EP2304209B1 - Internal combustion engine and method for operating an internal combustion engine of said type - Google Patents

Internal combustion engine and method for operating an internal combustion engine of said type Download PDF

Info

Publication number
EP2304209B1
EP2304209B1 EP09780502.2A EP09780502A EP2304209B1 EP 2304209 B1 EP2304209 B1 EP 2304209B1 EP 09780502 A EP09780502 A EP 09780502A EP 2304209 B1 EP2304209 B1 EP 2304209B1
Authority
EP
European Patent Office
Prior art keywords
internal combustion
combustion engine
sensor
line
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09780502.2A
Other languages
German (de)
French (fr)
Other versions
EP2304209A2 (en
Inventor
Wolfgang Mai
Paul Rodatz
Rudolf Bierl
Stephan Heinrich
Manfred Weigl
Andreas Wildgen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Publication of EP2304209A2 publication Critical patent/EP2304209A2/en
Application granted granted Critical
Publication of EP2304209B1 publication Critical patent/EP2304209B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • F02D41/004Control of the valve or purge actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0045Estimating, calculating or determining the purging rate, amount, flow or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0042Controlling the combustible mixture as a function of the canister purging, e.g. control of injected fuel to compensate for deviation of air fuel ratio when purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1459Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a hydrocarbon content or concentration

