EP2276359A2 - Procédé pour la neutralisation, l adsorption, et l absorption de composés dangereux ou autrement indésirables dans un produit à base de tabac - Google Patents

Procédé pour la neutralisation, l adsorption, et l absorption de composés dangereux ou autrement indésirables dans un produit à base de tabac

Info

Publication number
EP2276359A2
EP2276359A2 EP09733309A EP09733309A EP2276359A2 EP 2276359 A2 EP2276359 A2 EP 2276359A2 EP 09733309 A EP09733309 A EP 09733309A EP 09733309 A EP09733309 A EP 09733309A EP 2276359 A2 EP2276359 A2 EP 2276359A2
Authority
EP
European Patent Office
Prior art keywords
tobacco product
nanocrystalline particles
tobacco
nanocrystalline
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09733309A
Other languages
German (de)
English (en)
Inventor
David Brotton
Olga B. Koper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanoscale Corp
Original Assignee
Nanoscale Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanoscale Corp filed Critical Nanoscale Corp
Publication of EP2276359A2 publication Critical patent/EP2276359A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/16Use of materials for tobacco smoke filters of inorganic materials
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/24Treatment of tobacco products or tobacco substitutes by extraction; Tobacco extracts
    • A24B15/241Extraction of specific substances
    • A24B15/245Nitrosamines
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/24Treatment of tobacco products or tobacco substitutes by extraction; Tobacco extracts
    • A24B15/241Extraction of specific substances
    • A24B15/246Polycyclic aromatic compounds
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/285Treatment of tobacco products or tobacco substitutes by chemical substances characterised by structural features, e.g. particle shape or size
    • A24B15/286Nanoparticles
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/287Treatment of tobacco products or tobacco substitutes by chemical substances by inorganic substances only

