EP2287966B1 - Antenna rod for a rod antenna for multiple wireless services - Google Patents

Antenna rod for a rod antenna for multiple wireless services Download PDF

Info

Publication number
EP2287966B1
EP2287966B1 EP10171466.5A EP10171466A EP2287966B1 EP 2287966 B1 EP2287966 B1 EP 2287966B1 EP 10171466 A EP10171466 A EP 10171466A EP 2287966 B1 EP2287966 B1 EP 2287966B1
Authority
EP
European Patent Office
Prior art keywords
rod
antenna
plastic
antenna coil
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10171466.5A
Other languages
German (de)
French (fr)
Other versions
EP2287966A1 (en
Inventor
Stefan Lindenmeier
Heinz Lindenmeier
Leopold Reiter
Jochen Hopf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Delco Electronics Europe GmbH
Original Assignee
Delphi Delco Electronics Europe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Delco Electronics Europe GmbH filed Critical Delphi Delco Electronics Europe GmbH
Publication of EP2287966A1 publication Critical patent/EP2287966A1/en
Application granted granted Critical
Publication of EP2287966B1 publication Critical patent/EP2287966B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3275Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/362Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith for broadside radiating helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/08Helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/32Vertical arrangement of element

Definitions

  • Another antenna rod is known, for example, as a short-rod antenna from the DE102004053354A1 , in particular for radio reception in motor vehicles.
  • the antenna rod is mounted on a plastic part and forms the RF emitter. It is envisaged to carry out the helix with differentiated pitch, in order to use the shank in addition to the frequencies of the radio broadcasting also for the operation in the frequencies of the mobile radio in the 900 MHz as well as in the 1.8 GHz range.
  • the height of such antennas is of particular importance. They are preferably used on the roof of the motor vehicle and, if the length is too great, constitute an obstacle, in particular in the case of parking garages with a low overall height and so-called double parkers.
  • the radiator bandwidth of electrically short rod antennas increases approximately with the cube of the length of the antenna rod relative to the free space wavelength of the operating frequency.
  • this law especially in the frequency range of the FM radio with the bandwidth of about 20 MHz in conjunction with the already low in this frequency range ambient noise a particular difficulty in the design of very short Rod antennas.
  • Antennas according to the cited prior art usually have a length of 40 cm. Add to that Demand for the lowest possible manufacturability of such antenna rods, which are subject to a particularly high cost pressure in vehicle technology.
  • the object of the invention is therefore to provide an antenna rod, which on the one hand in the frequency range of VHF radio provides the smallest possible length as large as possible reception voltage and also allows operation in the radio services with higher frequency and a particularly cost-effective production.
  • Fig. 1a shows a substantially vertical antenna rod 1 for a rod antenna assembly on a vehicle body 12, which serves as a mass 29 of the rod antenna assembly.
  • the antenna rod 1 includes a plastic rod 7, on which an antenna coil 2 is applied.
  • the coupling conductor 4 is performed in coverage 9 of several, but at least two turns of the coil 2 via an interposed low-loss insulator 10 over the length of the cover 9 to the antenna coil 2 galvanically separated, so that over this length a capacitive coupling to the antennas -Wendel 2 is given.
  • the coupling conductor 4, the low-loss insulator 10 and the antenna rod are mechanically fixed to each other and at the lower end of the coupling conductor 4 it is equipped with an electro-mechanical connecting element 14 for connection to the electro-mechanical base terminal 5.
  • An antenna rod 1 of this type is usually connected to the electro-mechanical base terminal 5 of a low and on the vehicle body 12 fixed plastic base member 3, which includes the further antenna circuit 6, which is connected to the electromechanical base terminal 5.
  • Such an antenna rod has over the prior art the advantage that by combining the capacitive coupling of the coupling conductor 4 via the low-loss insulator 10 to the antenna coil 2 over the length of the cover 9, an increase in the receiving voltage of the antenna rod 1 in the VHF Frequency range is achievable.
  • this occurs caused by the capacitive coupling of the coupling conductor 4, over several turns to the antenna coil 2, a much larger active component of the impedance 33, as he with a simple antenna coil without the measures with respect to the wavelength
  • This increased radiation resistance is advantageously increased in a wide frequency range around the passage of the impedance 33 in the frequency point of the low-impedance resonance, whereby an increase in the receiving voltage is given with a relatively large frequency bandwidth.
  • the length of the cover 9 is chosen to be 5 cm and should generally be at least 2 cm and not more than 6 cm. With a total of about 200 turns of constant pitch, an overlap 9 of about 60 turns has been found to be useful. Furthermore, it proves to be further appropriate to make the static capacitance between the coupling conductor 4 and the antenna coil 2 sufficiently large and not smaller than 3pF.
  • the tuning of the antenna rod is advantageously to be carried out in such a way that the low-resistance resonance in the frequency range between 75 MHz and 110 MHz occurs.
  • An essential advantage associated with the present invention in the low-effort production of the antenna rod results from the fixed mechanical connection between the coupling conductor 4, the low-loss insulator 10 and the antenna rod.
  • the coupling conductor 4 is equipped at its lower end with an electromechanical connecting element 14. According to the invention, there is thus no galvanically conductive connection between the antenna helix 2 and the connection to the continuing antenna circuit 6.
  • the antenna coil 2 supporting plastic rod 7 can thus be produced, for example, endless, separated into appropriate lengths and completely encased with an insulating material and - without soldering - for example by gluing with the coupling conductor be added to the antenna rod 1.
  • Fig. 1b shows the perspective view of an antenna rod 1, which is designed substantially with a rectangular cross-section.
  • For capacitive coupling of the coupling conductor 4 is advantageously designed as a flat band conductor.
  • Fig. 1c the longitudinal section of the antenna rod 1 with representation of the electro-mechanical connecting element 14 with a fixed electrical connection to the coupling conductor 4 is shown.
  • a particular advantage of an antenna rod 1 is its particular suitability for the low-effort design for multiple radio services.
  • the antenna rod 1 is designed for a rod antenna arrangement for the additional reception of VHF broadcast signals.
  • the antenna rod 1 connected to the electro-mechanical base terminal 5 of the plastic base part 3, as in connection with the Fig. 1a is described, and the electro-mechanical base terminal 5 is a parallel resonant circuit 35 with the parallel resonant frequency between 120 MHz and 160 MHz, as in Fig. 1d shown, connected downstream, so the vote of the antenna rod 1 and the parallel resonant circuit 35 are each designed in such a way that the measurable between the free end of the parallel resonant circuit 35 and the ground 29 impedance 33 in the Figure 3 has shown frequency profile.
  • the impedance 33 in the frequency range between 75 MHz and 110 MHz for the function in the FM frequency range, a first low-impedance resonance and in the Frequency range between 175 MHz and 240 MHz for the function in the VHF frequency range passes through a second low-impedance resonance.
  • Antennenstabil 13 of h 15 cm and less are for the reception of the FM and VHF radio band in an advantageous embodiment of the invention
  • the diameter, the pitch of the turns and the diameter of the wire-shaped conductor 11 of the antenna coil. 2 matched in the following special way. This tuning takes place in such a way that when a series connection of a capacitance and an inductance is inserted between the base terminal 5 and the ground 29, the impedance measured in parallel to the inductance passes through a low-impedance resonance in the frequency range between 190 MHz and 230 MHz.
  • the inductance is advantageous in the way to choose that when using this circuit in the continuing antenna circuit 6 in both the frequency range of FM broadcasting and VHF broadcasting when connecting an FM / VHF antenna amplifier with input side high-impedance field effect transistor parallel to the inductor each gives the necessary bandwidth in these frequency ranges.
  • the capacity for the propagation of the signals in these frequency ranges sufficiently, however, on the other hand not too large to choose when connecting an AM amplifier with input side high-impedance field effect transistor at the input of the AM amplifier between the base terminal 5 and the ground 29, these signals not too much to weaken.
  • Favorable values for such a capacity are between 5pF and 20pF; favorable values for the inductance are between 500nH and 1500nH.
  • the coupling conductor 4 is designed for the design of an antenna rod 1 for a rod antenna arrangement for the reception of AM / FM / VHF and a radio service in the L-band.
  • the length of the coupling conductor 15 for the reception of a radio service in the L-frequency band is selected to be 1 ⁇ 4 of the free space wavelength of the frequency of the radio service.
  • the necessary for the vote of the antenna coil 2 low slope
  • the wire helix leads to a high-impedance structure in the frequency range of the L-frequency band, which barely influences the radiation behavior of the coupling conductor 4 designed as an L-band radiator.
  • Such an advantageously designed antenna rod 1 allows for corresponding broadband design of the above-mentioned FM / VHF antenna amplifier as FMNHF / L-band amplifier, the inclusion of the broadcast band in the L-band frequency.
  • the antenna rod 1 thus designed enables the reception of all the broadcast bands AM, FM, VHF and L-band in the above-mentioned advantageous small antenna rod length 13.
  • this coupling coil 32 can be applied, for example, made of wire to a tubular body, which is pushed over the antenna coil 2.
  • the increase in the bandwidth results from the formation of the loop in the complex impedance plane, which can be achieved by the appropriate coordination of the two helices 2 and 32 with respect to the geometry of the two turns together with the dielectric properties of the materials.
  • the spiral cover 34 - this is the length over which the antenna coil 2 is covered by the coupling coil 32 - should not fall below 1/4 of the antenna coil 2.
  • the sleeve is lined in an exemplary embodiment in its inner boundary with an electrically insulating plastic sheath as a low-loss insulator 10.
  • the latter comprises positively locking the introduced into the electrically conductive sleeve 16 with plastic sheath, the antenna coil 2 supporting plastic rod 7 at least over the length of the cover 9.
  • the electrically conductive sleeve 16 includes at its lower end the electro-mechanical connecting element 14 for connection to the electro-mechanical base terminal 5 of the plastic base part.
  • FIG. 6a In a further advantageous embodiment of the invention are - as in FIG. 6a represented - the antenna coil 2 supporting plastic rod 7 and the electrically conductive sleeve 16 each designed with a circular cross-section.
  • the low-loss insulator 10 is formed by an insulator sleeve 22, the latter being positively inserted into the electrically conductive sleeve 16 and in which turn the antenna coil 2 supporting plastic rod 7 at least over the length of the cover 9 at its lower end is introduced positively.
  • the tubular insulator 21 is formed in the interior of the electrically conductive sleeve 16, wherein at the lower end of an insulating disc 24 is inserted to avoid a galvanic contact between the antenna coil 2 and the electrically conductive sleeve 16. If, for structural reasons, a very thin wall thickness of the tubular insulator 21 is required, the pipe wall can be provided with apertures for reducing the coupling capacity for a given dielectric constant of the insulator material.
  • FIG. 6b represents - the antenna coil 2 supporting plastic rod 7 made of a highly elastic rod 26 with a substantially circular cross-section made of fiberglass reinforced plastic to form the restoring force.
  • the diameter of the plastic rod 7 should not be chosen smaller than 2 mm.
  • the low-loss insulator 10 is as in FIG. 6c represented by the dielectrically low-loss insulating selected material 27 for the plastic protective casing 25 itself formed.
  • the diameter of the electrically conductive sleeve 16 is chosen to be correspondingly larger than the diameter of the antenna helix 2 supporting plastic rod 7. This is introduced during manufacture in the electrically conductive sleeve 16 that the low-loss insulator 10 by inflow of the dielectric low-loss insulating material 27 between the electrically conductive sleeve 16 and the antenna coil 2 supporting plastic rod 7 is formed.
  • the encapsulation of the antenna rod 1 with the protective plastic coating 25 and the production of the low-loss insulator 10 can be carried out advantageously in one operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Details Of Aerials (AREA)

