EP2261763A1 - Compensation of electromagnetic interference fields - Google Patents

Compensation of electromagnetic interference fields Download PDF

Info

Publication number
EP2261763A1
EP2261763A1 EP10006132A EP10006132A EP2261763A1 EP 2261763 A1 EP2261763 A1 EP 2261763A1 EP 10006132 A EP10006132 A EP 10006132A EP 10006132 A EP10006132 A EP 10006132A EP 2261763 A1 EP2261763 A1 EP 2261763A1
Authority
EP
European Patent Office
Prior art keywords
signals
compensation
matrix
real
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10006132A
Other languages
German (de)
French (fr)
Other versions
EP2261763B1 (en
Inventor
Peter Dr. Kropp
Subramanian Krishnamurthy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Integrated Dynamics Engineering GmbH
Original Assignee
Integrated Dynamics Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Integrated Dynamics Engineering GmbH filed Critical Integrated Dynamics Engineering GmbH
Publication of EP2261763A1 publication Critical patent/EP2261763A1/en
Application granted granted Critical
Publication of EP2261763B1 publication Critical patent/EP2261763B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F7/00Regulating magnetic variables

Definitions

  • the invention relates generally to a system for compensation of electromagnetic interference fields.
  • the invention relates to a system for magnetic field compensation with two sensors and a digital processor.
  • feedback control systems are used to compensate for electromagnetic interference fields, in particular magnetic interference fields.
  • One or more sensors measure the amplitude of the interference field for all three Cartesian spatial axes.
  • the measuring signals of the sensors are supplied to a control circuit which calculates control or actuator signals for magnetic field generating devices from the measuring signals of the sensors.
  • the magnetic field to be compensated may be the earth's magnetic field or generated by other current-carrying devices in the environment.
  • Magnetic field compensation systems are used, for example, in conjunction with imaging systems that use electromagnetic fields, such as scanning electron microscopes (SEMs).
  • SEMs scanning electron microscopes
  • the aforementioned devices for generating magnetic fields may in the simplest case be a current-carrying conductor.
  • pairs of Helmholtz coils are used whose distance is equal to an edge length. If a pair of Helmholtz coils are used for each of the three spatial axes, the coil pairs form a cube-shaped cage around the location at which one or more interference fields are to be compensated. In such a coil arrangement, although field inhomogeneities occur inside the cage due to the violation of the Helmholtz condition, these are acceptable for most applications.
  • a device for magnetic field compensation is specified.
  • three coil pairs are arranged to form a cage.
  • the magnetic field to be compensated is measured.
  • an analog controller is used for regulation.
  • a single magnetic field sensor For measuring the magnetic field at the point of interest, a single magnetic field sensor is generally used. Exceptionally, there is a second sensor, which is used for diagnostic purposes. With a single magnetic field sensor, however, it is not possible to determine whether the magnetic field to be compensated is homogeneous or inhomogeneous at the location of the object to be protected.
  • Another problem with the compensation of electromagnetic interference fields is that it is not possible to measure directly at the location where the interference field is to be compensated, since the object to be protected against interference fields is generally located at this location.
  • the invention is therefore based on the object to provide a system for the compensation of electromagnetic interference, in which homogeneous as inhomogeneous magnetic fields can be compensated. It is a further object of the invention to perform a simulation of the measurement of electromagnetic interference fields at the location of the object to be protected.
  • a system for compensating electromagnetic interference fields which has two real three-axis magnetic field sensors, three pairs of compensation coils and a control unit in order to protect an object from the influences of an interference field.
  • the regulator unit is preferably designed as a digital processor, for example as a DSP (Digital Signal Processor) or an FPGA (Field Programmable Gate Array).
  • the total of six output signals of the two real sensors can be combined into three output signals of a virtual sensor.
  • the notification method can be achieved that the output signals of the virtual sensor represent the amplitude of the interference field at the location of the object to be protected.
  • the averaging is done by the control system, which receives the six output signals of the two real magnetic field sensors via six inputs.
  • the interference field is inhomogeneous, it is not appropriate to create a homogeneous compensation field. In this case, it is therefore expedient to use a single actuator coil instead of a pair of Helmholtz coils.
  • M can be a 3x6 matrix and L a 6x3 matrix.
  • the "unneeded" elements of the 6x6 matrices may also be zero.
  • overcompensation or undercompensation is only possible for digital control systems and even there only for non-broadband operating systems.
  • the position of the sensor would have to be adjusted. Such a change in position may require that the sensors for the three spatial axes be positioned at different positions in space.
  • overcompensation or undercompensation is not a suitable method.
  • Fig. 1 shows schematically the system for compensation of electromagnetic interference fields.
  • An object 2 to be protected from the effects of an interference field 1 is penetrated by the interference field 1.
  • the interference field 1 is assumed here as a gradient field.
  • the amplitude of the interference field 1 is measured by two real magnetic field sensors 3 and 4.
  • These two output signals are the in Fig. 2 shown regulator unit 7 supplied in digitized form.
  • the controller unit 7 For the total of 6 signals, corresponding to 2x3 spatial axes, the controller unit 7 has six inputs. Further, the regulator unit 7 has six outputs for outputting control signals for six coils 6.
  • S is generated by the controller unit 7 according to the in Fig. 3 edited algorithm shown schematically.
  • the virtual signals V correspond to the amplitude of the interference field at the location of the object 2 to be protected.
  • M thus describes the geometry of the entire arrangement and how the signals of the two real sensors 3 and 4 are combined to form the virtual signal V.
  • the modification of the signals V is generally represented by the operator O, which is not necessarily a matrix, so that non-linear algorithms can also be used.
  • the modified signals V are converted into real control signals O.
  • O. 0 is again a 6x1 matrix, thus containing 6 individual signals, which are used to control the six coils 6.
  • L is a 6x6 matrix.
  • the concrete elements of their values depend on the type of interference field to be compensated and the geometry of the coil 6 generating the compensation field. For example, if a gradient field acting in the x direction is to be compensated, the two coils acting in the x direction receive control signals of different strengths, see above the two coils generate magnetic fields of different strengths, so that the compensation field is also a gradient field whose direction of field strength change is inversely to that of the interference field.
  • Fig. 5 It can also be arranged two compensation systems directly next to each other. This case is in Fig. 5 shown.
  • three pairs of Helmholtz coils H1a, H2a, H3a or H1b, H2b, H3b each form a cage Ha or Hb.
  • Hb is one of the two real sensors 3, 4.
  • the virtual sensor signal should be composed in the x-direction from the arithmetic mean of the two real sensor signals in the x-direction, since the gradient of the interference field extends in the x-direction.
  • the virtual sensor signal in the y direction should be equal to the signal y direction of the second real sensor, since, for example, the signal in the y direction of the first real sensor contains unwanted components caused by a local interferer.
  • the virtual sensor signal in z-direction should be off Averaging / noise reduction reasons equal to the arithmetic mean of the two real sensor signals in the z-direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

The system has three-axis magnetic field sensors (3, 4) outputting real sensor signals, and a regulator unit (7) with a digital processor e.g. digital signal processor, to receive the signals and to process control signals for compensation coils (6). The real signals are converted into virtual sensor signals by a matrix multiplication to form an interference field at a location of an object. The virtual signals are made to changed signals by an operator defining a regulator structure. The changed signals are converted into real control signals by another matrix multiplication fed to the coils.

