 2008-08-28 2009-08-20 Elektrogerät

Country Status (5)

Country Link
US (1) US9553372B2 (de)
EP (1) EP2319124B1 (de)
CN (1) CN102197536B (de)
DE (1) DE102008041651A1 (de)
WO (1) WO2010023152A1 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010063666A1 (de) * 2010-12-21 2012-06-21 Robert Bosch Gmbh Handortungsvorrichtung
DE102011088438A1 (de) 2011-12-13 2013-06-13 Robert Bosch Gmbh Handwerkzeugvorrichtung
DE102011088435A1 (de) 2011-12-13 2013-06-13 Robert Bosch Gmbh Handwerkzeugvorrichtung mit zumindest einer Ortungsantenne
DE102011088439A1 (de) 2011-12-13 2013-06-13 Robert Bosch Gmbh Handwerkzeugvorrichtung mit zumindest einer Ortungsvorrichtung
DE102012210009A1 (de) 2012-06-14 2013-12-19 Robert Bosch Gmbh Handwerkzeugvorrichtung
DE102012210777A1 (de) 2012-06-25 2014-01-02 Robert Bosch Gmbh Handortungsgerät
CN103825081B (zh) * 2012-11-16 2017-09-22 西安红叶通讯科技有限公司 宽频带宽波束圆极化天线及圆极化的方法
WO2017113054A1 (zh) 2015-12-28 2017-07-06 华为技术有限公司 一种楼层定位方法、设备及***
CN107121675B (zh) * 2017-05-04 2020-12-29 成都零点科技有限公司 具有杂波抑制功能的远程位移测量装置、***及方法
EP3404768B1 (de) * 2017-05-18 2019-12-04 Premo, S.A. Flache triaxialantenne
CN110429385A (zh) * 2019-07-22 2019-11-08 深圳市易探科技有限公司 用于移动传感器的双极化微带天线及其信号收发方法
CN110768013A (zh) * 2019-10-31 2020-02-07 维沃移动通信有限公司 一种天线单元及电子设备
CN110828988B (zh) * 2019-10-31 2023-04-11 维沃移动通信有限公司 一种天线单元及电子设备
CN110829021A (zh) * 2019-10-31 2020-02-21 维沃移动通信有限公司 一种天线单元及电子设备
CN110828987A (zh) * 2019-10-31 2020-02-21 维沃移动通信有限公司 一种天线单元及电子设备
CN110911833A (zh) * 2019-11-28 2020-03-24 维沃移动通信有限公司 一种天线单元和电子设备
CN111029739B (zh) * 2019-11-29 2022-10-11 维沃移动通信有限公司 一种天线单元和电子设备
CN110911816B (zh) * 2019-11-29 2023-01-24 维沃移动通信有限公司 一种天线单元和电子设备
CN110911815B (zh) * 2019-11-29 2022-09-27 维沃移动通信有限公司 一种天线单元和电子设备
CN110931939B (zh) * 2019-11-29 2021-10-26 维沃移动通信有限公司 一种毫米波天线单元及电子设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4506267A (en) * 1983-01-26 1985-03-19 Geophysical Survey Systems, Inc. Frequency independent shielded loop antenna
US5942899A (en) * 1997-07-28 1999-08-24 Aerojet-General Corporation Hyperspectral radiometric mine detector based upon sensing microwave brightness temperature and interference contrast signatures
US5874924A (en) * 1997-11-17 1999-02-23 Lockheed Martin Corp. Spacecraft antenna array with directivity enhancing rings
US6795491B2 (en) * 1999-07-22 2004-09-21 Aether Wire & Location Spread spectrum localizers
US6650302B2 (en) * 2001-07-13 2003-11-18 Aether Wire & Location Ultra-wideband monopole large-current radiator
DE102004007315A1 (de) * 2004-02-14 2005-08-25 Robert Bosch Gmbh Nahbereichsradar mit Mehrfachsensorik zur Ortung von in einem Medium eingeschlossenen Objekten
DE102004032175A1 (de) * 2004-07-02 2006-01-19 Robert Bosch Gmbh Vorrichtung und Verfahren zum Senden/Empfangen elektromagnetischer HF-Signale
EP1784894A1 (de) * 2004-08-31 2007-05-16 Fractus, S.A. Schlanke mehrbandantennengruppe für zellulare basisstationen
DE102005039152A1 (de) * 2005-08-17 2007-02-22 Robert Bosch Gmbh Mechanische Trägereinrichtung sowie Messgerät mit einer mechanischen Trägereinrichtung
DE102005052367A1 (de) 2005-10-31 2007-05-03 Robert Bosch Gmbh Messgerät und Verfahren zur Ortung von in einem Medium eingeschlossenen Objekten mittels elektromagnetischer HF-Signale
JP2007142207A (ja) * 2005-11-18 2007-06-07 Matsushita Electric Ind Co Ltd 固体撮像装置及びその製造方法
DE102005062874A1 (de) * 2005-12-29 2007-07-05 Robert Bosch Gmbh Vorrichtung zum Senden und/oder Empfangen elektromagnetischer HF-Signale