Description

Ein weiterer Antennenstab ist zum Beispiel bekannt als Kurzstab-Antenne aus der DE102004053354A1 , insbesondere für den Rundfunk-Empfang in Kraftfahrzeugen. Der Antennenstab wird auf einem Kunststoffteil befestigt und bildet den HF-Strahler. Es ist vorgesehen, die Wendelung mit differenzierter Steigung auszuführen, um den Schaft neben den Frequenzen des Hörrundfunks auch für den Betrieb in den Frequenzen des Mobilfunk -im 900-MHz- wie auch im 1,8-GHz-Bereichzu nutzen. Für die Anwendung in Kraftfahrzeugen ist die Bauhöhe solcher Antennen von besonderer Bedeutung. Sie werden bevorzugt auf dem Dach des Kraftfahrzeugs eingesetzt und stellen bei zu großer Länge ein Hindernis insbesondere bei Parkgaragen mit niedriger Bauhöhe und sogenannten Doppelparkern dar.Another antenna rod is known, for example, as a short-rod antenna from the DE102004053354A1 , in particular for radio reception in motor vehicles. The antenna rod is mounted on a plastic part and forms the RF emitter. It is envisaged to carry out the helix with differentiated pitch, in order to use the shank in addition to the frequencies of the radio broadcasting also for the operation in the frequencies of the mobile radio in the 900 MHz as well as in the 1.8 GHz range. For use in motor vehicles, the height of such antennas is of particular importance. They are preferably used on the roof of the motor vehicle and, if the length is too great, constitute an obstacle, in particular in the case of parking garages with a low overall height and so-called double parkers.

Die Strahlerbandbreite elektrisch kurzer Stabantennen wächst etwa mit der dritten Potenz der auf die Freiraumwellenlänge der Betriebsfrequenz bezogenen Länge des Antennenstabs. Im Gegensatz zu den Verhältnissen, die im Frequenzbereich des AM-Hörrundfunks vorliegen, stellt diese Gesetzmäßigkeit insbesondere im Frequenzbereich des UKW-Hörrundfunks mit der Bandbreite von circa 20 MHz in Verbindung mit dem in diesem Frequenzbereich bereits niedrigem Umgebungsrauschen eine besondere Schwierigkeit bei der Gestaltung sehr kurzer Stabantennen dar. Antennen nach dem genannten Stand der Technik besitzen in der Regel eine Länge von 40cm. Hinzu kommt die Forderung nach einer möglichst kostengünstigen Herstellbarkeit solcher Antennenstäbe, die in der Fahrzeugtechnik einem besonders hohen Kostendruck unterliegen.The radiator bandwidth of electrically short rod antennas increases approximately with the cube of the length of the antenna rod relative to the free space wavelength of the operating frequency. In contrast to the conditions that exist in the frequency range of AM-Hörrundfunk, this law, especially in the frequency range of the FM radio with the bandwidth of about 20 MHz in conjunction with the already low in this frequency range ambient noise a particular difficulty in the design of very short Rod antennas. Antennas according to the cited prior art usually have a length of 40 cm. Add to that Demand for the lowest possible manufacturability of such antenna rods, which are subject to a particularly high cost pressure in vehicle technology.

Aufgabe der Erfindung ist es deshalb, einen Antennenstab anzugeben, welcher einerseits im Frequenzbereich des UKW-Hörrundfunks eine bei möglichst kleiner Länge möglichst große Empfangsspannung liefert und ebenso den Betrieb bei den Funkdiensten mit höherer Frequenz sowie eine besonders kostengünstige Herstellung ermöglicht.The object of the invention is therefore to provide an antenna rod, which on the one hand in the frequency range of VHF radio provides the smallest possible length as large as possible reception voltage and also allows operation in the radio services with higher frequency and a particularly cost-effective production.

Diese Aufgabe wird erfindungsgemäß durch die im kennzeichnenden Teil des Hauptanspruchs angegebenen Merkmale gelöst.This object is achieved by the features stated in the characterizing part of the main claim.

Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden im Folgenden näher beschrieben. Im einzelnen zeigt:

  • Fig. 1a: Antennenstab 1 (nicht beansprucht) mit gestrecktem elektrisch leitendem Element als Koppelleiter 4 zur elektromagnetischen Ankopplung an die Antennen-Wendel 2 über den verlustarmen Isolator 10 über die Länge der Überdeckung 9 zur Erhöhung der Empfangsspannung des Antennenstabs 1 im UKW-Frequenzbereich
  • Fig. 1b: Perspektivische Darstellung des im Wesentlichen mit rechteckförmigem Querschnitt gestalteten Antennenstabs 1 mit als Bandleiter gestaltetem Koppelleiter 4
  • Fig. 1c: Längsschnitt durch den Antennenstab 1 mit Darstellung des elektro-mechanischen Verbindungselements 14 in fester elektrischer Verbindung mit dem Koppelleiter 4
  • Fig. 1d: Antennenstab 1 wie in Figur 1a jedoch mit Parallelschwingkreis 35 zur Messung der Impedanz 33 mit zwei niederohmigen Resonanzstellen
  • Fig. 2: Gegen die Masse 29 gemessener Verlauf der Impedanz 33 des an den elektro-mechanischen Basisanschluss 5 angeschlossenen Antennenstabs 1 im Frequenzbereich zwischen 87 MHz und 108 MHz mit niederohmiger Resonanz bei 95,3 MHz. Der Antennenstab 1 ist auf den Frequenzbereich des UKW-Hörrundfunks abgestimmt.
  • Fig. 3: Am einen Ende eines mit seinem anderen Ende an den elektro-mechanischen Basisanschluss 5 angeschlossenen Parallelschwingkreises 35 - wie in Figur 1d - mit der Parallel-Resonanzfrequenz zwischen 120 MHz und 160 MHz gegen die Masse 29 gemessener Verlauf der Impedanz 33. Der Antennenstab 1 und der Parallelschwingkreis 35 sind in der Weise aufeinander abgestimmt, dass eine erste niederohmige Resonanz im UKW-Frequenzbereich und eine zweite im VHF- Bereich auftritt
  • Fig.4:
    1. a) Antenne nach der Erfindung mit einer zusätzlichen Koppel-Wendel 32 zur Vergrößerung der Bandbreite. Bei geeigneter Dimensionierung ist ein Impedanzverlauf entsprechend einem Zwei-Kreis-Resonanzbandfilter erreichbar. Hierzu sollte die Wendel-Überdeckung 34 ¼ der Länge der Antennenwendel 2 nicht unterschreiten
    2. b) Impedanzverlauf eines nach Fig. 4a gestalteten Antennenstabs 1 nach der Erfindung}
  • Fig. 5: Antennenstab 1 wie in Figur 1, wobei jedoch der Koppelleiter 4 als elektrisch leitende Hülse 16 mit elektro-mechanischem Basisanschluss 5 gestaltetet ist, in welche der die Antennen-Wendel 2 tragende Kunststoff-Stab 7 mit der Länge der Überdeckung 9 eingeschoben ist. Die mechanisch feste Verbindung zwischen der Hülse 16 und dem Kunststoff-Stab 7 ist über den rohrförmig gestalteten verlustarmen Isolator 10 gegeben
  • Fig. 6a:
    1. a) Antennenstab 1 wie in Figur 5, jedoch mit einem als Hülse gestalteten verlustarmen Isolator 10 und einem aus einem elastischen Stabkern 17 mit Stabkern-Ummantelung 18 aus weicherem Kunststoff und der Kunststoff-Schutzummantelung 25 gestaltetem Kunststoff-Stab 7
    2. b) Antennenstab 1 wie in Figur 5, jedoch mit einem Kunststoff-Stab 7 aus Glasfaser verstärktem Kunststoff mit rundem Querschnitt, auf welchem der drahtförmige Leiter 11 der Antennen-Wendel 2 aufgebracht ist. Zwischen dem verlustarmen, rohrförmigen Isolator 21 und der elektrisch leitenden Hülse 16 ist die Isolierscheibe 24 eingefügt. 7
    3. c) Antennenstab 1 wie in Figur 6a, wobei jedoch der verlustarme Isolator 10 durch das dielektrisch verlustarm isolierend gewählte Material 27 für die Kunststoff-Schutzummantelung 25 durch Einfließen dieses Materials 27 zwischen die elektrisch leitende Hülse 16 und den die Antennen-Wendel 2 tragenden Kunststoff-Stab 7 bei der Umspritzung des Antennenstabs mit der Kunststoff-Schutzummantelung 25 gebildet ist
Embodiments of the invention are illustrated in the drawings and will be described in more detail below. In detail shows:
  • Fig. 1a : An antenna rod 1 (not claimed) with a stretched electrically conductive element as a coupling conductor 4 for electromagnetic coupling to the antenna coil 2 via the low-loss insulator 10 over the length of the cover 9 to increase the receiving voltage of the antenna rod 1 in the VHF frequency range
  • Fig. 1b : Perspective view of the antenna rod 1, which is designed substantially with a rectangular cross section and has a coupling conductor 4 designed as a strip conductor
  • Fig. 1c 3 shows a longitudinal section through the antenna rod 1, showing the electro-mechanical connecting element 14 in fixed electrical connection with the coupling conductor 4
  • Fig. 1d : Antenna rod 1 as in FIG. 1a However, with parallel resonant circuit 35 for measuring the impedance 33 with two low-impedance resonance points
  • Fig. 2 : Measured against the mass 29 course of the impedance 33 of the connected to the electro-mechanical base terminal 5 antenna rod 1 in the frequency range between 87 MHz and 108 MHz with low-impedance resonance at 95.3 MHz. The antenna rod 1 is tuned to the frequency range of the VHF radio.
  • Fig. 3 At one end of a parallel resonant circuit 35 connected at its other end to the electro-mechanical base connection 5 - as in FIG Figure 1d - With the parallel resonant frequency between 120 MHz and 160 MHz against the ground 29 measured course of the impedance 33. The antenna rod 1 and the parallel resonant circuit 35 are matched in such a way that a first low-impedance resonance in the FM frequency range and a second in the VHF - area occurs
  • Figure 4 :
    1. a) antenna according to the invention with an additional coupling coil 32 to increase the bandwidth. With suitable dimensioning, an impedance curve corresponding to a two-loop resonant band filter can be achieved. For this purpose, the spiral cover 34 ¼ of the length of the antenna coil 2 should not fall below
    2. b) impedance curve of an after Fig. 4a designed antenna rod 1 according to the invention}
  • Fig. 5 : Antenna rod 1 as in FIG. 1 However, wherein the coupling conductor 4 is designed as an electrically conductive sleeve 16 with electro-mechanical base terminal 5, in which the antenna coil 2 supporting plastic rod 7 is inserted with the length of the cover 9. The mechanically strong connection between the sleeve 16 and the plastic rod 7 is given over the tubular shaped low-loss insulator 10
  • Fig. 6a :
    1. a) antenna rod 1 as in FIG. 5 , but with a designed as a sleeve low-loss insulator 10 and a made of an elastic rod core 17 with rod core sheath 18 made of softer plastic and the plastic protective sheath 25 designed plastic rod. 7
    2. b) antenna rod 1 as in FIG. 5 , but with a plastic rod 7 made of fiberglass reinforced plastic with a round cross section, on which the wire-shaped conductor 11 of the antenna coil 2 is applied. Between the low-loss, tubular insulator 21 and the electrically conductive sleeve 16, the insulating disk 24 is inserted. 7
    3. c) antenna rod 1 as in FIG. 6a However, wherein the low-loss insulator 10 by the dielectrically low-loss insulating selected material 27 is formed for the plastic protective jacket 25 by inflow of this material 27 between the electrically conductive sleeve 16 and the antenna coil 2 supporting plastic rod 7 in the encapsulation of the antenna rod with the plastic protective coating 25