Description

Gebiet der ErfindungField of the invention

Die Erfindung bezieht sich allgemein auf ein System zur Kompensation von elektromagnetischen Störfeldern. Insbesondere betrifft die Erfindung ein System zur Magnetfeldkompensation mit zwei Sensoren und einem digitalen Prozessor.The invention relates generally to a system for compensation of electromagnetic interference fields. In particular, the invention relates to a system for magnetic field compensation with two sensors and a digital processor.

Hintergrund der ErfindungBackground of the invention

Zur Kompensation elektromagnetischer Störfelder, insbesondere magnetischer Störfelder werden in den allermeisten Fällen Feedbackcontrol Regelungssysteme eingesetzt. Hierbei messen ein oder mehrere Sensoren für alle drei kartesischen Raumachsen die Amplitude des Störfeldes. Die Messsignale der Sensoren werden einem Regelungskreis zugeführt, der aus den Messsignalen der Sensoren Steuer- oder Aktuatorsignale für Magnetfelder erzeugende Vorrichtungen berechnet.In most cases, feedback control systems are used to compensate for electromagnetic interference fields, in particular magnetic interference fields. One or more sensors measure the amplitude of the interference field for all three Cartesian spatial axes. The measuring signals of the sensors are supplied to a control circuit which calculates control or actuator signals for magnetic field generating devices from the measuring signals of the sensors.

Das zu kompensierende Magnetfeld kann das Erdmagnetfeld sein oder von anderen in der Umgebung befindlichen Strom führenden Einrichtungen erzeugt werden.The magnetic field to be compensated may be the earth's magnetic field or generated by other current-carrying devices in the environment.

Magnetfeldkompensationssysteme werden beispielsweise im Zusammenhang mit bildgebenden Systemen angewendet, die elektromagnetische Felder verwenden, beispielsweise bei Rasterelektronenmikroskopen (REM).Magnetic field compensation systems are used, for example, in conjunction with imaging systems that use electromagnetic fields, such as scanning electron microscopes (SEMs).

Bei den genannten Vorrichtungen zur Erzeugung von Magnetfeldern kann es sich im einfachsten Fall um einen stromdurchflossenen Leiter handeln. Im Allgemeinen wird aber von Störfeldern ausgegangen, die Fernfeldcharakter haben, d.h. solchen Feldern, deren Feldamplitude sich im Bereich von 5m nicht wesentlich ändert. Diese Annahme trifft beispielsweise bei Störungen von Schienenfahrzeugen zu. Sofern die Störfelder im interessierenden Bereich homogen sind, sollten die Kompensationsfelder ebenfalls homogen sein.The aforementioned devices for generating magnetic fields may in the simplest case be a current-carrying conductor. In general, will but from interference fields that have far-field character, ie those fields whose field amplitude does not change significantly in the range of 5m. This assumption applies, for example, to disruptions of rail vehicles. If the interference fields in the region of interest are homogeneous, the compensation fields should also be homogeneous.

Für die Erzeugung homogener Kompensationsfelder werden bevorzugt sog. Helmholtzspulenpaare eingesetzt. Hierbei handelt es sich um jeweils zwei Spulen, die gleichsinnig geschaltet sind und deren Abstand gleich der halben Kantenlänge (= Spulendurchmesser) einer Spule ist (sog. Helmholtzbedingung).For generating homogeneous compensation fields, so-called Helmholtz coil pairs are preferably used. These are each two coils, which are connected in the same direction and whose distance is equal to half the edge length (= coil diameter) of a coil (so-called Helmholtz condition).

Ferner werden Paare von Helmholtzspulen eingesetzt, deren Abstand gleich einer Kantenlänge ist. Wird für jede der drei Raumachsen jeweils ein Paar von Helmholtzspulen verwendet, so bilden die Spulenpaare einen würfelförmigen Käfig um den Ort herum, an dem ein oder mehrere Störfelder kompensiert werden sollen. Bei einer derartigen Spulenanordnung treten aufgrund der Verletzung der Helmholtzbedingung zwar Feldinhomogenitäten im Inneren des Käfigs auf, diese sind aber für die meisten Anwendungsfälle akzeptabel.Furthermore, pairs of Helmholtz coils are used whose distance is equal to an edge length. If a pair of Helmholtz coils are used for each of the three spatial axes, the coil pairs form a cube-shaped cage around the location at which one or more interference fields are to be compensated. In such a coil arrangement, although field inhomogeneities occur inside the cage due to the violation of the Helmholtz condition, these are acceptable for most applications.

In der US 2005/0195551 A1 wird ein Gerät zur Magnetfeldkompensation angegeben. Dabei werden drei Spulenpaare zu einem Käfig angeordnet. Das zu kompensierende Magnetfeld wird gemessen. Zur Regelung wird ein analoger Regler verwendet.In the US 2005/0195551 A1 a device for magnetic field compensation is specified. In this case, three coil pairs are arranged to form a cage. The magnetic field to be compensated is measured. For regulation, an analog controller is used.

Es sind auch Systeme erhältlich, bei denen pro Raumachse lediglich eine Spule zur Erzeugung des Kompensationsfeldes verwendet wird, wodurch der Kompensationsbereich, d.h. der Bereich, in dem eine gute Kompensation erreicht wird, aber deutlich verkleinert wird.Systems are also available in which only one coil is used per space axis to generate the compensation field, whereby the compensation range, i. the area in which a good compensation is achieved, but significantly reduced.

Zur Messung des Magnetfeldes am interessierenden Ort wird im Allgemeinen ein einziger Magnetfeldsensor eingesetzt. Ausnahmsweise gibt es einen zweiten Sensor, der jedoch zu Diagnosezwecken eingesetzt wird. Mit einem einzelnen Magnetfeldsensor lässt sich jedoch nicht feststellen, ob das zu kompensierende Magnetfeld homogen oder inhomogen am Ort des zu schützenden Objekts ist.For measuring the magnetic field at the point of interest, a single magnetic field sensor is generally used. Exceptionally, there is a second sensor, which is used for diagnostic purposes. With a single magnetic field sensor, however, it is not possible to determine whether the magnetic field to be compensated is homogeneous or inhomogeneous at the location of the object to be protected.

Ein weiteres Problem bei der Kompensation elektromagnetischer Störfelder besteht darin, dass nicht unmittelbar an dem Ort gemessen werden kann, an dem das Störfeld zu kompensieren ist, da sich an diesem Ort im Allgemeinen das vor Störfeldern zu schützende Objekt befindet.Another problem with the compensation of electromagnetic interference fields is that it is not possible to measure directly at the location where the interference field is to be compensated, since the object to be protected against interference fields is generally located at this location.

Ein weiteres Problem tritt auf, wenn zwei Magnetfeldkompensationssysteme unmittelbar benachbart sind. Dann kann es zu unerwünschten Rückkopplungseffekten zwischen den beiden Systemen kommen.Another problem occurs when two magnetic field compensation systems are immediately adjacent. Then there may be undesirable feedback effects between the two systems.

