EP2258000B1 - Optoelectronic semiconductor component and method for producing said component - Google Patents

Optoelectronic semiconductor component and method for producing said component Download PDF

Info

Publication number
EP2258000B1
EP2258000B1 EP09728784.1A EP09728784A EP2258000B1 EP 2258000 B1 EP2258000 B1 EP 2258000B1 EP 09728784 A EP09728784 A EP 09728784A EP 2258000 B1 EP2258000 B1 EP 2258000B1
Authority
EP
European Patent Office
Prior art keywords
intermediate film
semiconductor chip
connection carrier
connection
potting body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09728784.1A
Other languages
German (de)
French (fr)
Other versions
EP2258000A1 (en
Inventor
Walter Wegleiter
Ralph WIRTH
Bernd Barchmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Publication of EP2258000A1 publication Critical patent/EP2258000A1/en
Application granted granted Critical
Publication of EP2258000B1 publication Critical patent/EP2258000B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • An optoelectronic semiconductor component is specified.
  • a method for producing such an optoelectronic semiconductor device is specified.
  • Optoelectronic components such as light or photodiodes have found a wide technical application. Some of the factors that contributed to the dissemination of such components are, for example, their high efficiency and resistance to external stress as well as environmental influences. For example, optoelectronic components can easily withstand moisture or heat and, even with suitable design, they are resistant to mechanical stresses. In addition to high efficiency, optoelectronic components also have a long service life, a compact design and a variety of design options and can also be produced at comparatively low production costs. Decisive for a variety of just mentioned properties is often the house of the optoelectronic device, which is therefore to lay special value as a rule.
  • the publication EP 1 684 363 A2 relates to a silicone encapsulated LED.
  • a light-emitting diode package is in the document US 2007/0215998 A1 disclosed.
  • One problem to be solved is to specify an aging-resistant optoelectronic component.
  • Another object to be achieved is to provide a method for producing such an optoelectronic device.
  • the optoelectronic semiconductor component comprises a connection carrier with a connection side.
  • the connection carrier may be designed approximately in the form of a printed circuit board which comprises etched, printed, or vapor-deposited conductor tracks.
  • the connection carrier can be made mechanically flexible, for example as a flexible printed circuit board, in particular based on polyimide, or else consist of mechanically rigid materials such as ceramics or glasses.
  • the connection carrier preferably has a high thermal conductivity, so that it is suitable for dissipating the electrical power loss arising during operation of the optoelectronic semiconductor component, which results mainly in heat development, to the outside.
  • connection carrier may be permeable in a specific spectral range of the electromagnetic spectrum.
  • the geometric dimensions of the connection carrier can be connected to the appropriate requirements of a specific application.
  • the connection side of the connection carrier may be approximately flat or planar and may be suitable for accommodating at least one optoelectronic semiconductor chip.
  • the connection carrier has a connection side, but it is not excluded that approximately both sides of a connection carrier configured in a planar manner, for example, can be used as connection sides.
  • the optoelectronic semiconductor component comprises at least one optoelectronic semiconductor chip.
  • the semiconductor chip is configured to either receive or emit electromagnetic radiation during operation.
  • the semiconductor chip can be designed as a photodiode and thus as a sensor, or as a light-emitting element, for example in the form of a light-emitting diode or laser diode.
  • the semiconductor chip can be designed flat and, for example, have a square or rectangular base. It is also possible that the semiconductor chip has approximately hexagonal or round base areas, which allow, for example, a high-density arrangement of the semiconductor chips on a connection carrier.
  • the thickness of the semiconductor chip are not strictly limited, but preferably the thickness is less than 200 ⁇ m, in particular less than 50 ⁇ m.
  • the semiconductor chip may for example be formed as a thin-film chip, as in the document WO 2005/081319 A1 described.
  • the electrical contacts of the semiconductor chip can all be located on the top or on the underside of the chip, in each case on the flanks of the semiconductor chip or else be attached to the top and bottom of the chip.
  • the semiconductor chip has a radiation passage area through which the light to be emitted or to be received by the semiconductor chip leaves the semiconductor chip or enters it through this area.
  • the radiation passage area may be planar or structurings which make it easier for the incoming or outgoing light to pass through the radiation passage area.
  • the optoelectronic semiconductor component comprises an adhesion-promoting intermediate film.
  • This intermediate foil is applied to the connection side of the connection carrier and covers it at least in places.
  • the intermediate film can be formed homogeneously from a single material or also have a multilayer structure.
  • the adhesion-promoting intermediate film it is possible for the adhesion-promoting intermediate film to have structurings, for example in the form of recesses, or for approximately electrically conductive structures to be provided on this intermediate film.
  • the thickness of the intermediate film is preferably in the range from 20 ⁇ m to 200 ⁇ m, in particular between 35 ⁇ m and 60 ⁇ m.
  • the optoelectronic semiconductor component comprises at least one radiation-permeable potting body.
  • radiation-permeable means that the potting body is essentially to be regarded as transparent or translucent in the electromagnetic spectral range relevant to the operation of the semiconductor chip. That is, the potting body absorbs in the relevant Spectral range less than 20%, preferably less than 10%, more preferably less than 5% of the radiation.
  • the potting body extends only over or on a single main side of the connection carrier. Likewise preferred are end faces of the connection carrier free from the potting body and / or the intermediate film. In other words, the potting body does not surround the connection carrier on several sides.
  • the optoelectronic semiconductor component comprises a connection carrier with a connection side and at least one optoelectronic semiconductor chip, which is mounted on the connection side and is electrically connected to the connection carrier.
  • the connection side can have at least one connection surface, which is designed to be connected to the electrical contacts of the semiconductor chip.
  • the pad can be designed for example as solder or adhesive surfaces.
  • the semiconductor device comprises an adhesion-promoting intermediate film which is attached to the connection side and covers it at least partially.
  • the semiconductor component has at least one radiation-permeable potting body which at least partially surrounds the semiconductor chip, the potting body being mechanically connected to the connection carrier by means of the intermediate film.
  • the adhesion-promoting intermediate film is accordingly configured such that it has adhesion on the connection carrier or on its connection side.
  • the intermediate foil should have an adhesive connection with the potting body.
  • the adhesion between intermediate film and Connection carrier is better than the adhesion between the potting body and connection carrier.
  • the adhesion between potting body and intermediate film is preferably improved by at least a factor of 1.5, particularly preferably by at least a factor of 2.
  • Such an intermediate foil ensures a permanent, mechanically stable connection between the connection carrier and the potting body. It is not necessary for the entire side of the potting body facing the connection carrier to be in direct contact with the intermediate film. In particular, electrical connections between the potting body and the intermediate foil may be present.
  • the mechanical connection between potting body and connection carrier carried indirectly, so that, for example, the potting adheres to the intermediate film, this in turn is directly connected to a semiconductor chip and the semiconductor chip to the connection carrier.