Fig. 1a zeigt einen im Wesentlichen vertikalen Antennenstab 1 für eine Stabantennen-Anordnung auf einer Fahrzeug-Karosserie 12, welche als Masse 29 der Stabantennen-Anordnung dient. Der Antennenstab 1 enthält einen Kunststoff-Stab 7, auf dem eine Antennen-Wendel 2 aufgebracht ist. Es erfolgt die Ankopplung an die Wendel 2 über einen Koppelleiter 4, welcher aus einem gestreckten, elektrisch leitenden Element besteht und parallel zur Stabachse 8 des Antennenstabs 1 geführt ist. Der Koppelleiter 4 ist in Überdeckung 9 von mehreren, jedoch mindestens zwei Windungen der Wendel 2 über einen dazwischen angeordneten verlustarmen Isolator 10 über die Länge der Überdeckung 9 zur Antennen-Wendel 2 galvanisch getrennt geführt, so dass über diese Länge eine kapazitive Ankopplung an die Antennen-Wendel 2 gegeben ist. Der Koppelleiter 4, der verlustarme Isolator 10 und der Antennenstab sind mechanisch fest miteinander verbunden und am unteren Ende des Koppelleiters 4 ist dieser mit einem elektro-mechanischen Verbindungselement 14 zum Anschluss an den elektro-mechanischen Basisanschluss 5 ausgestattet. Ein Antennenstab 1 dieser Art ist in der Regel mit dem elektro-mechanischen Basisanschluss 5 eines niedrigen und auf der Fahrzeug-Karosserie 12 befestigten Kunststoff-Basisteils 3 verbunden, welches die weiterführende Antennenschaltung 6 beinhaltet, die an den elektromechanischen Basisanschluss 5 angeschlossen ist. Ein solcher Antennenstab besitzt dabei gegenüber solchen des Standes der Technik den Vorteil, dass durch die Kombination der kapazitiven Ankopplung des Koppelleiters 4 über den verlustarmen Isolator 10 an die Antennen-Wendel 2 über die Länge der Überdeckung 9 eine Erhöhung der Empfangsspannung des Antennenstabs 1 im UKW-Frequenzbereich erzielbar ist. Mit der über die Länge der Überdeckung 9 an die Windungen der Antennenwendel 2 gegebene, verteilte Kapazität ist eine Transformation der Impedanz 33 des Antennenstabs 1 zu größeren Werten hin gegeben. Hierbei führt die Erhöhung des Realteils dieser Impedanz 33, welche im Wesentlichen den Strahlungswiderstand repräsentiert zu dieser erwünschten Erhöhung der Empfangsspannung. Ist der Antennenstab 1 mit dem elektro-mechanischen Basisanschluss 5 des niedrigen, auf der Fahrzeug-Karosserie 12 befestigten Kunststoff-Basisteils 3 verbunden, so ist der gegen die Masse 29 - welche durch die Fahrzeug-Karosserie 12 gegeben ist - auftretende, in Fig.2 dargestellte Frequenzverlauf der Impedanz 33 im UKW-Frequenzbereich erreichbar. Die dargestellte Impedanz 33 trifft auf eine Antennenstablänge 13 von h = 15 cm zu und weist bei geeigneter Abstimmung der Windungszahl der Antennen-Wendel 13, der Überdeckung 9 und der Kapazität zwischen dem Koppelleiter 4 und der Antennen-Wendel 2 im UKW-Frequenzbereich bei der Frequenz f = 95,3MHz eine niederohmige Resonanz der komplexen Impedanz 33 vom Charakter einer Serienresonanz eines gedämpften Schwingkreises auf. Dabei tritt jedoch, bewirkt durch die kapazitive Ankopplung des Koppelleiters 4, über mehrere Wendelungen an die Antennen-Wendel 2, ein wesentlich größerer Wirkanteil der Impedanz 33 auf, als er mit einer einfachen Antennen-Wendel ohne die Maßnahmen mit der auf die Wellenlänge A bezogenen Antennenstablänge 13 mit h/ λ = 0,05 gegeben wäre. Dieser erhöhte Strahlungswiderstand ist in einem weiten Frequenzbereich um den Durchlauf der Impedanz 33 im Frequenzpunkt der niederohmigen Resonanz vorteilhaft erhöht, wodurch eine Erhöhung der Empfangsspannung mit relativ großer Frequenzbandbreite gegeben ist. Im dargestellten Beispiel ist die Länge der Überdeckung 9 zu 5cm gewählt und sollte im Allgemeinen mindestens 2 cm und maximal 6 cm betragen. Bei einer Gesamtzahl von etwa 200 der Wendelungen mit konstanter Steigung hat sich eine Überdeckung 9 von etwa 60 Wendelungen als zweckmäßig erwiesen. Weiterhin erweist es sich weiterhin als zweckmäßig, die statische Kapazität zwischen dem Koppelleiter 4 und der Antennen-Wendel 2 hinreichend groß und nicht kleiner als 3pF zu gestalten. Allgemein ist die Abstimmung des Antennenstabes vorteilhaft in der Weise vorzunehmen, dass die niederohmige Resonanz im Frequenzbereich zwischen 75 MHz und 110 MHz auftritt. Ein wesentlicher mit der vorliegenden Erfindung verbundener Vorteil bei der aufwandsarmen Herstellung des Antennenstabs ergibt sich aus der festen mechanischen Verbindung zwischen dem Koppelleiter 4, dem verlustarmer Isolator 10 und dem Antennenstab. Zum elektrischen und mechanischen Anschluss an den elektro-mechanischen Basisanschluss 5 des Kunststoff-Basisteils 3 ist der Koppelleiter 4 an seinem unteren Ende mit einem elektro-mechanischen Verbindungselement 14 ausgestattet. Erfindungsgemäß besteht somit keine galvanisch leitende Verbindung zwischen der Antennen-Wendel 2 und dem Anschluss zur weiterführenden Antennenschaltung 6. Der die Antennen-Wendel 2 tragende Kunststoff-Stab 7 kann somit zum Beispiel endlos hergestellt, in entsprechende Längen abgetrennt und vollständig mit einem Isolierstoff ummantelt werden und - ohne Lötung - zum Beispiel durch Verklebung mit dem Koppelleiter 4 zum Antennenstab 1 ergänzt werden. Fig. 1a shows a substantially vertical antenna rod 1 for a rod antenna assembly on a vehicle body 12, which serves as a mass 29 of the rod antenna assembly. The antenna rod 1 includes a plastic rod 7, on which an antenna coil 2 is applied. There is the coupling to the coil 2 via a coupling conductor 4, which consists of an elongated, electrically conductive element and parallel to Rod axis 8 of the antenna rod 1 is guided. The coupling conductor 4 is performed in coverage 9 of several, but at least two turns of the coil 2 via an interposed low-loss insulator 10 over the length of the cover 9 to the antenna coil 2 galvanically separated, so that over this length a capacitive coupling to the antennas -Wendel 2 is given. The coupling conductor 4, the low-loss insulator 10 and the antenna rod are mechanically fixed to each other and at the lower end of the coupling conductor 4 it is equipped with an electro-mechanical connecting element 14 for connection to the electro-mechanical base terminal 5. An antenna rod 1 of this type is usually connected to the electro-mechanical base terminal 5 of a low and on the vehicle body 12 fixed plastic base member 3, which includes the further antenna circuit 6, which is connected to the electromechanical base terminal 5. Such an antenna rod has over the prior art the advantage that by combining the capacitive coupling of the coupling conductor 4 via the low-loss insulator 10 to the antenna coil 2 over the length of the cover 9, an increase in the receiving voltage of the antenna rod 1 in the VHF Frequency range is achievable. With the distributed capacitance given over the length of the cover 9 to the windings of the antenna coil 2, there is a transformation of the impedance 33 of the antenna rod 1 to larger values. Here, the increase of the real part of this impedance 33, which essentially represents the radiation resistance, leads to this desired increase in the reception voltage. If the antenna rod 1 is connected to the electromechanical base terminal 5 of the low plastic base part 3 fastened to the vehicle body 12, then the one occurring in relation to the mass 29 - which is given by the vehicle body 12 - is Fig.2 shown frequency profile of the impedance 33 in the FM frequency range achievable. The illustrated impedance 33 applies to a Antennenstablänge 13 of h = 15 cm and has a suitable tuning of the number of turns of Antenna coil 13, the coverage 9 and the capacity between the coupling conductor 4 and the antenna coil 2 in the FM frequency range at the frequency f = 95.3MHz a low impedance resonance of the complex impedance 33 of the character of a series resonance of a damped resonant circuit. However, this occurs, caused by the capacitive coupling of the coupling conductor 4, over several turns to the antenna coil 2, a much larger active component of the impedance 33, as he with a simple antenna coil without the measures with respect to the wavelength A Antenna rod length 13 with h / λ = 0.05 would be given. This increased radiation resistance is advantageously increased in a wide frequency range around the passage of the impedance 33 in the frequency point of the low-impedance resonance, whereby an increase in the receiving voltage is given with a relatively large frequency bandwidth. In the example shown, the length of the cover 9 is chosen to be 5 cm and should generally be at least 2 cm and not more than 6 cm. With a total of about 200 turns of constant pitch, an overlap 9 of about 60 turns has been found to be useful. Furthermore, it proves to be further appropriate to make the static capacitance between the coupling conductor 4 and the antenna coil 2 sufficiently large and not smaller than 3pF. In general, the tuning of the antenna rod is advantageously to be carried out in such a way that the low-resistance resonance in the frequency range between 75 MHz and 110 MHz occurs. An essential advantage associated with the present invention in the low-effort production of the antenna rod results from the fixed mechanical connection between the coupling conductor 4, the low-loss insulator 10 and the antenna rod. For electrical and mechanical connection to the electro-mechanical base connection 5 of the plastic base part 3, the coupling conductor 4 is equipped at its lower end with an electromechanical connecting element 14. According to the invention, there is thus no galvanically conductive connection between the antenna helix 2 and the connection to the continuing antenna circuit 6. The antenna coil 2 supporting plastic rod 7 can thus be produced, for example, endless, separated into appropriate lengths and completely encased with an insulating material and - without soldering - for example by gluing with the coupling conductor be added to the antenna rod 1.