Ein weiteres Problem besteht mit den Regelungssystemen. Diese Regelsysteme können in der Regel nur auf eine Anwendung hin optimiert werden. Eine Anpassung an ganz unterschiedliche Regelungsaufgaben, beispielsweise weil sich die Regelungskonfiguration geändert hat, ist in der Regel nicht oder nur beschränkt möglich und/oder sehr schwierig zu realisieren. Auch nichtlineare Regelungssysteme können im Allgemeinen nur mit hohem Aufwand umgesetzt werden. Diese weisen aber unter Umständen eine deutliche bessere Störfeldkompensation auf als lineare Regelungssysteme. Folglich würde für wechselnde Regelungsaufgaben der gesamte Regelkreis oder die Regelschleife neu berechnet, ausgelegt und/oder ausgetauscht werden. Dies kann in den meisten Fällen auch nicht vom Anwender direkt erfolgen.Another problem is with the regulatory systems. As a rule, these control systems can only be optimized for one application. An adaptation to very different control tasks, for example, because the control configuration has changed, is usually not or only to a limited extent and / or very difficult to implement. Also nonlinear Control systems can generally be implemented only with great effort. However, these may have significantly better interference field compensation than linear control systems. Consequently, for changing control tasks, the entire control loop or loop would be recalculated, designed and / or replaced. This can not be done directly by the user in most cases.

Zusammenfassung der ErfindungSummary of the invention

Der Erfindung liegt daher die Aufgabe zugrunde, ein System zur Kompensation elektromagnetischer Störfelder bereit zustellen, bei dem homogene wie inhomogene Magnetfelder kompensiert werden können.
Es ist eine weitere Aufgabe der Erfindung, eine Simulation der Messung von elektromagnetischen Störfeldern am Ort des zu schützenden Objekts vorzunehmen.
The invention is therefore based on the object to provide a system for the compensation of electromagnetic interference, in which homogeneous as inhomogeneous magnetic fields can be compensated.
It is a further object of the invention to perform a simulation of the measurement of electromagnetic interference fields at the location of the object to be protected.

Es ist eine noch weitere Aufgabe der Erfindung, im Falle des Einsatzes von zwei Magnetfeldkompensationssystemen in unmittelbarer Nachbarschaft eventuell auftretende Rückkopplungseffekte auszugleichen.It is yet another object of the invention to compensate for any feedback effects that may occur in the immediate vicinity in the event of the use of two magnetic field compensation systems.

Die wesentlichen Merkmale der Erfindung sind in den Ansprüchen aufgeführt.The essential features of the invention are set forth in the claims.

Im einzelnen ist ein System zur Kompensation elektromagnetischer Störfelder vorgesehen, welches zwei reale dreiachsige Magnetfeldsensoren, drei Paare von Kompensationsspulen und eine Reglereinheit aufweist, um ein Objekt vor den Einflüssen eines Störfeldes zu schützen. Die Reglereinheit ist dabei vorzugsweise als digitaler Prozessor ausgeführt, beispielsweise als ein DSP (engl. DSP; Digitaler Signal Prozessor) oder ein FPGA (engl. FPGA; field programmable gate array).In detail, a system for compensating electromagnetic interference fields is provided which has two real three-axis magnetic field sensors, three pairs of compensation coils and a control unit in order to protect an object from the influences of an interference field. The In this case, the regulator unit is preferably designed as a digital processor, for example as a DSP (Digital Signal Processor) or an FPGA (Field Programmable Gate Array).

Mittels einer frei definierbaren Art von Mittelung können die insgesamt sechs Ausgangssignale der beiden realen Sensoren zu drei Ausgangssignalen eines virtuellen Sensors zusammengefasst werden. Durch eine geeignete Wahl des Mitteilungsverfahrens kann erreicht werden, dass die Ausgangssignale des virtuellen Sensors die Amplitude des Störfeldes am Ort des zu schützenden Objekts repräsentieren.By means of a freely definable type of averaging, the total of six output signals of the two real sensors can be combined into three output signals of a virtual sensor. By a suitable choice of the notification method can be achieved that the output signals of the virtual sensor represent the amplitude of the interference field at the location of the object to be protected.

Die Mittelung erfolgt durch das Regelungssystem, welches die sechs Ausgangssignale der zwei realen Magnetfeldsensoren über sechs Eingänge erhält.The averaging is done by the control system, which receives the six output signals of the two real magnetic field sensors via six inputs.

Die Ausgangssignale der beiden Magnetfeldsensoren können für jeden Sensor durch einen dreidimensionalen Vektor dargestellt werden. Diese beiden Vektoren können zu einem sechsdimensionalen Vektor, d.h. einer 6x1 Matrix, zusammengefasst werden. Die Mittelung über die Ausgangssignale der beiden realen Sensoren, d.h. die Berechnung der Ausgangssignale des virtuellen Sensors, können durch eine Matrixmultiplikation beschrieben werden: V = M S

Figure imgb0001

V:
6x1 Matrix der Ausgangssignale des virtuellen Sensors
M:
6x6 Matrix, die die Mittelung über die Ausgangssignale der realen Sensoren beschreibt
S:
6x1 Matrix der Ausgangssignale des virtuellen Sensors
Die nunmehr vorliegenden Ausgangssignale (= virtuelle Eingangssignale des Regelsystems) des virtuellen Sensors werden als Input für unabhängige, parallel arbeitende Regelschleifen verwendet. Diese Regelschleifen können breitbandig, frequenzbereichsselektiv oder auch frequenzselektiv sein. Die Regelschleifen weisen Regelalgorithmen auf, die aus den virtuellen Eingangssignalen V veränderte Signale machen. Hierbei ist eine 6x1 Matrix, die die insgesamt sechs veränderten Eingangssignale des Regelsystems darstellen. Der Regelalgorithmus wird durch einen Operator O beschrieben. Hinsichtlich des verwendeten Regelalgorithmus bestehen keinerlei Einschränkungen. Demgemäß muss der Operator 0 keine Matrix sein, so dass auch nichtlineare Algorithmen Verwendung finden können. Der Übergang zu den modifizierten Signalen wird also beschrieben durch V ^ = O V
Figure imgb0002
The output signals of the two magnetic field sensors can be represented by a three-dimensional vector for each sensor. These two vectors can be combined into a six-dimensional vector, ie a 6x1 matrix. The averaging over the output signals of the two real sensors, ie the calculation of the output signals of the virtual sensor, can be described by a matrix multiplication: V = M S
Figure imgb0001
V:
6x1 matrix of the output signals of the virtual sensor
M:
6x6 matrix, which describes the averaging over the output signals of the real sensors
S:
6x1 matrix of the output signals of the virtual sensor
The now available output signals (= virtual input signals of the control system) of the virtual sensor are used as input for independent, parallel-operating control loops. These control loops can be broadband, frequency domain selective or frequency selective. The control loops have control algorithms which make signals V changed from the virtual input signals V. Here, V is a 6x1 matrix representing the six changed input signals of the control system. The control algorithm is described by an operator O. With regard to the control algorithm used, there are no restrictions. Accordingly, the operator 0 does not have to be a matrix, so that nonlinear algorithms can also be used. The transition to the modified signals V is thus described by V ^ = O V
Figure imgb0002

Um für die sechs Spulen Steuersignale zu gewinnen, wird die Matrix mit einer 6x6 Matrix L multipliziert, d.h. O = L V ^

Figure imgb0003
In order to obtain control signals for the six coils, the matrix V is multiplied by a 6x6 matrix L, ie O = L V ^
Figure imgb0003

Hierbei bedeutet:

L:
6x6 Matrix für die Berechnung der Steuersignale O aus den modifizierten Signalen .
Where:
L:
6x6 matrix for the calculation of the control signals O from the modified signals V.

