EP2267645B1 - Authentifizierung eines elektromagnetischen Transponder-Endelements durch einen Transponder - Google Patents

Authentifizierung eines elektromagnetischen Transponder-Endelements durch einen Transponder Download PDF

Info

Publication number
EP2267645B1
EP2267645B1 EP10160763.8A EP10160763A EP2267645B1 EP 2267645 B1 EP2267645 B1 EP 2267645B1 EP 10160763 A EP10160763 A EP 10160763A EP 2267645 B1 EP2267645 B1 EP 2267645B1
Authority
EP
European Patent Office
Prior art keywords
terminal
transponder
value
load
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10160763.8A
Other languages
English (en)
French (fr)
Other versions
EP2267645A3 (de
EP2267645A2 (de
Inventor
Luc Wuidart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics Rousset SAS
Original Assignee
STMicroelectronics Rousset SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics Rousset SAS filed Critical STMicroelectronics Rousset SAS
Publication of EP2267645A2 publication Critical patent/EP2267645A2/de
Publication of EP2267645A3 publication Critical patent/EP2267645A3/de
Application granted granted Critical
Publication of EP2267645B1 publication Critical patent/EP2267645B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/073Special arrangements for circuits, e.g. for protecting identification code in memory
    • G06K19/07309Means for preventing undesired reading or writing from or onto record carriers
    • G06K19/07318Means for preventing undesired reading or writing from or onto record carriers by hindering electromagnetic reading or writing
    • G06K19/07336Active means, e.g. jamming or scrambling of the electromagnetic field