Fig. 1b zeigt die perspektivische Darstellung eines Antennenstabs 1, welcher im Wesentlichen mit rechteckförmigem Querschnitt gestaltet ist. Zur kapazitiven Ankopplung ist der Koppelleiter 4 vorteilhaft als flächiger Bandleiter ausgeführt. In Fig. 1c ist der Längsschnitt des Antennenstabs 1 mit Darstellung des elektro-mechanischen Verbindungselements 14 mit fester elektrischer Verbindung mit dem Koppelleiter 4 dargestellt. Fig. 1b shows the perspective view of an antenna rod 1, which is designed substantially with a rectangular cross-section. For capacitive coupling of the coupling conductor 4 is advantageously designed as a flat band conductor. In Fig. 1c the longitudinal section of the antenna rod 1 with representation of the electro-mechanical connecting element 14 with a fixed electrical connection to the coupling conductor 4 is shown.

Ein besonderer Vorteil eines Antennenstabs 1 ist seine besondere Eignung für die aufwandsarme Gestaltung für mehrere Funkdienste.A particular advantage of an antenna rod 1 is its particular suitability for the low-effort design for multiple radio services.

Eine mit der vorliegenden Erfindung erreichbare vorteilhafte Anhebung der Empfangsspannung im UKW-Frequenzbereich kann vorteilhaft ebenso genützt werden, wenn der Antennenstab 1 für eine Stabantennen-Anordnung für den zusätzlichen Empfang von VHF-Rundfunksignalen gestaltet ist. Ist der Antennenstab 1 mit dem elektro-mechanischen Basisanschluss 5 des Kunststoff-Basisteils 3 verbunden, wie im Zusammenhang mit der Fig. 1a beschrieben, und ist dem elektro-mechanischen Basisanschluss 5 ein Parallelschwingkreis 35 mit der Parallel-Resonanzfrequenz zwischen 120 MHz und 160 MHz, wie in Fig. 1d dargestellt, nachgeschaltet, so kann die Abstimmung des Antennenstabs 1 und des Parallelschwingkreises 35 jeweils in der Weise gestaltet werden, dass die zwischen dem freien Ende des Parallelschwingkreises 35 und der Masse 29 messbare Impedanz 33 den in Fig.3 dargestellten Frequenzverlauf besitzt.An advantageous increase of the received voltage in the VHF frequency range achievable with the present invention can advantageously also be utilized if the antenna rod 1 is designed for a rod antenna arrangement for the additional reception of VHF broadcast signals. Is the antenna rod 1 connected to the electro-mechanical base terminal 5 of the plastic base part 3, as in connection with the Fig. 1a is described, and the electro-mechanical base terminal 5 is a parallel resonant circuit 35 with the parallel resonant frequency between 120 MHz and 160 MHz, as in Fig. 1d shown, connected downstream, so the vote of the antenna rod 1 and the parallel resonant circuit 35 are each designed in such a way that the measurable between the free end of the parallel resonant circuit 35 and the ground 29 impedance 33 in the Figure 3 has shown frequency profile.

Hierfür ist es erforderlich, dass die Impedanz 33 im Frequenzbereich zwischen 75 MHz und 110 MHz für die Funktion im UKW-Frequenzbereich eine erste niederohmige Resonanz und im Frequenzbereich zwischen 175 MHz und 240 MHz für die Funktion im VHF- Frequenzbereich eine zweite niederohmige Resonanz durchläuft.For this it is necessary that the impedance 33 in the frequency range between 75 MHz and 110 MHz for the function in the FM frequency range, a first low-impedance resonance and in the Frequency range between 175 MHz and 240 MHz for the function in the VHF frequency range passes through a second low-impedance resonance.

Insbesondere bei sehr kleiner Antennenstablänge 13 von h = 15 cm und weniger sind für den Empfang des FM- und des VHF-Rundfunkbandes in einer vorteilhaften Ausgestaltung der Erfindung der Durchmesser, die Steigung der Windungen und der Durchmesser des drahtförmigen Leiters 11 der Antennen-Wendel 2 auf folgende besondere Weise aufeinander abgestimmt. Diese Abstimmung erfolgt derart, dass bei Einfügung einer Serienschaltung aus einer Kapazität und einer Induktivität zwischen dem Basisanschluss 5 und der Masse 29 die parallel zur Induktivität gemessene Impedanz im Frequenzbereich zwischen 190 MHz und 230MHz eine niederohmige Resonanz durchläuft. Dabei ist die Induktivität vorteilhaft in der Weise zu wählen, dass sich bei Einsatz dieser Beschaltung in der weiterführenden Antennenschaltung 6 sowohl im Frequenzbereich des FM-Rundfunks als auch des VHF-Rundfunks bei Anschluss eines FM/VHF-Antennenverstärkers mit eingangsseitig hochohmigem Feldeffekttransistor parallel zur Induktivität jeweils die notwendige Bandbreite in diesen Frequenzbereichen ergibt. Hierfür ist die Kapazität für die Fortleitung der Signale in diesen Frequenzbereichen hinreichend jedoch andererseits nicht zu groß wählen, um bei Anschluss eines AM-Verstärkers mit eingangsseitig hochohmigem Feldeffekttransistor am Eingang des AM-Verstärkers zwischen dem Basisanschluss 5 und der Masse 29 diese Signale nicht zu sehr zu schwächen. Günstige Werte für eine derartige Kapazität liegen zwischen 5pF und 20pF; günstige Werte für die Induktivität liegen zwischen 500nH und 1500nH.In particular, with very small Antennenstablänge 13 of h = 15 cm and less are for the reception of the FM and VHF radio band in an advantageous embodiment of the invention, the diameter, the pitch of the turns and the diameter of the wire-shaped conductor 11 of the antenna coil. 2 matched in the following special way. This tuning takes place in such a way that when a series connection of a capacitance and an inductance is inserted between the base terminal 5 and the ground 29, the impedance measured in parallel to the inductance passes through a low-impedance resonance in the frequency range between 190 MHz and 230 MHz. The inductance is advantageous in the way to choose that when using this circuit in the continuing antenna circuit 6 in both the frequency range of FM broadcasting and VHF broadcasting when connecting an FM / VHF antenna amplifier with input side high-impedance field effect transistor parallel to the inductor each gives the necessary bandwidth in these frequency ranges. For this purpose, the capacity for the propagation of the signals in these frequency ranges sufficiently, however, on the other hand not too large to choose when connecting an AM amplifier with input side high-impedance field effect transistor at the input of the AM amplifier between the base terminal 5 and the ground 29, these signals not too much to weaken. Favorable values for such a capacity are between 5pF and 20pF; favorable values for the inductance are between 500nH and 1500nH.