Der vom Reglersystem angewandte Algorithmus lässt sich also insgesamt wie folgt beschreiben: O = L O M S

Figure imgb0004
The algorithm applied by the controller system can thus be described as follows: O = L O M S
Figure imgb0004

Je inhomogener das Kompensationsfeld bei homogener Störung und je homogener das Kompensationsfeld bei inhomogener Störung ist, desto kleiner ist der Bereich um den Feedbacksensor, der einen guten Kompensationseffekt aufweist.The more inhomogeneous the compensation field in the case of homogeneous interference and the more homogeneous the compensation field in the case of inhomogeneous interference, the smaller is the area around the feedback sensor, which has a good compensation effect.

Wenn das Störfeld inhomogen ist, ist es nicht zweckmäßig ein homogenes Kompensationsfeld zu erzeugen. In diesem Fall ist es also zweckmäßig, statt eines Paares von Helmholtzspulen eine einzelne Aktuatorspule zu verwenden.If the interference field is inhomogeneous, it is not appropriate to create a homogeneous compensation field. In this case, it is therefore expedient to use a single actuator coil instead of a pair of Helmholtz coils.

In diesem Fall wird nur ein einzelnes Kompensationssystem verwendet, d.h. für die Bearbeitung virtueller Sensorpositionen und für die Erzeugung von Gradientenfeldern werden lediglich drei virtuelle Signale verwendet, so dass M eine 3x6 Matrix und L eine 6x3 Matrix sein kann. Alternativ können die "nicht benötigten" Elemente der 6x6 Matrizen auch gleich Null sein.In this case, only a single compensation system is used, i. for the processing of virtual sensor positions and for the generation of gradient fields only three virtual signals are used, so that M can be a 3x6 matrix and L a 6x3 matrix. Alternatively, the "unneeded" elements of the 6x6 matrices may also be zero.

Im Falle einer Helmholtzspulenanordnung wird nur eine Spule des Paares aktiv angesteuert, und zwar in Abhängigkeit vom Gradienten des Störfeldes unterhalb des Kompensationsbereiches, oder oberhalb des Kompensationsbereiches. Somit ist im Falle einer Änderung der Struktur des Störfeldes neben einer neuen Parametrisierung der Regelkreise eine Umbaumaßnahme zur Positionsänderung der einzelnen Spule nicht notwendig. Werden zwei Kompensationssysteme direkt nebeneinander betrieben, so führt dies zu gegenseitigen Störungen. Die Rückkopplung zwischen den beiden Systemen kann durch eine 6x6 Rückkopplungs- oder Crosscoupling-Matrix C beschrieben werden. C repräsentiert die Rückkopplung eines Steuersignals Oi mit einem virtuellen Signal Vi.In the case of a Helmholtz coil arrangement only one coil of the pair is actively driven, depending on the gradient of the interference field below the compensation range, or above the compensation range. Thus, in the case of a change in the structure of the interference field in addition to a new parameterization of the control loops, a conversion measure to change the position of the individual coil is not necessary. If two compensation systems are operated directly next to each other, this leads to mutual interference. The feedback between the two systems can be described by a 6x6 feedback or crosscoupling matrix C. C represents the feedback of a control signal O i with a virtual signal V i .

Zur Vermeidung von Störungen wird das Feedbacksystem keine optimalen Ergebnisse liefern können. In der Regel ist eine über- oder Unterkompensation nur für digitale Regelungssysteme möglich und auch dort nur für nichtbreitbandig arbeitende Systeme. Für alle anderen Systeme müsste die Position des Sensors angepasst werden. Eine solche Positionsänderung kann es erforderlich machen, dass die Sensoren für die drei Raumachsen an unterschiedlichen Positionen im Raum positioniert werden müssen. Da aber ein einziges Kompensationssystem für alle Arten von Anwendungen angestrebt wird, stellt Über- bzw. Unterkompensation kein geeignetes Verfahren dar.To avoid interference, the feedback system will not be able to provide optimal results. In general, overcompensation or undercompensation is only possible for digital control systems and even there only for non-broadband operating systems. For all other systems, the position of the sensor would have to be adjusted. Such a change in position may require that the sensors for the three spatial axes be positioned at different positions in space. However, since a single compensation system is sought for all types of applications, overcompensation or undercompensation is not a suitable method.

Hierbei wird die Matrix S der Ausgangssignale der realen Sensoren um einen Rückkopplungsanteil zu einer 6x1 Matrix erweitert. Insgesamt gilt also: O = L O M S - C O

Figure imgb0005
In this case, the matrix S of the output signals of the real sensors is expanded by a feedback component to a 6 × 1 matrix Ŝ . Overall, then: O = L O M S - C O
Figure imgb0005

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Es zeigen:

Fig. 1:
Eine schematische Darstellung des Systems zur Kompensation eines inhomogenen Störfeldes,
Fig. 2:
eine schematische Darstellung des Systems zur Kompensation elektromagnetischer Störfelder mit seinem Regelungssystem,
Fig. 3:
ein Blockdiagramm der Berechnung der Steuersignale des Systems zur Kompensation elektromagnetischer Störfelder.
Fig. 4:
eine schematische Darstellung des Einsatzes eines Magnetfeldkompensationssystems und
Fig. 5:
eine schematische Darstellung des Einsatzes zweier Magnetfeldkompensationssysteme unmittelbar nebeneinander.
Show it:
Fig. 1:
A schematic representation of the system for compensation of an inhomogeneous interference field,
Fig. 2:
a schematic representation of the system for compensation of electromagnetic interference with its control system,
3:
a block diagram of the calculation of the control signals of the system for compensation of electromagnetic interference.
4:
a schematic representation of the use of a magnetic field compensation system and
Fig. 5:
a schematic representation of the use of two magnetic field compensation systems immediately next to each other.

Detaillierte Beschreibung der ErfindungDetailed description of the invention

Im Folgenden wird die Erfindung unter Bezugnahme auf die beigefügten Figuren anhand beispielhafter Ausführungsformen näher beschrieben, wobei gleiche Bezugszeichen sich auf gleiche Bauteile beziehen.In the following, the invention will be described in more detail with reference to the attached figures with reference to exemplary embodiments, wherein like reference numerals refer to like components.

Fig. 1 zeigt schematisch das System zur Kompensation elektromagnetischer Störfelder. Ein vor den Auswirkungen eines Störfeldes 1 zu schützendes Objekt 2 wird vom Störfeld 1 durchdrungen. Das Störfeld 1 ist hier als Gradientenfeld angenommen. Fig. 1 shows schematically the system for compensation of electromagnetic interference fields. An object 2 to be protected from the effects of an interference field 1 is penetrated by the interference field 1. The interference field 1 is assumed here as a gradient field.

