EP2293381B1 - Antennenanordnung - Google Patents

Antennenanordnung Download PDF

Info

Publication number
EP2293381B1
EP2293381B1 EP09011000.8A EP09011000A EP2293381B1 EP 2293381 B1 EP2293381 B1 EP 2293381B1 EP 09011000 A EP09011000 A EP 09011000A EP 2293381 B1 EP2293381 B1 EP 2293381B1
Authority
EP
European Patent Office
Prior art keywords
circuit board
antenna
narrow
hole
narrow side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09011000.8A
Other languages
English (en)
French (fr)
Other versions
EP2293381A1 (de
Inventor
Wolfgang Dörr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi International Operations Luxembourg SARL
Original Assignee
Delphi International Operations Luxembourg SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi International Operations Luxembourg SARL filed Critical Delphi International Operations Luxembourg SARL
Priority to EP09011000.8A priority Critical patent/EP2293381B1/de
Priority to US12/868,113 priority patent/US20110050506A1/en
Priority to CN201010267410.4A priority patent/CN102005642B/zh
Publication of EP2293381A1 publication Critical patent/EP2293381A1/de
Application granted granted Critical
Publication of EP2293381B1 publication Critical patent/EP2293381B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49016Antenna or wave energy "plumbing" making
    • Y10T29/49018Antenna or wave energy "plumbing" making with other electrical component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49165Manufacturing circuit on or in base by forming conductive walled aperture in base