Definitions

  • the present invention is generally directed toward abatement of hazardous, or otherwise undesired compounds contained in tobacco smoke through neutralization, adsorption, and absorption by the incorporation of nanocrystalline particles into tobacco products.
  • tobacco smoke especially that produced by cigarettes and cigars, contains at least 250 poisonous gases, chemicals, and metals including hydrogen cyanide, carbon monoxide, butane, ammonia, toluene, arsenic, lead, chromium, cadmium, and polonium-210 (highly radioactive carcinogen), nitrogen oxides, formaldehyde, acrolien, benzene, certain N-nitrosamines, nicotine, phenol, polyaromatic hydrocarbons (PAHs). Eleven of the compounds are classified as Group 1 carcinogens, the most dangerous.
  • poisonous gases, chemicals, and metals including hydrogen cyanide, carbon monoxide, butane, ammonia, toluene, arsenic, lead, chromium, cadmium, and polonium-210 (highly radioactive carcinogen), nitrogen oxides, formaldehyde, acrolien, benzene, certain N-nitrosamines, nicotine, phenol, polyaromatic hydrocarbon
  • Tobacco products can employ cellulose filters devices to assist with removal of smoke, tar and other particulate matter prior to being inhaled by the user.
  • these filters do not address or mitigate the inhalation of or release into the surrounding environment of a good number of these toxic gases and chemicals.
  • unfiltered tobacco products such as cigars contain no or relatively little means to mitigate the release and inhalation of these toxic materials.
  • a tobacco product comprising nanocrystalline particles and tobacco.
  • the tobacco product may be a cigarette or cigar wherein the nanocrystalline particles are contained within the product's paper wrapping, incorporated into, mixed, and/or directly intermingled with the tobacco, or included within a fibrous filter that forms a part of the tobacco product.
  • the tobacco product comprises between about 0.001% to about 2% by weight of the nanocrystalline particles based upon the weight of the entire tobacco product.
  • Exemplary nanocrystalline particles for use with certain embodiments according to the present invention include those selected from the group consisting of the oxides, hydroxides, halides, carbonates, nitrates, sulfates, and phosphates of metals, metalloids, and combinations thereof.
  • the exemplary nanocrystalline particles have an average crystallite size of between about 2 to about 25 nm.
  • the nanocrystalline particles may be amorphous and have an average crystallite size of less than 2 nm.
  • the nanocrystalline particles have an average surface area of at least 20 m 2 /g.
  • a method of reducing the level of reducing the level of undesirable components in tobacco smoke from a tobacco product comprising the step of incorporating a quantity of nanocrystalline particles into the tobacco product.
  • the tobacco product may be constructed according to any of the embodiments described herein, and likewise, the nanocrystalline particles used withe the tobacco product may be any of those nanocrystalline particles described herein.
  • At least a portion of the tobacco product is combusted and thereby generating tobacco smoke (including carbonaceous smoke particulates) and one or more undesirable compounds.
  • the nanocrystalline particles contained within the tobacco product sorb smoke particulates and/or at least one of the one or more undesirable compounds contained in said tobacco smoke thereby preventing those materials from being taken in by the smoker or contaminating the surrounding environment.
  • embodiments according to the present invention also reduce the levels of third-hand smoke contaminants deposited on surfaces exposed to tobacco smoke.
  • FIG. 1 is a perspective view of a cigarette made in accordance with one embodiment of the present invention wherein the cigarette paper is coated with or has incorporated therein a quantity of nanocrystalline particles;
  • FIG. 2 is a cross-sectional view of a cigarette made in accordance with another embodiment of the present invention wherein a quantity of nanocrystalline particles are incorporated into or mixed with the tobacco;
  • FIG. 3 is a perspective view of a cigarette made in accordance with yet another embodiment of the present invention with the filter portion of the cigarette partially sections, the filter portion having incorporated therein a quantity of nanocrystalline particles;
  • FIG. 4 is a chart depicting air filtration removal capacities for various sorbents and hydrogen chloride agent under dry conditions and 35% relative humidity conditions.
  • FIG. 5 is a chart depicting air filtration removal capacities for various sorbents and acetaldehyde agent under dry and 50% relative humidity conditions.
  • the main undesirable components of tobacco (especially cigarette and cigar) smoke are inorganic compounds such as hydrogen cyanide, carbon monoxide, and nitrogen oxide; aldehydes such as formaldehyde, acetaldehyde, butyraldehyde, crotonaldehyde, propionaldehyde, acrolien; ketones such as acetone and MEK; nitrogen compounds such as ammonia, acrylonitrile, pyridine, N-nitrosamines, and acrylamide; organic compounds such as polyaromatic hydrocarbons (PAHs), styrene, 1 ,3-butadiene, benzene, isopropene, toluene, phenol, fluorene, ethylene oxide, propylene oxide, and butane; and particulate phase materials such as arsenic, lead, chromium, cadmium, polonium-210 (highly radioactive carcinogen