Die Amplitude des Störfeldes 1 wird von zwei realen Magnetfeldsensoren 3 und 4 gemessen. Der erste reale Sensor 3 liefert ein Ausgangssignal S 1 =[x 1(t),y 1(t),z 1(t)] und der zweite reale Sensor 4 liefert ein Ausgangssignal S 2=[x2(t),y 2(t),z 2(t)]. Diese beiden Ausgangssignale werden der in Fig. 2 gezeigten Reglereinheit 7 in digitalisierter Form zugeführt.The amplitude of the interference field 1 is measured by two real magnetic field sensors 3 and 4. The first real sensor 3 provides an output signal S 1 = [ x 1 ( t ), y 1 ( t ), z 1 ( t )] and the second real sensor 4 provides an output signal S 2 = [x 2 ( t ), y 2 ( t ), z 2 ( t )]. These two output signals are the in Fig. 2 shown regulator unit 7 supplied in digitized form.

Für die insgesamt 6 Signale, entsprechend 2x3 Raumachsen, weist die Reglereinheit 7 sechs Eingänge auf. Ferner hat die Reglereinheit 7 sechs Ausgänge zur Abgabe von Steuersignalen für sechs Spulen 6.For the total of 6 signals, corresponding to 2x3 spatial axes, the controller unit 7 has six inputs. Further, the regulator unit 7 has six outputs for outputting control signals for six coils 6.

Die beiden Vektoren S 1 und S 2 werden zu einem Sechser-Vektor bzw. einer 6x1 Matrix S = (S1, S2, S3, S4, S5, S6) zusammengefasst. S wird von der Reglereinheit 7 gemäß dem in Fig. 3 schematisch gezeigten Algorithmus bearbeitet. In einem ersten Schritt werden die insgesamt sechs der Reglereinheit 7 zugeführten Signale in Signale V = (V1, V2, V3, V4, V5, V6) eines virtuellen Sensors 5 (Fig. 1) umgerechnet. Dies geschieht, indem S mit einer 6x6 Matrix M multipliziert wird. Es gilt also V = M S

Figure imgb0006
The two vectors S 1 and S 2 are combined into a six-vector or a 6x1 matrix S = (S 1 , S 2 , S 3 , S 4 , S 5 , S 6 ). S is generated by the controller unit 7 according to the in Fig. 3 edited algorithm shown schematically. In a first step, the total of six signals supplied to the control unit 7 are converted into signals V = (V 1 , V 2 , V 3 , V 4 , V 5 , V 6 ) of a virtual sensor 5 (FIG. Fig. 1 ) converted. This is done by multiplying S by a 6x6 matrix M. So it applies V = M S
Figure imgb0006

Die virtuellen Signale V entsprechen der Amplitude des Störfeldes am Ort des zu schützenden Objekts 2. M beschreibt also die Geometrie der gesamten Anordnung und wie die Signale der beiden realen Sensoren 3 und 4 zum virtuellen Signal V zusammengesetzt werden.The virtual signals V correspond to the amplitude of the interference field at the location of the object 2 to be protected. M thus describes the geometry of the entire arrangement and how the signals of the two real sensors 3 and 4 are combined to form the virtual signal V.

Die derart erzeugten virtuellen Signale V werden unabhängigen, parallel arbeitenden Regelschleifen zugeführt und weiter bearbeitet. Diese Regelschleifen als Teil der Reglereinheit 7 können breitbandig, frequenzbereichsselektiv oder frequenzselektiv sein. Die Regelschleifen verändern die virtuellen Signale V zu modifizierten Signalen . Der Übergang von V zu wird durch einen Operator 0 beschrieben. Somit gilt: V ^ = O V

Figure imgb0007
The virtual signals V thus generated are fed to independent, parallel-operating control loops and further processed. These control loops as part of the control unit 7 may be broadband, frequency domain selective or frequency selective. The control loops change the virtual signals V to modified signals V. The transition from V to V is described by an operator 0. Thus: V ^ = O V
Figure imgb0007

Da hinsichtlich der verwendeten Regelalgorithmen keinerlei Einschränkungen bestehen, wird die Modifikation der Signale V allgemein durch den Operator O dargestellt, der nicht notwendigerweise eine Matrix ist, so dass auch nichtlineare Algorithmen Anwendung finden können.Since there are no restrictions with regard to the control algorithms used, the modification of the signals V is generally represented by the operator O, which is not necessarily a matrix, so that non-linear algorithms can also be used.

Zwecks Gewinnung von Steuersignalen für die Spulen 6 werden die modifizierten Signale in reale Steuersignale O umgerechnet. 0 ist wieder eine 6x1 Matrix, enthält also 6 einzelne Signale, die zur Steuerung der sechs Spulen 6 verwendet werden. Der Übergang von den modifizierten Signalen zu den Steuersignalen 0 wird demnach beschrieben durch O = L V ^

Figure imgb0008

bzw. insgesamt: O = L O M S
Figure imgb0009
For the purpose of obtaining control signals for the coils 6, the modified signals V are converted into real control signals O. 0 is again a 6x1 matrix, thus containing 6 individual signals, which are used to control the six coils 6. The transition from the modified signals V to the control signals 0 is thus described by O = L V ^
Figure imgb0008

or in total: O = L O M S
Figure imgb0009

Hierbei ist L eine 6x6 Matrix. Die konkreten Elemente ihrer Werte hängen ab von der Art des zu kompensierenden Störfelds und der Geometrie der das Kompensationsfeld erzeugenden Spulen 6. Soll beispielsweise ein in x-Richtung wirkendes Gradientenfeld kompensiert werden, erhalten die beiden in x-Richtung wirkenden Spulen unterschiedlich starke Steuersignale, so dass die beiden Spulen unterschiedlich starke Magnetfelder erzeugen, so dass das Kompensationsfeld ebenfalls ein Gradientenfeld ist, dessen Richtung der Feldstärkeänderung umgekehrt zu der des Störfeldes ist.Here L is a 6x6 matrix. The concrete elements of their values depend on the type of interference field to be compensated and the geometry of the coil 6 generating the compensation field. For example, if a gradient field acting in the x direction is to be compensated, the two coils acting in the x direction receive control signals of different strengths, see above the two coils generate magnetic fields of different strengths, so that the compensation field is also a gradient field whose direction of field strength change is inversely to that of the interference field.

Der bislang beschriebene Algorithmus wird verwendet, so lange nur ein einziges Kompensationssystem verwendet wird. Für diesen Fall werden nur drei virtuelle Signale benötigt. Hierbei werden virtuelle Sensorpositionen berechnet und Gradientenfelder erzeugt. Für diese Zwecke ist es ausreichend, wenn M eine 3x6 Matrix und L eine 6x3 Matrix ist. Alternativ können die "nicht benötigten" Elemente der 6x6 Matrizen auch gleich Null sein.The algorithm described so far is used as long as only a single compensation system is used. In this case, only three virtual signals are needed. Here, virtual sensor positions are calculated and gradient fields are generated. For these purposes it is sufficient if M is a 3x6 matrix and L is a 6x3 matrix. Alternatively, the "unneeded" elements of the 6x6 matrices may also be zero.