Definitions

  • the present invention relates to an antenna assembly comprising a printed circuit board and an antenna carried by the printed circuit board.
  • Such antenna arrangements are basically known and are used, for example, as transmitting antennas in hand transmitters or electronic keys with which, for example, Motor vehicles can be locked and unlocked remotely or garage doors can be opened and closed.
  • WO 2004/034512 A1 discloses an antenna arrangement according to the preamble of claim 1.
  • US 2007/0279879 A1 discloses a similar antenna arrangement.
  • US 2006/0238421 A1 discloses an antenna assembly having an antenna portion disposed on an upper side and an underside of a printed circuit board, wherein the upper and lower antenna portions are electrically connected to one another by a plurality of vias.
  • GB 2 357 905 A and DE 196 14 362 C1 each reveal similar antenna arrangements.
  • the known antenna arrangements prove to be disadvantageous in that they have a comparatively low antenna efficiency. That is, the useful transmission power radiated by the antenna is relatively small compared to the power consumption of the antenna required for this purpose.
  • the present invention is therefore based on the object to provide an antenna arrangement of the type mentioned, which has an increased antenna efficiency.
  • the antenna arrangement according to the invention comprises a printed circuit board which has an upper side and a lower side, and an antenna, in particular a ring antenna, which is supported by the printed circuit board and which comprises at least one electrically conductive antenna section which is arranged on a narrow side of the printed circuit board which adjoins the upper side and / or lower side is.
  • the efficiency of the antenna arrangement is impaired, in particular, by line losses in the line path of the antenna and by dielectric losses in the dielectric material of the circuit board.
  • the reason for the problem of high line losses is not least the skin effect, which is particularly pronounced at frequencies suitable for the operation of the antenna arrangement.
  • the skin effect refers to the phenomenon that an alternating current flowing inside a conductor increasingly counteracts eddy currents that are induced by the alternating current inside the conductor and thus reduce the net current flow, so that the current flow from the center of the conductor to the edge the head is relocated.
  • essentially only the edge of the conductor contributes to the current conduction, and the effective resistance of the conductor increases.
  • the power is not very efficient conducts, because the surface of the circuit board and thus also the conductor in this edge region usually have a high roughness and the current path is extended accordingly in this area.
  • the printed circuit board carrying the antenna preferably consists entirely of electrically nonconductive, dielectric material.
  • the circuit board may be laminated from a plurality of dielectric layers.
  • the inventive construction of a conductive antenna section on a narrow side of the circuit board creates an electrical current path with good power line properties and thus reduces the line losses incurred by the antenna.
  • An advantage of a narrow side mounted conductive antenna section here is that the antenna section itself does not take up space on the top or bottom. Thus, even with little space on the top and bottom of the circuit board, a relatively large electrically conductive antenna section can be realized and thus increased conductivity of the antenna can be achieved.
  • a narrow-side antenna section is particularly advantageous if the antenna is an annular antenna and has a current path which extends at least substantially annularly in the plane of the printed circuit board.
  • a narrow-side antenna section here has at least approximately the shape of a jacket segment, resulting in a particularly good Abstrahls characterizing leads and contributes to increased antenna efficiency.
  • the antenna arrangement according to the invention thus has an improved antenna efficiency, which ultimately not only increases the antenna range, but also the energy consumption is reduced.
  • the arranged on the narrow side conductive antenna portion preferably comprises a metallic material, in particular copper or gold.
  • the conductive narrow-side antenna section is preferably a metallic layer, arranged on the narrow side, with a substantially constant thickness, which is, for example, several 10 ⁇ m.
  • the narrow side of the printed circuit board adjoins the upper side and / or the lower side of the printed circuit board.
  • the narrow side may extend substantially perpendicular to the top or bottom of the circuit board. It is preferable if the narrow side extends from the upper side to the lower side of the printed circuit board and thus thus through the printed circuit board. In this case, the narrow side provides a particularly large area for the arranged on the narrow side antenna section.
  • the narrow side defines a hole extending through the printed circuit board through the printed circuit board, which is preferably elongate. If the narrow-side antenna section borders on a hole or an outer side of the printed circuit board, then there is less dielectric printed circuit board material in the direct vicinity of the narrow-side antenna section, whereby the dielectric losses of the electromagnetic field generated by a current flowing in the narrow-side antenna section are reduced.
  • such narrow sides can be particularly easily formed, for example by holes are formed in the circuit board by a milling process or by the outer contour of the circuit board is cut by a milling process accordingly.
  • the narrow-side antenna section does not form a closed electrically conductive ring.
  • the narrow side to which the antenna section is attached defines a hole of the circuit board, and the antenna section is attached only to a portion of the narrow side defining the hole without forming a closed ring in the hole.
  • Such a narrow-side antenna section can be produced in a simple manner by completely coating a narrow side delimiting a hole with electrically conductive material and subsequently removing unwanted electrically conductive material.
  • an antenna arrangement which has only a narrow-side antenna section and no upper or lower-side antenna sections
  • the antenna section arranged on the narrow side is connected according to the invention with an antenna section running on the upper side and with an antenna section running on the lower side.
  • the narrow-side antenna section may be connected along its at least approximately entire length to the antenna section running on the upper or lower side.
  • two narrow-side antenna sections are connected on opposite sides of an antenna section running on the top side or of an antenna section running on the underside.
  • the two narrow-side and the upper and / or lower-side antenna section thus form two angles, in the peaks of which higher currents can flow, whereby the conductivity of the antenna section as a whole is increased even further.
  • the antenna section arranged on the narrow side extends through the printed circuit board and connects an antenna section arranged on the upper side of the printed circuit board to an antenna section arranged on the lower side of the printed circuit board.
  • an upper-side and a lower-side antenna section are interconnected by two opposite narrow-side antenna sections. In this way, four antenna section angles are formed and an even higher current flow and antenna efficiency are achieved.
  • the antenna section arranged on the narrow side interrupts one of the top side and bottom side of the printed circuit board first antenna section electrically bridged.
  • the narrow-side antenna section additionally connect the first antenna section to a second antenna section extending on the lower or upper side.
  • An interruption of the antenna portion of the top or bottom of the circuit board may serve to accommodate other circuit parts mounted on the top or bottom of the circuit board, such as an interconnect passing through the interruption to interconnect various circuit parts or components.
  • the circuit board may carry other circuit parts, e.g. be made in common process steps with the antenna, for example, connecting lines and pads for more arranged on the circuit board circuit parts.
  • antenna sections arranged on the top and / or bottom side of the printed circuit board can be connected in a common process step with the further circuit parts, such as e.g. Connecting lines and pads are formed.
  • Such further circuit parts may, for example, belong to a drive circuit which applies a drive signal to the antenna mounted on the printed circuit board or, in the case of a receive antenna, to a receive and evaluate circuit.
  • the antenna is preferably driven with frequencies in the range between 300 and 1000 MHz.
  • Another object of the invention is a method having the features of claim 3.
  • the inventive method may in particular for producing an antenna arrangement of the type described above. The advantages explained above thus apply accordingly.
  • an electrically conductive material is attached to a narrow side of the printed circuit board which adjoins the upper side and / or the underside of the printed circuit board.
  • the narrow side of the circuit board is produced by removing printed circuit board material, in particular by forming a, in particular elongated, hole in the circuit board, for example by a drilling or milling process.
  • Drilling and milling processes for printed circuit boards are known per se and can be accomplished in a simple manner with available tools and machines.
  • a plurality of holes are produced in the circuit board along the desired antenna track for a plurality of narrow-side antenna sections.
  • Known drilling or milling machines can produce such a variety of holes with high precision and high speed using an electronic layout, such as a CAD layout.
  • the co-generation of via holes and narrow side (s) simplifies the manufacturing process for the antenna assembly by not requiring a separate process step for removing printed circuit board material to produce the narrow side (s).
  • the via holes and the narrow side (s) can thus be produced in particular in one and the same machine tool, without the circuit board having to be temporarily removed from the working area of the machine.
  • the layout file for creating the via holes can be simply added to the geometric data for drilling and / or milling to create the narrow side (s).
  • the electrically conductive material is attached by a deposition process on the narrow side, in particular by means of a galvanic process.
  • Electrodeposition processes can be used to produce layers of electrically conductive material on a narrow side which have high quality, high electrical conductivity and good adhesion to the printed circuit board material.
  • copper and / or gold is deposited and more preferably a layer is deposited with at least approximately constant thickness, which may be, for example, between 30 and 100 microns.
  • the narrow sides and the side walls delimiting the via holes are simultaneously coated with electrically conductive material in a common deposition process, since this does not require a separate deposition process for generating the antenna sections on the narrow sides.
  • electrically conductive material attached to the narrow sides and / or adjacent circuit board material is subsequently removed in regions, for example by a milling process.
  • unneeded electrically conductive material can be removed, e.g. electrically conductive material, which faces away from the antenna section, or reduce the weight and space requirement of the circuit board.
  • removal of printed circuit board material can reduce dielectric losses.
  • Fig. 1 to 6 show an antenna arrangement according to the invention in different stages of their production.
  • Fig. 1a shows a plan view of the top of a circuit board 10, which comprises an upper and a lower side, on each of which a copper layer 14 has been applied.
  • Fig. 1a shows holes 12 for through-connections 22 (vias, see Fig. 3 to 6 ) between circuit parts on the upper side and circuit parts on the underside of the printed circuit board 10.
  • the via holes 12 can be produced, for example, by a drilling or milling process.
  • Side walls 11 of the printed circuit board 10 delimit the via holes 12.
  • Fig. 1b shows the circuit board 10 of Fig. 1a in a cross section along the line AA 'of Fig. 1a ,
  • the copper layers 14, 14 ' can be seen, which are respectively applied to the top side and the bottom side of the printed circuit board 10.
  • the thickness s of the copper layers 14, 14 'compared to the thickness d of the printed circuit board 10 is exaggerated.
  • the thickness d of the printed circuit board 10 may for example be about 1.5 mm and the thickness s of the copper layers 14, 14 'each about 50 microns.
  • Fig. 2a shows the circuit board 10 of Fig. 1 after slots 16 have been created in the circuit board 10.
  • the elongated holes 16 extend along desired antenna conductor tracks and are bounded in each case circumferentially by a narrow side 18 of the printed circuit board 10.
  • two elongated holes 16 run parallel to one another on opposite sides of an antenna conductor track, so that an elongate cantilevered web 19 of the printed circuit board is formed by two adjacent oblong holes 16 10 is limited, which can wear a top and bottom antenna section 24, 24 '.
  • the slots 16 are produced by a milling process.
  • the elongated holes 16 are milled perpendicular to the top and bottom of the circuit board 10, so that the elongated holes 16 defining narrow sides 18 and the top or bottom of the circuit board 10 form a substantially right angle.
  • the drilling process for the via holes 12 and the milling process for the elongated holes 16 can be performed in a common process step in the same machine.
  • the side walls 11 of the via holes 12 and the narrow sides 18 defined by the elongated holes 16 are coated by a deposition process with a conductive material, in the present embodiment with copper.
  • Fig. 3a shows a plan view of the arrangement of Fig. 2a after the deposition, which can be done in a conventional manner by galvanization in a galvanic bath.
  • the thickness of the deposited copper material may be several tens of microns, for example.
  • the deposited on the narrow sides 18 copper material forms on the one hand narrow-side antenna sections 20 and the other unwanted or unneeded copper material 20 ', namely in the areas of the slots 16 delimiting narrow sides 18 which are remote from the desired narrow-side antenna section 20.
  • the deposited in the via holes 12 copper forms the through-connections 22 (vias).
  • Fig. 3b shows that the cross section of a free-carrying printed circuit board web 19 is surrounded by conductive material all around, namely the copper layers 14, 14 'and the narrow-side antenna sections 20.
  • the conductive material 14, 14', 20 surrounding the free-standing web 19 forms by its geometry an antenna current path with increased conductivity.
  • the copper layer 14 on the upper side and the copper layer 14 'on the underside of the printed circuit board 10 are patterned in a suitable manner, for example by an etching process known per se, on the upper side and the lower side of the printed circuit board 10 electrically conductive antenna sections 24, 24 'as well as electrical connection lines 28 and electrical pads 26 for in addition to the antenna on the circuit board 10 to produce circuit parts ( Fig. 4 ).
  • Fig. 4a, b . c show the printed circuit board 10 after patterning the copper layers 14, 14 '.
  • Fig. 4a shows, on the upper side of the circuit board 10, an approximately annular antenna portion 24 is formed, which extends in regions along the narrow sides 18 of the slots 16 and thereby with the on the narrow sides 18 deposited conductive material of the narrow-side antenna sections 20 is in electrical contact.
  • the two antenna sections 24, 24 'on the top and the bottom are as in Fig. 4b shown connected via the narrow-side antenna sections 20 with each other.
  • the antenna conductor tracks 24, 24 'on the upper and lower sides of the printed circuit board 10 together with the narrow-side antenna sections 20 form a substantially annular antenna which, in particular in the region of the cantilevered webs 19, increases the conductivity due to the conductive material deposited on the narrow sides 18 dielectric losses due to the formation of the elongated holes 16 in the dielectric material of the printed circuit board 10 has.
  • Fig. 4a a plurality of electrical connection surfaces 26 produced in the structuring step and electrical connection lines 28 are shown. These pads 26 and connecting lines 28 allow to attach electronic components for forming a driving circuit for driving the antenna on the printed circuit board 10.
  • the antenna is connected to the drive circuit via the connection surface 26a and via a connection surface 26b located on the back side of the circuit board 10, which serves as the reference potential for the circuit.
  • electronic components for example SMD components
  • SMD components can be used in a manner known per se attached to the pads 26 and interconnected via the electrical connection lines 28.
  • circuit parts on the upper side of the printed circuit board 10 are connected to one another by the interconnections 22 produced before the patterning process.
  • the assembly of the components for forming the drive circuit can be carried out before or after a trimming step following the structuring step or also between two sub-steps of the trimming step. The trimming step is explained below.
  • FIG. 5 schematically shows the cutting lines 30a, b, along which the circuit board 10 is cut.
  • the cutting line 30a the outer contour of the circuit board 10 is defined so that the cutting line 30a adjacent narrow-side antenna portions 20 of the outer slots 16 now form the outer sides of the circuit board 10 and portions of the antenna sections 24, 24 'on the top and bottom directly to the Outside of the circuit board 10 adjacent. Unnecessary electrically conductive material 20 'and unnecessary printed circuit board material is removed in this case.
  • the outer contour of the printed circuit board 10 can also be cut by passing printed circuit board material extending between an outer slot 16 and an outer side of the printed circuit board 10 two cut out between the outside of the circuit board 10 and the slot 16 guided cuts.
  • the printed circuit board 10 can preferably be roughly cut to an outer contour, which is something before the structuring of the copper layers 14, 14 ' greater than its gage, so that thin webs of the circuit board 10 remain, extending between the outer slots 16 and the outside of the circuit board 10. These are then cut out in a further trimming step following the structuring.
  • Fig. 6a and b show the finished antenna assembly after cutting.
  • the electrical conductivity of the antenna is increased by the narrow-side antenna sections 20, and the dielectric losses are reduced by the removal of dielectric material.
  • outer narrow sides 18 of the printed circuit board 10 for narrow-side sections 20 of the antenna moreover, a maximum antenna diameter is achieved with a minimum space requirement of the antenna arrangement.