Definitions

  • the present invention generally relates to electronic systems and more particularly to systems using electromagnetic transponders, that is to say transceivers that can be interrogated without contact and wirelessly by a reading terminal and / or writing.
  • Communication systems based on a modulation of an electromagnetic field generated by a terminal are multiple. This ranges from a simple electronic tag used as an antitheft device to more complex systems where a transponder, having to communicate with the terminal in whose field it is, is equipped with calculation functions (electronic wallet for example) or with processing. of information.
  • the electromagnetic transponder systems are based on the use of oscillating circuits comprising an antenna winding, transponder side and terminal side. These circuits are intended to be coupled by close magnetic field when the transponder enters the field of the terminal.
  • the oscillating circuits of the terminal and the transponder are generally tuned to the same frequency corresponding to the excitation frequency of the oscillating circuit of the terminal.
  • the transponders are devoid of autonomous power supply and extract the power required for the circuits they comprise of the high frequency field radiated by the antenna of the terminal.
  • the transponder may have to authenticate the terminal before accepting a data exchange. For example, in applications where the transponder serves as a means of payment (whether monetary or unit of account), it can reserve payments to certain terminals.
  • a smart card type transponder associated with electronic equipment for example, a personal assistant or a mobile phone
  • identifies or authenticates a user when communicating with other electronic equipment for example, a computer laptop or desktop.
  • the terminal may have to authenticate the transponder before transmitting certain information.
  • transponder it would be desirable for a transponder to authenticate a terminal with which it must communicate before it has to transmit data to the terminal and for the terminal to also authenticate the transponder.
  • the first information corresponds to the ratio between the current in the oscillating circuit of the terminal while no transponder is present in its field on a value of this current with the first resistive load value. transponder.
  • the transponder in the absence of authentication, sends deliberately erroneous information.
  • the third and fourth information are current ratios in the oscillating circuit of the terminal while no transponder is in its field and the same current with the second resistive load value.
  • the latter in the absence of authentication by the terminal, the latter sends deliberately erroneous information.
  • a terminal adapted to generate an electromagnetic field to a transponder, comprising means adapted to implement the authentication method.
  • the figure 1 is a block diagram of an electromagnetic transponder communication system.
  • Terminal 1 TERMINAL
  • TERMINAL is capable of communicating in the near field (eg example according to an NFC protocol - Near Field Communication) with a remote element, namely a transponder (TRANS).
  • TRANS transponder
  • the terminal can take various forms, for example, a ticket validation terminal, an electronic passport reader, a laptop, a mobile communication device (GSM telephone, personal digital assistant - PDA, etc.), a box electronic starting of a motor vehicle, etc.
  • a ticket validation terminal an electronic passport reader
  • a laptop a mobile communication device
  • GSM telephone personal digital assistant - PDA, etc.
  • box electronic starting of a motor vehicle etc.
  • the transponder can also take different forms, for example, a smart card, an electronic transport ticket, an electronic passport, a telecommunication terminal (GSM phone, PDA, etc.), an electronic tag, etc.
  • a smart card for example, a smart card, an electronic transport ticket, an electronic passport, a telecommunication terminal (GSM phone, PDA, etc.), an electronic tag, etc.
  • the figure 2 represents, very schematically and simplified, an example of terminal 1 and transponder 2.
  • the terminal 1 comprises an oscillating circuit, generally series, formed of an inductance L1 in series with a capacitor C1 and a resistor R1.
  • This series oscillating circuit is, in the example of the figure 2 connected between an output terminal 12 of an antenna amplifier or coupler 14 and a terminal 13 at a reference potential (generally ground).
  • An element 15 for measuring the current in the oscillating circuit is interposed, for example, between the capacitive element C1 and the ground 13. This measuring element 15 is part of a phase control loop which will be described later.
  • the amplifier 14 receives a high frequency transmission signal from a modulator 16 (MOD) which receives a reference frequency (OSC signal) for example from a quartz oscillator (not shown).
  • MOD modulator 16
  • OSC signal reference frequency
  • the modulator 16 receives, if necessary, a signal Tx coming from a control circuit 11 for controlling and operating the transmissions.
  • This circuit 11 is generally provided with a microprocessor for processing commands and data, communicating with different input / output circuits (keyboard, screen, exchange element with a server, etc.) and / or non-detailed processing .