Definitions

  • the invention relates to an internal combustion engine and a method for operating an internal combustion engine.
  • Exhaust gases can escape from the fuel tank of a motor vehicle in which, for example, gasoline is stored, and can be released from the fuel.
  • Highly volatile hydrocarbons can detach from the fuel at high outside temperatures or as a result of vibrations in the fuel tank while driving and leave the fuel tank as gas.
  • fuel tanks can be sealed gas-tight.
  • the volatile hydrocarbons are then temporarily stored in a memory and can be supplied to the intake air of the internal combustion engine. If it is not known or not sufficiently well known how much hydrocarbons are dissolved in the intake air, it is not possible to control precisely how much less fuel has to be injected in order to achieve the best possible air / fuel ratio. This leads to increased fuel consumption by the internal combustion engine and possibly also to poorer exhaust gas values.
  • the DE 195 09 310 A1 discloses a method for relieving an absorption memory of a tank ventilation in internal combustion engines. Gaseous fuel components from the fuel tank get into an absorption filter and are sucked out of this mixed with air into the intake tract of the internal combustion engine. An engine control unit controls the metering of air and fuel for the supply of the internal combustion engine for the entered operating state and the current operating parameters. The air-fuel mixture sucked out of the absorption filter is in terms of its amount and its hydrocarbon content measured continuously. The measured amount of the air-fuel mixture from the absorption filter and its hydrocarbon content is taken into account in reducing the amount of air and fuel in accordance with the entered operating state and the current operating parameters of the internal combustion engine.
  • the EP 1 094 306 A1 discloses a thermal flow sensor, a method and an apparatus for detecting a liquid, and a method and an apparatus for flow measurement.
  • a method for operating an internal combustion engine which has at least one sensor for measuring a hydrocarbon content of a gas stream in a line, comprises determining the hydrocarbon content of the gas stream flowing through the line. The mass flow of the gas flow flowing through the line is determined. At least one control device for controlling the gas flow through a line is controlled as a function of the determined hydrocarbon content and the determined mass flow. The adjusting device has at least one valve which is arranged on the line and which can be controlled as a function of the determined hydrocarbon content and the determined mass flow. As a result, it can be controlled relatively precisely how much energy in the form of gaseous hydrocarbons is fed to the internal combustion engine via the intake air.
  • At least one signal of at least one semiconductor component that is integrated in the at least one sensor can be evaluated.
  • the at least one sensor has at least one temperature sensor. At least one signal from the at least one temperature sensor is evaluated. The signals make it relatively easy to draw conclusions about the hydrocarbon content and the mass flow.
  • the fuel supply to an internal combustion engine can be controlled depending on the determined hydrocarbon content and the determined mass flow. As a result, the mixture of fuel and gaseous hydrocarbons in the intake air can be adjusted as well as possible.
  • An internal combustion engine comprises at least one sensor for measuring a hydrocarbon content of a gas stream in a line.
  • the internal combustion engine comprises an evaluation device for evaluating at least one signal of the at least one sensor.
  • At least one control device for controlling the gas flow through the line is coupled to the evaluation device and is controlled by the evaluation device as a function of the evaluated signals.
  • the at least one sensor has at least one heating element for heating a gas stream and at least one temperature sensor.
  • the at least one sensor can have at least a first and a second temperature sensor, the at least one heating element being arranged between the first temperature sensor and the second temperature sensor. In this setup, the hydrocarbon content and the mass flow are inferred relatively precisely.
  • the actuator is arranged on the line.
  • the adjusting device includes a clock-controlled valve depending on the determined hydrocarbon content and the determined mass flow. The control of the gas flow through the line can thus be implemented relatively inexpensively and precisely.
  • the evaluation unit can be part of an engine control for operating the internal combustion engine.
  • Figure 1 10 shows an internal combustion engine 100 that has a fuel tank 104, an internal combustion engine 112 and a hydrocarbon tank 106.
  • Fuel 105 is stored in the fuel tank 104.
  • Gaseous hydrocarbons 107 can be directed from the fuel tank 104 into the hydrocarbon tank 106 via a line 108, which is coupled to the fuel tank 104 and the hydrocarbon tank 106.
  • the hydrocarbon tank is coupled to the internal combustion engine 112 via a line 109, in particular the intake tract of the internal combustion engine.
  • the line 109 has a valve 102 and a plurality of hydrocarbon sensors 101.
  • the hydrocarbon sensors are set up to measure a hydrocarbon content of a gas stream.
  • the hydrocarbon sensors can also measure the mass flow of hydrocarbons in the gas stream. Only one hydrocarbon sensor can also be arranged, further hydrocarbon sensors can also be arranged, for example on the hydrocarbon tank 106.
  • the hydrocarbon sensors can also be arranged on further lines, for example on line 108.
  • the valve is set up to interrupt the gas flow to the internal combustion engine .
  • the gas flow through line 109 can be controlled by valve 102.
  • a plurality of valves can also be arranged, for example two or more valves. Valves can also be arranged on further lines, for example on line 108.
  • the valve 102 is coupled to an engine control 103 via an electrical line 111.
  • the sensors 101 are coupled to the engine control system via an electrical line 110.
  • the engine controller 103 which has an evaluation device 114, controls the valves and can evaluate signals from the sensors.
  • the fuel 105 can be fed via a fuel delivery unit via fuel lines to the internal combustion engine 112, where it is injected into the intake tract via injection valves 115 and is combusted in the internal combustion engine.
  • the exhaust gases from the combustion process are conveyed away from the engine by an exhaust system.
  • a lambda probe 116 is arranged in the exhaust line and can determine a ratio of air to fuel. To do this, the lambda probe measures the residual oxygen content in the exhaust gas.
  • Hydrocarbons for example methane, butane or propane, evaporate from the fuel 105, for example a gasoline.
  • the different hydrocarbon chains have different evaporation temperatures, so that different hydrocarbons are released from the liquid fuel 105 depending on the outside temperature. The higher the outside temperature and thus the temperature of the fuel 105, the more hydrocarbons go into the gas phase.
  • the tank 104 in which the fuel 105 is stored, is gas-tight.
  • the filler cap closes a filler neck of the fuel tank in a gas-tight manner.
  • the hydrocarbon-containing gas mixture that forms in the tank 104 is fed into the hydrocarbon tank 106 via the line 108.
  • the hydrocarbon tank may contain an activated carbon storage element.
  • the evaporated hydrocarbons are absorbed by the activated carbon, stored and released again when necessary.
  • the hydrocarbon tank can be piped 109 can be emptied.
  • air is blown into the hydrocarbon tank from the outside via a valve 113, which absorbs the hydrocarbons.
  • the hydrocarbon-containing air can be used as intake air for the internal combustion engine 112 and thus contribute to combustion in the engine.
  • the sensors for measuring a hydrocarbon content have, for example, a heating element for heating a gas stream and a temperature sensor.
  • the sensor is integrated on a silicon chip.
  • the gas stream flowing past the sensor element is heated and the thermal conductivity or the thermal capacity of the gas flowing past can be determined on the basis of signals from the temperature sensor, which are evaluated by the engine control unit, in particular by the evaluation unit.
  • the concentration of the hydrocarbon in the gas stream can be determined from this, since this is proportional to the thermal conductivity or heat capacity of the gas.
  • the mass flow of the gas stream flowing through the line can be determined.
  • the hydrocarbon sensor can also have at least one ultrasound source and at least one ultrasound receiver. These sensors are arranged in line 109 such that ultrasound can be sent through the gas flow and runs from the ultrasound source to the ultrasound receiver. Ultrasound can be emitted once in a direction opposite to the direction of the gas flow and once in the same direction as the direction of the gas flow. From this, you can a speed of sound in the gas mixture and the speed of the media can be concluded. The hydrocarbon content and the mass flow of the gas flow can be concluded from this.
  • the at least one ultrasound source 301 and the at least one ultrasound receiver 303 can also be designed as a single component. Such an ultrasonic transducer is set up to generate ultrasonic waves in response to electrical signals. It is also set up to generate electrical signals from received ultrasound waves. The ultrasonic transducer can convert electrical signals into acoustic signals and it can convert acoustic signals into electrical signals.
  • the evaluation unit 114 evaluates the signals from the sensors, so that the concentration of hydrocarbons and the mass flow of the gas flow through the line 109 are known. It is thus known how much energy is supplied to the internal combustion engine 112 in the form of gaseous hydrocarbons.
  • the engine controller 103 controls the injection valves 115 accordingly, so that less fuel is injected when more hydrocarbon is supplied via the intake air.
  • the amount of gaseous hydrocarbon can be controlled via valve 102.
  • the valve 102 is controlled, for example, by pulse-width modulated signals from the engine control.
  • the valve can be clock-controlled depending on at least one signal from the evaluation unit.
  • the sensors which are arranged downstream of the valve 102 in the direction of flow of the gas stream, can be used to determine how much gaseous hydrocarbons pass through the valve.
  • the exact opening time of the valve can also be determined from this.
  • the activated carbon filter can be emptied relatively quickly since the control works relatively quickly, in particular in comparison with a control which is based on data from the lambda sensor.
  • the amount of fuel that is injected into the internal combustion engine via the injection valves 115 does not increase Controlled on the basis of static characteristic diagrams, which are stored in the engine control, but determined directly by the sensors and the evaluation device 114.
  • the valve 102 is controlled based on this data. In this way, manufacturing tolerances and aging effects of the valve can also be taken into account in the control of the valve and the control of other components, for example the injection valves 115.
  • Figure 2 shows a sensor 200 and a valve 204, which are arranged in a line 206.
  • a gas 205 is conducted in line 206.
  • the sensor 200 has a temperature sensor 201 and a further temperature sensor 203, which are each arranged on one side of a heating element 202.
  • the sensor 200 is configured to measure the concentration of hydrocarbon in the gas 205.
  • Sensor 200 is further configured to measure the mass flow of hydrocarbon in gas 205 through line 206.
  • the gas flow through line 206 can be controlled by valve 204.
  • the sensor 200 can be coupled to an evaluation device, which is part of an engine control for operating an internal combustion engine, for example.
  • the sensor 200 is integrated, for example, on a silicon substrate and can comprise further elements, for example an evaluation circuit or an analog-digital converter.
  • the temperature sensor 201 and the temperature sensor 203 can each have a plurality of temperature sensors for measuring a temperature.
  • the gas 205 flowing past the sensor 200 is heated in a defined manner by the heating element 202.
  • the temperature sensor 201 which is arranged upstream of the heating element, detects the temperature of the gas stream before the gas stream is heated.
  • the further temperature sensor 203 which is arranged downstream of the heating element 202, detects the temperature of the heated gas.
  • the thermal capacity of the gas can be inferred from a difference in these temperatures. From the sum of these temperatures, the Thermal conductivity of the gas can be closed. From this, the hydrocarbon content in the gas 205 and the mass flow through the line 206 can be calculated.
  • the valve 204 can be controlled.
  • the valve 204 can be coupled to an engine control for operating an internal combustion engine, in particular the evaluation device of the engine control.
  • the valve 204 is controlled as a function of the determined hydrocarbon concentration and the mass of hydrocarbons in the gas stream determined by the sensor. For example, the valve is controlled via a pulse width modulated signal.
  • the valve 204 can be a clocked valve that is clocked, for example, at a frequency of 20 Hz.
  • Sensor 200 can be used to determine very precisely when and how much hydrocarbons flow through line 206. Sensor 200 can determine very precisely when and to what extent valve 204 is open.
  • the data from the sensor 200 enable the engine control or the evaluation device to measure the amount of energy provided by the gas flow as precisely as possible. This information can in turn be used to control the valve 204 and to control injection valves of the internal combustion engine in order to control the ratio of fuel to gas as optimally as possible.
  • FIG 3 shows an embodiment of a hydrocarbon sensor 300 which differs from the subject matter of the invention.
  • the sensor 300 has an ultrasound source 301, which can also serve as an ultrasound receiver.
  • the sensor has a further ultrasound source 303, which can also serve as an ultrasound receiver.
  • the ultrasound sources 301 and 303 are arranged at a defined distance from one another in a line 306.
  • Hydrocarbon-containing gas 305 flows through line 306.
  • An ultrasound reflector 302 is arranged on the line.
  • the ultrasound sources and receivers can also be arranged opposite one another, so that a sound reflector is not necessary.
  • An ultrasound pulse is emitted by the ultrasound source 301, which is sent via the ultrasound reflector 302 to the further ultrasound receiver 303.
  • the runtime required can be measured by an evaluation device. After the ultrasound pulse has passed from the first ultrasound source 301 via the ultrasound reflector 302 to the further ultrasound receiver 303, the further ultrasound receiver is used as an ultrasound source.
  • the ultrasound source 303 emits an ultrasound pulse which runs in one direction against the gas flow via the ultrasound reflector 302 to the first sound receiver 301. The runtime required for this is measured by the evaluation device.
  • the speed of sound in the gas mixture 305 and the speed at which the gas mixture flows through the line can be determined from the measured transit times between the ultrasound sources and ultrasound receivers. For this purpose, a total term and a differential term can be created.
  • at least one valve can be controlled and the gas flow through line 306 can thereby be controlled.
  • at least one injection valve of an internal combustion engine can also be controlled. The data determined can be used to set an exact ratio of fuel to gas in the combustion chambers of the internal combustion engine.
  • a first step S1 of a method for operating an internal combustion engine as in Figure 4 shown the start takes place, which can be close to a start of the internal combustion engine.
  • the hydrocarbon content of a gas stream flowing through a line is determined.
  • the mass flow of the gas flow flowing through the line is also determined.
  • at least one control device is controlled as a function of the determined hydrocarbon content and the determined mass flow.
  • the adjusting device can comprise a valve which is modulated as a function of a pulse width Signal of an evaluation device is clock controllable.
  • a valve can be controlled so that it can be controlled how much gaseous hydrocarbon is supplied to the internal combustion engine.
  • step S3 the fuel supply to the internal combustion engine can be controlled.
  • the control of the fuel supply depends on the determined hydrocarbon content and the determined mass flow.
  • the valve can be controlled depending on the evaluated signal from the sensor.
  • the sensor can check valve control by measuring the hydrocarbon content and mass flow of gas flow downstream of the valve. The functionality of the valve can thus be checked by comparing the measured data with stored target data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

Die Erfindung betrifft eine Brennkraftmaschine und ein Verfahren zum Betreiben einer Brennkraftmaschine.The invention relates to an internal combustion engine and a method for operating an internal combustion engine.