Mit der Regeleinheit 7 können auch zwei direkt nebeneinander positionierte Kompensationssysteme betrieben werden. Dies kann sinnvoll sein, wenn zwei zu schützende Objekte direkt nebeneinander stehen und nicht mit einem großen Kompensationssystem geschützt werden sollen oder können. Dies hat zur Folge, dass die zu schützenden Bereiche aufgrund der zwei eingesetzten Kompensationssysteme ein deutlich kleineres Volumen haben. Daher werden auch keine Gradientenfelder zur Kompensation benötigt. Bei einer solchen Installation ist die Erzeugung von Gradientenfelder zur Kompensation allerdings auch nicht möglich, da die sechs Ausgangssignale der Reglereinheit 7 auf sechs Spulenpaare gegeben werden, die in der jeweiligen Raumrichtung dann jeweils nur ein homogenes Magnetfeld erzeugen können. Die Spulenpaare können in Reihe, parallel oder je nach Impedanz angeschlossen werden. Diese Spulenpaare werden dann jeweils um das zu schützende Objekt 2 platziert und die jeweils dazugehörigen Systeme werden jeweils innerhalb des von den je drei Spulenpaaren gebildeten Käfigs angeordnet. Diese Konfiguration wird in Fig. 4 gezeigt. Drei Paare von Helmholtzspulen H1, H2, H3 sind um an das zu schützende Objekt 2 angeordnet. Die beiden realen Sensoren 3, 4 befinden sich innerhalb des einen Käfigs H.With the control unit 7 and two directly juxtaposed compensation systems can be operated. This can be useful if two objects to be protected are directly next to each other and should not or can not be protected with a large compensation system. This has the consequence that the areas to be protected due to the two compensation systems used have a much smaller volume. Therefore, no gradient fields are needed for compensation. In such an installation, however, the generation of gradient fields for compensation is not possible because the six output signals of the control unit 7 are given to six coil pairs, which can then generate only one homogeneous magnetic field in the respective spatial direction. The coil pairs can be connected in series, in parallel or depending on the impedance. These pairs of coils are then each placed around the object 2 to be protected and the respectively associated systems are respectively arranged within the cage formed by the three coil pairs. This configuration is in Fig. 4 shown. Three pairs of Helmholtz coils H1, H2, H3 are arranged around the object 2 to be protected. The two real sensors 3, 4 are located within the one cage H.

Es können auch zwei Kompensationssysteme direkt nebeneinander angeordnet werden. Dieser Fall ist in Fig. 5 gezeigt. Hierbei bilden jeweils drei Paare von Helmholtzspulen H1a, H2a, H3a bzw. H1b, H2b, H3b je einen Käfig Ha bzw. Hb. In jedem der beiden Käfige Ha, Hb befindet sich einer der beiden realen Sensoren 3, 4.It can also be arranged two compensation systems directly next to each other. This case is in Fig. 5 shown. In each case, three pairs of Helmholtz coils H1a, H2a, H3a or H1b, H2b, H3b each form a cage Ha or Hb. In each of the two cages Ha, Hb is one of the two real sensors 3, 4.

Sofern zwei Kompensationssysteme in unmittelbarer Nachbarschaft eingesetzt werden, können zwischen den beiden Systemen Rückkopplungseffekte auftreten. Diesem Umstand wird dadurch Rechnung getragen, dass eine 6x6 Rückkopplungsmatrix C vorgesehen ist, welche die Anteile derjenigen Signale herausrechnet, die aus einem Ausgangssignal Oi auf ein virtuelles Signal Vi übersprechen. C beschreibt die also die Art der Rückkopplung zwischen den beiden direkt nebeneinander installierten Kompensationssystemen.If two compensation systems are used in the immediate vicinity, feedback effects can occur between the two systems. This circumstance is taken into account by the fact that a 6x6 feedback matrix C is provided, which calculates the proportions of those signals which crosstalk from an output signal O i to a virtual signal Vi. C thus describes the type of feedback between the two compensation systems installed side by side.

Erfindungsgemäß wird die 6x1 Matrix der realen Sensorsignale S um den Rückkopplungsanteil erweitert. Wird die 6x1 Matrix dieser erweiterten Signale mit bezeichnet, so gilt S ^ = S - C O

Figure imgb0010
According to the invention, the 6 × 1 matrix of the real sensor signals S is extended by the feedback component. If the 6x1 matrix of these extended signals is denoted by Ŝ , then S ^ = S - C O
Figure imgb0010

Aus den so gewonnen, um den Rückkopplungsanteil erweiterten Signalen wird in der bereits beschriebenen Weise die 6x1 Matrix mit den virtuellen Sensorsignalen berechnet. Es gilt also: V = M S ^

Figure imgb0011

was schließlich zu Steuersignalen 0 gemäß folgender Beziehung führt: O = L O M S - C O
Figure imgb0012
From the signals Ŝ thus obtained, which are amplified by the feedback component, the 6 × 1 matrix with the virtual sensor signals is calculated in the manner already described. It therefore applies: V = M S ^
Figure imgb0011

which eventually leads to control signals 0 according to the following relationship: O = L O M S - C O
Figure imgb0012

Im Folgenden sei als eine Standardinstallation des Systems angenommen, d.h. es ist nur ein System installiert. Somit treten keine Rückkopplungseffekte auf, was bedeutet, dass die Matrix C gleich der Nullmatrix ist. Ferner sei angenommen, dass sich das virtuelle Sensorsignal in x-Richtung zusammensetzen soll aus dem arithmetischen Mittel der beiden realen Sensorsignale in x-Richtung, da der Gradient des Störfeldes in x-Richtung verläuft. Das virtuelle Sensorsignal in y-Richtung soll gleich dem Signal y-Richtung des zweiten realen Sensors sein, da z.B. das Signal in y-Richtung des ersten realen Sensors von einem lokalen Störer verursachte unerwünschte Komponenten enthält. Das virtuelle Sensorsignal in z-Richtung soll aus Mittelungs-/Rauschunterdrückungsgründen gleich dem arithmetischen Mittel der beiden realen Sensorsignale in z-Richtung sein. Unter diesen Annahmen hat die Matrix M die folgende Gestalt: M = 0 , 5 0 0 0 , 5 0 0 0 0 0 0 1 0 0 0 0 , 5 0 0 0 , 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure imgb0013
The following is assumed to be a standard installation of the system, ie only one system is installed. Thus, no feedback effects occur, meaning that the matrix C is equal to the zero matrix. Furthermore, it is assumed that the virtual sensor signal should be composed in the x-direction from the arithmetic mean of the two real sensor signals in the x-direction, since the gradient of the interference field extends in the x-direction. The virtual sensor signal in the y direction should be equal to the signal y direction of the second real sensor, since, for example, the signal in the y direction of the first real sensor contains unwanted components caused by a local interferer. The virtual sensor signal in z-direction should be off Averaging / noise reduction reasons equal to the arithmetic mean of the two real sensor signals in the z-direction. Under these assumptions, the matrix M has the following shape: M = 0 . 5 0 0 0 . 5 0 0 0 0 0 0 1 0 0 0 0 . 5 0 0 0 . 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure imgb0013

Sind die Kompensationsspulen als Paare ausgeführt und soll in y- und in z-Richtung ein homogenes Kompensationsfeld abgestrahlt werden, das in x-Richtung einen Gradienten hat, so hat die Matrix L die folgende Gestalt: L = 0 , 5 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

Figure imgb0014
If the compensation coils are designed as pairs and if a homogeneous compensation field is to be emitted in the y- and z-direction, which has a gradient in the x-direction, then the matrix L has the following shape: L = 0 . 5 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
Figure imgb0014

Im folgenden Beispiel wird eine Doppelinstallation betrachtet. D.h. zwei Systeme zur Kompensation elektromagnetischer Störfelder werden direkt nebeneinander betrieben.The following example considers a double installation. That Two systems for compensation of electromagnetic interference fields are operated directly next to each other.