  • the elements of Terminal 1 pull the more often the energy necessary for their operation of a supply circuit (not shown) connected, for example, to the electrical distribution network (sector) or to a battery (for example, that of a motor vehicle or a phone or laptop).
  • the modulator 16 provides a high frequency carrier (for example, at 13.56 MHz) to the L1-C1 series oscillating circuit which generates a magnetic field.
  • the capacitive element C1 is, for example, a variable capacitance element and controllable by a CTRL signal. This element participates in the phase regulation of the current I1 in the antenna L1 with respect to a reference signal.
  • This regulation is a regulation of the high frequency signal, that is to say the signal of the carrier corresponding to the signal supplied to the amplifier 14 in the absence of Tx data to be transmitted.
  • the regulation is effected by varying the capacitance C1 of the oscillating circuit of the terminal so as to maintain the current in the antenna in constant phase relation with a reference signal.
  • This reference signal corresponds, for example, to the signal OSC supplied to the modulator 14.
  • the signal CTRL comes from a circuit 17 (COMP) whose role is to detect the phase difference with respect to the reference signal and to modify accordingly the capacity of the element C1.
  • the comparator receives a MES information on the current I1 in the oscillating circuit detected by the measuring element 15 (for example, an intensity transformer or a resistor).
  • a transponder 2 capable of cooperating with the terminal 1 comprises an oscillating circuit, for example a parallel circuit, formed of an inductor L2 in parallel with a capacitor C2 between two terminals 21 and 22.
  • the parallel oscillating circuit (called the resonant circuit on reception ) is intended to capture the magnetic field generated by the oscillating circuit L1-C1 of the terminal 1.
  • the circuits L2-C2 and L1-C1 are tuned to the same resonance frequency (for example 13.56 MHz).
  • the terminals 21 and 22 are connected to two alternative input terminals of a rectifier bridge 23 (usually double alternation).
  • the terminals of rectified output of the bridge 23 respectively define a positive terminal 24 and a reference terminal 25.
  • a capacitor Ca is connected between the terminals 24 and 25 so as to smooth the rectified voltage. If necessary, the recovered energy is used to recharge a battery not shown.
  • a high frequency voltage is generated at the terminals of the resonant circuit L2-C2.
  • This voltage rectified by the bridge 23 and smoothed by the capacitor Ca, supplies a supply voltage to electronic circuits of the transponder via a voltage regulator 26 (REG).
  • These circuits generally comprise a processing unit 27 (for example a microcontroller ⁇ C) associated with a memory (not represented), a demodulator 28 (DEM) of the signals possibly received from the terminal 1, and a modulator 29 (MOD) for transmitting information. at the terminal.
  • the transponder is generally synchronized by means of a clock (CLK) extracted, by a block 20, from the recovered high frequency signal, before rectification, on one of the terminals 21 or 22. Most commonly, all the electronic circuits of the transponder 2 are integrated in the same chip.
  • CLK clock
  • the circuit 16 modulates (generally in amplitude) the carrier (signal OSC) as a function of the signal Tx.
  • these data are demodulated by the demodulator 28 from the voltage V Ca. If necessary, the demodulator takes the signal to be demodulated upstream of the rectifier bridge.
  • the modulator 29 controls a modulation stage 30 (retromodulation) of the load formed by the transponder circuits on the magnetic field produced by the terminal.
  • This stage generally consists of an electronic switch K30 (for example, a transistor) and a resistor R30 (or a capacitor), in series between the terminals 24 and 25.
  • the switch K30 is controlled at a frequency (by example, 847.5 kHz) said subcarrier, significantly lower (usually with a ratio of at least 10) to the frequency of the excitation signal of the oscillating circuit of the terminal 1.
  • the The oscillating circuit of the transponder is subject to additional damping with respect to the load constituted by the circuits 20, 26, 27, 28, and 29 so that the transponder takes a larger amount of energy from the high frequency magnetic field.
  • the amplifier 14 keeps the amplitude of the high frequency excitation signal constant. Consequently, the variation of energy of the transponder results in a variation of amplitude and phase of the current in the antenna L1. This variation is detected by an amplitude or phase demodulator of the terminal.
  • the comparator 17 incorporates a phase demodulator also for demodulating the signal from the transponder. Therefore, this comparator 17 provides a signal Rx restoring a possible retromodulation of data received from a transponder to the circuit 11.
  • Other demodulation circuits may be provided, for example a circuit using a measurement of the voltage across the capacitor C1 .
  • the response time of the phase control loop is long enough not to hinder the possible retromodulation from a transponder, and sufficiently short before the speed of passage of a transponder in the field of the terminal.