  • the semiconductor chip via which the connection between the intermediate foil and the connection carrier is mediated, is indirectly connected to the connection carrier, for example via a rewiring plane, a heat sink or a ceramic intermediate carrier, for example.
  • the potting body surrounds the semiconductor chip approximately at its radiation passage area and at the chip edges. In this case, chip flanks mean those side surfaces of the semiconductor chip which are aligned, for example, transversely to the connection side or to a connection surface and which Radiation passage surface with the terminal side facing surface of the semiconductor chip connect.
  • Such a designed optoelectronic semiconductor device is resistant to aging and has good optical properties.
  • the radiation passage area of the semiconductor chip is covered at least in places by the intermediate foil.
  • the entire radiation passage area may be covered by the intermediate film.
  • the intermediate foil is preferably permeable to the electromagnetic radiation to be received or emitted by the semiconductor chip, at least in a partial region of the relevant spectral range.
  • the intermediate film can be transparent in the relevant spectral range.
  • the intermediate foil with a silicone foil designed. That is, the intermediate film comprises a silicone film or consists entirely of a silicone film. Preferably, intermediate film and potting body made of the same material or of materials that allow good adhesion to each other. Since silicone resists electromagnetic radiation, especially in the blue and near ultraviolet spectral range, an aging-resistant optoelectronic device can be realized by means of such an intermediate film.
  • the intermediate foil is designed with a material or consists of such a material that is impermeable to the radiation.
  • the intermediate foil is neither transparent nor translucent.
  • the intermediate film then preferably has at least one recess or at least one opening at the radiation passage area, so that the radiation passage area is at least locally free of the intermediate film.
  • the intermediate foil it is formed between the intermediate foil, the connection side and chip flanks a cavity.
  • the intermediate foil then spans the semiconductor chip like a tent.
  • the chip flanks can remain completely uncovered by the intermediate foil or can also be largely covered by it.
  • electrical conductor tracks are to be applied to the intermediate film in a subsequent, for example, lithographic or vapor deposition step, it is advantageous if the cavity formed has a relatively large volume, so that the pitch of the intermediate film does not become too large parallel to the alignment of the connection side , This prevents that in too steeply oriented parts of the intermediate foil in a sputtering process too little material is deposited in these too steep areas.
  • a photolithographic structuring is only possible in areas in which the intermediate film is not aligned too steeply to the connection side. Not too steep here means that the angle between the plane defined by the radiation passage area of the semiconductor chip and the surface of the intermediate foil facing away from the terminal side is less than 45 °, preferably less than 30 °.
  • the plane is defined by spatially averaging over the structuring of the radiation passage area, specifically in the direction perpendicular to the main propagation plane of the intermediate film.
  • the potting body designed with a silicone. Silicone is particularly resistant to electromagnetic radiation in blue or UV spectral range.
  • the potting body is made in one piece. It is also possible that the potting body has approximately several layers or shell-like structures, which can also be formed from different materials. Alternatively, the potting body can also be configured from an epoxy resin-silicone hybrid material.
  • the potting body and / or the intermediate foil contain at least one admixture in the form of a diffuser, conversion or filter medium. Potting body and / or intermediate film may in particular each contain more admixtures, potting and intermediate film may also contain different pronounced admixtures. If the semiconductor chip is configured approximately as a photodiode, then, for example, the potting body can also contain a plurality of filter means which only transmit light in a certain spectral range to the semiconductor chip.
  • a suitable conversion agent as an admixture, it is possible, for example, to use a blue-emitting light-emitting diode to use a semiconductor component as a white-light source. It is via diffuser agents such as TiO 2 particles, for example in the intermediate film it is possible to realize a lighting device radiating homogeneously over the entire radiating surface thereof.
  • connection carrier is designed with a metal or a metal alloy, a plastic or a ceramic.
  • the connection carrier may consist of a single material, for example of copper, or may also be a multilayer system which has, for example, a particularly good thermal conductivity. By choosing suitable ceramics, the connection carrier in the relevant spectral range can be approximately transparent or reflective.
  • this is housing-free except for connection carrier, intermediate film and potting body.
  • Intermediate foil and / or potting body can have admixtures.
  • Such a semiconductor device can be made particularly compact, comprises few components and is therefore also inexpensive.
  • the radiation passage area of the semiconductor chip faces away from the connection carrier. Furthermore, the potting body, in a direction perpendicular to the radiation passage area, covers the entire semiconductor chip.
  • the potting body is designed as an optical element.
  • the potting body forms a lens.
  • a further cavity is enclosed by the intermediate foil, the connection carrier and the electrical leads.
  • the further cavity is enclosed by the semiconductor chip, the connection carrier and the electrical leads, the further cavity then preferably has no contact with the intermediate foil.
  • An insulator which is located for example between the connection carrier and the electrical lines, can adjoin the further cavity.
  • the further cavity is filled or evacuated, for example, with a gas.
  • the further cavity is free of a liquid or a solid.
  • an optoelectronic semiconductor component is specified.
  • an optoelectronic semiconductor component can be produced, as described in conjunction with one or more of the abovementioned embodiments.
  • connection side preferably represents a suitable growth surface, for example in shape a semiconductor material.
  • the method step of applying the semiconductor chip is in this case included in the method step of providing. The process can take place at least partially in the wafer composite.
  • Such a method makes it possible to produce aging-resistant optoelectronic components efficiently.
  • the intermediate film is applied over the whole area on the connection side as well as on the at least one semiconductor chip.
  • the film thus consistently covers the connection side and the semiconductor chips located thereon.
  • the partially cross-linked intermediate film is a silicone film which is applied to the connection side of the connection carrier in a still soft, ductile or viscous state.
  • the partially cross-linked intermediate film can thereby easily adapt to the surface structure of the connection carrier, both microscopically and macroscopically.
  • the laminated intermediate film is fully crosslinked or cured. This can be about temperature induced or done by means of UV radiation.
  • the volume shrinkage of the intermediate film due to curing is preferred less than 10%, more preferably less than 3%.
  • the potting body is produced by means of compression molding, wherein the connection carrier or its connection side forms part of the casting mold.
  • Compression molding usually uses a cast film onto which the casting mold is then pressed. About the cast film, the mold is sealed. Depending on the configuration of the intermediate film, the cast film can be omitted since an adequate seal between the mold and connection carrier can be made via the intermediate film. In other words, the intermediate film can also represent a cast film for the compression molding process in addition to their property as a primer. Compression molding simplifies the manufacturing process and reduces manufacturing costs.