Aus dem Treibstofftank eines Kraftfahrzeugs, in dem beispielsweise Benzin gelagert ist, können Abgase austreten, die sich aus dem Treibstoff lösen. Leicht flüchtige Kohlenwasserstoffe können sich bei hohen Außentemperaturen oder durch Erschütterungen des Treibstofftanks während der Fahrt aus dem Treibstoff lösen und als Gas den Treibstofftank verlassen. Um dem entgegenzuwirken, können Treibstofftanks gasdicht abgeschlossen werden. Die flüchtigen Kohlenwasserstoffe werden dann in einem Speicher zwischengespeichert und können der Ansaugluft des Verbrennungsmotors zugeführt werden. Wenn nicht oder nicht ausreichend genau bekannt ist, wie viel Kohlenwasserstoffe in der Ansaugluft gelöst sind, kann nicht genau genug gesteuert werden, wie viel weniger Kraftstoff eingespritzt werden muss, um ein möglichst optimales Kraftstoff-/Luft-Verhältnis zu erreichen. Dies führt zu einem erhöhten Treibstoffverbrauch des Verbrennungsmotors und gegebenenfalls auch zu schlechteren Abgaswerten.Exhaust gases can escape from the fuel tank of a motor vehicle in which, for example, gasoline is stored, and can be released from the fuel. Highly volatile hydrocarbons can detach from the fuel at high outside temperatures or as a result of vibrations in the fuel tank while driving and leave the fuel tank as gas. To counteract this, fuel tanks can be sealed gas-tight. The volatile hydrocarbons are then temporarily stored in a memory and can be supplied to the intake air of the internal combustion engine. If it is not known or not sufficiently well known how much hydrocarbons are dissolved in the intake air, it is not possible to control precisely how much less fuel has to be injected in order to achieve the best possible air / fuel ratio. This leads to increased fuel consumption by the internal combustion engine and possibly also to poorer exhaust gas values.

Die DE 195 09 310 A1 offenbart ein Verfahren zur Entlastung eines Absorptionsspeichers einer Tankentlüftung bei Verbrennungsmotoren. Gasförmige Kraftstoffanteile aus dem Kraftstofftank gelangen in einen Absorptionsfilter und werden aus diesem mit Luft vermischt in den Ansaugtrakt des Verbrennungsmotors gesaugt. Ein Motorsteuergerät steuert für den eingegebenen Betriebszustand und die momentanen Betriebsparameter die Zumessung von Luft- und Kraftstoff für die Speisung des Verbrennungsmotors. Das aus dem Absorptionsfilter gesaugte Luft-Kraftstoff-Gemisch wird hinsichtlich seiner Menge und seines Kohlenwasserstoffanteiles kontinuierlich gemessen. Die gemessene Menge des Luft-Kraftstoff-Gemisches aus dem Absorptionsfilter und dessen Kohlenwasserstoffanteil wird bei der Zumessung von Luft- und Kraftstoffmenge entsprechend dem eingegebenen Betriebszustand und der momentanen Betriebsparameter des Verbrennungsmotors mindernd berücksichtigt.The DE 195 09 310 A1 discloses a method for relieving an absorption memory of a tank ventilation in internal combustion engines. Gaseous fuel components from the fuel tank get into an absorption filter and are sucked out of this mixed with air into the intake tract of the internal combustion engine. An engine control unit controls the metering of air and fuel for the supply of the internal combustion engine for the entered operating state and the current operating parameters. The air-fuel mixture sucked out of the absorption filter is in terms of its amount and its hydrocarbon content measured continuously. The measured amount of the air-fuel mixture from the absorption filter and its hydrocarbon content is taken into account in reducing the amount of air and fuel in accordance with the entered operating state and the current operating parameters of the internal combustion engine.

Die EP 1 094 306 A1 offenbart einen thermischen Durchflusssensor, ein Verfahren und eine Vorrichtung zum Erkennen einer Flüssigkeit, und ein Verfahren und eine Vorrichtung zur Durchflussmessung.The EP 1 094 306 A1 discloses a thermal flow sensor, a method and an apparatus for detecting a liquid, and a method and an apparatus for flow measurement.

Es ist eine Aufgabe der Erfindung, eine Brennkraftmaschine sowie ein Verfahren zum Betreiben einer Brennkraftmaschine anzugeben, die emissionsärmer und/oder sparsamer arbeitet.It is an object of the invention to specify an internal combustion engine and a method for operating an internal combustion engine which operates with lower emissions and / or more economically.

Diese Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1 beziehungsweise einer Brennkraftmaschine mit den Merkmalen des Anspruchs 4.This object is achieved by a method having the features of claim 1 or an internal combustion engine having the features of claim 4.

Ein Verfahren zum Betreiben einer Brennkraftmaschine, die mindestens einen Sensor zur Messung eines Kohlenwasserstoffgehalts eines Gasstroms in einer Leitung aufweist, umfasst ein Ermitteln des Kohlenwasserstoffgehalts des durch die Leitung strömenden Gasstroms. Der Massenstrom des durch die Leitung strömenden Gasstroms wird ermittelt. Mindestens eine Stellvorrichtung zur Steuerung des Gasstroms durch eine Leitung wird abhängig von dem ermittelten Kohlenwasserstoffgehalt und dem ermittelten Massenstrom gesteuert. Die Stellvorrichtung weist mindestens ein Ventil auf, das an der Leitung angeordnet ist und das in Abhängigkeit von dem ermittelten Kohlenwasserstoffgehalt und dem ermittelten Massestrom gesteuert werden kann. Dadurch kann relativ genau gesteuert werden, wie viel Energie in Form von gasförmigen Kohlenwasserstoffen an den Verbrennungsmotor über die Ansaugluft geleitet wird.A method for operating an internal combustion engine, which has at least one sensor for measuring a hydrocarbon content of a gas stream in a line, comprises determining the hydrocarbon content of the gas stream flowing through the line. The mass flow of the gas flow flowing through the line is determined. At least one control device for controlling the gas flow through a line is controlled as a function of the determined hydrocarbon content and the determined mass flow. The adjusting device has at least one valve which is arranged on the line and which can be controlled as a function of the determined hydrocarbon content and the determined mass flow. As a result, it can be controlled relatively precisely how much energy in the form of gaseous hydrocarbons is fed to the internal combustion engine via the intake air.

Es kann mindestens ein Signal mindestens eines Halbleiterbauelements, das in dem mindestens einen Sensor integriert ist, ausgewertet werden. Der mindestens eine Sensor weist mindestens einen Temperatursensor auf. Mindestens ein Signal des mindestens einen Temperatursensors wird ausgewertet. Aus den Signalen wird relative einfach auf den Kohlenwasserstoffgehalt und den Massestrom rückgeschlossen.At least one signal of at least one semiconductor component that is integrated in the at least one sensor can be evaluated. The at least one sensor has at least one temperature sensor. At least one signal from the at least one temperature sensor is evaluated. The signals make it relatively easy to draw conclusions about the hydrocarbon content and the mass flow.

Die Treibstoffzufuhr an einen Verbrennungsmotor kann abhängig von dem ermittelten Kohlenwasserstoffgehalt und dem ermittelten Massenstrom gesteuert werden. Dadurch kann das Gemisch aus Treibstoff und gasförmigen Kohlenwasserstoffen der Ansaugluft möglichst gut eingestellt werden.The fuel supply to an internal combustion engine can be controlled depending on the determined hydrocarbon content and the determined mass flow. As a result, the mixture of fuel and gaseous hydrocarbons in the intake air can be adjusted as well as possible.

Eine Brennkraftmaschine umfasst mindestens einen Sensor zur Messung eines Kohlenwasserstoffgehalts eines Gasstroms in einer Leitung. Die Brennkraftmaschine umfasst eine Auswerteeinrichtung zum Auswerten mindestens eines Signals des mindestens einen Sensors. Mindestens eine Stellvorrichtung zur Steuerung des Gasstroms durch die Leitung ist mit der Auswerteeinrichtung gekoppelt und wird von der Auswerteeinrichtung in Abhängigkeit der ausgewerteten Signale gesteuert.An internal combustion engine comprises at least one sensor for measuring a hydrocarbon content of a gas stream in a line. The internal combustion engine comprises an evaluation device for evaluating at least one signal of the at least one sensor. At least one control device for controlling the gas flow through the line is coupled to the evaluation device and is controlled by the evaluation device as a function of the evaluated signals.

Der mindestens eine Sensor weist mindestens ein Heizelement zum Aufheizen eines Gasstroms und mindestens einen Temperatursensor auf. Der mindestens eine Sensor kann mindestens einen ersten und einen zweiten Temperatursensor aufweisen, wobei das mindestens eine Heizelement zwischen dem ersten Temperatursensor und dem zweiten Temperatursensor angeordnet ist. In diesem Aufbau wird relativ genau auf den Kohlenwasserstoffgehalt und dem Massenstrom rückgeschlossen.The at least one sensor has at least one heating element for heating a gas stream and at least one temperature sensor. The at least one sensor can have at least a first and a second temperature sensor, the at least one heating element being arranged between the first temperature sensor and the second temperature sensor. In this setup, the hydrocarbon content and the mass flow are inferred relatively precisely.