In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist der Koppelleiter 4 zur Gestaltung eines Antennenstabs 1 für eine Stabantennen-Anordnung für den Empfang von AM/FM/VHF- und einen Funkdienst im L-Band ausgebildet. Die Länge des Koppelleiters 15 für den Empfang eines Funkdienstes im L-Frequenzband ist etwa ¼ der Freiraum-Wellenlänge der Frequenz des Funkdienstes gewählt. Die für die Abstimmung der Antennen-Wendel 2 notwendige geringe Steigung der Drahtwendel führt zu einer im Frequenzbereich des L-Frequenzbandes hochohmigen Struktur, welche das Strahlungsverhalten des als L-Bandstrahlers ausgebildeten Koppelleiters 4 kaum beeinflusst. Ein derart vorteilhaft ausgestalteter Antennenstab 1 ermöglicht bei entsprechend breitbandiger Gestaltung des oben genannten FM/VHF-Antennenverstärkers als FMNHF/L-Band-Verstärker die Einbeziehung des Rundfunkbandes im L-Frequenzband. Durch frequenzselektive Zusammenführung der Ausgangssignale des FM/VHF/L-Band-Verstärkers und des AM-Verstärkers in der weiterführenden Antennenschaltung 6 ermöglicht der auf diese Weise gestaltete Antennenstab 1 den Empfang sämtlicher Rundfunkbänder AM, FM, VHF und L-Band bei der genannten vorteilhaft kleinen Antennenstablänge 13.In a further advantageous embodiment of the invention, the coupling conductor 4 is designed for the design of an antenna rod 1 for a rod antenna arrangement for the reception of AM / FM / VHF and a radio service in the L-band. The length of the coupling conductor 15 for the reception of a radio service in the L-frequency band is selected to be ¼ of the free space wavelength of the frequency of the radio service. The necessary for the vote of the antenna coil 2 low slope The wire helix leads to a high-impedance structure in the frequency range of the L-frequency band, which barely influences the radiation behavior of the coupling conductor 4 designed as an L-band radiator. Such an advantageously designed antenna rod 1 allows for corresponding broadband design of the above-mentioned FM / VHF antenna amplifier as FMNHF / L-band amplifier, the inclusion of the broadcast band in the L-band frequency. By frequency-selective combining of the output signals of the FM / VHF / L-band amplifier and the AM amplifier in the secondary antenna circuit 6, the antenna rod 1 thus designed enables the reception of all the broadcast bands AM, FM, VHF and L-band in the above-mentioned advantageous small antenna rod length 13.

Im Interesse einer größeren Bandbreite des gegen die Masse 29 gemessenen Frequenzverlaufs der Impedanz 33 des an den elektromechanischen Basisanschluss 5 angeschlossenen Antennenstabs 1 im Frequenzbereich des UKW-Rundfunks ist - wie in Figur 4a angedeutet - auf den Kunststoff-Stab 7 (der Kunststoff-Stab 7 selbst ist aus Gründen der Übersicht nicht gezeichnet) zusätzlich eine Koppel-Wendel 32 aufgebracht. In einer einfachen Ausführungsform kann diese Koppel-Wendel 32 zum Beispiel aus Draht auf einen rohrförmigen Körper aufgebracht sein, welcher über die Antennen-Wendel 2 geschoben ist. Eine derartige Anordnung ermöglicht die Gestaltung des Frequenzverlaufs der Impedanz 33 entsprechend dem eines Zwei-Kreis-Resonanzbandfilters, wie er in Figur 4b dargestellt ist. Die Vergrößerung der Bandbreite ergibt sich aus der Ausbildung der Schleife in der komplexen Impedanzebene, welche durch die geeignete Abstimmung der beiden Wendeln 2 und 32 in Bezug auf die Geometrie der beiden Wendelungen zusammen mit den dielektrischen Eigenschaften der Materialien erreicht werden kann. Die Wendel-Überdeckung 34 - das ist die Länge, über welche die Antennen-Wendel 2 von der Koppel-Wendel 32 überdeckt ist - sollte dabei 1/4 der Antennen-Wendel 2 nicht unterschreiten.In the interest of a greater bandwidth of the frequency characteristic of the impedance 33 measured against the mass 29 of the antenna rod 1 connected to the electromechanical base terminal 5 in the frequency range of the VHF broadcasting is - as in FIG. 4a indicated - on the plastic rod 7 (the plastic rod 7 itself is not shown for reasons of clarity) additionally applied a coupling coil 32. In a simple embodiment, this coupling coil 32 can be applied, for example, made of wire to a tubular body, which is pushed over the antenna coil 2. Such an arrangement enables the shaping of the frequency characteristic of the impedance 33 corresponding to that of a two-loop resonant band filter as shown in FIG FIG. 4b is shown. The increase in the bandwidth results from the formation of the loop in the complex impedance plane, which can be achieved by the appropriate coordination of the two helices 2 and 32 with respect to the geometry of the two turns together with the dielectric properties of the materials. The spiral cover 34 - this is the length over which the antenna coil 2 is covered by the coupling coil 32 - should not fall below 1/4 of the antenna coil 2.

Erfindungsgemäß ist der Koppelleiter 4 - wie in Figur 5 dargestellt-als elektrisch leitende Hülse 16 gestaltet, welche aus einem im Wesentlichen rohrförmigen Körper mit einem an einem Ende befindlichen Deckel besteht. Die Hülse ist in einer beispielhaften Ausführungsform in ihrer inneren Berandung mit einem elektrisch isolierenden Kunststoffmantel als verlustarmer Isolator 10 ausgekleidet. Letzterer umfasst formschlüssig den in die elektrisch leitende Hülse 16 mit Kunststoffmantel eingebrachten, die Antennen-Wendel 2 tragenden Kunststoff-Stab 7 mindestens über die Länge der Überdeckung 9. Die elektrisch leitende Hülse 16 enthält an ihrem unteren Ende das elektro-mechanische Verbindungselement 14 zum Anschluss an den elektro-mechanischen Basisanschluss 5 des Kunststoff-Basisteils 3.According to the coupling ladder 4 - as in FIG. 5 shown configured as an electrically conductive sleeve 16, which consists of a substantially tubular body having a lid located at one end. The sleeve is lined in an exemplary embodiment in its inner boundary with an electrically insulating plastic sheath as a low-loss insulator 10. The latter comprises positively locking the introduced into the electrically conductive sleeve 16 with plastic sheath, the antenna coil 2 supporting plastic rod 7 at least over the length of the cover 9. The electrically conductive sleeve 16 includes at its lower end the electro-mechanical connecting element 14 for connection to the electro-mechanical base terminal 5 of the plastic base part. 3

In einer weiteren vorteilhaften Ausgestaltung der Erfindung sind - wie in Figur 6a dargestellt - der die Antennen-Wendel 2 tragende Kunststoff-Stab 7 und die elektrisch leitende Hülse 16 jeweils mit kreisförmigem Querschnitt gestaltet. Der verlustarme Isolator 10 ist durch eine Isolator-Hülse 22 gebildet, wobei Letztere formschlüssig in die elektrisch leitende Hülse 16 eingebracht ist und in welche wiederum der die Antennen-Wendel 2 tragende Kunststoff-Stab 7 mindestens über die Länge der Überdeckung 9 an seinem unteren Ende formschlüssig eingeführt ist.In a further advantageous embodiment of the invention are - as in FIG. 6a represented - the antenna coil 2 supporting plastic rod 7 and the electrically conductive sleeve 16 each designed with a circular cross-section. The low-loss insulator 10 is formed by an insulator sleeve 22, the latter being positively inserted into the electrically conductive sleeve 16 and in which turn the antenna coil 2 supporting plastic rod 7 at least over the length of the cover 9 at its lower end is introduced positively.

In Figur 6b ist der rohrförmige Isolator 21 im Inneren der elektrisch leitenden Hülse 16 gestaltet, wobei an deren unterem Ende eine Isolierscheibe 24 zur Vermeidung eines galvanischen Kontakts zwischen der Antennen-Wendel 2 und der elektrisch leitenden Hülse 16 eingefügt ist. Ist aus konstruktiven Gründen eine sehr dünne Wandstärke des rohrförmigen Isolators 21 gefordert, so kann bei vorgegebener Dielektrizitätskonstante des Isolatormaterials die Rohrwandung zur Verkleinerung der Koppelkapazität mit Durchbrüchen versehen werden.In FIG. 6b the tubular insulator 21 is formed in the interior of the electrically conductive sleeve 16, wherein at the lower end of an insulating disc 24 is inserted to avoid a galvanic contact between the antenna coil 2 and the electrically conductive sleeve 16. If, for structural reasons, a very thin wall thickness of the tubular insulator 21 is required, the pipe wall can be provided with apertures for reducing the coupling capacity for a given dielectric constant of the insulator material.