  • recesses are produced in the intermediate foil by means of laser ablation.
  • the intermediate foil is preferably made absorbent in a spectral range.
  • the intermediate film can be absorbent below about 400 nm, so that, for example, laser radiation in the UV spectral range is absorbed by the film and can therefore be ablated.
  • a short-pulse laser with pulse durations in the nanosecond range or also in the femtosecond range is preferably used.
  • frequency tripled solid state lasers are particularly suitable.
  • the laser radiation can be focused on the intermediate foil. Depending on requirements The size of the focus diameter can be adjusted via suitable optics, so that automatically results in a certain structure size.
  • the focus diameter is, for example, 20 ⁇ m
  • the intermediate film can also be scanned by means of the laser radiation, so that larger, continuous patterns can be produced in this.
  • short-pulse lasers it is in principle also possible to use in particular during scanning focused continuous wave laser with suitable wavelengths. By means of laser ablation, recesses can be produced with high accuracy in this device in a particularly simple and gentle manner for the structures or layers located below the intermediate foil.
  • Necessary recesses for example for the electrical contacting of semiconductor chips, can also be generated in addition to laser ablation alternatively, for example by lithographic methods or etching methods. Also mechanical methods, such as precision milling, are conceivable.
  • optoelectronic components described here could be used are, for example, the backlighting of displays or display devices. Furthermore, the optoelectronic components described here can also be used, for example, in illumination devices for projection purposes, in headlights or light emitters or in general lighting.
  • FIG. 1 an embodiment of an optoelectronic semiconductor device 1 is shown.
  • a connection carrier 2 which is made of a ceramic material with high thermal conductivity
  • electrical lines 8 are attached on a newly designed connection side 20 of a connection carrier 2, which is made of a ceramic material with high thermal conductivity.
  • an optoelectronic semiconductor chip 3 is attached on the side facing away from the connection carrier 2 side of the electrical lines 8.
  • the electrical connection between the semiconductor chip 3 and electrical lines 8 is effected for example by means of electrically conductive adhesive.
  • the side facing away from the connection carrier 2 of the semiconductor chip 3 forms its radiation passage area 30.
  • the chip edges 6 are formed by the perpendicular to the radiation passage surface 30 aligned boundary surfaces of the semiconductor chip 3, which connect the radiation passage surface 30 with the connection carrier 2 side facing the semiconductor chip 3.
  • an intermediate film 5 is applied over the connection side 20, an intermediate film 5 is applied.
  • the intermediate foil 5 covers electrical leads 8 and the semiconductor chip 3.
  • the entire radiation passage area 30 of the semiconductor chip 3 is likewise covered by the intermediate foil 5.
  • the intermediate foil 5 is in this case a silicone foil.
  • the semiconductor chip 3 embodied as a flip chip has a thickness in the direction perpendicular to the connection side 20 of approximately 150 ⁇ m. The thickness of the silicone film 5 is about 50 microns.
  • a cavity 11 is formed at the chip edges 6, enclosed by the intermediate foil 5 and the connection side 20, a cavity 11 is formed. According to FIG. 1 the cavity 11 has a comparatively small volume.
  • the intermediate film 5 is partially against the chip edges 6.
  • a potting body 4 is applied at the side facing away from the connection carrier 2 side of the intermediate foil 5.
  • the potting body substantially surrounds the semiconductor chip 3 at its radiation passage area 30 as well on the chip flanks 6.
  • the mechanical connection between potting body 4 and connection carrier 2 is made via the intermediate foil 5.
  • the intermediate film 5 is connected to the connection carrier 2 indirectly via the semiconductor chip 3, that is, the intermediate film 5 adheres to the semiconductor chip 3, which in turn adheres to the connection carrier 2.
  • the semiconductor chip 3 can be configured, for example, as a light-emitting diode.
  • the materials of the potting body 4 and the intermediate foil 5 are preferably to be selected so that the electromagnetic radiation emitted by the semiconductor chip 3 in its operation is not absorbed by the potting body 4.
  • the light emitted by the semiconductor chip 3 is directed into a specific spatial region.
  • the semiconductor chip 3 During operation of the semiconductor chip 3, this normally heats up significantly. Temperature differences between resting state and operating temperature of 50 ° C, or even 100 ° C and more may occur. Due to the different thermal expansions of the semiconductor chip 3 and the potting body 4, mechanical stresses occur. Starting from the edges of the semiconductor chip 3, there is the risk of crack formation in the potting body 4 due to the thermal expansion.
  • the interlayer 5 which is made from a silicone which also has a certain flexibility when cured, forms it can reduce the mechanical stress due to thermal expansion.
  • the intermediate foil 5 acts as a kind of buffer between the semiconductor chip 3 and the potting body 4.
  • connection carrier 2 Through the connection carrier 2, the electrical lines 8 and the semiconductor chip 3, a further cavity is formed, which is located between the connection carrier 2 and the semiconductor chip 3. The further cavity does not adjoin the intermediate foil 5.
  • connection carrier 2 and also the electrical lines 8 may be formed from a material which is permeable to the electromagnetic radiation to be emitted or received by the semiconductor chip 3.
  • a semiconductor component that also emits on all sides, for example, can be realized.
  • the electrical lines 8 may be configured, for example, of a metal, so that the radiation emitted by the semiconductor chip 3 in the direction of the connection carrier 2 is reflected by the electrical lines 8 in the direction of the potting body 4.
  • connection carrier 2 is made of a metal.
  • an electrical insulator 12 is applied between conductor tracks 8 and connection carrier 2 at the corresponding locations.
  • the semiconductor chip 3 is applied to the electrical lines 8 such that the entire surface of the semiconductor chip 3 facing the connection carrier 2 is seated on the electrical line 8a.
  • a second electrical line 8c is led from the light passage surface 30 to a further electrical line 8b.
  • the electric wire 8c designed as a bonding wire is guided through recesses 10 in the intermediate foil 5.
  • the intermediate foil 5 lies close to the chip flanks 6 in this embodiment, so that the cavity 11 occupies only a very small volume.
  • the electrical lines 8a, 8b are designed such that they can serve as a reflector for the radiation to be received or emitted by the semiconductor chip 3.
  • the potting body 4 is designed as a Fresnel lens. This can result in a particularly flat optoelectronic component 1.
  • the potting body 4 other structuring, such as grooves, which may cause, for example, a directed light emission, improved light input or light output, or a uniform light emission of the component 1.
  • connection carrier 2 which may be configured, for example, metallic, glued.
  • the side of the semiconductor chip 3 facing the connection carrier 2 is preferably made electrically insulating.
  • the connection side 20 of the connection carrier 2 has a reflective effect on the radiation to be received or emitted by the semiconductor chip 3.
  • the semiconductor chip 3 may be designed as a so-called top emitter. That is, the radiation to be emitted from the semiconductor chip 3 is generated near the radiation passage area 30. When using a top emitter no reflective elements such as on the connection side 20 are necessary.
  • the intermediate foil 5 is applied over the entire surface via connection carrier 2 and semiconductor chip 3.
  • the cavity 11 is pronounced relatively large volume.
  • the intermediate foil 5, which covers the entire radiation passage area 30 and leaves the chip flanks 6 free, is relatively flat to the connection carrier 2 going out.
  • This makes it possible that the surface of the intermediate film 5 facing away from the connection carrier 2 is not significantly larger than the projection of this surface on the connection carrier 2.