Die Stellvorrichtung ist an der Leitung angeordnet. Die Stellvorrichtung fasst ein in Abhängigkeit des ermittelten Kohlenwasserstoffgehalts und des ermittelten Massenstromes taktgesteuertes Ventil um. So ist die Steuerung des Gasstroms durch die Leitung relativ kostengünstig und genau realisierbar.The actuator is arranged on the line. The adjusting device includes a clock-controlled valve depending on the determined hydrocarbon content and the determined mass flow. The control of the gas flow through the line can thus be implemented relatively inexpensively and precisely.

Die Auswerteeinheit kann Teil einer Motorsteuerung zum Betrieb der Brennkraftmaschine sein.The evaluation unit can be part of an engine control for operating the internal combustion engine.

Weitere Merkmale, Vorteile und Weiterbildungen ergeben sich aus den nachfolgenden in Verbindung mit den Figuren 1 bis 4 erläuterten Beispielen. Es zeigen:

Figur 1
eine schematische Darstellung einer Brennkraftmaschine,
Figur 2
eine schematische Darstellung eines Sensors und eines Ventils in einer Leitung,
Figur 3
eine schematische Darstellung eines Sensors gemäß einer vom Erfindungsgegenstand abweichenden Ausführungsform,
Figur 4
ein Ablaufdiagramm eines Verfahrens.
Further features, advantages and further developments result from the following in connection with the Figures 1 to 4 explained examples. Show it:
Figure 1
1 shows a schematic illustration of an internal combustion engine,
Figure 2
1 shows a schematic representation of a sensor and a valve in a line,
Figure 3
1 shows a schematic representation of a sensor according to an embodiment that differs from the subject matter of the invention,
Figure 4
a flow chart of a method.

Figur 1 zeigt eine Brennkraftmaschine 100, die einen Treibstofftank 104, einen Verbrennungsmotor 112 sowie einen Kohlenwasserstofftank 106 aufweist. In dem Treibstofftank 104 ist Treibstoff 105 gelagert. Gasförmige Kohlenwasserstoffe 107 können über eine Leitung 108, die mit dem Treibstofftank 104 und dem Kohlenwasserstofftank 106 gekoppelt ist, aus dem Treibstofftank 104 in den Kohlenwasserstofftank 106 geleitet werden. Der Kohlenwasserstofftank ist über eine Leitung 109 mit dem Verbrennungsmotor 112 gekoppelt, insbesondere dem Ansaugtrakt des Verbrennungsmotors. Figure 1 10 shows an internal combustion engine 100 that has a fuel tank 104, an internal combustion engine 112 and a hydrocarbon tank 106. Fuel 105 is stored in the fuel tank 104. Gaseous hydrocarbons 107 can be directed from the fuel tank 104 into the hydrocarbon tank 106 via a line 108, which is coupled to the fuel tank 104 and the hydrocarbon tank 106. The hydrocarbon tank is coupled to the internal combustion engine 112 via a line 109, in particular the intake tract of the internal combustion engine.

Die Leitung 109 weist ein Ventil 102 sowie eine Mehrzahl von Kohlenwasserstoffsensoren 101 auf. Die Kohlenwasserstoffsensoren sind eingerichtet, einen Kohlenwasserstoffgehalt eines Gasstroms zu messen. Die Kohlenwasserstoffsensoren können zudem den Massenstrom der Kohlenwasserstoffe in dem Gasstrom messen. Es kann auch lediglich ein Kohlenwasserstoffsensor angeordnet sein, es können auch weitere Kohlenwasserstoffsensoren angeordnet sein, beispielsweise am Kohlenwasserstofftank 106. Die Kohlenwasserstoffsensoren können auch an weiteren Leitungen angeordnet sein, beispielsweise an der Leitung 108. Das Ventil ist eingerichtet, den Gasstrom an den Verbrennungsmotor zu unterbrechen. Der Gasstrom durch die Leitung 109 kann von dem Ventil 102 gesteuert werden. Es können auch mehrere Ventile angeordnet sein, beispielsweise zwei oder mehr Ventile. Auch an weiteren Leitungen können Ventile angeordnet sein, beispielsweise an der Leitung 108.The line 109 has a valve 102 and a plurality of hydrocarbon sensors 101. The hydrocarbon sensors are set up to measure a hydrocarbon content of a gas stream. The hydrocarbon sensors can also measure the mass flow of hydrocarbons in the gas stream. Only one hydrocarbon sensor can also be arranged, further hydrocarbon sensors can also be arranged, for example on the hydrocarbon tank 106. The hydrocarbon sensors can also be arranged on further lines, for example on line 108. The valve is set up to interrupt the gas flow to the internal combustion engine . The gas flow through line 109 can be controlled by valve 102. A plurality of valves can also be arranged, for example two or more valves. Valves can also be arranged on further lines, for example on line 108.

Das Ventil 102 ist über eine elektrische Leitung 111 mit einer Motorsteuerung 103 gekoppelt. Die Sensoren 101 sind über eine elektrische Leitung 110 mit der Motorsteuerung gekoppelt. Die Motorsteuerung 103, die eine Auswerteeinrichtung 114 aufweist, steuert die Ventile und kann Signale der Sensoren auswerten.The valve 102 is coupled to an engine control 103 via an electrical line 111. The sensors 101 are coupled to the engine control system via an electrical line 110. The engine controller 103, which has an evaluation device 114, controls the valves and can evaluate signals from the sensors.

Der Treibstoff 105 kann über eine Kraftstofffördereinheit über Kraftstoffleitungen zum Verbrennungsmotor 112 geführt werden, wo er über Einspritzventile 115 in den Ansaugtrakt eingespritzt wird und im Verbrennungsmotor zur Verbrennung kommt. Die Abgase des Verbrennungsprozesses werden durch einen Abgasstrang vom Motor weg gefördert. Im Abgasstrang ist eine Lambdasonde 116 angeordnet, die ein Verhältnis von Luft zu Treibstoff bestimmen kann. Dazu misst die Lambdasonde den Restsauerstoffgehalt im Abgas.The fuel 105 can be fed via a fuel delivery unit via fuel lines to the internal combustion engine 112, where it is injected into the intake tract via injection valves 115 and is combusted in the internal combustion engine. The exhaust gases from the combustion process are conveyed away from the engine by an exhaust system. A lambda probe 116 is arranged in the exhaust line and can determine a ratio of air to fuel. To do this, the lambda probe measures the residual oxygen content in the exhaust gas.

Aus dem Treibstoff 105, beispielsweise ein Benzin, verflüchtigen sich Kohlenwasserstoffe, beispielsweise Methan, Butan oder Propan. Die verschiedenen Kohlenwasserstoffketten weisen unterschiedliche Verdampfungstemperaturen auf, so dass abhängig von der Außentemperatur unterschiedliche Kohlenwasserstoffe aus dem flüssigen Treibstoff 105 ausgelöst werden. Je höher die Außentemperatur und damit die Temperatur des Treibstoffs 105 desto mehr Kohlenwasserstoffe gehen in die Gasphase über. Der Tank 104, in dem der Treibstoff 105 gelagert ist, ist gasdicht ausgeführt. Der Tankdeckel schließt einen Einfüllstutzen des Treibstofftanks gasdicht ab. Das kohlenwasserstoffhaltige Gasgemisch, das sich in den Tank 104 bildet, wird über die Leitung 108 in den Kohlenwasserstofftank 106 geführt.Hydrocarbons, for example methane, butane or propane, evaporate from the fuel 105, for example a gasoline. The different hydrocarbon chains have different evaporation temperatures, so that different hydrocarbons are released from the liquid fuel 105 depending on the outside temperature. The higher the outside temperature and thus the temperature of the fuel 105, the more hydrocarbons go into the gas phase. The tank 104, in which the fuel 105 is stored, is gas-tight. The filler cap closes a filler neck of the fuel tank in a gas-tight manner. The hydrocarbon-containing gas mixture that forms in the tank 104 is fed into the hydrocarbon tank 106 via the line 108.