  • Static control over modulation frequencies can be used (for example, the 13.56 MHz remote power carrier frequency and the 847.5 kHz retrofit frequency used to transmit transponder data to the terminal).
  • phase-regulated terminal An example of a phase-regulated terminal is described in the document EP-A-0 857 981 .
  • the coupling coefficient between the oscillating circuit of the terminal and that of the transponder essentially depends on the distance separating the transponder from the terminal.
  • k Opt The 2 The 1 ⁇ R 1 R 2 , where R2 represents the resistance equivalent to the load (load) constituted by the elements of the transponder on its own oscillating circuit.
  • the resistor R2 represents the equivalent resistance of all the circuits (microprocessor, means of retromodulation, etc.) of the transponder 2, brought in parallel on the capacitor C2 and the inductance L2 (before or after the bridge rectifier ).
  • resistive load the conductance provided by the transponder circuits, so their consumption.
  • Formula 2 represents a signature of the terminal-transponder pair.
  • the optimum coupling coefficient varies as a function of the terminal which conditions the values L1 and R1.
  • V C2 I 2 ⁇ ⁇ VS 2 , where I2 represents the current in the oscillating circuit of the transponder, and where ⁇ represents the pulse of the signal.
  • the resistor R2 represents the equivalent resistance of all the circuits (microprocessor, means of retromodulation, etc.) of the transponder 2, brought in parallel on the capacitor C2 and the inductor L2 (before or after the rectifier bridge).
  • Resistive load the conductance provided by the transponder circuits, so their consumption. The level of this charge is symbolized by the resistance R2 in parallel across the oscillating circuit.
  • V VS 2 k ⁇ The 1 The 2 ⁇ V boy Wut R 1 R 2 + k 2 ⁇ The 1 The 2 .
  • Another operating condition that is characteristic of the terminal-transponder pair is related to a vacuum operation of the terminal.
  • the empty values represent the terminal-side current and voltage when no transponder is present in the terminal field.
  • the apparent impedance of the terminal's oscillating circuit only depends on its components R1, C1 and L1. Moreover, thanks to the phase regulation, the imaginary part of this impedance is always zero.
  • the information of the currents reports therefore gives information on the optimum coupling coefficient, and therefore on the system signature for a given load.
  • the terminal can measure the value of the current I1 ] R20 in its oscillating circuit L1-C1.
  • R 20 R 21 I 1 empty I 1 ] R 21 - 1 I 1 empty I 1 ] R 20 - 1 , that the R20 value is less than or greater than the R21 value.
  • the figure 3 is a functional block diagram of an embodiment of a mutual authentication procedure of a terminal and a transponder.
  • the no-load current in the oscillating circuit of the terminal has been previously stored and recorded.
  • this determination of the vacuum current is carried out while the terminal is in its environment functional to take into account any static disturbances likely to influence the measurement.
  • the value of the no-load current is updated periodically (for example, it is programmed to be carried out during periods of inactivity of the system where it is known that no transponder is present).
  • the terminal When the terminal detects a transponder in the field, it measures (block 41, MES I1 ] R20 ) the current I1 in its oscillating circuit (for example using the element 15), then calculates (block 42, CALC ( I1 empty / I1 ] R20 ) MES ) the ratio between the measured value and the no-load current. The result is transmitted to the transponder which stores it (block 52, STORE (I1 empty / I1 ] R20 ) MES ).
  • the transponder measures and stores (block 51, MES V C2] R20 ), before or after receiving from the terminal the information relating to the current, the voltage V C2 across the capacitor C2 with a first value R20 of resistance R2.
  • the transponder then performs the measurement (block 54, MES V C2 ] R 21 ) of the voltage V C2 with this value R21 and stores the result.
  • the transponder If the test 56 confirms identical values, the transponder considers the terminal to be authentic (block 58, OK). Otherwise (output N of block 56), he starts a treatment error message (block 59, ERROR).
  • This treatment corresponds, for example, to a refusal of transaction, to a transponder reset, to operation in a degraded mode (without performing sensitive functions in terms of information manipulated), etc. It can also be provided that the transponder sends messages to deceive or disorient the terminal with deliberately erroneous information, for example messages including random data.
  • Various other treatments can be envisaged, for example, any error processing usually provided in the absence of authentication by an encryption mechanism.
  • the transponder calculates and transmits to the terminal (block 57, CALC (I1 empty / I1 ] R21 ) EVAL ) an evaluated value of the ratio between the currents I1 empty and with the value R21.
  • the transponder sends the terminal information that it has switched its resistive load to another value so as to cause a new measurement of the current I1.