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102008041651A1 (de) 2010-03-04
US20110181483A1 (en) 2011-07-28
CN102197536A (zh) 2011-09-21
WO2010023152A1 (de) 2010-03-04
US9553372B2 (en) 2017-01-24
EP2319124A1 (de) 2011-05-11
CN102197536B (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
EP2319124B1 (de) Elektrogerät
DE102007044895B4 (de) Hornantenne
DE60035003T2 (de) Dualpolarisierte gedruckte Antenne und entsprechende Gruppenantenne
EP1825561B1 (de) Antennenanordnung für einen radar-transceiver
DE112007000224T5 (de) Antennenbauelement, Arrayantenne, Mehrfachsektorantenne, Hochfrequenzwellen-Sende-Empfangs-Gerät
DE112010001503B4 (de) Antenneneinrichtung
EP1812809A1 (de) Radarsystem insbesondere zur entfernungs- und/oder geschwindigkeitsmessung
EP1969670A1 (de) Vorrichtung zum senden und/oder empfangen elektromagnetischer hf-signale
DE102009000644A1 (de) Vorrichtung zum Senden und/oder Empfangen elektromagnetischer HF-Signale, sowie Messgerät und Werkzeugmaschinenüberwachungsvorrichtung mit einer solchen Vorrichtung
DE3546347A1 (de) Hochfrequenzantenne der linsenbauart mit speiseeinrichtungen zur erzielung einer breiten richtcharakteristik
DE102006045645B4 (de) Antennenkoppler
EP1678787A1 (de) Vorrichtung sowie verfahren zum abstrahlen und/oder zum empfangen von elektromagnetischer strahlung
EP3161903B1 (de) Antennenvorrichtung mit einstellbarer abstrahlcharakteristik und verfahren zum betreiben einer antennenvorrichtung
DE2061742C3 (de) Sendeprüfgerät für Landekurssender
EP1619751B1 (de) Breitbandige Antenne mit geringer Bauhöhe
DE60105447T2 (de) Gedruckte patch-antenne
DE112013001993B4 (de) Antennenvorrichtung
DE112010002639B4 (de) Antenneneinrichtung
EP1476921A1 (de) Vorrichtung zum senden und empfangen elektromagnetischer strahlung
DE102008055196A1 (de) Vorrichtung zum Senden und/oder Empfangen elektromagnetischer Hochfrequenzsignale
EP2093838A1 (de) Yagiantenne
EP3707775B1 (de) Ein- und auskopplungsvorrichtung zwischen einem schaltungsträger und einem wellenleiter
DE102004033383A1 (de) Antennenkoppler
DE112007001152T5 (de) Vorrichtung und Verfahren zum Erzeugen von Atmosphärendruckplasma
DE102005029480B4 (de) Funkempfänger, der dazu geeignet ist, eine Verschlechterung der Reflexionseigenschaften seines Ausgangs zu unterdrücken

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110328

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170630

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190228

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1161921

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009015899

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190731

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191202

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191031

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191031

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191101

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190820

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009015899

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190820

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1161921

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190820

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200825

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090820

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210820

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230821

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231025

Year of fee payment: 15