  • nanocrystalline particles that are capable of adsorbing one or more undesirable compounds released by - A - burning tobacco.
  • a "nanocrystalline particle” means a high surface area particle having an average surface area of at least 20 m 2 /g and an average crystallite size of between 2 to 25 nanometers. If the nanocrystalline material is amorphous, the average crystallite size can be below 2 nm. The particle itself need not necessarily have these dimensions, but can present a much larger particle size. Rather it is the crystals that make up the particle that are nano-sized. In certain embodiments, the nanocrystalline particles exhibit an surface area of between about 100 to about 800 nm, or between about 300 to 700 nm.
  • Nanocrystalline particles are prepared by conventional means or via an aerogel process described in U.S. Patent 6,087,294 and Utampanya et al., (Chem. Mater. 3: 175-181 [1991]) both incorporated herein by reference.
  • Exemplary nanocrystalline materials include oxides, hydroxides, halides, carbonates, and phosphates of metals, metalloids, and combinations thereof.
  • the nanocrystalline particles comprise a member selected from the group consisting of the halides, carbonates, phosphates, oxides, or hydroxides of alkaline earth metals (e.g., MgO, CaO), alkali metals, transition metals (e.g. ZnO, Ti ⁇ 2 ), and lanthanide metals, and metalloids (e.g., silicon oxides).
  • the materials may be in the form of a singular component or a multi- component mixture, in the form of a powder, embedded particles in or supported on a media (i.e., paper, filter, or other components of cigarettes) or in granular or otherwise aggregated form.
  • a media i.e., paper, filter, or other components of cigarettes
  • Exemplary metal oxides and metal hydroxides include MgO, CeO 2 , CaO, TiO 2 , ZrO 2 , FeO, V 2 O 3 , V 2 O 5 , Mn 2 O 3 , Fe 2 O 3 , NiO, Fe 3 O 4 , CuO, Al 2 O 3 , ZnO, SiO 2 , Ag 2 O, SrO, BaO, Mg(OH) 2 , Ca(OH) 2 , Al(OH) 3 , Sr(OH) 2 , Ba(OH) 2 , Fe(OH) 3 , Cu(OH) 3 , Ni(OH) 2 , Co(OH) 2 , Zn(OH) 2 , AgOH, AlOOH (alumina oxyhydroxide) and mixtures thereof, obtained from NanoScale Corporation, Manhattan, Kansas, some of which under the name Nano Active®.
  • the nanocrystalline particles may also comprise more than one metal oxide or metal hydroxide species co-solidified together (as opposed to being coated one over another).
  • the nanocrystalline particles may comprise MgO/TiO 2 /Al 2 O 3 or any combination of the above-noted metal oxides and metal hydroxides.
  • the nanocrystalline particle might be also utilized in a combination with activated carbon, as a simple physical mixture, coating of nanocrystalline particles onto activated carbon, coating of activated carbon onto nanocrystalline particles, nanocrystalline particles embedded into activated carbon, or any combination thereof.
  • the particles may also comprise one or more reactive species stabilized on the surface of the nanoparticle. Exemplary reactive species include halogen atoms, Group IA atoms, and ozone.
  • the nanocrystalline particle may also be doped with a metal species such as gold, platinum, ruthenium, rhodium, or palladium to achieve a catalytic oxidation of certain contaminants. For example, CO contained in the tobacco smoke may be converted to CO 2 through such catalytic oxidation.
  • the particles may be coated to protect them from the moisture (i.e., air stable nanoparticles as disclosed in US 6,860,924 incorporated by reference herein in its entirety), coated with halogens, metal halides, or with another metal oxide/hydroxide (see, U.S. Patents 6,843,919, 6,653,519, 6,417,423, RE39,098, 6,087,294, 6,057,488, and 5,990,373, all of which are incorporated by reference in their entireties).
  • air stable nanoparticles include those selected from the group consisting of MgO, SrO, BaO, CaO, TiO 2 , ZrO 2 , FeO, V 2 O 3 , V 2 O 5 , Mn 2 O 3 , Fe 2 O 3 , NiO, Fe 3 ⁇ 4 , CuO, Al 2 O 3 , SiO 2 , ZnO, Ag 2 O, the corresponding hydroxides of the foregoing, and mixtures thereof at least partially coated with a quantity of a coating material other than metal oxide coatings.
  • coated or “coating” is intended to refer to coatings which only physically coat the particles, as well as those coatings which modify or react with the metal oxide surfaces.
  • Preferred coating materials include those selected from the group consisting of surfactants, oils, polymers (both synthetic and natural; e.g., silicone rubber and cellulose and its derivatives), resins, waxes, silyls, and mixtures thereof.
  • the construction of a tobacco product according to the present invention begins with the selection of a solid nanocrystalline particle sorbent material capable of adsorbing and/or chemically reacting with at least one undesired compound produced by burning tobacco.