  • electrical Lines 8 can be created.
  • For contacting the semiconductor chip 3 are recesses 10 in the intermediate foil 5 at the side facing away from the connection carrier 2 side of the semiconductor chip 3, which also corresponds to the radiation passage area 30, attached.
  • a plated-through 9 takes place from the contact surfaces, not shown, of the semiconductor chip 3 to the electrical leads 8.
  • the plated-through holes 9 can likewise be made by means of a photolithographic method.
  • the metallic electrical lines 8, for example, occupy only a small area proportion of the intermediate foil 5 and the radiation passage area 30.
  • the potting body 4 provided with a planar surface therefore adheres substantially to the intermediate film 5 and via this to the connection carrier 2.
  • the intermediate carrier 5 may contain an admixture 7. If the semiconductor chip 3 is designed, for example, as a photodiode, then the spectral range which the semiconductor chip 3 is intended to detect can be limited via the admixture 7. Possible admixtures 7 in this case are, for example, pigments or dyes.
  • the intermediate film 5 can also have a plurality of different admixtures 7, such as conversion agents, luminescent substances, filter media or diffusion media.
  • the potting body 4 is provided with an admixture 7.
  • the semiconductor chip 3 is, as in the embodiment according to FIG. 1 , designed as a flip chip.
  • the electrical lines 8 occupy a majority of the side of the semiconductor chip 3 facing the connection carrier 2.
  • the semiconductor chip 3 is connected to the electrical lines 8 and thus to the connection carrier 2 by means of SMT soldering technology, that is to say by means of surface mount technology.
  • the intermediate film 5 has a recess 10 in the area of the radiation passage area 30, so that it is essentially uncovered by the intermediate film 5. With the exception of the recess 10, the intermediate film is applied over the entire connection carrier 2.
  • the intermediate foil 5 can optionally be designed with a radiation-impermeable material, so that, for example, the electrical leads 8 are covered. As a result, in particular, the lines 8 are not visible from outside the component 1.
  • connection carrier 2 can be designed approximately in the form of a printed circuit board with a mechanically flexible plastic substrate.
  • FIG. 5 an embodiment is shown in which two semiconductor chips 3 are covered by a single potting body 4.
  • the semiconductor chips 3, which may be embodied, for example, as laser diodes, are respectively applied to electrical leads 8a, 8b in the entire area facing the terminal carrier 2.
  • the electrical lines 8a, 8b are made metallic and have a reflective effect on the electromagnetic radiation to be emitted or received by the semiconductor chips 3.
  • the connection carrier 2 itself is formed with a preferably thermally conductive ceramic.
  • the intermediate foil 5 covers the two semiconductor chips 3 such that a cavity 11b is formed between the mutually facing chip flanks 6.
  • the intermediate foil 5, which is transparent to the radiation to be emitted or to be received by the semiconductor chips 3, has recesses 10.
  • the two chips electrically connect with each other via an electrical line 8b.
  • the plated-through holes 9 and the electrical line 8b can be created for example by vapor deposition. They occupy only a small area of the radiation passage areas 30.
  • Both semiconductor chips 3 are covered by a potting body 4, which is designed lens-like. Unlike in FIG. 5 As shown, the potting body 4 may also have sublenses for each individual semiconductor chip 3.
  • a plurality of semiconductor chips 3 are arranged two-dimensionally, for example in a 2 x 2 patterns.
  • the then four semiconductor chips 3 may consist of approximately two green-emitting, one red and one blue emitting semiconductor chip 3 and result in total about a white light source.
  • the semiconductor chips 3 can, as in FIG. 5 shown to be connected in series. Since an insulating intermediate layer or covering layer is provided on the semiconductor chips 3 via the intermediate carrier 5, it is possible in a particularly simple manner to mount electrical lines 8c over the radiation passage areas 30 of the semiconductor chips 3, which are connected to the semiconductor chips 3 via plated-through holes 9 , This can result in a high density packed chip array.
  • the individual semiconductor chips 3, which emit in a certain color are connected in parallel or arranged in separate circuits in order to be able to control and vary the color emitted by the semiconductor chips 2 via the power supply of the semiconductor chips 3.
  • the electrical leads 8c may then extend substantially parallel to and over the electrical leads 8a, 8b.
  • the insulating intermediate film 5 thus makes it possible, in a simple manner, a two-ply, itself To realize on both sides of the intermediate foil 5 located wiring.
  • a thin-film chip 3 is used.
  • This semiconductor chip 3 is designed as a flip chip. It has a thickness of only 6 microns.
  • the intermediate film 5, which is provided with an admixture 7, is thus significantly thicker than the semiconductor chip 3 itself.
  • the potting body 4 shaped as a lens likewise contains an admixture 7.
  • FIGS. 7a to 7f schematically process steps for the production of an optoelectronic device 1 are shown.
  • sequence of the method steps is to be regarded as advantageous, but can, depending on the requirements, also be modified. This applies in particular to the step of applying the electrical lines 8.
  • connection carrier 2 and a plurality of semiconductor chips 3 are provided.
  • more than two semiconductor chips 3 can be applied to the connection carrier 2, for example by means of gluing or soldering or epitaxial growth.
  • the semiconductor chips 3 may also be arranged in a two-dimensional pattern.
  • an intermediate carrier 5 is laminated.
  • the intermediate carrier 5 is off formed of a silicone film.
  • the application of the intermediate carrier 5 is a two-stage process, that is, in a first step, a pre-crosslinked silicone film is applied, which has a soft or viscous consistency.
  • the precrosslinked intermediate film 5 is then cured, for example, by means of UV radiation or heat treatment.
  • recesses 10 are created in the intermediate film 5.
  • This can be done for example by means of laser ablation.
  • a pulsed laser which preferably has a wavelength which is absorbed by the intermediate foil 10, is focused onto the intermediate foil 5.
  • the laser may be, for example, a 355 nm frequency-tripled Nd: YAG laser with ns pulses.
  • the focus size of the laser can for example specify the structure sizes.
  • recesses can also be produced, for example, by means of lithographic methods, also in combination with etching methods, or also mechanically, for example by milling.
  • FIG. 7d It is shown that electrical lines 8 and plated-through holes 9 are applied on the side of the intermediate foil 5 facing away from the connection carrier 2. Through holes 9 and electrical lines 8 take only a very small portion of the connection carrier 2 facing away from the surface of the intermediate carrier 5 and thus also the Radiation passage surfaces 30 a. Since the electrical lines 8 can be vapor-deposited, for example, even more complex line patterns can be easily realized.
  • the contacts of the semiconductor chips may take place via the connection side 20, such as in FIG FIG. 1 shown, or on opposite sides of the semiconductor chip 3 via bonding wires, such as in FIG. 2 shown.
  • connection carrier 2 in this case forms part of the form relevant for casting.
  • the intermediate film 5 it is possible to dispense with a commonly used sealing film, which is attached to the mold 40, since the intermediate film 5 can ensure a sufficient tightness between the mold 40 and connection carrier 2.
  • the potting body 4 is then cast. The adhesion between potting 4 and connection carrier 2 via the intermediate film. 5
  • the semiconductor chips 3 can be singulated with associated potting bodies 4, so that a large number of optoelectronic semiconductor components 1 results.
  • This separating step can also be dispensed with, depending on the requirements. It is then possible that differently emitting semiconductor chips 3 or different admixtures 7, especially conversion agents, are applied in different areas on the connection carrier 2, so that itself, in accordance with the embodiment according to FIG. 5 , about white light sources can result.