  • the terminal (block 43, MES I1 ] R21 ) measures the current I1, then calculates (block 44, CALC (I1 empty / I1 ] R21 ) MES ) the ratio of the current I1 to empty on this current I1 ] R21 and stores the result .
  • ERROR error processing
  • different error processing can be envisaged depending on the application (for example, a blocking, the sending of deliberately erroneous information, etc.).
  • the variant of the figure 4 can be combined with the embodiment of the figure 3 .
  • the voltage V C2 is not measured directly across the transponder's oscillating circuit, but the smoothed voltage across the capacitor V Ca at the output of the rectifier bridge 23.
  • This voltage V Ca is proportional to the voltage V C2 .
  • the measurement is performed by the microprocessor.
  • the values of the measured voltages are stored either analogically, but preferably numerically over several bits, the number of which depends on the desired analysis precision.
  • the tests may be performed in a different order from that indicated above. However, they are preferably carried out in an increasing order of calculation complexity, which makes it possible to reject a terminal that is not adapted to the transponder more quickly.
  • Acceptable tolerances or ranges of values may be introduced in the tests to take account of possible operating drifts of the terminal or, in the case of a family of authorized terminals, any acceptable dispersions among the terminals of this family.
  • the terminal can authenticate the transponder from two measurements of the current in its oscillating circuit with these two resistance values.
  • the figure 5 is a block diagram of an embodiment of a transponder 2, equipped to automatically determine, when in the field of a terminal (not shown), if this terminal is authorized.
  • the representation of the figure 5 is simplified compared to that of the figure 2 .
  • the elements of demodulation, of retromodulation and of obtaining the clock frequency have not been illustrated.
  • the transponder 2 is based on a parallel oscillating circuit L2-C2 whose terminals 21 and 22 are connected to the input terminals of a rectifying bridge 23.
  • a measuring element of the current Ic may be provided at the output of the regulator 26 at the output of the regulator 26 .
  • a switchable resistive circuit 40 is provided between the terminals 24 and 25 of the rectifier bridge 23 between the terminals 24 and 25 of the rectifier bridge 23, a switchable resistive circuit 40 is provided.
  • the switchable resistive circuit 40 comprises two resistors. R43 and R45 connected in parallel each being in series with a switch K43, respectively K45. Switches K43 and K45 (for example, MOS transistors) are intended to be switched to implement the method of determining the coupling position.
  • the processing unit 27 receives an information on the voltage V Ca on an input MES to implement the method described above.
  • the resistor R2 load of the transponder circuits
  • the resistor R2 represents the value R20.
  • Disconnection of one of the resistors increases resistance R2 to R21.
  • Other connections and switches may be provided according to the embodiment of the method used.
  • a single switchable resistor can be used by considering that one of the two values of the resistor R2 corresponds to the resistive load of the other transponder circuits.
  • the switchable resistor corresponds to that used for resistive retromodulation.
  • a first measurement is made by switching the retromodulation resistor so that it is functionally in the circuit (switch K30 in the on state in the example of FIG. figure 2 ).
  • the voltage V C2] R20 is measured.
  • the switch K30 is opened and the voltage V C2] R21 is measured.
  • the increase or decrease in the equivalent resistance R2 is caused by a variation of the consumption of the transponder circuits, typically of the processing unit 27.
  • the increase or decrease in the equivalent resistance R2 is caused by a variation of the consumption of the transponder circuits, typically of the processing unit 27.
  • the value of the resistance R2 increase the consumption
  • it triggers the execution of calculations or treatments by the unit 27.
  • It can also cause an increase in the equivalent resistance R2 by reducing the consumption of the unit 27 by interrupting certain calculations.
  • the speed of execution conditioned by the clock (block 20) is slowed down.
  • the variation of the resistance R2 is known from the moment when the consumption of different tasks to be performed by the unit 27 is known.
  • the calculations required to authenticate a terminal are sufficiently simple so that their execution time is negligible compared to the speed of movement of a transponder in front of a terminal (thus the speed of variation of the coupling coefficient). This is particularly the case for transponders equipped with microcontrollers performing cryptographic functions in which these computationally intensive functions are themselves executed in a period during which it can be considered that the coupling does not vary. In other cases, the transponder remains on a receiving surface of the terminal and the coupling does not vary for an even greater period.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Near-Field Transmission Systems (AREA)