  • FIG. 1 depicts a cigarette 10 comprising an outer paper wrapping 12 having a quantity of nanocrystalline particles 14 coated thereupon or dispersed with the fibers thereof.
  • FIG. 2 shows a cigarette 16 comprising a quantity of tobacco 18 having nanocrystalline particles dispersed therein inside of an outer paper wrapping 20.
  • Cigarette 16 also includes a conventional filter 22.
  • FIG. 3 illustrates yet another cigarette 24 in accordance with the present invention that comprises a filter 26 having a quantity of nanocrystalline particles 28 incorporated therein.
  • Cigarette 24 likewise comprises a quantity of tobacco 30 within an outer paper wrapping 32. It is also within the scope of the present invention to provide a cigarette that incorporates two or all three features shown in the above drawings.
  • the cigarette may be constructed with the nanocrystalline particle-containing paper 12, filter 26, and tobacco 18.
  • the nanocrystalline particles may also be provided as granular sorbents, sorbents attached to a support, or as a bed of particles such as a packed column within the tobacco product.
  • the tobacco may be in the form of relatively intact leaves (such as in a cigar) or comminuted and/or shreaded into fine particulates (such as in cigarettes).
  • the tobacco product comprises between about 0.001 % to about 2% by weight of the nanocrystalline particles.
  • the nanocrystalline particles resist reacting with moisture, and other components found in the environment (i.e., carbon dioxide) for a duration of up to 18 months (the shelf life of the cigarette).
  • the nanocrystalline material is capable of selectively neutralizing toxic compounds while allowing nicotine to freely pass on to the user, and without significantly altering the burn characteristics of the tobacco or altering the tobacco flavors.
  • the temperature range of contacting the nanoparticle sorbent with the undesired compound inside the cigarette filter ranges from ambient to 800 0 C.
  • the time of contact ranges from brief (fraction of a second) to the life of smoked product, or from less than a minute to about 20 minutes.
  • the present nanocrystalline particles are also capable of destruction of certain contaminants. The sequence below illustrates the destruction of aldehydes by carbonyl adsorption on surface cites of the metal oxide followed by the aldehydic hydrogen dissociation. ,
  • HCN was 2.0 slpm through a bed 3 cm in diameter and having a bed depth of 1.0 cm.
  • Example 2 Breakthrough tests were conducted using 870 mg/m 3 (330 ppm) of sulfur dioxide mixed with air. The tests were carried out at room temperature (19-23 0 C). A superficial gas velocity was 12 ft/min (6 cm/s) and the bed thickness was 10 mm. Tested adsorbents were granulated with granule size 12-30 mesh (activated carbons) or 16-35 mesh (nanoparticle formulations). The table below compares SO 2 breakthrough times for NanoActive® MgO
  • Breakthrough tests with hydrogen chloride were conducted with an air stream containing 3100 mg/m 3 (2100 ppm) of agent at room temperature (20-25 0 C). A superficial gas velocity was 12 ft/min (6 cm/s) and the bed thickness was 10 mm. Tested adsorbents were granulated, with granule size 12-30 mesh (activated carbons) or 16-35 mesh (nanoparticle formulations). Tests for this agent were carried out at 35% relative humidity instead of 50% relative humidity used for other agents. This change was needed to avoid condensation and corrosion caused by the HCl agent in the breakthrough apparatus. FIG.
  • Air filtration performance of activated carbons towards HCl was outperformed under both dry and humidified conditions.
  • NanoActive® ZnO outperformed both carbons by at least 180% (two-sample T-type hypothesis test and a 95% confidence level).
  • NanoActive® Al 2 O 3 Plus outperformed activated carbons by at least 332% (two-sample T-type hypothesis test and a 95% confidence level) and reached an exceptional removal capacity of (1340 +/- 270) mg/g.
  • NanoActive® Al 2 O 3 Plus had greater than four times the removal capacity of the ASZM-TEDA carbon under humidified conditions.
  • FIG. 5 presents the acetaldehyde air filtration removal capacities for the BPL and ASZM-TEDA carbons and the following NanoActive® metal oxides: MgO, MgO Plus, TiO 2 , Al 2 O 3 , and AI 2 O 3 Plus (previously characterized herein).
  • Concentrated hydrochloric acid 28-30% aqueous ammonia, hexadecyl- trimethylammonium bromide (C 16TMABr), tetraethyl orthosilicate (TEOS), LE-4 polyoxyethylene lauryl ether, aluminum sulfate (Ab(SO 4 )J- I 8H 2 O), triethoxyoctyl silane (TES), and phenyl triethoxyoctyl silane (PTES) were purchased from Sigma-Aldrich, Sodium hydroxide, ethanol (histological) and toluene (A. C. S. grade) were obtained from Fisher.
  • Tetrabutyl ammonium hydroxide (TBAOH) was obtained from Alfa Aesar. Ludox As-40 (40%wt) silica was obtained from Grace Davison. Zeolite nanocrystalline CBV 400 and CBV 8014 were obtained from Zeolyst International. Nanocrystalline titanium dioxide (NanoActive® TiO 2 from NanoScale Corporation) and trimetallic oxide (MgO:TiO 2 :Al 2 ⁇ 3 1 :2: 1) was synthesized. All chemicals were used as obtained without further purification. Sample Synthesis