Landscapes

  • Details Of Aerials (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Antennenanordnung mit einer Leiterplatte und einer durch die Leiterplatte getragenen Antenne.
  • Derartige Antennenanordnungen sind grundsätzlich bekannt und kommen beispielsweise als Sendeantennen in Handsendern oder elektronischen Schlüsseln zum Einsatz, mit denen z.B. Kraftfahrzeuge ferngesteuert ver- und entriegelt oder Garagentore geöffnet und geschlossen werden können.
  • WO 2004/034512 A1 offenbart eine Antennenanordnung gemäß dem Oberbegriff des Anspruchs 1. US 2007/0279879 A1 offenbart eine ähnliche Antennenanordnung.
  • US 2006/0238421 A1 offenbart eine Antennenanordnung mit einem auf einer Oberseite und einem auf einer Unterseite einer Leiterplatte angeordneten Antennenabschnitt, wobei der obere und der untere Antennenabschnitt durch mehrere Vias elektrisch miteinander verbunden sind.
    GB 2 357 905 A und DE 196 14 362 C1 offenbaren jeweils ähnliche Antennenanordnungen.
  • Die bekannten Antennenanordnungen erweisen sich insofern als nachteilig, als sie einen vergleichsweise geringen Antennenwirkungsgrad aufweisen. Das heißt, die von der Antenne ausgestrahlte nutzbare Sendeleistung ist im Vergleich zu der dafür notwendigen Leistungsaufnahme der Antenne relativ gering.
  • Dies führt bei den bekannten Antennenanordnungen allgemein zu einer geringen Reichweite und zu einem hohen Energiebedarf der Antenne beziehungsweise zu einer entsprechend geringen Batterielaufzeit.
  • Der vorliegenden Erfindung liegt deshalb die Aufgabe zugrunde, eine Antennenanordnung der eingangs genannten Art zu schaffen, die einen erhöhten Antennenwirkungsgrad aufweist.
  • Zur Lösung dieser Aufgabe ist eine Antennenanordnung mit den Merkmalen des Anspruchs 1 vorgesehen.
  • Die erfindungsgemäße Antennenanordnung umfasst eine Leiterplatte, die eine Oberseite und eine Unterseite aufweist, sowie eine durch die Leiterplatte getragene Antenne, insbesondere Ringantenne, welche wenigstens einen elektrisch leitfähigen Antennenabschnitt umfasst, der an einer an die Oberseite und/oder die Unterseite angrenzenden Schmalseite der Leiterplatte angeordnet ist.
  • Erfindungsgemäß wurde erkannt, dass der Wirkungsgrad der Antennenanordnung insbesondere durch Leitungsverluste in der Leitungsbahn der Antenne sowie durch dielektrische Verluste im dielektrischen Material der Leiterplatte beeinträchtigt wird. Durch die Anordnung eines Antennenabschnitts an der Schmalseite lassen sich die beim Betrieb der Antenne auftretenden Leitungsverluste reduzieren und der Antennenwirkungsgrad somit erhöhen.
  • Ursächlich für die Problematik der hohen Leitungsverluste ist nicht zuletzt der Skin-Effekt, der bei für den Betrieb der Antennenanordnung geeigneten Frequenzen besonders ausgeprägt ist. Der Skin-Effekt bezeichnet das Phänomen, dass einem im Inneren eines Leiters fließenden Wechselstrom bei hohen Frequenzen vermehrt Wirbelströme entgegenwirken, die durch den Wechselstrom im Inneren des Leiters induziert werden und den Nettostromfluss somit verringern, sodass der Stromfluss aus der Mitte des Leiters an den Rand des Leiters verlagert wird. In der Folge trägt bei hohen Frequenzen im Wesentlichen nur noch der Rand des Leiters zur Stromleitung bei, und der effektive Widerstand des Leiters erhöht sich.
  • Ferner kommt hinzu, dass ein auf der Ober- oder Unterseite der Leiterplatte angeordneter Leiter in demjenigen Randbereich, in dem er mit der Ober- oder Unterseite in Berührung steht, den Strom nur wenig effizient leitet, weil die Oberfläche der Leiterplatte und damit auch die des Leiters in diesem Randbereich üblicherweise eine hohe Rauhigkeit aufweisen und der Strompfad in diesem Bereich entsprechend verlängert ist.
  • Die dielektrischen Verluste entstehen in der die Antenne tragenden Leiterplatte und hängen somit von den dielektrischen Verlusteigenschaften der die Leiterplatte bildenden Materialien ab. Im Rahmen der Erfindung besteht die die Antenne tragende Leiterplatte bevorzugt vollständig aus elektrisch nicht leitfähigem, dielektrischem Material. Die Leiterplatte kann beispielsweise aus mehreren dielektrischen Schichten laminiert sein.
  • Die erfindungsgemäße Ausbildung eines leitfähigen Antennenabschnitts an einer Schmalseite der Leiterplatte schafft einen elektrischen Strompfad mit guten Stromleitungseigenschaften und reduziert somit die auftretenden Leitungsverluste der Antenne.
  • Ein Vorteil eines an einer Schmalseite angebrachten leitfähigen Antennenabschnitts ist hierbei, dass der Antennenabschnitt selbst keinen Platz auf der Ober- oder der Unterseite in Anspruch nimmt. Somit kann auch bei geringem Platzangebot auf der Ober- und Unterseite der Leiterplatte ein verhältnismäßig großer elektrisch leitfähiger Antennenabschnitt realisiert werden und damit eine erhöhte Leitfähigkeit der Antenne erreicht werden.
  • Ein schmalseitiger Antennenabschnitt ist insbesondere dann vorteilhaft, wenn die Antenne eine Ringantenne ist und einen Strompfad aufweist, der zumindest im Wesentlichen ringförmig in der Ebene der Leiterplatte verläuft. Ein schmalseitiger Antennenabschnitt weist hier zumindest annähernd die Form eines Mantelsegments auf, was zu einer besonders guten Abstrahlungscharakteristik führt und zu einem erhöhten Antennenwirkungsgrad beiträgt.
  • Im Ergebnis besitzt die erfindungsgemäße Antennenanordnung also einen verbesserten Antennenwirkungsgrad, wodurch letztlich nicht nur die Antennenreichweite erhöht, sondern auch der Energiebedarf verringert ist.
  • Vorteilhafte Ausführungsformen der Erfindung sind in den Unteransprüchen, der Beschreibung und den Zeichnungen beschrieben.
  • Der an der Schmalseite angeordnete leitfähige Antennenabschnitt weist bevorzugt ein metallisches Material auf, insbesondere Kupfer oder Gold. Bevorzugt ist der leitfähige schmalseitige Antennenabschnitt eine an der Schmalseite angeordnete metallische Schicht mit im Wesentlichen konstanter Dicke, welche zum Beispiel mehrere 10 µm beträgt.
  • Gemäß einer Ausführungsform grenzt die Schmalseite der Leiterplatte an die Oberseite und/oder die Unterseite der Leiterplatte an. Die Schmalseite kann sich dabei im Wesentlichen senkrecht zur Ober- beziehungsweise Unterseite der Leiterplatte erstrecken. Bevorzugt ist es, wenn sich die Schmalseite von der Oberseite bis zu der Unterseite der Leiterplatte und somit also durch die Leiterplatte hindurch erstreckt. In diesem Fall stellt die Schmalseite eine besonders große Fläche für den an der Schmalseite angeordneten Antennenabschnitt zur Verfügung.
  • Die Schmalseite begrenzt ein sich durch die Leiterplatte hindurch erstreckendes Loch der Leiterplatte, welches bevorzugt länglich ausgebildet ist. Grenzt der schmalseitige Antennenabschnitt an ein Loch oder eine Außenseite der Leiterplatte, so ist weniger dielektrisches Leiterplattenmaterial in der direkten Umgebung des schmalseitigen Antennenabschnitts vorhanden, wodurch die dielektrischen Verluste des durch einen in dem schmalseitigen Antennenabschnitt fließenden Strom erzeugten elektromagnetischen Felds verringert werden. Außerdem lassen sich derartige Schmalseiten besonders einfach bilden, zum Beispiel indem Löcher in der Leiterplatte durch einen Fräsprozess gebildet werden beziehungsweise indem die äußere Kontur der Leiterplatte durch einen Fräsprozess entsprechend zugeschnitten wird.