Der Kohlenwasserstofftank kann ein Aktivkohlespeicherelement enthalten. Die ausgedampften Kohlenwasserstoffe werden von der Aktivkohle aufgenommen, gespeichert und bei Bedarf wieder abgegeben. Wenn der Kohlenwasserstofftank eine gewisse Menge an Kohlenwasserstoffen aufgenommen hat, kann er über die Leitung 109 entleert werden. Dazu wird in den Kohlenwasserstofftank von außen über ein Ventil 113 Luft eingeblasen, die die Kohlenwasserstoffe aufnimmt. Die kohlenwasserstoffhaltige Luft kann als Ansaugluft für den Verbrennungsmotor 112 verwendet werden und damit zur Verbrennung im Motor beitragen.The hydrocarbon tank may contain an activated carbon storage element. The evaporated hydrocarbons are absorbed by the activated carbon, stored and released again when necessary. When the hydrocarbon tank has taken up a certain amount of hydrocarbons, it can be piped 109 can be emptied. For this purpose, air is blown into the hydrocarbon tank from the outside via a valve 113, which absorbs the hydrocarbons. The hydrocarbon-containing air can be used as intake air for the internal combustion engine 112 and thus contribute to combustion in the engine.

Da durch die Kohlenwasserstoffe in der Ansaugluft dem Verbrennungsmotor eine gewisse Energiemenge zugeführt wird, kann über die Einspritzventile 115 entsprechend weniger Treibstoff eingespritzt werden. Zur Regelung dieses Verhältnisses werden der Kohlenwasserstoffgehalt der zugeführten Luft und der Massestrom durch die Leitung 109 über die Kohlenwasserstoffsensoren gemessen.Since a certain amount of energy is supplied to the internal combustion engine by the hydrocarbons in the intake air, correspondingly less fuel can be injected via the injection valves 115. To control this ratio, the hydrocarbon content of the supplied air and the mass flow through line 109 are measured via the hydrocarbon sensors.

Die Sensoren zur Messung eines Kohlenwasserstoffgehalts weisen beispielsweise ein Heizelement zum Aufheizen eines Gasstroms und einen Temperatursensor auf. Beispielsweise ist der Sensor auf einem Siliziumchip integriert. Der am Sensorelement vorbeiströmende Gasstrom wird aufgeheizt und anhand von Signalen des Temperatursensors, die von der Motorsteuerung insbesondere der Auswerteeinheit ausgewertet werden, kann die Wärmeleitfähigkeit beziehungsweise die Wärmekapazität des vorbeiströmenden Gases ermittelt werden. Daraus kann die Konzentration des Kohlenwasserstoffs in dem Gasstrom ermittelt werden, da diese proportional zu Wärmeleitfähigkeit beziehungsweise Wärmekapazität des Gases ist. Zudem kann der Massenstrom des durch die Leitung strömenden Gasstroms ermittelt werden.The sensors for measuring a hydrocarbon content have, for example, a heating element for heating a gas stream and a temperature sensor. For example, the sensor is integrated on a silicon chip. The gas stream flowing past the sensor element is heated and the thermal conductivity or the thermal capacity of the gas flowing past can be determined on the basis of signals from the temperature sensor, which are evaluated by the engine control unit, in particular by the evaluation unit. The concentration of the hydrocarbon in the gas stream can be determined from this, since this is proportional to the thermal conductivity or heat capacity of the gas. In addition, the mass flow of the gas stream flowing through the line can be determined.

Der Kohlenwasserstoffsensor kann auch mindestens eine Ultraschallquelle und mindestens einen Ultraschallempfänger aufweisen. Diese Sensoren sind so in der Leitung 109 angeordnet, dass Ultraschall durch den Gasstrom geschickt werden kann und von der Ultraschallquelle zum Ultraschallempfänger läuft. Ultraschall kann einmal in eine der Richtung des Gasstroms entgegengesetzte Richtung und einmal gleichgerichtet mit der Richtung des Gasstroms ausgesendet werden. Daraus kann auf eine Schallgeschwindigkeit in dem Gasgemisch und auf die Mediengeschwindigkeit geschlossen werden. Daraus kann auf den Kohlenwasserstoffgehalt und dem Massenstrom des Gasstroms geschlossen werden. Die mindestens eine Ultraschallquelle 301 und der mindestens einen Ultraschallempfänger 303 können auch als ein einziges Bauelement ausgeführt sein. Ein solcher Ultraschallwandler ist eingerichtet, als Antwort auf elektrische Signale Ultraschallwellen zu erzeugen. Er ist auch eingerichtet, aus empfangenen Ultraschallwellen elektrische Signale zu erzeugen. Der Ultraschallwandler kann elektrische Signale in akustische Signale wandeln und er kann akustische Signale in elektrische Signale wandeln.The hydrocarbon sensor can also have at least one ultrasound source and at least one ultrasound receiver. These sensors are arranged in line 109 such that ultrasound can be sent through the gas flow and runs from the ultrasound source to the ultrasound receiver. Ultrasound can be emitted once in a direction opposite to the direction of the gas flow and once in the same direction as the direction of the gas flow. From this, you can a speed of sound in the gas mixture and the speed of the media can be concluded. The hydrocarbon content and the mass flow of the gas flow can be concluded from this. The at least one ultrasound source 301 and the at least one ultrasound receiver 303 can also be designed as a single component. Such an ultrasonic transducer is set up to generate ultrasonic waves in response to electrical signals. It is also set up to generate electrical signals from received ultrasound waves. The ultrasonic transducer can convert electrical signals into acoustic signals and it can convert acoustic signals into electrical signals.

Die Auswerteeinheit 114 wertet die Signale der Sensoren aus, so dass die Konzentration an Kohlenwasserstoffen und der Massenstrom des Gasstroms durch die Leitung 109 bekannt ist. Damit ist bekannt, wie viel Energie in Form von gasförmigen Kohlenwasserstoffen dem Verbrennungsmotor 112 zugeführt wird. Die Motorsteuerung 103 steuert die Einspritzventile 115 entsprechend, so dass weniger Treibstoff eingespritzt wird, wenn mehr Kohlenwasserstoff über die Ansaugluft zugeführt wird. Die Menge an gasförmigem Kohlenwasserstoff kann über das Ventil 102 gesteuert werden. Das Ventil 102 wird beispielsweise über pulsweitenmodulierte Signale von der Motorsteuerung gesteuert. Das Ventil kann in Abhängigkeit mindestens eines Signals der Auswerteeinheit taktsteuerbar sein. Durch die Sensoren, die in Strömungsrichtung des Gasstroms dem Ventil 102 nachgeordnet sind, kann ermittelt werden, wie viel gasförmige Kohlenwasserstoffe durch das Ventil gelangen. Daraus kann auch der genaue Öffnungszeitpunkt des Ventils ermittelt werden. Der Aktivkohlefilter kann relativ schnell entleert werden, da die Steuerung relativ schnell arbeitet, insbesondere im Vergleich mit einer Steuerung, die auf Daten der Lambdasonde beruht.The evaluation unit 114 evaluates the signals from the sensors, so that the concentration of hydrocarbons and the mass flow of the gas flow through the line 109 are known. It is thus known how much energy is supplied to the internal combustion engine 112 in the form of gaseous hydrocarbons. The engine controller 103 controls the injection valves 115 accordingly, so that less fuel is injected when more hydrocarbon is supplied via the intake air. The amount of gaseous hydrocarbon can be controlled via valve 102. The valve 102 is controlled, for example, by pulse-width modulated signals from the engine control. The valve can be clock-controlled depending on at least one signal from the evaluation unit. The sensors, which are arranged downstream of the valve 102 in the direction of flow of the gas stream, can be used to determine how much gaseous hydrocarbons pass through the valve. The exact opening time of the valve can also be determined from this. The activated carbon filter can be emptied relatively quickly since the control works relatively quickly, in particular in comparison with a control which is based on data from the lambda sensor.

Die Menge an Treibstoff, die über die Einspritzventile 115 in den Verbrennungsmotor eingespritzt wird, wird nicht auf Grundlage von statischen Kennfeldern, die in der Motorsteuerung abgespeichert sind, gesteuert, sondern direkt durch die Sensoren und die Auswerteeinrichtung 114 bestimmt. Das Ventil 102 wird anhand dieser Daten angesteuert. So können auch Fertigungstoleranzen und Alterungseffekte des Ventils in der Steuerung des Ventils und der Steuerung anderer Bauteile, beispielsweise der Einspritzventile 115, berücksichtigt werden.The amount of fuel that is injected into the internal combustion engine via the injection valves 115 does not increase Controlled on the basis of static characteristic diagrams, which are stored in the engine control, but determined directly by the sensors and the evaluation device 114. The valve 102 is controlled based on this data. In this way, manufacturing tolerances and aging effects of the valve can also be taken into account in the control of the valve and the control of other components, for example the injection valves 115.