  • PTES hybrid mesoporous silica was synthesized according to the method reported by Burkett and coworkers. Burkett, S. L., Sims, S. D., Mann, S. Synthesis of Hybrid Inorganic- Oragnic Mesoporous Silica by Co-condensation of Siloxane and Organosiloxane Precursors, Chem. Commiin. , 1996, 1367-1368.
  • An Al-ZSM-5 silicate was synthesized following the method reported by Grieken and coworkers (van Grieken, R., Sotelo, J.L., Men ⁇ ndez, J. M., Melero, J. A. Anomalous Crystallization Mechanism in the Synthesis of Nanocrystalline ZSM-5, Microporous Mesoporous Mater., 2000, 39, 135-147), except that the preparation was scaled up to twice its original scale, and TPAOH, in original literature, was substituted by TBAOH in the same molar ratio, as the former reagent was no longer carried by the original vender.
  • the lest setup comprised a 245 ml gas tight glass reactor equipped with a sample holder inside for placement of the solids. All tests were performed in undesiccated ambient air. Initial experimentation showed that toluene liquid completely evaporates in the reactor within 1 h after injection, and an accurate calibration is possible within this time frame. For each test, 20 ul of liquid toluene was injected into the sealed reactor through the septum on the side arm and after 1 h a gas sample (1 ml) was taken from the reactor for analysis by GC- FID. The initial GC peak area was noted as AO.
  • the reactor was then cleaned by air purging, the desired sorbent sample (0.16 g powder or 35-60 mesh granules) was loaded on the sample holder and the reactor sealed. Liquid toluene (20 ul, sorbent:toluene 10: 1 w/w) was injected into the reactor without directly contacting the sorbent. A gas sample (1 ml) was analyzed by GC-FID after Ih. The GC peak area was noted as Al . Percentage toluene removal by the sorbent was calculated using the formula 1-(A 1/AO). The instrument used was a GC-FID 5890 series II, equipped with a 30 m X 0.32 mm ID X 0.25 urn EC-Wax column.
  • the temperature of the injector and the detector was 265 0 C, the heating program was 60-100 0 C (stead at 6O 0 C for 10 min, followed by heating rate 5°C/min to 100 0 C for 1 min; toluene retention time 4.7 min). Two replicates were carried out for each test.
  • the dynamic test condition was designed to mimic an air filtration test system that is used in solids testing.
  • the FT-IR instrument (Thermo Electron Corporation) was equipped with a 2.5 L gas cell.
  • a gas circulation pump was connected to the IR gas cell by steel tubing, forming a sealable circulation pathway.
  • a glass solid sample cell with filter frit was connected into the circulation pathway. All tests were performed in dry ambient air. After cleaning the test system by air purging, toluene (20 ul) was injected into the sealed IR cell, vaporized by -brief spot heating, and circulated by the pump with simultaneous IR measurements. When IR spectra intensity stopped fluctuating, integration of the band region 3160-2834 cm-1 (C-H stretch) was noted as 10.
  • the pump was then turned off and the desired sorbent (0.16 g, 35-60 mesh granules) was quickly loaded into the sample cell.
  • the system was resealed and the pump was turned back on, continuously circulating toluene contaminated air through the sorbent sample.
  • IR spectra of toluene in the vapor phase were taken at various time intervals by an automatic Macro program continuously for 3 hours. Spectra integration of the band region 3160-2834 cm " ' at time t was noted as It. Percentage toluene vapor removal at a certain time t can be calculated using the formula l -(It/I0). Two replicates were carried out for each test.
  • the container was cleaned out by air purging, injected with the desired VOC vapor so a definite VOC concentration in the container was reached (45 ppm for toluene, 50 ppm for acetaldehyde, and 100 ppm for both diethyl amine and ethyl mercaptan) and then allowed to sit for 30 min for vapor equilibration. (Time dependent control experiments indicated that 30 min is sufficient for equilibration of all VOCs tested.) Then a gas sample (2.5 ml) was taken from the container and analyzed by GC-FID. The GC peak area was noted as PO.
  • the surface areas of the seven samples can be divided into four major groups: 300- 500 m 2 /g (Samples 2 and 6), 500-700 m 2 /g (Samples 1 , 5, and 7), 700-800 m 2 /g (Sample 3) and >1000 m 2 /g (Sample 4).
  • Sample 2 has the lowest surface area while Sample 4 has the highest.
  • Sample 1 still performed the best, with second place shared by Samples 2, 6 and 7, and third place shared by Samples 4 and 5, and Sample 3 as the least effective. Based on the performance ranking and the absolute quantities of adsorption, Samples 2 and 3 showed appreciable difference in stationary and dynamic tests).
  • Samples 1 and 7 CBV 400 and trimetallic oxide
  • CBV 400 zeolite
  • trimetallic oxide is a better universal VOCs sorbent than CBV 400. It was also found that higher surface area does not necessarily lead to better performance of a sorbent in VOC removal.