Description

Es wird ein optoelektronisches Halbleiterbauteil angegeben. Darüber hinaus wird ein Verfahren zur Herstellung eines solchen optoelektronischen Halbleiterbauteils angegeben.An optoelectronic semiconductor component is specified. In addition, a method for producing such an optoelectronic semiconductor device is specified.

Optoelektronische Bauteile wie etwa Leucht- oder Photodioden haben eine breite technische Anwendung gefunden. Einige Gesichtspunkte, die der Verbreitung solchen Bauteile Vorschub leisteten, sind etwa deren hohe Effizienz und Widerstandsfähigkeit gegen äußere Belastungen sowie Umwelteinflüsse. Beispielsweise können optoelektronische Bauteile etwa Feuchtigkeit oder Wärme gut widerstehen und sind auch bei geeigneter Bauart widerstandsfähig gegen mechanische Beanspruchungen. Neben hoher Effizienz weisen optoelektronische Bauteile auch eine hohe Lebensdauer, eine kompakte Bauweise und vielfältige Ausgestaltungsmöglichkeiten auf und sind außerdem zu vergleichsweise geringen Fertigungskosten herstellbar. Entscheidend für eine Vielzahl eben genannten Eigenschaften ist oft die Hausung des optoelektronischen Bauteils, auf die daher im Regelfall besonderer Wert zu legen ist.Optoelectronic components such as light or photodiodes have found a wide technical application. Some of the factors that contributed to the dissemination of such components are, for example, their high efficiency and resistance to external stress as well as environmental influences. For example, optoelectronic components can easily withstand moisture or heat and, even with suitable design, they are resistant to mechanical stresses. In addition to high efficiency, optoelectronic components also have a long service life, a compact design and a variety of design options and can also be produced at comparatively low production costs. Decisive for a variety of just mentioned properties is often the house of the optoelectronic device, which is therefore to lay special value as a rule.

In der Druckschrift DE 103 39 985 A1 ist ein optoelektronisches Bauelement und ein Herstellungsverfahren hierfür angegeben.In the publication DE 103 39 985 A1 is an optoelectronic device and a manufacturing method thereof specified.

Die Druckschrift EP 1 684 363 A2 betrifft eine Silikonverkapselte Leuchtdiode.The publication EP 1 684 363 A2 relates to a silicone encapsulated LED.

Ein optoelektronisches Bauteil ist in der Druckschrift US 2004/0158977 A1 beschrieben.An optoelectronic component is in the document US 2004/0158977 A1 described.

Ein Leuchtdioden-Package ist in der Druckschrift US 2007/0215998 A1 offenbart.A light-emitting diode package is in the document US 2007/0215998 A1 disclosed.

In der Druckschrift US 2006/0186428 A1 ist eine Leuchtdiode mit einer Einkapselung wiedergegeben.In the publication US 2006/0186428 A1 is a light emitting diode with an encapsulation reproduced.

Eine zu lösende Aufgabe besteht darin, ein alterungsbeständiges optoelektronisches Bauteil anzugeben. Eine weitere zu lösende Aufgabe besteht darin, ein Verfahren zur Herstellung eines solchen optoelektronischen Bauteils anzugeben.One problem to be solved is to specify an aging-resistant optoelectronic component. Another object to be achieved is to provide a method for producing such an optoelectronic device.

Das optoelektronische Halbleiterbauteil umfasst einen Anschlussträger mit einer Anschlussseite. Der Anschlussträger kann etwa in Form einer Leiterplatte gestaltet sein, die geätzte, aufgedruckte, oder aufgedampfte Leiterbahnen umfasst. Der Anschlussträger kann mechanisch flexibel ausgestaltet sein, beispielsweise als flexible Leiterplatte insbesondere auf Polyimid-Basis, oder auch aus mechanisch starren Materialien wie etwa Keramiken oder Gläsern bestehen. Vorzugsweise weist der Anschlussträger eine hohe thermische Leitfähigkeit auf, so dass er dazu geeignet ist, die im Betrieb des optoelektronischen Halbleiterbauteils entstehende elektrische Verlustleistung, die hauptsächlich in einer Wärmeentwicklung resultiert, gut nach außen abzuleiten.The optoelectronic semiconductor component comprises a connection carrier with a connection side. The connection carrier may be designed approximately in the form of a printed circuit board which comprises etched, printed, or vapor-deposited conductor tracks. The connection carrier can be made mechanically flexible, for example as a flexible printed circuit board, in particular based on polyimide, or else consist of mechanically rigid materials such as ceramics or glasses. The connection carrier preferably has a high thermal conductivity, so that it is suitable for dissipating the electrical power loss arising during operation of the optoelectronic semiconductor component, which results mainly in heat development, to the outside.