Figur 2 zeigt einen Sensor 200 und ein Ventil 204, die in einer Leitung 206 angeordnet sind. In der Leitung 206 wird ein Gas 205 geführt. Der Sensor 200 weist einen Temperatursensor 201 und einen weiteren Temperatursensor 203 auf, die jeweils auf einer Seite eines Heizelements 202 angeordnet sind. Der Sensor 200 ist eingerichtet, die Konzentration von Kohlenwasserstoff in dem Gas 205 zu messen. Der Sensor 200 ist weiterhin eingerichtet, den Massestrom von Kohlenwasserstoff in dem Gas 205 durch die Leitung 206 zu messen. Durch das Ventil 204 kann der Gasstrom durch die Leitung 206 gesteuert werden. Der Sensor 200 kann mit einer Auswerteeinrichtung gekoppelt sein, die beispielsweise Teil einer Motorsteuerung zum Betrieb einer Brennkraftmaschine ist. Figure 2 shows a sensor 200 and a valve 204, which are arranged in a line 206. A gas 205 is conducted in line 206. The sensor 200 has a temperature sensor 201 and a further temperature sensor 203, which are each arranged on one side of a heating element 202. The sensor 200 is configured to measure the concentration of hydrocarbon in the gas 205. Sensor 200 is further configured to measure the mass flow of hydrocarbon in gas 205 through line 206. The gas flow through line 206 can be controlled by valve 204. The sensor 200 can be coupled to an evaluation device, which is part of an engine control for operating an internal combustion engine, for example.

Der Sensor 200 ist beispielsweise auf einem Siliziumsubstrat integriert und kann weitere Elemente umfassen, beispielsweise eine Auswerteschaltung oder einen Analog-Digital-Wandler. Der Temperatursensor 201 und der Temperatursensor 203 können jeweils mehrere Temperaturfühler zum Messen einer Temperatur aufweisen. Das an dem Sensor 200 vorbeiströmende Gas 205 wird von dem Heizelement 202 definiert aufgeheizt. Der Temperatursensor 201, der stromaufwärts des Heizelements angeordnet ist, erfasst die Temperatur des Gasstroms bevor der Gasstrom aufgeheizt wird. Der weitere Temperatursensor 203, der stromabwärts des Heizelements 202 angeordnet ist, erfasst die Temperatur des aufgeheizten Gases. Über eine Differenz dieser Temperaturen kann auf die Wärmekapazität des Gases geschlossen werden. Aus der Summe dieser Temperaturen kann auf die Wärmeleitfähigkeit des Gases geschlossen werden. Daraus kann der Gehalt an Kohlenwasserstoffen im Gas 205 und der Massenstrom durch die Leitung 206 berechnet werden.The sensor 200 is integrated, for example, on a silicon substrate and can comprise further elements, for example an evaluation circuit or an analog-digital converter. The temperature sensor 201 and the temperature sensor 203 can each have a plurality of temperature sensors for measuring a temperature. The gas 205 flowing past the sensor 200 is heated in a defined manner by the heating element 202. The temperature sensor 201, which is arranged upstream of the heating element, detects the temperature of the gas stream before the gas stream is heated. The further temperature sensor 203, which is arranged downstream of the heating element 202, detects the temperature of the heated gas. The thermal capacity of the gas can be inferred from a difference in these temperatures. From the sum of these temperatures, the Thermal conductivity of the gas can be closed. From this, the hydrocarbon content in the gas 205 and the mass flow through the line 206 can be calculated.

Abhängig von diesen Daten kann das Ventil 204 gesteuert werden. Das Ventil 204 kann mit einer Motorsteuerung zum Betrieb einer Brennkraftmaschine, insbesondere der Auswerteeinrichtung der Motorsteuerung, gekoppelt sein. Das Ventil 204 wird in Abhängigkeit der ermittelten Kohlenwasserstoffkonzentration und der von dem Sensor ermittelten Masse an Kohlenwasserstoffen im Gasstrom gesteuert. Beispielsweise wird das Ventil über ein Pulsweiten moduliertes Signal gesteuert. Das Ventil 204 kann ein getaktetes Ventil sein, das beispielsweise mit einer Frequenz von 20 Hz getaktet ist. Über den Sensor 200 kann sehr genau festgestellt werden, wann und wie viel Kohlenwasserstoffe durch die Leitung 206 strömen. Durch den Sensor 200 kann sehr genau festgestellt werden, wann und wieweit das Ventil 204 geöffnet ist. Durch die Daten des Sensors 200 kann die Motorsteuerung beziehungsweise die Auswerteeinrichtung die Menge an Energie, die durch den Gasstrom bereitgestellt wird, möglichst exakt messen. Diese Information kann wiederum verwendet werden zur Steuerung des Ventils 204 und zur Steuerung von Einspritzventilen der Brennkraftmaschine, um das Verhältnis von Treibstoff zu Gas möglichst optimal zu steuern.Depending on this data, the valve 204 can be controlled. The valve 204 can be coupled to an engine control for operating an internal combustion engine, in particular the evaluation device of the engine control. The valve 204 is controlled as a function of the determined hydrocarbon concentration and the mass of hydrocarbons in the gas stream determined by the sensor. For example, the valve is controlled via a pulse width modulated signal. The valve 204 can be a clocked valve that is clocked, for example, at a frequency of 20 Hz. Sensor 200 can be used to determine very precisely when and how much hydrocarbons flow through line 206. Sensor 200 can determine very precisely when and to what extent valve 204 is open. The data from the sensor 200 enable the engine control or the evaluation device to measure the amount of energy provided by the gas flow as precisely as possible. This information can in turn be used to control the valve 204 and to control injection valves of the internal combustion engine in order to control the ratio of fuel to gas as optimally as possible.

Figur 3 zeigt eine vom Erfindungsgegenstand abweichende Ausführung eines Kohlenwasserstoffsensors 300. Der Sensor 300 weist eine Ultraschallquelle 301 auf, die ebenfalls als Ultraschallempfänger dienen kann. Der Sensor weist eine weitere Ultraschallquelle 303 auf, die ebenfalls als Ultraschallempfänger dienen kann. Die Ultraschallquellen 301 und 303 sind in einem definierten Abstand zueinander in einer Leitung 306 angeordnet. Durch die Leitung 306 strömt kohlenwasserstoffhaltiges Gas 305. An der Leitung ist ein Ultraschallreflektor 302 angeordnet. Die Ultraschallquellen und Empfänger können auch gegenüber liegend angeordnet sein, so dass kein Schallreflektor nötig ist. Figure 3 shows an embodiment of a hydrocarbon sensor 300 which differs from the subject matter of the invention. The sensor 300 has an ultrasound source 301, which can also serve as an ultrasound receiver. The sensor has a further ultrasound source 303, which can also serve as an ultrasound receiver. The ultrasound sources 301 and 303 are arranged at a defined distance from one another in a line 306. Hydrocarbon-containing gas 305 flows through line 306. An ultrasound reflector 302 is arranged on the line. The ultrasound sources and receivers can also be arranged opposite one another, so that a sound reflector is not necessary.

Von der Ultraschallquelle 301 wird ein Ultraschallimpuls ausgesendet, der über den Ultraschallreflektor 302 zum weiteren Ultraschallempfänger 303 gesendet wird. Die dabei benötigte Laufzeit kann von einer Auswerteeinrichtung gemessen werden. Nachdem der Ultraschallpuls von der ersten Ultraschallquelle 301 über den Ultraschallreflektor 302 zum weiteren Ultraschallempfänger 303 gelaufen ist, wird der weitere Ultraschallempfänger als Ultraschallquelle genützt. Die Ultraschallquelle 303 sendet einen Ultraschallimpuls aus, der in eine Richtung gegen den Gasstrom über den Ultraschallreflektor 302 zum ersten Schallempfänger 301 läuft. Die dazu benötigte Laufzeit wird von der Auswerteeinrichtung gemessen.An ultrasound pulse is emitted by the ultrasound source 301, which is sent via the ultrasound reflector 302 to the further ultrasound receiver 303. The runtime required can be measured by an evaluation device. After the ultrasound pulse has passed from the first ultrasound source 301 via the ultrasound reflector 302 to the further ultrasound receiver 303, the further ultrasound receiver is used as an ultrasound source. The ultrasound source 303 emits an ultrasound pulse which runs in one direction against the gas flow via the ultrasound reflector 302 to the first sound receiver 301. The runtime required for this is measured by the evaluation device.