Claims (7)

  1. Ein elektromagnetischer Transponder, der Folgendes aufweist:
    eine oszillierende Schaltung;
    Mittel zum Empfangen, von einem Endgerät (1), das ein elektromagnetisches Feld erzeugt, eines ersten Verhältnisses ((I1off-load/I1R20)MES) zwischen ersten Daten, die für einen Wert eines Stroms in einer oszillierenden Schaltung des Leerlauf- bzw. Off-Load-Endgeräts (I1off-load) repräsentativ sind und zweiten Daten, die für den Strom (I1R20) für einen ersten Wert (R20) einer resistiven Last, die durch den Transponder gebildet wird, repräsentativ sind;
    Mittel zum Messen einer Spannung, die für die Spannung (VC2) über die Anschlüsse der oszillierenden Schaltung mit einem ersten Wert (R20) der resistiven Last (R2) repräsentativ ist;
    Mittel zum Modifizieren der resistiven Last auf einen zweiten Wert (R21);
    Mittel zum Messen der Spannung mit dem zweiten Wert (R21) und zum Speichern der Ergebnisse;
    wenigstens eine der zwei folgenden Funktionalitäten:
    wobei die erste Funktionalität Mittel aufweist zum Berechnen eines erwarteten Verhältnisses ((I1off-load/I1R20)EVAL) zwischen den ersten Daten und zweiten Daten, die für den Strom (I1R20) für den ersten Wert (R20) einer resistiven Last repräsentativ sind, und Mittel zum Vergleichen des ersten erwarteten Verhältnisses mit dem ersten Verhältnis, das von dem Endgerät empfangen wird, wobei das Endgerät authentifiziert wird, wenn die Verhältnisse identisch sind;
    wobei die zweite Funktionalität Mittel aufweist zum Evaluieren (55') (CALC(VC2]R21)EVAL) des Wertes der Spannung (VC2) mit dem zweiten Wert (R21) der resistiven Last (R2) und Mittel (56') zum Vergleichen des evaluierten Wertes des gemessenen Wertes mit dem zweiten Wert (R21) der Spannung, wobei das Endgerät authentifiziert wird, wenn die Werte identisch sind,
    Mittel zum Berechnen eines zweiten erwarteten Verhältnisses ((I1off-load/IR21)EVAL) zwischen der ersten Daten und dritten Daten, die für den Strom (I121) für den zweiten Wert (R21) der resistiven Last repräsentativ sind; und
    Mittel zum Senden des zweiten erwarteten Verhältnisses an das Endgerät, wobei die Mittel zum Modifizieren der resistiven Last aus einer schaltbaren, resistiven Schaltung (40) gebildet sind,
    die zwei Widerstände (R43 und R45) aufweist, die parallel verbunden bzw. angeschlossen sind, und wobei jeder in Reihe mit einem Schalter (K43) bzw. (K45) ist; oder
    die einen einzelnen, schaltbaren Widerstand aufweisen, oder
    Mittel sind, mit denen der Verbrauch der Transponderschaltungen modifiziert werden kann.
  2. Ein Verfahren zur Authentifizierung eines Endgeräts (1), das ein magnetisches Feld erzeugt, durch einen Transponder (2) gemäß Anspruch 1.
  3. Verfahren nach Anspruch 2, wobei der Transponder
    erste Daten ((I1off-load/I1R20)MES) relativ zu dem Strom (I1) in einer oszillierenden Schaltung (L1-C1) des Endgeräts empfängt, gemessen durch das Endgerät für einen ersten Wert (R20) der resistiven Last des Transponders; und die ersten Daten und zweiten Daten (VC2]R20, VC2]R21) relativ zu dem Pegel der Gleichstromspannung, gemessen jeweils für den ersten resistiven Lastwert und für einen zweiten resistiven Lastwert (R21), verwendet (55, 56; 55', 56').
  4. Verfahren nach Anspruch 2 oder 3, wobei der Transponder (2), in Abwesenheit einer Authentifizierung, absichtlich falsche Daten sendet.
  5. Ein Verfahren zum Authentifizieren eines Endgeräts (1), das ein magnetisches Feld erzeugt und eines Transponders (2), der in dessen Feld vorliegt, wobei:
    das Endgerät durch den Transponder gemäß einem der Ansprüche 2 bis 4 authentifiziert wird; und
    um den Transponder zu authentifizieren,
    das Endgerät dritte Daten ((I1off-load/I1R21)EVAL) relativ zu dem Strom in der oszillierenden Schaltung des Endgeräts empfängt, und zwar evaluiert (57) für einen zweiten Wert (R21) der resistiven Last (R2) des Transponders; und
    das Endgerät (45) die dritten Daten mit vierten entsprechenden Daten ((I1off-load/I1R21)MES) vergleicht, die durch Messung (41, 42) erhalten werden.
  6. Verfahren nach Anspruch 5, wobei die dritten und vierten Daten Verhältnisse des Stroms (I1off-load) in der oszillierenden Schaltung des Endgeräts (1) sind, während kein Transponder in dessen Feld vorliegt, zu demselben Strom (I1]R21) mit dem zweiten Wert (R21) der resistiven Last (R2).
  7. Verfahren nach Anspruch 5 oder 6, wobei, in Abwesenheit einer Authentifizierung durch das Endgerät (1), das Endgerät absichtlich falsche Daten sendet.
EP10160763.8A 2009-06-25 2010-04-22 Authentifizierung eines elektromagnetischen Transponder-Endelements durch einen Transponder Active EP2267645B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0954347A FR2947363A1 (fr) 2009-06-25 2009-06-25 Authentification d'un couple terminal-transpondeur electromagnetique par le transpondeur