Je nach Erfordernissen kann es von Vorteil sein, dass der Anschlussträger in einem bestimmten Spektralbereich des elektromagnetischen Spektrums durchlässig ist. Auch die geometrischen Abmessungen des Anschlussträgers können an die jeweiligen Erfordernisse einer konkreten Anwendung angepasst werden. Die Anschlussseite des Anschlussträgers kann etwa flach beziehungsweise eben ausgestaltet und dazu geeignet sein, mindestens einen optoelektronischen Halbleiterchip aufzunehmen. Im Regelfall weist der Anschlussträger eine Anschlussseite auf, es ist jedoch nicht ausgeschlossen, dass etwa beide Seiten eines zum Beispiel flächig ausgestalteten Anschlussträgers als Anschlussseiten Verwendung finden können.Depending on the requirements, it may be advantageous for the connection carrier to be permeable in a specific spectral range of the electromagnetic spectrum. The geometric dimensions of the connection carrier can be connected to the appropriate requirements of a specific application. The connection side of the connection carrier may be approximately flat or planar and may be suitable for accommodating at least one optoelectronic semiconductor chip. As a rule, the connection carrier has a connection side, but it is not excluded that approximately both sides of a connection carrier configured in a planar manner, for example, can be used as connection sides.

Das optoelektronische Halbleiterbauteil umfasst mindestens einen optoelektronischen Halbleiterchip. Der Halbleiterchip ist dazu ausgestaltet, im Betrieb elektromagnetische Strahlung entweder zu empfangen oder zu emittieren. Der Halbleiterchip kann als Fotodiode und somit als Sensor ausgestaltet sein, oder als lichtemittierendes Element, etwa in Form einer Leuchtdiode oder Laserdiode. Der Halbleiterchip kann flächig ausgestaltet sein und beispielsweise eine quadratische oder rechteckige Grundfläche aufweisen. Ebenso möglich ist es, dass der Halbleiterchip etwa hexagonale oder runde Grundflächen aufweist, die zum Beispiel eine hochdichte Anordnung der Halbleiterchips auf einem Anschlussträger erlauben. Der Dicke des Halbleiterchips sind keine strikten Grenzen gesetzt, bevorzugt beträgt die Dicke jedoch weniger als 200 µm, insbesondere weniger als 50 µm. Der Halbleiterchip kann zum Beispiel als Dünnfilmchip ausgeformt sein, wie in der Druckschrift WO 2005/081319 A1 beschrieben.The optoelectronic semiconductor component comprises at least one optoelectronic semiconductor chip. The semiconductor chip is configured to either receive or emit electromagnetic radiation during operation. The semiconductor chip can be designed as a photodiode and thus as a sensor, or as a light-emitting element, for example in the form of a light-emitting diode or laser diode. The semiconductor chip can be designed flat and, for example, have a square or rectangular base. It is also possible that the semiconductor chip has approximately hexagonal or round base areas, which allow, for example, a high-density arrangement of the semiconductor chips on a connection carrier. The thickness of the semiconductor chip are not strictly limited, but preferably the thickness is less than 200 μm, in particular less than 50 μm. The semiconductor chip may for example be formed as a thin-film chip, as in the document WO 2005/081319 A1 described.

Die elektrischen Kontaktierungen des Halbleiterchips können sich sämtlich an der Ober- oder an der Unterseite des Chips befinden, jeweils an den Flanken des Halbleiterchips oder aber auch je an Ober- und Unterseite des Chips angebracht sein. Zudem weist der Halbleiterchip eine Strahlungsdurchtrittsfläche auf, durch die das vom Halbleiterchip zu emittierende oder zu empfangende Licht den Halbleiterchip verlässt beziehungsweise durch diese Fläche in diesen eintritt. Die Strahlungsdurchtrittsfläche kann eben ausgestaltet sein oder Strukturierungen aufweisen, die es dem ein- beziehungsweise ausfallenden Licht erleichtern, durch die Strahlungsdurchtrittsfläche hindurch zu treten.The electrical contacts of the semiconductor chip can all be located on the top or on the underside of the chip, in each case on the flanks of the semiconductor chip or else be attached to the top and bottom of the chip. In addition, the semiconductor chip has a radiation passage area through which the light to be emitted or to be received by the semiconductor chip leaves the semiconductor chip or enters it through this area. The radiation passage area may be planar or structurings which make it easier for the incoming or outgoing light to pass through the radiation passage area.

Das optoelektronische Halbleiterbauteil umfasst eine haftvermittelnde Zwischenfolie. Diese Zwischenfolie ist auf der Anschlussseite des Anschlussträgers aufgebracht und bedeckt diese mindestens stellenweise. Die Zwischenfolie kann homogen aus einem einzigen Material gebildet sein oder auch eine mehrlagige Struktur aufweisen. Insbesondere ist es möglich, dass die haftvermittelnde Zwischenfolie Strukturierungen zum Beispiel in Form von Ausnehmungen aufweist, oder dass auf dieser Zwischenfolie etwa elektrisch leitfähige Strukturen angebracht sind. Bevorzugt liegt die Dicke der Zwischenfolie im Bereich von 20 µm bis 200 µm, insbesondere zwischen 35 µm und 60 µm.The optoelectronic semiconductor component comprises an adhesion-promoting intermediate film. This intermediate foil is applied to the connection side of the connection carrier and covers it at least in places. The intermediate film can be formed homogeneously from a single material or also have a multilayer structure. In particular, it is possible for the adhesion-promoting intermediate film to have structurings, for example in the form of recesses, or for approximately electrically conductive structures to be provided on this intermediate film. The thickness of the intermediate film is preferably in the range from 20 μm to 200 μm, in particular between 35 μm and 60 μm.

Das optoelektronische Halbleiterbauteil umfasst mindestens einen strahlungsdurchlässigen Vergusskörper. Strahlungsdurchlässig bedeutet hierbei, dass der Vergusskörper im für den Betrieb des Halbleiterchips relevanten elektromagnetischen Spektralbereich im Wesentlichen als transparent oder transluzent anzusehen ist. Das heißt, der Vergusskörper absorbiert im relevanten Spektralbereich weniger als 20%, bevorzugt weniger als 10%, besonders bevorzugt weniger als 5% der Strahlung.The optoelectronic semiconductor component comprises at least one radiation-permeable potting body. In this case, radiation-permeable means that the potting body is essentially to be regarded as transparent or translucent in the electromagnetic spectral range relevant to the operation of the semiconductor chip. That is, the potting body absorbs in the relevant Spectral range less than 20%, preferably less than 10%, more preferably less than 5% of the radiation.

Es erstreckt sich der Vergusskörper nur über oder an einer einzigen Hauptseite des Anschlussträgers. Ebenso bevorzugt sind Stirnseiten des Anschlussträgers frei von dem Vergusskörper und/oder der Zwischenfolie. Mit anderen Worten umgibt der Vergusskörper den Anschlussträger nicht an mehreren Seiten.The potting body extends only over or on a single main side of the connection carrier. Likewise preferred are end faces of the connection carrier free from the potting body and / or the intermediate film. In other words, the potting body does not surround the connection carrier on several sides.