Aus den gemessenen Laufzeiten zwischen den Ultraschallquellen und Ultraschallempfängern lässt sich die Schallgeschwindigkeit in dem Gasgemisch 305 und die Geschwindigkeit bestimmen, mit der das Gasgemisch durch die Leitung strömt. Dazu kann eine Summenlaufzeit und eine Differenzlaufzeit gebildet werden. In Abhängigkeit der ermittelten Daten kann mindestens ein Ventil gesteuert werden und dadurch der Gasstrom durch die Leitung 306 gesteuert werden. In Abhängigkeit dieser Daten kann auch mindestens ein Einspritzventil eines Verbrennungsmotors gesteuert werden. Durch die ermittelten Daten kann ein genaues Verhältnis von Treibstoff zu Gas in den Brennkammern des Verbrennungsmotors eingestellt werden.The speed of sound in the gas mixture 305 and the speed at which the gas mixture flows through the line can be determined from the measured transit times between the ultrasound sources and ultrasound receivers. For this purpose, a total term and a differential term can be created. Depending on the data determined, at least one valve can be controlled and the gas flow through line 306 can thereby be controlled. Depending on this data, at least one injection valve of an internal combustion engine can also be controlled. The data determined can be used to set an exact ratio of fuel to gas in the combustion chambers of the internal combustion engine.

In einem ersten Schritt S1 eines Verfahrens zum Betreiben einer Brennkraftmaschine wie in Figur 4 gezeigt, erfolgt der Start, der zeitnah zu einem Start der Brennkraftmaschine sein kann. In einem zweiten Schritt S2 wird der Kohlenwasserstoffgehalt eines durch eine Leitung strömenden Gasstroms ermittelt. In dem Schritt S2 wird zudem der Massenstrom des durch die Leitung strömenden Gasstroms ermittelt. In einem dritten Schritt S3 wird mindestens eine Stellvorrichtung abhängig von dem ermittelten Kohlenwasserstoffgehalt und dem ermittelten Massenstrom gesteuert. Die Stellvorrichtung kann ein Ventil umfassen, das in Abhängigkeit von einem pulsweiten modulierten Signal einer Auswerteeinrichtung taktsteuerbar ist. In Schritt S3 kann ein Ventil gesteuert werden, so dass steuerbar ist, wie viel gasförmiger Kohlenwasserstoff der Brennkraftmaschine zugeführt wird. In Schritt S3 kann die Treibstoffzufuhr an den Verbrennungsmotor gesteuert werden. Das Steuern der Treibstoffzufuhr ist abhängig von dem ermittelten Kohlenwasserstoffgehalt und dem ermittelten Massenstrom. Zwischen dem Schritt S2 und dem Schritt S3 besteht eine ständige Rückkopplung. Das Ventil kann abhängig von dem ausgewerteten Signal des Sensors gesteuert werden. Der Sensor kann das Steuern des Ventils überprüfen, indem er den Kohlenwasserstoffgehalt und den Massenstrom des Gasstroms stromabwärts des Ventils misst. Dadurch kann die Funktionsfähigkeit des Ventils kontrolliert werden, indem die gemessen Daten mit gespeicherten Soll-Daten verglichen werden.In a first step S1 of a method for operating an internal combustion engine as in Figure 4 shown, the start takes place, which can be close to a start of the internal combustion engine. In a second step S2, the hydrocarbon content of a gas stream flowing through a line is determined. In step S2, the mass flow of the gas flow flowing through the line is also determined. In a third step S3, at least one control device is controlled as a function of the determined hydrocarbon content and the determined mass flow. The adjusting device can comprise a valve which is modulated as a function of a pulse width Signal of an evaluation device is clock controllable. In step S3, a valve can be controlled so that it can be controlled how much gaseous hydrocarbon is supplied to the internal combustion engine. In step S3, the fuel supply to the internal combustion engine can be controlled. The control of the fuel supply depends on the determined hydrocarbon content and the determined mass flow. There is constant feedback between step S2 and step S3. The valve can be controlled depending on the evaluated signal from the sensor. The sensor can check valve control by measuring the hydrocarbon content and mass flow of gas flow downstream of the valve. The functionality of the valve can thus be checked by comparing the measured data with stored target data.

Claims (6)

  1. Method for operating an internal combustion engine (100), which has at least one sensor (101) for measuring a hydrocarbon content of a gas flow in a line (109), comprising:
    - determining the hydrocarbon content of the gas flow flowing through the line (109);
    - determining the mass flow rate of the gas flow flowing through the line (109);
    - controlling at least one actuating device (102), which comprises a valve which is arranged on the line (109), for controlling the gas flow through the line, dependent on the hydrocarbon content determined and the mass flow rate determined,
    - evaluating at least one signal of at least one temperature sensor (203) that the at least one sensor (101; 200) has, the hydrocarbon content and the mass flow rate being determined from the at least one signal.
  2. Method according to Claim 1, comprising: evaluating at least one signal of at least one semiconductor device which is integrated in the at least one sensor (101).
  3. Method according to Claim 1 or 2, comprising: controlling the fuel supply to an engine (112), dependent on the hydrocarbon content determined and the mass flow rate determined.
  4. Internal combustion engine (100), comprising:
    - at least one sensor (101) for measuring a hydrocarbon content of a gas flow in a line (109);
    - an evaluating device (114) for evaluating at least one signal of the at least one sensor (101; 200);
    - at least one actuating device (102) for controlling the gas flow through the line (109), which is coupled to the evaluating device and is controlled by the evaluating device in dependence on the signals evaluated,
    in which the at least one sensor (101; 200) has at least one heating element (202) for heating up a gas flow and at least one temperature sensor (203), the at least one sensor (101; 200) being designed for determining the hydrocarbon content and the mass flow rate and the actuating device (102) comprising a valve which is clock-controlled in dependence on the hydrocarbon content determined and the mass flow rate determined and which is arranged on the line.
  5. Internal combustion engine according to Claim 4, in which the at least one sensor (101; 200) has at least a first (201) and a second (203) temperature sensor, the at least one heating element (202) being arranged between the first temperature sensor (201) and the second temperature sensor (203) .
  6. Internal combustion engine according to one of Claims 4 to 5, in which the evaluation unit (114) is part of an engine control module (105) for operating the internal combustion engine.
EP09780502.2A 2008-07-14 2009-07-13 Internal combustion engine and method for operating an internal combustion engine of said type Active EP2304209B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008033058A DE102008033058A1 (en) 2008-07-14 2008-07-14 Internal combustion engine and method for operating such an internal combustion engine
PCT/EP2009/058911 WO2010007019A2 (en) 2008-07-14 2009-07-13 Internal combustion engine and method for operating an internal combustion engine of said type

Publications (2)

Publication Number Publication Date
EP2304209A2 EP2304209A2 (en) 2011-04-06
EP2304209B1 true EP2304209B1 (en) 2020-03-04

Family

ID=41262227

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09780502.2A Active EP2304209B1 (en) 2008-07-14 2009-07-13 Internal combustion engine and method for operating an internal combustion engine of said type

Country Status (4)

Country Link
US (1) US20110137540A1 (en)
EP (1) EP2304209B1 (en)
DE (1) DE102008033058A1 (en)
WO (1) WO2010007019A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008031649A1 (en) * 2008-07-04 2010-01-14 Continental Automotive Gmbh Internal combustion engine and method for operating such an internal combustion engine
DE102010048311A1 (en) 2010-10-14 2012-04-19 Continental Automotive Gmbh Method and device for operating an internal combustion engine
EP2843214B1 (en) * 2013-05-29 2021-06-23 Mems Ag Method, sensor and control device for controlling gas-powered energy conversion systems
US20160131055A1 (en) * 2014-08-29 2016-05-12 GM Global Technology Operations LLC System and method for determining the reid vapor pressure of fuel combusted by an engine and for controlling fuel delivery to cylinders of the engine based on the reid vapor pressure
US10202914B2 (en) * 2015-09-01 2019-02-12 Ford Global Technologies, Llc Method to determine canister load
DE102017209127A1 (en) * 2017-05-31 2018-12-06 Robert Bosch Gmbh Method for calculating a mass flow from a tank ventilation system into a suction pipe of an internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10327978A1 (en) * 2003-06-23 2005-01-20 Volkswagen Ag Process for determining the quality of a fuel combusted in an IC engine of a vehicle comprises using a calculating device which is arranged in the vehicle