In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist - wie ebenfalls in Figur 6b dargestellt - der die Antennen-Wendel 2 tragende Kunststoff-Stab 7 aus einem hoch-elastischen Stab 26 mit im wesentlichen rundem Querschnitt aus Glasfaser verstärktem Kunststoff zur Ausbildung der Rückstellkraft gebildet. Zur Gestaltung einer Antennen-Wendel 2 aus einem drahtförmigen Leiter 11 mit nicht zu kleinem Durchmesser sollte der Durchmesser des Kunststoff-Stabs 7 nicht kleiner als 2 mm gewählt werden.In a further advantageous embodiment of the invention is - as also in FIG. 6b represented - the antenna coil 2 supporting plastic rod 7 made of a highly elastic rod 26 with a substantially circular cross-section made of fiberglass reinforced plastic to form the restoring force. To design an antenna coil 2 from a wire-shaped conductor 11 with not too small diameter, the diameter of the plastic rod 7 should not be chosen smaller than 2 mm.

In einer für die Herstellung besonders vorteilhaften Ausführungsform eines Antennenstabs 1 ist der verlustarme Isolator 10 - wie in Figur 6c dargestellt - durch das dielektrisch verlustarm isolierend gewählte Material 27 für die Kunststoff-Schutzummantelung 25 selbst gebildet. Hierfür ist der Durchmesser der elektrisch leitenden Hülse 16 entsprechend größer gewählt als der Durchmesser des die Antennen-Wendel 2 tragenden Kunststoff-Stabs 7. Dieser wird bei der Herstellung derart in die elektrisch leitende Hülse 16 eingebracht, dass der verlustarme Isolator 10 durch Einfließen des dielektrisch verlustarm isolierenden Materials 27 zwischen die elektrisch leitende Hülse 16 und den die Antennen-Wendel 2 tragenden Kunststoff-Stab 7 gebildet ist. Damit kann die Umspritzung des Antennenstabs 1 mit der Kunststoff-Schutzummantelung 25 und die Herstellung des verlustarmen Isolators 10 vorteilhaft in einem Arbeitsgang erfolgen. In a particularly advantageous embodiment of an antenna rod 1, the low-loss insulator 10 is as in FIG FIG. 6c represented by the dielectrically low-loss insulating selected material 27 for the plastic protective casing 25 itself formed. For this purpose, the diameter of the electrically conductive sleeve 16 is chosen to be correspondingly larger than the diameter of the antenna helix 2 supporting plastic rod 7. This is introduced during manufacture in the electrically conductive sleeve 16 that the low-loss insulator 10 by inflow of the dielectric low-loss insulating material 27 between the electrically conductive sleeve 16 and the antenna coil 2 supporting plastic rod 7 is formed. Thus, the encapsulation of the antenna rod 1 with the protective plastic coating 25 and the production of the low-loss insulator 10 can be carried out advantageously in one operation.

Claims (14)

  1. An antenna rod (1) for a rod antenna arrangement, wherein:
    - the antenna rod (1) includes a plastic rod (7) on which an antenna coil (2) is applied;
    - an elongated electrically conductive element as a coupling conductor (4) for the electromagnetic coupling to the antenna coil (2) is guided at the lower end of the plastic rod (7) and in parallel with its rod axis (8) with a coverage (9) of at least two windings of the antenna coil (2);
    - the coupling conductor (4) is galvanically separated from the antenna coil (2) by a low-loss insulator (10) such that a capacitive coupling to the antenna coil (2) is present;
    - the coupling conductor (4), the low-loss insulator (10) and the antenna rod are mechanically fixedly connected to one another; and
    - the coupling conductor (4) is equipped with an electromechanical connection element (14) at its lower end,
    characterized in that
    the coupling conductor (4) is configured as an electrically conductive sleeve (16) which is lined in its inner boundary with an electrically insulating plastic jacket as a low-loss insulator (10) which comprises the plastic rod (7) in a shape-matched manner at least over the length of the coverage (9), said plastic rod supporting the antenna coil (2) and being inserted into the electrically conductive sleeve (16) comprising the plastic jacket; and in that the electrically conductive sleeve (16) includes the electromechanical connection element (14) at its lower end.
  2. An antenna rod (1) for a rod antenna arrangement in accordance with claim 1 for the reception of AM/of FM,
    characterized by the following features
    - the antenna rod length (13) is shorter than 45 cm,
    - the antenna coil (2) is adapted from a wire-like conductor (11) wound onto the plastic rod (7) at a substantially constant pitch;
    - the diameter, the pitch of the windings and the diameter of the wire-like conductor (11) of the antenna coil (2) are coordinated with one another for the function in the USW range in such a manner that the impedance of the antenna rod (1) measured against ground (29) experiences a low-ohm resonance in a frequency range between 75 MHz and 120 MHz; and
    - the coverage (9) is selected as at least 2 cm and at most 6 cm and the low-loss insulator (10) mechanically connecting the coupling conductor (4) to the antenna rod (1) is selected in such a manner that the static capacitance between the coupling conductor (4) and the antenna coil (2) amounts to at least 3 pF.
  3. An antenna rod (1) for a rod antenna arrangement in accordance with claim 2 for the reception of AM radio/of FM radio and for VHF radio,
    characterized in that
    a parallel resonant circuit having a parallel resonant frequency between 120 MHz and 160 MHz is, however, provided at an input of a furthergoing antenna circuit (6) whose one terminal is connected to the electromechanical connection element (14); in that the diameter, the pitch of the windings and the diameter of the wire-like conductor (11) of the antenna coil (2) are coordinated with one another in such a manner that the impedance measured against ground (29) at the other terminal of the parallel resonant circuit experiences a first low-ohm resonance in the frequency range between 75 MHz and 110 MHz for the function in the USW frequency range and experiences a second low-ohm resonance in the frequency range between 175 MHz and 240 MHz for the function in the VHF frequency range.
  4. An antenna rod (1) for a rod antenna arrangement in accordance with claim 3 for the reception of AM band/of FM band/of VHF band and for a radio service in the L band,
    characterized in that
    the length of the coupling conductor (15) amounts to approximately [1/4] of the free-space wavelength of the frequency of the radio service for the reception of a radio service in the L frequency band.
  5. An antenna rod (1) for a rod antenna arrangement in accordance with claim 2 for the reception of AM/of FM and for a radio service in the L band,
    characterized in that
    the length of the coupling conductor (15) amounts to approximately [1/4] of the free-space wavelength of the frequency of the radio service for the reception of a radio service in the L frequency band.
  6. An antenna rod (1) in accordance with claim 1,
    characterized in that
    the plastic rod (7) supporting the antenna coil (2) and the electrically conductive sleeve (16) are each designed with circular cross-sections and an insulator sleeve (22) having a minimum length of the coverage (9) is present, into which insulator sleeve the plastic rod (7) supporting the antenna coil (2) is inserted in a shape-matched manner at its lower end and said antenna coil is, in turn, inserted in a shape-matched manner into the electrically conductive sleeve (16).
  7. An antenna rod (1) in accordance with claim 6,
    characterized in that
    a tubular insulator (21) is, however, used instead of the insulator sleeve (22) and an insulating disk (24) is present in the interior of the electrically conductive sleeve (16) at the lower end thereof to avoid a galvanic contact between the antenna coil (2) and the electrically conductive sleeve (16).
  8. An antenna rod (1) in accordance with claims 1 to 7,
    characterized in that
    the plastic rod (7) supporting the antenna coil (2) comprises a highly elastic rod (26) having a substantially round cross-section of glass fiber-reinforced plastic to form a return force, the diameter of said plastic rod being selected as at least 2 mm and the antenna coil (2) being applied thereon.
  9. An antenna rod (1) in accordance with claims 1 to 8,
    characterized in that
    the plastic rod (7) supporting the antenna coil (2) comprises a highly elastic rod (26) of glass fiber-reinforced plastic having small cross-sectional dimensions to form a return force, which plastic rod is surrounded by a stable-core jacket (17) from a softer material (27) which insulates in a dielectrically low-loss manner to form a suitable cross-section for the application of the antenna coil (2).
  10. An antenna rod (1) in accordance with claims 1 to 9,
    characterized in that
    the plastic rod (7) supporting the antenna coil (2) is surrounded by a plastic protective jacket (25) for the mechanical protection of the antenna coil (2).
  11. An antenna rod (1) in accordance with claim 10,
    characterized in that
    the low-loss insulator (10) is, however, formed by the selected material (27), which insulates in a dielectrically low-loss manner, for the plastic protective jacket (25), with the diameter of the electrically conductive sleeve (16) being selected correspondingly larger than the diameter of the plastic rod (7) supporting the antenna coil (2) and said plastic rod being inserted into the electrically conductive sleeve (16) in manufacture such that the low-loss insulator (10) is formed by the inflow of the material (27) which insulates in a dielectrically low-loss manner between the electrically conductive sleeve (16) and the plastic rod (7) supporting the antenna coil (2) on the overmolding of the antenna rod with the plastic protective jacket (25).
  12. An antenna rod (1) in accordance with claim 9,
    characterized in that
    the antenna rod (1) has a round cross-section and the antenna rod length (13) amounts to approximately 150 mm; the diameter of the highly elastic rod (26) of glass fiber-reinforced plastic amounts to approximately 2 to 3 mm; the diameter of the rod-core jacket (18) amounts to approximately 4 to 8 mm; and the coverage (9) and the length of the coupling conductor (15) amount to approximately 30 to 50 mm.
  13. An antenna rod (1) in accordance with claim 1,
    characterized in that,
    for the electromagnetic coupling to the antenna coil (2), a coupling coil (32) is present at the plastic rod (7), covers the antenna coil (2) with a coil coverage (34) of at least 1/4 of the length of the antenna coil (2) and is galvanically separate therefrom and both coils (2, 32) are coordinated with one another in such a manner that the frequency progression, measured against ground (29), of the impedance of the antenna rod (1) connected to the electromechanical base terminal (5) forms a broadband loop in the complex impedance plane in the frequency range of USW radio and thus corresponds to the frequency progression of a double-circuit resonant bandpass filter.
  14. An antenna rod (1) for a rod antenna arrangement in accordance with claim 4 for the reception of the AM radio band/of the FM radio band and of the VHF radio band and for the reception of a broadcasting service in the L band,
    characterized in that
    a capacitor having a capacitance value between 5 pF and 20 pF is, however, present and its first terminal is connected to the electromechanical base terminal (5) and an inductance having an inductance value between 500 nH and 1500 nH is connected between a second terminal of the capacitor and ground (29); and in that the diameter, the pitch of the windings and the diameter of the wire-like conductor (11) of the antenna coil (2) are coordinated with one another in such a manner that the impedance measured in parallel with the inductance experiences a low-ohm resonance in the frequency range between 190 MHz and 230 MHz.
EP10171466.5A 2009-08-17 2010-07-30 Antenna rod for a rod antenna for multiple wireless services Active EP2287966B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009037722A DE102009037722A1 (en) 2009-08-17 2009-08-17 Antenna rod for a rod antenna for several radio services