  • Erfindungsgemäß bildet der schmalseitige Antennenabschnitt keinen geschlossenen elektrisch leitfähigen Ring. Die Schmalseite, an welchem der Antennenabschnitt angebracht ist, begrenzt ein Loch der Leiterplatte und der Antennenabschnitt ist nur an einem Teilbereich der das Loch begrenzenden Schmalseite angebracht, ohne in dem Loch einen geschlossenen Ring zu bilden. Ein solcher schmalseitiger Antennenabschnitt kann in einfacher Weise durch vollständiges Beschichten einer ein Loch begrenzenden Schmalseite mit elektrisch leitfähigem Material und anschließendes Entfernen von unerwünschtem elektrisch leitfähigen Material erzeugt werden.
  • Obwohl eine Antennenanordnung vorstellbar ist, die ausschließlich einen schmalseitigen Antennenabschnitt und keine ober- oder unterseitigen Antennenabschnitte aufweist, ist der an der Schmalseite angeordnete Antennenabschnitt gemäß der Erfindung mit einem auf der Oberseite verlaufenden Antennenabschnitt und mit einem auf der Unterseite verlaufenden Antennenabschnitt verbunden. Durch das Vorsehen des schmalseitigen Antennenabschnitts zusätzlich zu einem mit dem schmalseitigen Antennenabschnitt verbundenen, auf der Ober- und Unterseite verlaufenden Antennenabschnitt wird die Leitfähigkeit der gesamten Anordnung deutlich erhöht.
  • Der schmalseitige Antennenabschnitt kann entlang seiner zumindest annähernd gesamten Länge mit dem auf der Ober- oder Unterseite verlaufenden Antennenabschnitt verbunden sein.
  • Gemäß einer weiteren Ausführungsform sind zwei schmalseitige Antennenabschnitte auf gegenüberliegenden Seiten eines auf der Oberseite verlaufenden Antennenabschnitts oder eines auf der Unterseite verlaufenden Antennenabschnitts mit diesem verbunden. Die zwei schmalseitigen und der ober- beziehungsweise unterseitige Antennenabschnitt bilden somit zwei Winkel, in deren Scheiteln höhere Ströme fließen können, wodurch die Leitfähigkeit des Antennenabschnitts insgesamt noch weiter erhöht ist.
  • Gemäß der Erfindung erstreckt sich der an der Schmalseite angeordnete Antennenabschnitt durch die Leiterplatte hindurch und verbindet einen auf der Oberseite der Leiterplatte angeordneten Antennenabschnitt mit einem auf der Unterseite der Leiterplatte angeordneten Antennenabschnitt. Durch diese Anordnung werden ebenfalls zwei Antennenabschnittwinkel gebildet, in deren Scheiteln höhere Ströme fließen können und die zu einem erhöhten Antennenwirkungsgrad beitragen.
  • Gemäß der Erfindung sind ein oberseitiger und ein unterseitiger Antennenabschnitt durch zwei gegenüberliegende schmalseitige Antennenabschnitte miteinander verbunden. Auf diese Weise werden vier Antennenabschnittwinkel gebildet und ein noch höherer Stromfluss und Antennenwirkungsgrad erreicht.
  • Gemäß einer weiteren Ausführungsform ist vorgesehen, dass der an der Schmalseite angeordnete Antennenabschnitt eine Unterbrechung eines auf der Oberseite oder auf der Unterseite der Leiterplatte verlaufenden ersten Antennenabschnitts elektrisch überbrückt. Dabei kann der schmalseitige Antennenabschnitt den ersten Antennenabschnitt zusätzlich mit einem zweiten, auf der Unter- beziehungsweise Oberseite verlaufenden Antennenabschnitt verbinden.
  • Eine Unterbrechung des Antennenabschnitts der Ober- oder Unterseite der Leiterplatte kann dazu dienen, andere auf der Ober- oder Unterseite der Leiterplatte angebrachte Schaltungsteile aufzunehmen, wie beispielsweise eine durch die Unterbrechung hindurch verlaufende Leiterbahn zur Verbindung verschiedener Schaltungsteile oder Bauelemente.
  • So kann die Leiterplatte außer der Antenne noch weitere Schaltungsteile tragen, die z.B. in gemeinsamen Prozessschritten mit der Antenne hergestellt werden, beispielsweise Verbindungsleitungen und Anschlussflächen für weitere auf der Leiterplatte angeordnete Schaltungsteile.
  • Auf der Ober- und/oder Unterseite der Leiterplatte angeordnete Antennenabschnitte können in diesem Fall in einem gemeinsamen Prozessschritt mit den weiteren Schaltungsteilen, wie z.B. Verbindungsleitungen und Anschlussflächen, gebildet werden.
  • Solche weiteren Schaltungsteile können z.B. zu einer Ansteuerungsschaltung, welche die auf der Leiterplatte angebrachte Antenne mit einem Ansteuerungssignal beaufschlagt, oder, im Fall einer Empfangsantenne, einer Empfangs- und Auswerteschaltung gehören. Im Fall einer Sendeantenne wird die Antenne bevorzugt mit Frequenzen im Bereich zwischen 300 und 1000 MHz angesteuert.
  • Weiterer Gegenstand der Erfindung ist ein Verfahren mit den Merkmalen des Anspruchs 3. Das erfindungsgemäße Verfahren kann insbesondere zur Herstellung einer Antennenanordnung der voranstehend beschriebenen Art dienen. Die vorstehend erläuterten Vorteile gelten somit entsprechend.
  • Bei dem erfindungsgemäßen Verfahren wird zur Bildung wenigstens eines Antennenabschnitts ein elektrisch leitfähiges Material an einer Schmalseite der Leiterplatte angebracht, welche an die Oberseite und/oder die Unterseite der Leiterplatte angrenzt.
  • Gemäß der Erfindung wird die Schmalseite der Leiterplatte durch Entfernen von Leiterplattenmaterial erzeugt, insbesondere durch die Bildung eines, insbesondere langgestreckten, Loches in der Leiterplatte, beispielsweise durch einen Bohr- oder Fräsprozess. Bohr- und Fräsprozesse für Leiterplatten sind an sich bekannt und können in einfacher Weise mit verfügbaren Werkzeugen und Maschinen bewerkstelligt werden. Vorteilhafterweise werden in der Leiterplatte mehrere Löcher entlang der gewünschten Antennenleiterbahn für mehrere schmalseitige Antennenabschnitte erzeugt. Bekannte Bohr- oder Fräsmaschinen können eine solche Vielzahl von Löchern mit hoher Präzision und in hoher Geschwindigkeit anhand eines elektronischen Layouts, beispielsweise eines CAD-Layouts, erzeugen.
  • Besonders bevorzugt ist es, wenn das Entfernen von Leiterplattenmaterial zur Erzeugung der Schmalseite in einem gemeinsamen Prozessschritt mit der Bildung von Löchern für Durchverbindungen zwischen Schaltungsteilen auf der Oberseite und Schaltungsteilen auf der Unterseite der Leiterplatte, so genannte Vias, erfolgt.
  • Durch die gemeinsame Erzeugung von Via-Löchern und Schmalseite(n) wird der Herstellungsprozess für die Antennenanordnung vereinfacht, indem kein separater Prozessschritt zum Entfernen von Leiterplattenmaterial zur Erzeugung der Schmalseite(n) durchgeführt zu werden braucht. Die Via-Löcher und die Schmalseite(n) können somit insbesondere in ein und derselben Werkzeugmaschine hergestellt werden, ohne dass die Leiterplatte zwischenzeitlich aus dem Arbeitsbereich der Maschine entfernt werden muss. Der Layoutdatei für das Erzeugen der Via-Löcher können hierzu einfach die geometrischen Daten für das Bohren und/oder Fräsen zur Erzeugung der Schmalseite(n) hinzugefügt werden.