Abstract

La présente invention concerne un produit à base de tabac comportant des particules nanocristallines et des procédés de réduction des niveaux de composés indésirables dans la fumée de tabac. Les particules nanocristallines sont des sorbants efficaces de nombreux composés toxiques libérés par la combustion du tabac et peuvent être incorporées dans le tabac lui-même, incorporées dans un élément de filtre, ou incorporées dans les fibres de papier pour filtres.
EP09733309A 2008-04-14 2009-04-14 Procédé pour la neutralisation, l adsorption, et l absorption de composés dangereux ou autrement indésirables dans un produit à base de tabac Withdrawn EP2276359A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US4475808P 2008-04-14 2008-04-14
PCT/US2009/040550 WO2009129255A2 (fr) 2008-04-14 2009-04-14 Procédé pour la neutralisation, l’adsorption, et l’absorption de composés dangereux ou autrement indésirables dans un produit à base de tabac

Publications (1)

Publication Number Publication Date
EP2276359A2 true EP2276359A2 (fr) 2011-01-26

Family

ID=41199694

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09733309A Withdrawn EP2276359A2 (fr) 2008-04-14 2009-04-14 Procédé pour la neutralisation, l adsorption, et l absorption de composés dangereux ou autrement indésirables dans un produit à base de tabac

Country Status (6)