Publications (2)

Publication Number Publication Date
EP2287966A1 EP2287966A1 (en) 2011-02-23
EP2287966B1 true EP2287966B1 (en) 2018-05-30

Family

ID=43303241

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10171466.5A Active EP2287966B1 (en) 2009-08-17 2010-07-30 Antenna rod for a rod antenna for multiple wireless services

Country Status (3)

Country Link
US (1) US8610631B2 (en)
EP (1) EP2287966B1 (en)
DE (1) DE102009037722A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009037722A1 (en) * 2009-08-17 2011-02-24 Heinz Prof. Dr.-Ing. Lindenmeier Antenna rod for a rod antenna for several radio services
DE102012003460A1 (en) 2011-03-15 2012-09-20 Heinz Lindenmeier Multiband receiving antenna for the combined reception of satellite signals and terrestrial broadcasting signals
KR101246855B1 (en) * 2011-04-27 2013-03-25 인팩일렉스 주식회사 Dual band antenna for vehicle
TWM424630U (en) * 2011-08-31 2012-03-11 Mascot Electric Co Ltd Antenna device
JP6010412B2 (en) * 2012-09-26 2016-10-19 株式会社ヨコオ Antenna device
JP6334313B2 (en) * 2014-08-19 2018-05-30 株式会社ヨコオ Composite antenna and manufacturing method thereof
CN108321527A (en) * 2017-12-29 2018-07-24 浙江联品电子科技有限公司 A kind of frequency modulation broadcasting transmitting antenna being easily installed

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242740A (en) * 1997-02-26 1998-09-11 Nippon Antenna Co Ltd Multi-resonance antenna

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137534A (en) * 1977-05-26 1979-01-30 Goodnight Roy G Vertical antenna with low angle of radiation
FI106895B (en) * 1996-02-16 2001-04-30 Filtronic Lk Oy A combined structure of a helix antenna and a dielectric disk
SE9902878L (en) * 1999-08-11 2001-03-05 Allgon Ab Compact multi-band antenna
US6714164B2 (en) * 2001-02-26 2004-03-30 Nippon Antena Kabushiki Kaisha Multifrequency antenna
GB2400497B (en) * 2003-04-07 2007-03-21 Harada Ind Multi-band antenna and connectable communication circuitry,for vehicular application
GB2410837B (en) * 2004-02-06 2007-05-23 Harada Ind Co Ltd Multi-band antenna using parasitic element
DE102004053354B4 (en) 2004-09-06 2021-01-21 Delphi Technologies, Inc. Short rod antenna
DE102006055022A1 (en) * 2006-11-22 2008-05-29 Hirschmann Car Communication Gmbh Rod antenna with sections of different antenna windings
DE102009037722A1 (en) * 2009-08-17 2011-02-24 Heinz Prof. Dr.-Ing. Lindenmeier Antenna rod for a rod antenna for several radio services

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242740A (en) * 1997-02-26 1998-09-11 Nippon Antenna Co Ltd Multi-resonance antenna

Also Published As

Publication number Publication date
DE102009037722A1 (en) 2011-02-24
US20110193755A1 (en) 2011-08-11
EP2287966A1 (en) 2011-02-23
US8610631B2 (en) 2013-12-17

Similar Documents

Publication Publication Date Title
EP2287966B1 (en) Antenna rod for a rod antenna for multiple wireless services
EP1138097B1 (en) Half-loop antenna
AT393762B (en) UHF TRANSMITTER AND / OR RECEIVED ANTENNA
EP2374182B1 (en) Filter arrangement
WO2005086275A1 (en) High frequency filter
DE3709163C2 (en)
WO2006029868A1 (en) High-frequency filter
WO2009077171A1 (en) Antenna coupler
EP1926175A1 (en) Rod antenna with segmentally different antenna coils
DE4007824C2 (en) Vehicle antenna for radio services with a rod-shaped antenna element
EP1134840B1 (en) Antenna
DE112016002772T5 (en) Antenna structure for multi-band applications
DE4141783B4 (en) Motor vehicle antenna for several separate frequency ranges
DE10235222B4 (en) Broadband antenna
DE102013211541A1 (en) Duplex antenna arrangement used for transmitting and receiving in different frequency bands, has helical monopole antennas that are capacitively coupled with electrical antenna conductor by alternating arrangement of windings
DE102007055234A1 (en) Multi-band receiving antenna module
DE68919927T2 (en) Three-band vehicle antenna.
DE102008033881A1 (en) Rod antenna with partially different antenna conductor structures
DE60205181T2 (en) Multi-band antenna with two concentric nested antennas, the outer one being a meandering antenna
DE60211003T2 (en) WENDEL ANTENNA
DE102012014572A1 (en) Magnetic measuring antenna e.g. magnetic rod antenna for e.g. radio clock, has additive elements that are provided with ferrite cores which are used for increasing inductance of ferrite core of base unit
AT502158B1 (en) ANTENNA ARRANGEMENT
DE10212365C1 (en) Electrical coaxial connector with overvoltage protection provided by capacitor with opposing capacitor plates coupled to inner conductor on input and output sides and axial coil coupled to outer conductor
DE202009012341U1 (en) rod antenna
DE102006012193A1 (en) Rod antenna, in particular for motor vehicles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20110823

17Q First examination report despatched

Effective date: 20120308

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20171205

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1004550

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010015016

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180530

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180830

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180830

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180831

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010015016

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180730

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20190301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180730

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1004550

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100730

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200723

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200724

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210730

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230927

Year of fee payment: 14