Das optoelektronische Halbleiterbauteil umfasst einen Anschlussträger mit einer Anschlussseite und mindestens einen optoelektronischen Halbleiterchip, der auf der Anschlussseite angebracht und mit dem Anschlussträger elektrisch verbunden ist. Die Anschlussseite kann mindestens eine Anschlussfläche aufweisen, die dazu ausgestaltet ist, mit den elektrischen Kontaktierungen des Hableiterchips verbunden zu werden. Die Anschlussfläche kann beispielsweise als Löt- oder Klebeflächen gestaltet sein. Weiterhin umfasst das Halbleiterbauteil eine haftvermittelnde Zwischenfolie, die auf der Anschlussseite angebracht ist und diese mindestens teilweise bedeckt. Zudem weist das Halbleiterbauteil mindestens einen strahlungsdurchlässigen Vergusskörper auf, der den Halbeiterchip zumindest teilweise umgibt, wobei der Vergusskörper mittels der Zwischenfolie mit dem Anschlussträger mechanisch verbunden ist.The optoelectronic semiconductor component comprises a connection carrier with a connection side and at least one optoelectronic semiconductor chip, which is mounted on the connection side and is electrically connected to the connection carrier. The connection side can have at least one connection surface, which is designed to be connected to the electrical contacts of the semiconductor chip. The pad can be designed for example as solder or adhesive surfaces. Furthermore, the semiconductor device comprises an adhesion-promoting intermediate film which is attached to the connection side and covers it at least partially. In addition, the semiconductor component has at least one radiation-permeable potting body which at least partially surrounds the semiconductor chip, the potting body being mechanically connected to the connection carrier by means of the intermediate film.

Die haftvermittelnde Zwischenfolie ist dementsprechend derart ausgestaltet, dass sie auf dem Anschlussträger beziehungsweise auf dessen Anschlussseite eine Haftung aufweist. Außerdem soll die Zwischenfolie eine haftende Verbindung mit dem Vergusskörper aufweisen. Beispielsweise ist es möglich, dass die Haftung zwischen Zwischenfolie und Anschlussträger besser ist, als die Haftung zwischen Vergusskörper und Anschlussträger. Ferner ist es dann möglich, dass die Haftung zwischen Vergusskörper und Zwischenfolie gegenüber der Haftung zwischen Vergusskörper und Anschlussträger verbessert ist. Bevorzugt ist die Haftung zwischen Vergusskörper und Anschlussträger aufgrund der Verwendung der Zwischenfolie um mindestens einen Faktor 1,5 verbessert, besonders bevorzugt um mindestens einen Faktor 2.The adhesion-promoting intermediate film is accordingly configured such that it has adhesion on the connection carrier or on its connection side. In addition, the intermediate foil should have an adhesive connection with the potting body. For example, it is possible that the adhesion between intermediate film and Connection carrier is better than the adhesion between the potting body and connection carrier. Furthermore, it is then possible for the adhesion between potting body and intermediate film to be improved compared with the adhesion between potting body and connection carrier. Due to the use of the intermediate film, the adhesion between the potting body and the connection carrier is preferably improved by at least a factor of 1.5, particularly preferably by at least a factor of 2.

Durch eine solche Zwischenfolie wird eine dauerhafte, mechanisch stabile Verbindung zwischen Anschlussträger und Vergusskörper gewährleistet. Es ist nicht notwendig, dass die gesamte dem Anschlussträger zugewandte Seite des Vergusskörpers in direktem Kontakt zur Zwischenfolie steht. Insbesondere können etwa elektrische Verbindungen zwischen Vergusskörper und Zwischenfolie liegen.Such an intermediate foil ensures a permanent, mechanically stable connection between the connection carrier and the potting body. It is not necessary for the entire side of the potting body facing the connection carrier to be in direct contact with the intermediate film. In particular, electrical connections between the potting body and the intermediate foil may be present.

Auch kann, mindestens stellenweise, die mechanische Verbindung zwischen Vergusskörper und Anschlussträger indirekt erfolgen, so dass beispielsweise der Vergusskörper auf der Zwischenfolie haftet, diese wiederum auf einem Halbleiterchip und der Halbleiterchip mit dem Anschlussträger direkt verbunden ist. Ebenso möglich ist es, dass der Halbleiterchip, über den die Verbindung zwischen Zwischenfolie und Anschlussträger vermittelt wird, indirekt mit dem Anschlussträger verbunden ist, zum Beispiel über eine Umverdrahtungsebene, einen Kühlkörper oder einen zum Beispiel keramischen Zwischenträger. Der Vergusskörper umgibt den Halbleiterchip etwa an dessen Strahlungsdurchtrittsfläche und an den Chipflanken. Unter Chipflanken sind hierbei diejenigen Seitenflächen des Halbleiterchips zu verstehen, die beispielsweise quer zur Anschlussseite oder zu einer Anschlussfläche ausgerichtet sind und die Strahlungsdurchtrittsfläche mit der der Anschlussseite zugewandten Fläche des Halbleiterchips verbinden.Also, at least in places, the mechanical connection between potting body and connection carrier carried indirectly, so that, for example, the potting adheres to the intermediate film, this in turn is directly connected to a semiconductor chip and the semiconductor chip to the connection carrier. It is also possible that the semiconductor chip, via which the connection between the intermediate foil and the connection carrier is mediated, is indirectly connected to the connection carrier, for example via a rewiring plane, a heat sink or a ceramic intermediate carrier, for example. The potting body surrounds the semiconductor chip approximately at its radiation passage area and at the chip edges. In this case, chip flanks mean those side surfaces of the semiconductor chip which are aligned, for example, transversely to the connection side or to a connection surface and which Radiation passage surface with the terminal side facing surface of the semiconductor chip connect.

Ein derart gestaltetes optoelektronisches Halbleiterbauteil ist alterungsbeständig und weist gute optische Eigenschaften auf.Such a designed optoelectronic semiconductor device is resistant to aging and has good optical properties.

Gemäß zumindest einer Ausführungsform des optoelektronischen Halbleiterbauteils ist die Strahlungsdurchtrittsfläche des Halbleiterchips zumindest stellenweise von der Zwischenfolie bedeckt. Insbesondere kann die gesamte Strahlungsdurchtrittsfläche von der Zwischenfolie bedeckt sein. Die Zwischenfolie ist hierbei bevorzugt durchlässig für die vom Halbleiterchip zu empfangende oder zu emittierende elektromagnetische Strahlung, mindestens in einem Teilbereich des relevanten Spektralbereichs. Speziell kann die Zwischenfolie transparent im relevanten Spektralbereich sein. Durch eine solche Anordnung beziehungsweise Ausgestaltung der Zwischenfolie kann das optoelektronische Halbleiterbauteil auf einfache Art und Weise hergestellt werden.In accordance with at least one embodiment of the optoelectronic semiconductor component, the radiation passage area of the semiconductor chip is covered at least in places by the intermediate foil. In particular, the entire radiation passage area may be covered by the intermediate film. In this case, the intermediate foil is preferably permeable to the electromagnetic radiation to be received or emitted by the semiconductor chip, at least in a partial region of the relevant spectral range. Specifically, the intermediate film can be transparent in the relevant spectral range. By such an arrangement or configuration of the intermediate foil, the optoelectronic semiconductor component can be produced in a simple manner.