  • Gemäß einer vorteilhaften Ausführungsform wird das elektrisch leitfähige Material durch einen Abscheidungsprozess an der Schmalseite angebracht, insbesondere mittels eines galvanischen Verfahrens. Durch galvanische Abscheidungsprozesse können Schichten von elektrisch leitfähigem Material an einer Schmalseite erzeugt werden, die eine hohe Güte, eine hohe elektrische Leitfähigkeit und gute Adhäsion an dem Leiterplattenmaterial aufweisen. Bevorzugt wird Kupfer und/oder Gold abgeschieden und besonders bevorzugt wird eine Schicht mit zumindest näherungsweise konstanter Dicke abgeschieden, welche zum Beispiel zwischen 30 und 100 µm betragen kann.
  • Besonders bevorzugt ist es, wenn die Schmalseiten und die Seitenwände, welche die Via-Löcher begrenzen, gleichzeitig in einem gemeinsamen Abscheidungsprozess mit elektrisch leitfähigem Material beschichtet werden, da hierdurch kein separater Abscheidungsprozess für das Erzeugen der Antennenabschnitte an den Schmalseiten erforderlich ist.
  • Bevorzugt wird an den Schmalseiten angebrachtes elektrisch leitfähiges Material und/oder daran angrenzendes Leiterplattenmaterial anschließend bereichsweise entfernt, zum Beispiel durch einen Fräsprozess.
  • Auf diese Weise lässt sich nicht benötigtes elektrisch leitfähiges Material beseitigen, z.B. elektrisch leitfähiges Material, welches dem Antennenabschnitt abgewandt ist, beziehungsweise das Gewicht und der Platzbedarf der Leiterplatte reduzieren. Außerdem lassen sich durch die Entfernung von Leiterplattenmaterial dielektrische Verluste reduzieren.
  • Gemäß der Erfindung kann die Schmalseite durch die Bildung eines Loches in der Leiterplatte erzeugt und nach der Metallisierung der Schmalseite Leiterplattenmaterial entfernt werden, welches sich zwischen dem Loch und einer Außenseite der Leiterplatte erstreckt, sodass die Schmalseite selbst zur Außenseite der Leiterplatte wird. Es wird also die Außenkontur der Leiterplatte durch Zuschneiden verkleinert, bis die Schmalseite zur Außenseite der Leiterplatte wird. Dieses Zuschneiden der Leiterplatte hin zur Schmalseite reduziert den Platzbedarf der Leiterplatte und die auftretenden dielektrischen Verluste. Da sich der schmalseitige Antennenabschnitt zumindest bereichsweise entlang der Außenkontur der Leiterplatte erstreckt, wird bei vorgegebener Baugröße außerdem eine maximale Antennenlänge beziehungsweise ein maximaler Antennendurchmesser erreicht. Nachfolgend wird die vorliegende Erfindung rein beispielhaft anhand einer vorteilhaften Ausführungsform unter Bezugnahme auf die beigefügten Zeichnungen beschrieben. Es zeigen:
  • Fig. 1a
    eine Leiterplattenanordnung nach dem Bohren von Via-Löchern;
    Fig. 1b
    eine Querschnittsansicht entlang der Linie A-A' von Fig. 1 a;
    Fig. 2a
    die Anordnung von Fig. 1 nach dem Fräsen von Lang-löchern;
    Fig. 2b
    eine Querschnittsansicht entlang der Linie A-A' von Fig. 2a;
    Fig. 3a
    die Anordnung von Fig. 2 nach dem Beschichten der Löcher mit leitfähigem Material;
    Fig. 3b
    eine Querschnittsansicht entlang der Linie A-A' von Fig. 3a;
    Fig. 4a
    die Anordnung von Fig. 3 nach dem Strukturieren von Leiterbahnen;
    Fig. 4b
    eine Querschnittsansicht entlang der Linie A-A' von Fig. 4a;
    Fig. 4c
    eine Rückseitenansicht der Anordnung von Fig. 4a;
    Fig. 5
    eine Zuschneidetrajektorie, entlang der die Leiterplattenanordnung von Fig. 4 zugeschnitten wird;
    Fig. 6a
    eine erfindungsgemäße Antennenanordnung, die durch das Verfahren von Fig. 1-5 hergestellt worden ist;
    Fig. 6b
    eine Querschnittsansicht der Antennenanordnung von Fig. 6a entlang der Linie A-A' von Fig. 6a.
  • Fig. 1 bis 6 zeigen eine erfindungsgemäße Antennenanordnung in unterschiedlichen Stadien ihrer Herstellung.
  • Fig. 1a zeigt eine Draufsicht auf die Oberseite einer Leiterplatte 10, die eine Ober- und eine Unterseite umfasst, auf denen jeweils eine Kupferschicht 14 aufgebracht wurde. Fig. 1a zeigt Löcher 12 für Durchverbindungen 22 (Vias, siehe Fig. 3 bis 6) zwischen Schaltungsteilen auf der Oberseite und Schaltungsteilen auf der Unterseite der Leiterplatte 10. Die Via-Löcher 12 können z.B. durch einen Bohr- oder Fräsprozess hergestellt werden. Seitenwände 11 der Leiterplatte 10 begrenzen die Via-Löcher 12.
  • Fig. 1b zeigt die Leiterplatte 10 von Fig. 1a in einem Querschnitt entlang der Linie A-A' von Fig. 1a. Neben einem Via-Loch 12 sind auch die Kupferschichten 14, 14' erkennbar, die auf der Oberseite und der Unterseite der Leiterplatte 10 jeweils aufgebracht sind. In Fig. 1b und auch in den übrigen Querschnittsdarstellungen ist die Dicke s der Kupferschichten 14, 14' im Vergleich zu der Dicke d der Leiterplatte 10 übertrieben groß dargestellt. Die Dicke d der Leiterplatte 10 kann beispielsweise ca. 1,5 mm und die Dicke s der Kupferschichten 14, 14'jeweils ca. 50 µm betragen.
  • Fig. 2a zeigt die Leiterplatte 10 von Fig. 1, nachdem Langlöcher 16 in der Leiterplatte 10 erzeugt wurden. Die Langlöcher 16 verlaufen entlang gewünschter Antennenleiterbahnen und werden jeweils umlaufend durch eine Schmalseite 18 der Leiterplatte 10 begrenzt. Abschnittsweise verlaufen jeweils zwei Langlöcher 16 parallel zueinander auf gegenüberliegenden Seiten einer Antennenleiterbahn, sodass durch zwei benachbarte Langlöcher 16 jeweils ein langgestreckter freitragender Steg 19 der Leiterplatte 10 begrenzt wird, der einen ober- und unterseitigen Antennenabschnitt 24, 24' tragen kann.
  • Im vorliegenden Ausführungsbeispiel werden die Langlöcher 16 durch einen Fräsprozess erzeugt. Die Langlöcher 16 werden senkrecht zu der Ober- und Unterseite der Leiterplatte 10 gefräst, sodass die die Langlöcher 16 begrenzenden Schmalseiten 18 und die Ober- beziehungsweise Unterseite der Leiterplatte 10 einen im Wesentlichen rechten Winkel bilden. Der Bohrprozess für die Via-Löcher 12 und der Fräsprozess für die Langlöcher 16 können in einem gemeinsamen Prozessschritt in derselben Maschine durchgeführt werden.
  • Nach der Erzeugung der Via-Löcher 12 und der Langlöcher 16 werden die Seitenwände 11 der Via-Löcher 12 und die durch die Langlöcher 16 definierten Schmalseiten 18 durch einen Abscheidungsprozess mit einem leitfähigen Material, im vorliegenden Ausführungsbeispiel mit Kupfer, beschichtet.
  • Fig. 3a zeigt eine Draufsicht auf die Anordnung von Fig. 2a nach der Abscheidung, welche in an sich bekannter Weise durch Galvanisierung in einem Galvanikbad erfolgen kann. Die Dicke des abgeschiedenen Kupfermaterials kann z.B. mehrere 10 µm betragen.
  • Das an den Schmalseiten 18 abgeschiedene Kupfermaterial bildet zum einen schmalseitige Antennenabschnitte 20 und zum anderen unerwünschtes beziehungsweise nicht benötigtes Kupfermaterial 20', nämlich in den Bereichen der die Langlöcher 16 begrenzenden Schmalseiten 18, die dem gewünschten schmalseitigen Antennenabschnitt 20 abgewandt sind. Außerdem bildet das in den Via-Löchern 12 abgeschiedene Kupfer die Durchverbindungen 22 (Vias).