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1493697A (en) * 1974-11-01 1977-11-30 Nissan Motor Control system for promoting catalytic removal of noxious components from exhaust gas of internal combustion engine
FR2467388A1 (en) * 1979-10-12 1981-04-17 Thomson Csf DEVICE FOR MEASURING FLUID FLOW AND AIR FLOW SENSOR SYSTEM IN AN INTERNAL COMBUSTION ENGINE USING SUCH A DEVICE
US4754650A (en) * 1983-07-29 1988-07-05 Panametrics, Inc. Apparatus and methods for measuring fluid flow parameters
DE59010261D1 (en) * 1990-09-28 1996-05-09 Siemens Ag Ultrasonic (US) flow meter installation unit for installation in a measuring tube
US5277070A (en) * 1991-08-01 1994-01-11 Xecutek Corporation Ultrasonic gas flow measurement method and apparatus
DE19509310C2 (en) * 1995-03-15 2001-02-08 Iav Motor Gmbh Method and device for relieving the absorption memory of a tank ventilation in internal combustion engines
JP3511722B2 (en) * 1995-03-20 2004-03-29 三菱電機株式会社 Air-fuel ratio control device for internal combustion engine
US5625140A (en) * 1995-12-12 1997-04-29 Lucent Technologies Inc. Acoustic analysis of gas mixtures
US5823171A (en) * 1997-04-03 1998-10-20 Ford Global Technologies, Inc. Engine control system for an engine coupled to a fuel vapor recovery
US6167877B1 (en) * 1999-01-15 2001-01-02 Daimlerchrysler Corporation Method of determining distribution of vapors in the intake manifold of a banked engine
US6237575B1 (en) * 1999-04-08 2001-05-29 Engelhard Corporation Dynamic infrared sensor for automotive pre-vaporized fueling control
JP4050857B2 (en) * 1999-04-27 2008-02-20 矢崎総業株式会社 Fluid discrimination device and flow rate measuring device
EP1194745B1 (en) * 1999-07-02 2007-09-19 Weatherford/Lamb, Inc. Flow rate measurement using unsteady pressures
JP2001124745A (en) * 1999-08-16 2001-05-11 Ngk Spark Plug Co Ltd Measuring method for propagation time of ultrasonic waves, measuring method for pressure of gas, measuring method for flow rate of gas and gas sensor
US6499476B1 (en) * 2000-11-13 2002-12-31 General Motors Corporation Vapor pressure determination using galvanic oxygen meter
DE10060350A1 (en) * 2000-12-04 2002-06-06 Mahle Filtersysteme Gmbh Ventilation device of the fuel tank of an internal combustion engine
JP2002243536A (en) * 2001-02-19 2002-08-28 Ngk Spark Plug Co Ltd Ultrasonic wave propagation time measuring method and gas concentration sensor
US6695895B2 (en) * 2001-05-02 2004-02-24 Toyota Jidosha Kabushiki Kaisha Fuel vapor handling apparatus and diagnostic apparatus thereof
EP1391703B1 (en) * 2002-08-22 2007-01-24 Ems-Patent Ag Thermal gas flow measuring device with gas quality indicator
EP1411355A1 (en) * 2002-10-18 2004-04-21 Emerson Electric Co. Method and device for determining a characteristic value that is representative of the condition of a gas
US7254493B1 (en) * 2004-12-30 2007-08-07 The United States Of America, As Represented By The Secretary Of Agriculture Pressure transducer based fluid velocity sensor
EP1717566A1 (en) * 2005-04-25 2006-11-02 Mettler-Toledo AG Thermoanalytical sensor
JP4790405B2 (en) * 2005-12-16 2011-10-12 三菱電機株式会社 Thermal flow sensor
DE602006019688D1 (en) * 2006-03-31 2011-03-03 Sensirion Holding Ag Flow sensor with flow-adaptable analog-to-digital converter
DE102007002188B4 (en) * 2007-01-16 2012-12-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Hybrid vehicle
EP1965179B1 (en) * 2007-02-28 2017-04-12 Sensirion Holding AG Flow detector device with self check
DE102007033144B4 (en) * 2007-07-13 2020-09-24 Vitesco Technologies GmbH Sensor for measuring the hydrocarbon content in a gas flow in a purge line
DE102007046482B4 (en) * 2007-09-28 2009-07-23 Continental Automotive Gmbh Method and device for correcting the fuel concentration in the regeneration gas flow of a tank ventilation device
DE102008034487A1 (en) * 2008-07-24 2010-02-04 Continental Automotive Gmbh Method for rapid emptying of the activated carbon filter with inclusion of a HC sensor (concentration change)
US7942134B2 (en) * 2009-03-12 2011-05-17 Ford Global Technologies Llc Evaporative emission system and method for controlling same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10327978A1 (en) * 2003-06-23 2005-01-20 Volkswagen Ag Process for determining the quality of a fuel combusted in an IC engine of a vehicle comprises using a calculating device which is arranged in the vehicle

Also Published As

Publication number Publication date
EP2304209A2 (en) 2011-04-06
WO2010007019A2 (en) 2010-01-21
DE102008033058A1 (en) 2010-02-04
WO2010007019A3 (en) 2010-07-22
US20110137540A1 (en) 2011-06-09

Similar Documents

Publication Publication Date Title
EP2304209B1 (en) Internal combustion engine and method for operating an internal combustion engine of said type
EP2331802B1 (en) Apparatus for measuring a hydrocarbon concentration and internal combustion engine
DE102008046514B4 (en) Method, apparatus and system for operating an internal combustion engine
DE102007033144B4 (en) Sensor for measuring the hydrocarbon content in a gas flow in a purge line
DE112011103454B4 (en) Method and device for operating an internal combustion engine
DE102017103863B4 (en) Control unit and control method for an internal combustion engine
DE102012113108B4 (en) VEHICLE HAVING A SYSTEM AND METHOD FOR DIAGNOSING SECONDARY AIR INFLATION DEVICE
DE102007042086B4 (en) Test method for an exhaust gas probe of an internal combustion engine, in particular for a lambda probe
DE10330106B4 (en) Failure detection device for an internal combustion engine
WO2008095906A1 (en) Diagnostic method and device for operating an internal combustion engine
DE102014221918A1 (en) Sensor structure for an EVAP hydrocarbon concentration and flow rate
DE102008036418A1 (en) Method and apparatus for controlling exhaust aftertreatment
EP2307690B1 (en) Internal combustion engine and method for operating an internal combustion engine of this type
EP2373512B1 (en) Tank ventilation system
EP1091106A2 (en) Method for determining engine exhaust backpressure at a turbine
DE102015100205A1 (en) Reducing agent supplying device
DE102005054735A1 (en) Method for operation of internal-combustion engine, involves validation of signal of temperature sensor with signal of lambda probe section on preset connection
DE102006026739A1 (en) Internal combustion engine e.g. diesel internal combustion engine, operating method, involves detecting intact or defective nitrogen oxide sensor or ammonia sensor or intact or defective controller
DE10260322A1 (en) Method and device for determining the exhaust gas recirculation mass flow of an internal combustion engine
DE102018112731A1 (en) Method for controlling a control valve
DE102015100203A1 (en) Reducing agent supplying device
WO2000025011A1 (en) Method and device for diagnosing exhaust gas recirculation of an internal combustion process
DE10126520C2 (en) Method and device for the quantitative determination of fuel outgassing in a fuel tank system
DE102011003108B4 (en) Checking an exhaust flap
DE102020215507A1 (en) Exhaust gas aftertreatment arrangement and method for aftertreatment of an exhaust gas of an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110214

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WILDGEN, ANDREAS

Inventor name: WEIGL, MANFRED

Inventor name: HEINRICH, STEPHAN

Inventor name: BIERL, RUDOLF

Inventor name: RODATZ, PAUL

Inventor name: MAI, WOLFGANG

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120220

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191002

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VITESCO TECHNOLOGIES GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1240640

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009016130

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200304

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: VITESCO TECHNOLOGIES GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200605

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200704

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009016130

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

26N No opposition filed

Effective date: 20201207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200713

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200713

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502009016130

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200713

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1240640

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009016130

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230724

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 15

Ref country code: DE

Payment date: 20230731

Year of fee payment: 15