Da in diesem Fall die Ausgangssignale für beide Kompensationskäfige innerhalb der Reglereinheit 7 bekannt sind, können nunmehr auch Rückkopplungsanteile berücksichtigt und in der Reglerstruktur berücksichtigt werden. Dies geschieht, wie bereits beschrieben, durch Verwendung einer Rückkopplungs- oder Crosscoupling-Matrix C. Diese Matrix C bzw. deren Elemente lassen experimentell recht einfach bestimmen, indem ein Signal auf einen Ausgang des ersten Kompensationssystems gegeben und beim zweiten System gemessen wird, welche Komponenten von den Sensoren des zweiten Systems aufgenommen werden und in welchem Bruchteil der Amplitude verglichen mit dem Sensor des ersten Systems. Diese Signalanteile bilden dann die Elemente der Rückkopplungsmatrix C. Hierbei muss dieses Messverfahren für alle Spulen durchgeführt werden.Since in this case the output signals for both compensation cages are known within the control unit 7, now also feedback components can be considered and taken into account in the controller structure become. This is done, as already described, by using a feedback or crosscoupling matrix C. This matrix C or its elements can be determined experimentally quite simply by giving a signal to an output of the first compensation system and measuring in the second system which components be absorbed by the sensors of the second system and in what fraction of the amplitude compared with the sensor of the first system. These signal components then form the elements of the feedback matrix C. In this case, this measurement method must be carried out for all coils.

Strahlt beispielsweise der Ausgang O5 noch mit 40% auf den Sensoreingang S2, so muss das Matrixelement C25 = 0,4 sein.If, for example, the output O 5 still radiates with 40% to the sensor input S 2 , then the matrix element C must be 25 = 0.4.

Claims (2)

System zur Kompensation von elektromagnetischen Störfeldern, insbesondere inhomogenen Störfeldern, umfassend: zwei dreiachsige Magnetfeldsensoren (3, 4) zur Abgabe von realen Sensorssignalen (S1, S2, S3, S4, S5, S6); sechs Kompensationsspulen (6), die als Käfig um ein zu schützendes Objekt (2) angeordnet sind und einzeln ansteuerbar sind; eine Reglereinheit (7) mit sechs Eingängen und sechs Ausgängen sowie mit einem digitalen Prozessor, der die Sensorsignale (S1, S2, S3, S4, S5, S6) eingangsseitig aufnimmt und zu Ansteuersignalen (O1, O2, O3, O4, O5, O6) für die Kompensationsspulen (6) verarbeitet, wobei die realen Sensorsignale (S1, S2, S3, S4, S5, S6) zu virtuellen Sensorsignalen (V1, V2, V3, V4, V5, V6) durch eine erste Matrixmultiplikation (V = M•S) umgerechnet werden, um die Störfelder am Ort des Objekts (2) abzubilden, wonach die virtuellen Sensorsignale (V1, V2, V3, V4, V5, V6) durch einen die Reglerstruktur beschreibenden Operator (0) zu veränderten Signalen ( 1, 2, 3, 4, 5, 6) gemacht werden, wobei die veränderten Signale ( 1, 2, 3, 4, 5, 6) zu realen Ansteuersignalen (O1, O2, O3, O4, O5, O6) durch eine zweite Matrixmultiplikation (0 = L•) umgerechnet werden, die den sechs Kompensationsspulen (6) einzeln zugeführt werden. System for compensation of electromagnetic interference fields, in particular inhomogeneous interference fields, comprising: two triaxial magnetic field sensors (3, 4) for emitting real sensor signals (S1, S2, S3, S4, S5, S6); six compensation coils (6), which are arranged as a cage around an object to be protected (2) and are individually controllable; a control unit (7) with six inputs and six outputs and with a digital processor which receives the sensor signals (S 1 , S 2 , S 3 , S 4 , S 5 , S 6 ) on the input side and to drive signals (O 1 , O 2 , O 3 , O 4 , O 5 , O 6 ) for the compensation coils (6), wherein the real sensor signals (S 1 , S 2 , S 3 , S 4 , S 5 , S 6 ) to virtual sensor signals (V 1 , V 2 , V 3 , V 4 , V 5 , V 6 ) are converted by a first matrix multiplication (V = M • S) in order to map the interference fields at the location of the object (2), after which the virtual sensor signals (V 1 , V 2, V 3, V 4, V 5, V 6) by the controller structure described operator (0) (to altered signals V 1, V 2, V 3, V 4, V 5, V 6) are made, wherein the modified signals ( V 1 , V 2 , V 3 , V 4 , V 5 , V 6 ) to real driving signals (O 1 , O 2 , O 3 , O 4 , O 5 , O 6 ) by a second matrix multiplication ( 0 = L • V ), which are fed to the six compensation coils (6) individually. System nach Anspruch 1, bei dem zwei Käfige (Ha, Hb) um zwei zu schützende Objekte (2a, 2b) vorgesehen sind, die sich gegenseitig beeinflussen, wobei die sechs Ausgänge der Reglereinheit (7) jeweils mit Spulenpaaren verbunden sind, wobei jeweils ein Magnetfeldsensor (3, 4) einem der Objekte (2a, 2b) zugeordnet ist, und wobei die Ansteuersignale ((O1, O2, O3, O4, O5, O6) mit einer Rückkopplungsmatrix (C) multipliziert werden, um wie die Sensorsignale nach Anspruch 1 weiterverarbeitet zu werden.A system according to claim 1, wherein two cages (Ha, Hb) are provided around two objects (2a, 2b) to be protected, which influence each other, the six outputs of the control unit (7) being respectively connected to pairs of coils wherein a respective magnetic field sensor (3, 4) is assigned to one of the objects (2a, 2b), and wherein the drive signals ((O 1 , O 2 , O 3 , O 4 , O 5 , O 6 ) are connected to a feedback matrix ( C) are multiplied to be further processed as the sensor signals according to claim 1.
EP10006132A 2009-06-13 2010-06-14 Compensation of electromagnetic interference fields Active EP2261763B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009024826A DE102009024826A1 (en) 2009-06-13 2009-06-13 Compensation of electromagnetic interference fields

Publications (2)

Publication Number Publication Date
EP2261763A1 true EP2261763A1 (en) 2010-12-15
EP2261763B1 EP2261763B1 (en) 2013-01-16

Family

ID=42782933

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10006132A Active EP2261763B1 (en) 2009-06-13 2010-06-14 Compensation of electromagnetic interference fields

Country Status (4)