  • Fig. 3b zeigt, dass der Querschnitt eines frei tragenden Leiterplattenstegs 19 ringsum von leitfähigem Material umgeben ist, nämlich von den Kupferschichten 14, 14'und den schmalseitigen Antennenabschnitten 20. Das den frei tragenden Steg 19 umgebende leitfähige Material 14, 14', 20 bildet durch seine Geometrie einen Antennenstrompfad mit erhöhter Leitfähigkeit.
  • Nach der Abscheidung des leitfähigen Materials werden die Kupferschicht 14 auf der Oberseite und die Kupferschicht 14' auf der Unterseite der Leiterplatte 10 in geeigneter Weise strukturiert, z.B durch einen an sich bekannten Ätzprozess, um auf der Oberseite und der Unterseite der Leiterplatte 10 elektrisch leitfähige Antennenabschnitte 24, 24' sowie elektrische Verbindungsleitungen 28 und elektrische Anschlussflächen 26 für zusätzlich zu der Antenne auf der Leiterplatte 10 herzustellende Schaltungsteile zu schaffen (Fig. 4).
  • Fig. 4a, b, c zeigen die Leiterplatte 10 nach dem Strukturieren der Kupferschichten 14, 14'. Zur besseren Orientierung ist die Ansicht auf die Unterseite der Leiterplatte 10 in Fig. 4c aus der Perspektive von oben, also von der Oberseite her durch die Leiterplatte 10 hindurch betrachtet, dargestellt, sodass vereinfacht erkennbar ist, welche Elemente auf der Oberseite der Leiterplatte 10 welchen Elementen auf der Unterseite der Leiterplatte 10 gegenüberliegen, ohne dass der Betrachter die spiegelverkehrte Perspektive berücksichtigen muss, die sich ergibt, wenn man die Leiterplatte 10 einmal von oben und einmal von unten betrachtet.
  • Wie Fig. 4a zeigt, ist auf der Oberseite der Leiterplatte 10 ein annähernd ringförmiger Antennenabschnitt 24 ausgebildet, der bereichsweise entlang den Schmalseiten 18 der Langlöcher 16 verläuft und dabei mit dem an den Schmalseiten 18 abgeschiedenen leitfähigem Material der schmalseitigen Antennenabschnitte 20 in elektrischem Kontakt steht. Dem Antennenabschnitt 24 gegenüberliegend auf der Unterseite der Leiterplatte 10 ist ein im Wesentlichen identisch ausgestalteter Antennenabschnitt 24' ausgebildet, der ebenfalls mit dem leitfähigen Material des schmalseitigen Antennenabschnitts 20 in Verbindung steht. Die beiden Antennenabschnitte 24, 24' auf der Ober- und der Unterseite sind wie in Fig. 4b gezeigt über die schmalseitigen Antennenabschnitte 20 miteinander verbunden.
  • Die Antennenleiterbahnen 24, 24' auf der Ober- und Unterseite der Leiterplatte 10 bilden zusammen mit den schmalseitigen Antennenabschnitten 20 eine im Wesentlichen ringförmige Antenne, die insbesondere im Bereich der freitragenden Stege 19 eine erhöhte Leitfähigkeit durch das an den Schmalseiten 18 abgeschiedene leitfähige Material sowie verringerte dielektrische Verluste durch die Bildung der Langlöcher 16 in dem dielektrischen Material der Leiterplatte 10 aufweist.
  • In Fig. 4a sind mehrere in dem Strukturierungsschritt erzeugte elektrische Anschlussflächen 26 sowie elektrische Verbindungsleitungen 28 dargestellt. Diese Anschlussflächen 26 und Verbindungsleitungen 28 erlauben es, elektronische Bauelemente zur Bildung einer Ansteuerungsschaltung zur Ansteuerung der Antenne auf der Leiterplatte 10 anzubringen. Die Antenne ist mit der Ansteuerungsschaltung über die Anschlussfläche 26a verbunden sowie über eine sich auf der Rückseite der Leiterplatte 10 befindende Anschlussfläche 26b, die der Schaltung als Bezugspotential dient.
  • Zur Bildung der Ansteuerungsschaltung können in an sich bekannter Weise elektronische Bauelemente, beispielsweise SMD-Bauelemente, an den Anschlussflächen 26 angebracht und über die elektrischen Verbindungsleitungen 28 miteinander verschaltet werden. Wie Fig. 4a, b und c zeigen, werden hierbei Schaltungsteile auf der Oberseite der Leiterplatte 10 durch die vor dem Strukturierungsprozess hergestellten Durchverbindungen 22 miteinander verbunden. Die Montage der Bauelemente zur Bildung der Ansteuerungsschaltung kann vor oder nach einem auf den Strukturierungsschritt folgenden Zuschneideschritt oder auch zwischen zwei Teilschritten des Zuschneideschritts erfolgen. Der Zuschneideschritt wird im Folgenden erläutert.
  • Nach der Strukturierung wird die Leiterplatte 10 auf die gewünschte Größe der Antennenanordnung zugeschnitten. Fig. 5 zeigt schematisch die Schneidelinien 30a, b, entlang derer die Leiterplatte 10 zugeschnitten wird. Durch die Schneidelinie 30a wird die Außenkontur der Leiterplatte 10 so definiert, dass die der Schneidelinie 30a benachbarten schmalseitigen Antennenabschnitte 20 der außen gelegenen Langlöcher 16 nunmehr Außenseiten der Leiterplatte 10 bilden und Bereiche der Antennenabschnitte 24, 24' auf der Ober- und Unterseite direkt an die Außenseite der Leiterplatte 10 angrenzen. Nicht benötigtes elektrisch leitfähiges Material 20' und überflüssiges Leiterplattenmaterial wird hierbei entfernt.
  • Anstatt die Außenkontur der Leiterplatte 10 ringsum, also nach einer geschlossenen Schneidelinie wie der Schneidelinie 30a zuzuschneiden, kann die Außenkontur der Leiterplatte 10 auch dadurch zugeschnitten werden, dass Leiterplattenmaterial, das sich zwischen einem außen gelegenen Langloch 16 und einer Außenseite der Leiterplatte 10 erstreckt, durch zwei zwischen der Außenseite der Leiterplatte 10 und dem Langloch 16 geführte Schnitte herausgeschnitten wird. In diesem Fall kann die Leiterplatte 10 bevorzugt bereits vor der Strukturierung der Kupferschichten 14, 14' grob auf eine Außenkontur zugeschnitten werden, die etwas größer als ihr Endmaß ist, sodass dünne Stege der Leiterplatte 10 verbleiben, die sich zwischen den äußeren Langlöchern 16 und der Außenseite der Leiterplatte 10 erstrecken. Diese werden dann in einem weiteren, auf die Strukturierung folgenden Zuschneideschritt herausgeschnitten.
  • Durch die Schneidelinien 30b wird außerdem an den innen gelegenen Langlöchern 16 unerwünschtes abgeschiedenes elektrisch leitfähiges Material 20' entfernt. Hierbei wird gegebenenfalls auch um das unerwünschte elektrisch leitfähige Material 20' herum gelegenes Leiterplattenmaterial entfernt.
  • Fig. 6a und b zeigen die fertige Antennenanordnung nach dem Zuschneiden. Bei dieser Antennenanordnung ist die elektrische Leitfähigkeit der Antenne durch die schmalseitigen Antennenabschnitte 20 erhöht, und die dielektrischen Verluste sind durch das Entfernen von dielektrischem Material verringert. Durch die Verwendung äußerer Schmalseiten 18 der Leiterplatte 10 für schmalseitige Abschnitte 20 der Antenne wird außerdem ein maximaler Antennendurchmesser bei minimalem Platzbedarf der Antennenanordnung erreicht.
  • Bezugszeichenliste
  • 10
    Leiterplatte
    11
    Seitenwand
    12
    Via-Loch
    14, 14'
    Kupferschicht
    16
    Langloch
    18
    Schmalseite
    19
    freitragender Steg
    20
    schmalseitiger Antennenabschnitt
    20'
    nicht benötigtes elektrisch leitfähiges Material
    22
    Durchverbindung (Via)
    24, 24'
    Antennenabschnitt
    26,a,b
    elektrische Anschlussfläche
    28
    elektrische Verbindungsleitung
    30a,b
    Schneidelinie
    s
    Dicke der Kupferschicht
    d
    Dicke der Leiterplatte