Publications (3)

Publication Number Publication Date
EP2267645A2 EP2267645A2 (de) 2010-12-29
EP2267645A3 EP2267645A3 (de) 2014-06-11
EP2267645B1 true EP2267645B1 (de) 2016-04-20

Family

ID=41581105

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10160763.8A Active EP2267645B1 (de) 2009-06-25 2010-04-22 Authentifizierung eines elektromagnetischen Transponder-Endelements durch einen Transponder

Country Status (5)

Country Link
US (1) US8446259B2 (de)
EP (1) EP2267645B1 (de)
JP (1) JP5607995B2 (de)
CN (1) CN101937504B (de)
FR (1) FR2947363A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2947075A1 (fr) 2009-06-19 2010-12-24 St Microelectronics Rousset Evaluation resistive du facteur de couplage d'un transpondeur electromagnetique
FR2947073A1 (fr) * 2009-06-19 2010-12-24 St Microelectronics Rousset Gestion d'energie dans un transpondeur electromagnetique
FR2947362A1 (fr) * 2009-06-25 2010-12-31 St Microelectronics Sas Authentification d'un terminal par un transpondeur electromagnetique
FR2947364A1 (fr) * 2009-06-25 2010-12-31 St Microelectronics Sas Authentification d'un couple terminal-transpondeur electromagnetique par le terminal
FR2967538B1 (fr) 2010-11-16 2013-11-01 St Microelectronics Rousset Procede pour moduler l'impedance d'un circuit d'antenne
FR2976103B1 (fr) 2011-06-03 2013-05-17 St Microelectronics Rousset Aide au positionnement d'un transpondeur
FR2976104B1 (fr) * 2011-06-03 2013-11-15 St Microelectronics Rousset Securisation d'une communication entre un transpondeur electromagnetique et un terminal
FR2976105B1 (fr) 2011-06-03 2013-05-17 St Microelectronics Rousset Securisation d'une communication par un transpondeur electromagnetique
FR2976102B1 (fr) 2011-06-03 2013-05-17 St Microelectronics Rousset Assistance au positionnement d'un transpondeur
KR20140110335A (ko) * 2013-03-07 2014-09-17 삼성전자주식회사 근거리 무선 통신 장치의 공진 주파수 제어 방법, 근거리 무선 통신 장치 및 전자 시스템