Country Link
US (1) US20090260645A1 (fr)
EP (1) EP2276359A2 (fr)
JP (1) JP2011517574A (fr)
AU (1) AU2009236334A1 (fr)
CA (1) CA2721447A1 (fr)
WO (1) WO2009129255A2 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2618928B1 (fr) 2010-09-24 2019-06-19 Agency For Science, Technology And Research Matériau polymère poreux
US20140037534A1 (en) * 2011-04-18 2014-02-06 Qixin Deng The Preparation of Additive Material and its Application in the Cigarette of Tobacco
GB201112539D0 (en) * 2011-07-21 2011-08-31 British American Tobacco Co Porous carbon and methods of production thereof
PL2844088T3 (pl) * 2012-04-30 2017-05-31 Philip Morris Products S.A. Substrat tytoniowy
CN103462222B (zh) * 2013-05-30 2015-08-19 贵州中烟工业有限责任公司 一种含超长TiO2水合物纳米管和TiO2纳米粉的卷烟过滤嘴
CN103462220B (zh) * 2013-05-30 2015-03-25 贵州中烟工业有限责任公司 一种含超长TiO2水合物纳米管、TiO2纳米粉和活性炭纤维的卷烟过滤嘴
CN103462221B (zh) * 2013-05-30 2015-04-22 贵州中烟工业有限责任公司 一种含有吸附过滤层的卷烟过滤嘴及其用途
CN103393219B (zh) * 2013-08-14 2014-09-24 中国烟草总公司郑州烟草研究院 一种选择性降低卷烟主流烟气中氰化氢释放量的改性天然植物类滤嘴添加材料及其制备方法
KR102490768B1 (ko) * 2016-08-17 2023-01-20 필립모리스 프로덕츠 에스.에이. 신규한 담배 기재를 구비한 에어로졸 발생 물품
KR102555650B1 (ko) * 2016-08-17 2023-07-14 필립모리스 프로덕츠 에스.에이. 개선된 래퍼를 구비한 에어로졸 발생 물품
US10701977B2 (en) * 2017-08-09 2020-07-07 Vuber Technologies, Inc. Permeable element based vaporization process and device
US11707090B2 (en) * 2017-08-09 2023-07-25 Vuber Technologies, Llc Permeable element based vaporization process and device
CN108903055B (zh) * 2018-08-17 2020-11-27 绍兴恒元机械制造有限公司 一种卷烟纸质过滤嘴的制备方法
US20220346439A1 (en) * 2018-09-24 2022-11-03 David Carl Bauer Smoking Apparatus and Method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990373A (en) * 1996-08-20 1999-11-23 Kansas State University Research Foundation Nanometer sized metal oxide particles for ambient temperature adsorption of toxic chemicals
IL139814A0 (en) * 1998-05-30 2002-02-10 Univ Kansas State Porous pellet adsorbents fabricated from nanocrystals
US6087294A (en) * 1998-08-12 2000-07-11 Kansas State University Research Foundation Dispersion and stabilization of reactive atoms on the surface of metal oxides
US6417423B1 (en) * 1998-09-15 2002-07-09 Nanoscale Materials, Inc. Reactive nanoparticles as destructive adsorbents for biological and chemical contamination
US6653519B2 (en) * 1998-09-15 2003-11-25 Nanoscale Materials, Inc. Reactive nanoparticles as destructive adsorbents for biological and chemical contamination
US6057488A (en) * 1998-09-15 2000-05-02 Nantek, Inc. Nanoparticles for the destructive sorption of biological and chemical contaminants
MY128157A (en) * 2000-04-20 2007-01-31 Philip Morris Prod High efficiency cigarette filters having shaped micro cavity fibers impregnated with adsorbent or absorbent materials
CN1103197C (zh) * 2000-10-16 2003-03-19 北京倍和德营养制品科技发展有限公司 一种有效清除卷烟烟气中自由基的卷烟滤嘴及其制造方法
AU2002228901A1 (en) * 2000-11-10 2002-05-21 Vector Tobacco (Bermuda) Ltd. Method and product for removing carcinogens from tobacco smoke
RU2184086C1 (ru) * 2001-04-02 2002-06-27 Петрик Виктор Иванович Способ удаления нефти, нефтепродуктов и/или химических загрязнителей из жидкости, и/или газа и/или с поверхности
US6860924B2 (en) * 2002-06-07 2005-03-01 Nanoscale Materials, Inc. Air-stable metal oxide nanoparticles
US6843919B2 (en) * 2002-10-04 2005-01-18 Kansas State University Research Foundation Carbon-coated metal oxide nanoparticles
US7678367B2 (en) * 2003-10-16 2010-03-16 Kimberly-Clark Worldwide, Inc. Method for reducing odor using metal-modified particles
WO2005060610A2 (fr) * 2003-12-11 2005-07-07 The Trustees Of Columbia University In The City Ofnew York Particules a taille nanometrique, leurs procedes d'obtention, compositions et leurs utilisations
JP2008516695A (ja) * 2004-10-18 2008-05-22 ナノスケール マテリアルズ アイエヌシー. 煙除去および火災鎮静用の金属酸化物ナノ粒子
US8539957B2 (en) * 2005-01-14 2013-09-24 Philip Morris Usa Inc. Cigarettes and cigarette filters including activated carbon for removing nitric oxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009129255A2 *