Claims (8)

  1. Antennenanordnung mit einer Leiterplatte (10), die eine Oberseite und eine Unterseite aufweist, und einer durch die Leiterplatte (10) getragenen Antenne (20, 24, 24'), welche wenigstens einen elektrisch leitfähigen Antennenabschnitt (20) umfasst, dadurch gekennzeichnet, dass
    ein erster Antennenabschnitt (20) an einer an die Oberseite und/oder die Unterseite angrenzenden ersten Schmalseite (18) der Leiterplatte (10) angeordnet ist, wobei die erste Schmalseite (18) ein Loch (16) der Leiterplatte (10) begrenzt und der erste Antennenabschnitt (20) nur in einem Teilbereich der das Loch (16) begrenzenden Schmalseite (18) angebracht ist, ohne in dem Loch (16) einen in der Ebene der Leiterplatte (10) geschlossenen Ring zu bilden,
    die erste Schmalseite (18) durch einen freitragenden Steg (19) der Leiterplatte (10) gebildet ist, welcher eine der ersten Schmalseite (18) gegenüberliegende zweite Schmalseite (18) aufweist, die eine Außenseite der Leiterplatte (10) bildet, wobei ein zweiter Antennenabschnitt (20) an der zweiten Schmalseite (18) angeordnet ist, und
    der erste Antennenabschnitt (20) und der zweite Antennenabschnitt (20) zusammen mit auf der Oberseite und Unterseite des freitragenden Stegs (19) angeordneten Antennenabschnitten (24, 24') eine quer zur Ebene der Leiterplatte ringförmige Antenne bilden.
  2. Antennenanordnung nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die erste Schmalseite (10) ein Langloch (16) der Leiterplatte (10) begrenzt/begrenzen.
  3. Verfahren zur Herstellung einer Antennenanordnung, die eine Leiterplatte (10) mit einer Oberseite und einer Unterseite und eine durch die Leiterplatte (10) getragene Antenne (20, 24, 24') umfasst, bei welchem Verfahren zur Bildung von Antennenabschnitten (20) ein elektrisch leitfähiges Material an Schmalseiten (18) der Leiterplatte (10) angebracht wird, welche an die Oberseite und/oder die Unterseite angrenzen, wobei die Schmalseiten (18) der Leiterplatte (10) durch Entfernen von Leiterplattenmaterial durch die Bildung von mittels eines Bohr- oder Fräsprozesses erzeugten Löchern (16) in der Leiterplatte (10) erzeugt werden, dadurchgekennzeichnet, dass
    das Verfahren so durchgeführt wird, dass
    ein erster Antennenabschnitt (20) der hergestellten Antennenanordnung nur an einem Teilbereich der ein erstes Loch (16) begrenzenden ersten Schmalseite (18) angebracht wird, ohne in dem ersten Loch (16) einen in der Ebene der Leiterplatte (10) geschlossenen Ring zu bilden,
    ein zweiter Antennenabschnitt (20) an einer der ersten Schmalseite (18) gegenüberliegenden zweiten Schmalseite (18) der Leiterplatte (10) angebracht wird, wobei die zweite Schmalseite (18) ein zweites Loch (16) der Leiterplatte (10) begrenzt,
    nach dem Anbringen des elektrisch leitfähigen Materials an der ersten und der zweiten Schmalseite (18) Leiterplattenmaterial bereichsweise entfernt wird, welches sich zwischen dem zweiten Loch (16) und einer Außenseite der Leiterplatte (10) erstreckt, sodass die zweite Schmalseite (18) selbst zur Außenseite der Leiterplatte (10) wird.
  4. Verfahren nach Anspruch 3,
    dadurchgekennzeichnet, dass
    das erste und/oder zweite Loch (16) ein Langloch (16) ist.
  5. Verfahren nach Anspruch 3 oder 4,
    dadurchgekennzeichnet, dass
    das Entfernen von Leiterplattenmaterial zur Erzeugung der Schmalseiten (18) in einem gemeinsamen Prozessschritt mit einer Bildung von Löchern (12) für Durchverbindungen (22) zwischen Schaltungsteilen (26, 28) auf der Oberseite und der Unterseite der Leiterplatte (10) erfolgt.
  6. Verfahren nach einem der Ansprüche 3 bis 5,
    dadurchgekennzeichnet, dass
    das elektrisch leitfähige Material durch einen Abscheidungsprozess an den Schmalseiten (18) angebracht wird, insbesondere mittels eines galvanischen Verfahrens.
  7. Verfahren nach Anspruch 6,
    dadurchgekennzeichnet, dass
    in dem Abscheidungsprozess gleichzeitig die Schmalseiten (18) und Seitenwände (11), die Löcher (12) für Durchverbindungen (22) zwischen Schaltungsteilen (26, 28) auf der Oberseite und der Unterseite der Leiterplatte (10) begrenzen, mit elektrisch leitfähigem Material beschichtet werden.
  8. Verfahren nach einem der Ansprüche 3 bis 7,
    dadurchgekennzeichnet, dass
    an einer Schmalseite (18) angebrachtes elektrisch leitfähiges Material und/oder daran angrenzendes Leiterplattenmaterial bereichsweise entfernt werden, insbesondere durch einen Fräsprozess.
EP09011000.8A 2009-08-27 2009-08-27 Antennenanordnung Active EP2293381B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09011000.8A EP2293381B1 (de) 2009-08-27 2009-08-27 Antennenanordnung
US12/868,113 US20110050506A1 (en) 2009-08-27 2010-08-25 Antenna arrangement
CN201010267410.4A CN102005642B (zh) 2009-08-27 2010-08-27 天线装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09011000.8A EP2293381B1 (de) 2009-08-27 2009-08-27 Antennenanordnung