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08191259A (ja) * 1995-01-11 1996-07-23 Sony Chem Corp 非接触式icカードシステム用送受信装置
FR2757952B1 (fr) 1996-12-27 1999-03-19 Gemplus Card Int Transpondeur radioelectrique muni d'une antenne et d'un circuit de desaccord en frequence
DE69717782T2 (de) 1997-02-05 2003-09-18 Em Microelectronic-Marin S.A., Marin Basisstation eines Fernabfragesystems mit spannungsgesteuertem und phasengeregeltem Oszillator
TW376598B (en) * 1997-02-05 1999-12-11 Em Microelectronic Marin Sa Base station for a contactless interrogation system comprising a phase locked and voltage controlled oscillator
FR2792134B1 (fr) * 1999-04-07 2001-06-22 St Microelectronics Sa Detection de distance entre un transpondeur electromagnetique et une borne
FR2792132B1 (fr) * 1999-04-07 2001-11-02 St Microelectronics Sa Borne de lecture d'un transpondeur electromagnetique fonctionnant en couplage tres proche
US7049935B1 (en) * 1999-07-20 2006-05-23 Stmicroelectronics S.A. Sizing of an electromagnetic transponder system for a dedicated distant coupling operation
FR2796782A1 (fr) 1999-07-20 2001-01-26 St Microelectronics Sa Dimensionnement d'un systeme a transpondeur electromagnetique pour un fonctionnement dedie en couplage lointain
DE10148830B4 (de) * 2001-10-04 2005-10-06 Texas Instruments Deutschland Gmbh Verfahren und System zur Authentifizierung eines ersten Sende-/Empfangsgeräts gegenüber einem zu diesem entfernt angeordneten zweiten Sende-/Empfangsgerät
DE10259384B3 (de) * 2002-12-18 2004-05-13 Siemens Ag Vorrichtung zur Ermittlung des Energiezustandes eines Energiespeichers eines mobilen Datenträgers
JP2005165511A (ja) * 2003-12-01 2005-06-23 Matsushita Electric Ind Co Ltd 半導体装置
GB2413195A (en) * 2004-04-17 2005-10-19 Hewlett Packard Development Co A memory tag and reader with password protection of tag memory
DE102004039401A1 (de) * 2004-08-13 2006-03-09 Siemens Ag Transceiver-Transponder-System
JP4093283B2 (ja) * 2005-12-22 2008-06-04 松下電器産業株式会社 ワイヤレスキー、本体側装置及び認証システム
CN101193068B (zh) * 2006-11-21 2011-11-16 华为技术有限公司 一种应答请求的方法和设备
KR100853190B1 (ko) * 2006-12-08 2008-08-20 한국전자통신연구원 패시브 태그의 전력관리장치 및 방법

Also Published As

Publication number Publication date
JP2011010298A (ja) 2011-01-13
EP2267645A3 (de) 2014-06-11
JP5607995B2 (ja) 2014-10-15
CN101937504B (zh) 2014-12-17
CN101937504A (zh) 2011-01-05
US8446259B2 (en) 2013-05-21
US20100328026A1 (en) 2010-12-30
EP2267645A2 (de) 2010-12-29
FR2947363A1 (fr) 2010-12-31

Similar Documents

Publication Publication Date Title
EP2267645B1 (de) Authentifizierung eines elektromagnetischen Transponder-Endelements durch einen Transponder
EP2267635B1 (de) Authentifizierung eines elektromagnetischen Transponder-Endelements durch das Endelement
EP2267647B1 (de) Authentifizierung eines Endgeräts durch einen elektromagnetischen Transponder
EP2267643B1 (de) Widerstandsbewertung des Kopplungsfaktors eines Elektromagnetischen Transponders
EP2267644B1 (de) Energiesteuerung in einem elektromagnetischen Transponder
EP2267642B1 (de) Induktive Einschätzung des Kopplungsfaktors eines elektromagnetischen Transponders
EP1154366B1 (de) Präsenzbestätigung eines elektromagnetischen Transponders im Felde eines Lesers
FR2960993A1 (fr) Evaluation du facteur de couplage d'un transpondeur electromagnetique par desaccord capacitif
EP1307853B1 (de) Erfassung der elektronischen signatur eines elektromagnetischen transponders
EP2715615B1 (de) Transponderpositionierhilfe
EP2715607B1 (de) Sicherung einer kommunikation zwischen einem elektromagnetischen transponder und einem endgerät
FR2980608A1 (fr) Optimisation de la vitesse de traitement par un transpondeur electromagnetique
EP1154368A1 (de) Lesegerät mit Mitteln zur Bestimmung der Anzahl von elektromagnetischen Transpondern im Felde des Lesegerätes
EP2715618B1 (de) Herstellung einer sicheren kommunikation durch einen elektromagnetischen transponder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100422

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA ME RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RIC1 Information provided on ipc code assigned before grant

Ipc: G06K 19/07 20060101AFI20140429BHEP

Ipc: G06K 19/073 20060101ALI20140429BHEP

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA ME RS

17Q First examination report despatched

Effective date: 20150616

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151106

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 793159

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010032388

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 793159

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160420

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160822

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160721

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010032388

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160720

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

26N No opposition filed

Effective date: 20170123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160720

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160422

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100422

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160422

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200319

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 15