Country Link
US (1) US8433545B2 (en)
EP (1) EP2261763B1 (en)
JP (1) JP5529636B2 (en)
DE (1) DE102009024826A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106289206A (en) * 2016-11-01 2017-01-04 上海海事大学 A kind of apparatus and method that stably magnetic field environment is provided

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011106433B4 (en) * 2011-07-04 2016-10-13 Integrated Dynamics Engineering Gmbh Integrated magnetic field compensation for use with scanning and transmission electron microscopes, vibration isolation system and methods for imaging, testing and / or processing a sample
DE102011086773A1 (en) * 2011-11-22 2013-05-23 Robert Bosch Gmbh METAL SENSOR
US9389281B2 (en) 2013-03-21 2016-07-12 Vale S.A. Magnetic compensation circuit and method for compensating the output of a magnetic sensor, responding to changes in a first magnetic field
US20150336463A1 (en) * 2014-05-21 2015-11-26 Delphi Technologies, Inc. Active electromagnetic interference mitigation system and method
CN113517676B (en) * 2021-05-06 2022-10-28 东方电子股份有限公司 Method for preventing power frequency magnetic field from interfering bus differential protection under slight fault situation
DE102021210497A1 (en) 2021-09-21 2023-03-23 Siemens Healthcare Gmbh Suppression of magnetic resonance tomographs
WO2023079550A1 (en) * 2021-11-04 2023-05-11 Safefields Technologies Ltd. System and method for active cancellation of magnetic fields
DE102021131970A1 (en) 2021-12-03 2023-06-07 Integrated Dynamics Engineering Gesellschaft mit beschränkter Haftung Apparatus and method for analyzing a sample using electrically charged particles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0379374A2 (en) * 1989-01-20 1990-07-25 Fujitsu Limited Measuring magnetic fields
DE19702831A1 (en) * 1997-01-27 1998-03-12 Siemens Ag Appliance for compensation of external field interference with main magnetic field in nuclear magnetic resonance (NMR) tomography
WO2005078467A1 (en) * 2004-02-13 2005-08-25 Elekta Ab (Publ) A method for interference suppression in a measuring device
GB2411741A (en) * 2004-03-03 2005-09-07 Ims Nanofabrication Gmbh Compensation of magnetic fields

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3403982A1 (en) * 1984-02-04 1985-08-08 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt METHOD FOR AN EMERGENCY-FIELD-CONTROLLED MAGNETIC PROTECTIVE SYSTEM (SMES SYSTEM)
DE4217302A1 (en) * 1991-06-05 1992-12-10 Siemens Ag Screened chamber with active screening for medical measuring appts. - measures magnetic field using induction coil around room and applies appropriate compensation current to coils to cancel LF interference field

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0379374A2 (en) * 1989-01-20 1990-07-25 Fujitsu Limited Measuring magnetic fields
DE19702831A1 (en) * 1997-01-27 1998-03-12 Siemens Ag Appliance for compensation of external field interference with main magnetic field in nuclear magnetic resonance (NMR) tomography
WO2005078467A1 (en) * 2004-02-13 2005-08-25 Elekta Ab (Publ) A method for interference suppression in a measuring device
GB2411741A (en) * 2004-03-03 2005-09-07 Ims Nanofabrication Gmbh Compensation of magnetic fields
US20050195551A1 (en) 2004-03-03 2005-09-08 Ims Nanofabrication Gmbh Compensation of magnetic fields

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106289206A (en) * 2016-11-01 2017-01-04 上海海事大学 A kind of apparatus and method that stably magnetic field environment is provided

Also Published As

Publication number Publication date
DE102009024826A1 (en) 2011-01-27
US8433545B2 (en) 2013-04-30
JP5529636B2 (en) 2014-06-25
US20110144953A1 (en) 2011-06-16
JP2010287574A (en) 2010-12-24
EP2261763B1 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
EP2261763B1 (en) Compensation of electromagnetic interference fields
EP4194875B1 (en) Magnetic resonance tomograph with active interference suppression and method for suppressing interference in a magnetic resonance tomograph
DE102004045691B4 (en) Method for generating a homogeneous high-frequency magnetic field in a spatial examination volume of a magnetic resonance system
DE102005049229B3 (en) Flip angle distribution determination method for use in magnetic resonance system for medical diagnosis, involves measuring absolute flip angle distribution using one transmission configuration as reference configuration
DE19955117C2 (en) Method for operating a magnetic resonance tomography device
DE102010033329B4 (en) Method and device for determining a magnetic resonance system drive sequence and method for operating a magnetic resonance system
DE102010015066B4 (en) Method and device for determining a magnetic resonance system drive sequence and method for operating a magnetic resonance system
DE102007013422B4 (en) Method for controlling a magnetic resonance system and magnetic resonance system
DE102008063630A1 (en) Method for controlling a radio frequency transmitter, radio frequency transmitter, radio frequency controller and magnetic resonance imaging system
DE102011006151B4 (en) Determining an RF pulse length of a magnetic resonance system optimized with regard to an RF energy parameter
DE102012207132B3 (en) Method for controlling MRI system, involves determining transmission scale factors under consideration of predetermined target magnetization, to compute high frequency pulse trains for transmit channels based on reference pulse train
DE102010011968A1 (en) Method for generating an image with a magnetic resonance tomograph
DE102011007825B4 (en) Method for determining the spatial distribution of magnetic resonance signals in the subvolume of an examination subject
DE102011005433B4 (en) Method and high-frequency control device for controlling a high-frequency transmitting device of a magnetic resonance tomography system
DE102012215255B3 (en) Control of a magnetic resonance system taking into account current component-related B1 field maximum values
DE102005017310B4 (en) Method for generating a homogeneous high-frequency magnetic field in the interior of a cylindrical body coil of a magnetic resonance device, as well as a magnetic resonance device for carrying out the method
DE102012210827B4 (en) Determining a communication latency in a magnetic resonance tomograph
DE102011079490B4 (en) Control of gradient coils taking into account the inductive coupling
DE102013220301B4 (en) Determining a drive sequence for a magnetic resonance imaging system using a feasibility criterion
DE102011084072B4 (en) Two-channel magnetic resonance imaging system
DE4309958C1 (en) Method and device for spatially resolved magnetic resonance examination of an object to be measured
DE102014201944B4 (en) RF pulse adjustment method and RF pulse adjustment device
DE102021210499B3 (en) Method and device for suppressing electric and/or magnetic fields emitted during magnetic resonance recordings
DE4432574C2 (en) Magnetic resonance imaging device
EP4152033A1 (en) Spectral saturation in magnetic resonance imaging

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20110323

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 594194

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130215

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010002085

Country of ref document: DE

Effective date: 20130321

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130516

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130416

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130427

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130516

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

26N No opposition filed

Effective date: 20131017

BERE Be: lapsed

Owner name: INTEGRATED DYNAMICS ENGINEERING G.M.B.H.

Effective date: 20130630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010002085

Country of ref document: DE

Effective date: 20131017

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100614

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130614

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 594194

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230620

Year of fee payment: 14

Ref country code: DE

Payment date: 20230626

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230622

Year of fee payment: 14

Ref country code: CH

Payment date: 20230702

Year of fee payment: 14