Also Published As

Publication number Publication date
US20090260645A1 (en) 2009-10-22
JP2011517574A (ja) 2011-06-16
WO2009129255A2 (fr) 2009-10-22
AU2009236334A1 (en) 2009-10-22
CA2721447A1 (fr) 2009-10-22
WO2009129255A3 (fr) 2010-03-04

Similar Documents

Publication Publication Date Title
US20090260645A1 (en) Method for neutralization, adsorption, and absorption of hazardous or otherwise undesired compounds in a tobacco product
JP4431700B2 (ja) 一酸化炭素除去用触媒及び該触媒を用いた一酸化炭素除去方法
JP5133258B2 (ja) 活性炭及び重炭酸ナトリウム処理繊維を有する喫煙物品
Branton et al. Reduction of aldehydes and hydrogen cyanide yields in mainstream cigarette smoke using an amine functionalised ion exchange resin
JP4970252B2 (ja) 喫煙品および喫煙材
EP1124450A1 (fr) Filtre pour extraction selective d'un composant gazeux
US6911189B1 (en) Filter for selective removal of a gaseous component
UA82063C2 (uk) Композиція різаного тютюну, сигарета з ним та спосіб виготовлення сигарети
AU2005280411A1 (en) Process for the removal of heavy metals from gases, and compositions therefor and therewith
TWI324049B (en) Smoking filter and smoking article
JP4931931B2 (ja) ククルビツリルを添加されたタバコおよびその製造方法
WO2006137690A1 (fr) Milieu filtrant pour fumée et filtre à cigarette, cigarette et dispositif de fumage l’utilisant
WO2013080812A1 (fr) Filtre pour article pour fumer, et article pour fumer
RU2702259C2 (ru) Гранулы активированного угля для курительных изделий
JP4166365B2 (ja) タバコ及び紙巻タバコ
EP2142021A2 (fr) Utilisation de moyens de piégeage de co2 dans un filtre afin de prévenir une inflammation, le cancer et des maladies cardiovasculaires chez un sujet exposé à la fumée de tabac
JPH07203936A (ja) 煙草の煙から酸化窒素を除去するためのフィルター
WO2015151002A1 (fr) Charbon actif pour articles à fumer
JP6682428B2 (ja) 煙成分の選択的な除去のための官能性を持たせた材料
US20100108083A1 (en) Use of means for trapping co2 in a filter for preventing inflammation, cancer and cardiovascular diseases in a subject exposed to tobacco smoke
JP2001000165A (ja) フィルター付きタバコ及びタバコ用フィルター
RU2668752C1 (ru) Фильтр для сигарет
EP2979552A1 (fr) Charbons activés nanoporeux utiles en tant qu'additifs dans le tabac pour réduire l'émission de produits toxiques
US20210362124A1 (en) Graphene based tobacco smoke filter and a method for synthesizing graphene composition
Radojičić et al. Effect of type and mode of zeolite application on the cigarette filters efficiency and sorption capacity

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101115

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20120702