Publications (2)

Publication Number Publication Date
EP2293381A1 EP2293381A1 (de) 2011-03-09
EP2293381B1 true EP2293381B1 (de) 2016-11-09

Family

ID=41130290

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09011000.8A Active EP2293381B1 (de) 2009-08-27 2009-08-27 Antennenanordnung

Country Status (3)

Country Link
US (1) US20110050506A1 (de)
EP (1) EP2293381B1 (de)
CN (1) CN102005642B (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016108868A1 (de) * 2016-05-13 2017-11-16 Kathrein Werke Kg Adapterplatte für HF-Strukturen
FR3118836B1 (fr) * 2021-01-11 2024-03-29 Hager Controls Dispositif d’antenne sur circuit imprimé et procédé de réalisation d’antenne(s) sur circuit(s) imprimé(s)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033139A2 (en) * 1997-12-19 1999-07-01 Allgon Ab Directional coupler for high power rf signals
US20050252683A1 (en) * 2004-05-11 2005-11-17 Chi-Hsing Hsu Circuit substrate and method of manufacturing plated through slot thereon

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19614362C1 (de) 1996-04-11 1997-07-31 Siemens Ag Antenne für ein Diebstahlschutzsystem eines Kraftfahrzeugs
US6265308B1 (en) * 1998-11-30 2001-07-24 International Business Machines Corporation Slotted damascene lines for low resistive wiring lines for integrated circuit
GB2357905B (en) 1999-12-01 2004-02-11 Hi Key Ltd A radio receiver
US6759984B2 (en) 2001-06-01 2004-07-06 Agere Systems Inc. Low-loss printed circuit board antenna structure and method of manufacture thereof
DE10246953A1 (de) 2002-10-08 2004-04-29 Leopold Kostal Gmbh & Co. Kg Elektronische Schaltungsanordnung
TW574766B (en) * 2002-12-19 2004-02-01 Accton Technology Corp Planar inverted-F antenna and application system thereof
CN2881991Y (zh) * 2006-03-02 2007-03-21 汉达精密电子(昆山)有限公司 互补型调相pcb天线
JP5123493B2 (ja) 2006-05-30 2013-01-23 新光電気工業株式会社 配線基板及び半導体装置
KR100806847B1 (ko) * 2006-09-12 2008-02-22 삼성전자주식회사 마이크로 안테나 및 그 제조방법
US8983618B2 (en) * 2008-10-31 2015-03-17 Medtronic, Inc. Co-fired multi-layer antenna for implantable medical devices and method for forming the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033139A2 (en) * 1997-12-19 1999-07-01 Allgon Ab Directional coupler for high power rf signals
US20050252683A1 (en) * 2004-05-11 2005-11-17 Chi-Hsing Hsu Circuit substrate and method of manufacturing plated through slot thereon

Also Published As

Publication number Publication date
EP2293381A1 (de) 2011-03-09
CN102005642B (zh) 2016-05-18
CN102005642A (zh) 2011-04-06
US20110050506A1 (en) 2011-03-03

Similar Documents

Publication Publication Date Title
DE69117381T2 (de) Mehrschichtleiterplatte und Verfahren zu ihrer Herstellung
EP0756244B1 (de) Schaltungseinheit und Verfahren zur Herstellung einer Schaltungseinheit
DE102006041994B4 (de) Wellenleiter/Streifenleiter-Wandler
DE10016064B4 (de) Substrat,Einzelsubstrat und Verfahren zur Herstellung derselben
DE112006003543T5 (de) Eingebettete Wellenleiter-Leiterplatten-Struktur
AT12319U1 (de) Verfahren zum herstellen einer aus wenigstens zwei leiterplattenbereichen bestehenden leiterplatte sowie leiterplatte
DE69509423T2 (de) Verfahren zur Herstellung einer mehrschichtigen Mikrowellenplatte und so erhaltene Platte
DE3034068A1 (de) Extrusionswerkzeug und verfahren zu seiner herstellung
EP2777083A2 (de) Verfahren zum elektrischen kontaktieren eines elektronischen bauelements als stapel und elektronisches bauelement mit einer kontaktierungsstruktur
DE112006003395T5 (de) Leiterplatten-Wellenleiter
DE102011080468B4 (de) Verfahren zur Herstellung eines Kontaktträgers eines Schaltkontaktes für ein elektromechanisches Schaltgerät sowie ein solcher Kontaktträger
DE69318937T2 (de) Mehrschicht Leiterrahmen für eine Halbleiteranordnung
EP0195935A2 (de) Verfahren zur Herstellung einer starre und flexible Partien aufweisenden Leiterplatte für gedruckte elektrische Schaltungen
EP2293381B1 (de) Antennenanordnung
EP2009970A2 (de) Verfahren zur Herstellung einer elektisch leitfähigen Struktur
EP0710432B1 (de) Verfahren zur herstellung von folienleiterplatten oder halbzeugen für folienleiterplatten sowie nach dem verfahren hergestellte folienleiterplatten und halbzeuge
EP1786034A2 (de) Leistungshalbleitermodul
DE19955538B4 (de) Leiterbahnträgerschicht zur Einlaminierung in eine Chipkarte, Verfahren zur Herstellung einer Leiterbahnträgerschicht Spritzgusswerkzeug zur Durchführung des Verfahrens zur Herstellung einer Leiterbahnträgerschicht
EP3143847B1 (de) Verfahren zum herstellen eines leiterzugs mit verbreiterungsfreiem übergang zwischen leiterbahn und kontaktstruktur
DE10333840B4 (de) Halbleiterbauteil mit einem Kunststoffgehäuse, das eine Umverdrahrungsstruktur aufweist und Verfahren zu deren Herstellung
AT522987B1 (de) Verfahren zum Herstellen eines metallischen Einlegeteils und einer Anordnung für eine Leiterplatte, metallisches Einlegeteil und Leiterplatte
DE202007003815U1 (de) Leiterplatten-Mehrschichtaufbau
DE10248112B4 (de) Verfahren zur Herstellung von gedruckten elektrischen Schaltungen
EP2936950B1 (de) Verfahren zur herstellung eines mehrschichtträgerkörpers
WO2019068826A1 (de) Leiterplatte und verfahren zur verarbeitung einer leiterplatte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20110331

17Q First examination report despatched

Effective date: 20110427

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DELPHI INTERNATIONAL OPERATIONS LUXEMBOURG S.A R.L

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160603

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 844673

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009013333

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170210

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170309

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170309

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009013333

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170209

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170827

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 844673

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009013333

Country of ref document: DE

Owner name: APTIV TECHNOLOGIES LIMITED, BB

Free format text: FORMER OWNER: DELPHI INTERNATIONAL OPERATIONS LUXEMBOURG S.A R.L., BASCHARAGE, LU

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20190131 AND 20190206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230425

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230822

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230821

Year of fee payment: 15

Ref country code: DE

Payment date: 20230817

Year of fee payment: 15