Es ist die Zwischenfolie mit einer Silikonfolie gestaltet. Das heißt, die Zwischenfolie umfasst eine Silikonfolie oder besteht gänzlich aus einer Silikonfolie. Bevorzugt bestehen Zwischenfolie und Vergusskörper aus demselben Material oder aus Materialien, die eine gute Haftung aneinander ermöglichen. Da Silikon elektromagnetischer Strahlung, besonders im blauen und nahen ultravioletten Spektralbereich, gut widersteht, kann durch eine solche Zwischenfolie ein alterungsbeständiges optoelektronisches Bauteil realisiert werden.It is the intermediate foil with a silicone foil designed. That is, the intermediate film comprises a silicone film or consists entirely of a silicone film. Preferably, intermediate film and potting body made of the same material or of materials that allow good adhesion to each other. Since silicone resists electromagnetic radiation, especially in the blue and near ultraviolet spectral range, an aging-resistant optoelectronic device can be realized by means of such an intermediate film.

Gemäß zumindest einer Ausführungsform des optoelektronischen Halbleiterbauteils ist die Zwischenfolie mit einem Material gestaltet oder besteht aus einem solchen Material, das für die Strahlung undurchlässig ist. Mit anderen Worten ist die Zwischenfolie weder transparent noch transluzent. Bevorzugt weist die Zwischenfolie dann an der Strahlungsdurchtrittsfläche mindestens eine Ausnehmung oder mindestens eine Öffnung auf, so dass die Strahlungsdurchtrittsfläche mindestens stellenweise frei von der Zwischenfolie ist.In accordance with at least one embodiment of the optoelectronic semiconductor component, the intermediate foil is designed with a material or consists of such a material that is impermeable to the radiation. In other words, the intermediate foil is neither transparent nor translucent. The intermediate film then preferably has at least one recess or at least one opening at the radiation passage area, so that the radiation passage area is at least locally free of the intermediate film.

Es ist zwischen der Zwischenfolie, der Anschlussseite und Chipflanken ein Hohlraum gebildet. Mit anderen Worten, die Zwischenfolie überspannt den Halbleiterchip dann zeltartig. Die Chipflanken können hierbei gänzlich unbedeckt von der Zwischenfolie bleiben oder auch zu einem Großteil von dieser bedeckt sein. Sind in einem nachfolgenden, zum Beispiel Lithographie- oder Bedampfungsschritt etwa elektrische Leiterbahnen auf der Zwischenfolie anzubringen, so ist es von Vorteil, wenn der gebildete Hohlraum ein relativ großes Volumen aufweist, so dass die Steigung der Zwischenfolie parallel zur Ausrichtung der Anschlussseite nicht zu groß wird. Dadurch wird verhindert, dass in zu steil ausgerichteten Teilen der Zwischenfolie bei einem Bedampfungsprozess etwa zu wenig Material in diesen zu steilen Bereichen abgeschieden wird. Auch eine photolithografische Strukturierung ist nur in Bereichen möglich, in denen die Zwischenfolie nicht zu steil zur Anschlussseite ausgerichtet ist. Nicht zu steil bedeutet hierbei, dass der Winkel zwischen der durch die Strahlungsdurchtrittsfläche des Halbleiterchips definierten Ebene und der der Anschlussseite abgewandten Fläche der Zwischenfolie kleiner ist als 45°, bevorzugt kleiner als 30°.It is formed between the intermediate foil, the connection side and chip flanks a cavity. In other words, the intermediate foil then spans the semiconductor chip like a tent. In this case, the chip flanks can remain completely uncovered by the intermediate foil or can also be largely covered by it. If electrical conductor tracks are to be applied to the intermediate film in a subsequent, for example, lithographic or vapor deposition step, it is advantageous if the cavity formed has a relatively large volume, so that the pitch of the intermediate film does not become too large parallel to the alignment of the connection side , This prevents that in too steeply oriented parts of the intermediate foil in a sputtering process too little material is deposited in these too steep areas. A photolithographic structuring is only possible in areas in which the intermediate film is not aligned too steeply to the connection side. Not too steep here means that the angle between the plane defined by the radiation passage area of the semiconductor chip and the surface of the intermediate foil facing away from the terminal side is less than 45 °, preferably less than 30 °.

Weist die Strahlungsdurchtrittsfläche Strukturierungen auf, so wird die Ebene dadurch definiert, dass über die Strukturierung der Strahlungsdurchtrittsfläche räumlich gemittelt wird, und zwar in Richtung senkrecht zur Hauptausbreitungsebene der Zwischenfolie.If the radiation passage area has structurings, the plane is defined by spatially averaging over the structuring of the radiation passage area, specifically in the direction perpendicular to the main propagation plane of the intermediate film.

Es ist der Vergusskörper mit einem Silikon gestaltet. Silikon ist besonders alterungsbeständig gegenüber elektromagnetischer Strahlung in blauen beziehungsweise UV-Spektralbereich. Bevorzugt ist der Vergusskörper einstückig ausgeführt. Ebenso möglich ist es, dass der Vergusskörper etwa mehrere Schichten beziehungsweise schalenartige Strukturen aufweist, die auch aus unterschiedlichen Materialien geformt sein können. Alternativ kann der Vergusskörper auch aus einem Epoxydharz-Silikon-Hybridmaterial ausgestaltet sein.It is the potting body designed with a silicone. Silicone is particularly resistant to electromagnetic radiation in blue or UV spectral range. Preferably, the potting body is made in one piece. It is also possible that the potting body has approximately several layers or shell-like structures, which can also be formed from different materials. Alternatively, the potting body can also be configured from an epoxy resin-silicone hybrid material.

Gemäß zumindest einer Ausführungsform des optoelektronischen Halbleiterbauteils enthalten der Vergusskörper und/oder die Zwischenfolie zumindest eine Beimengung in Form eines Diffusor-, Konversions- oder Filtermittels. Vergusskörper und/oder Zwischenfolie können insbesondere je mehrere Beimengungen beinhalten, wobei Vergusskörper und Zwischenfolie auch unterschiedlich ausgeprägte Beimengungen enthalten können. Ist der Halbleiterchip etwa als Photodiode ausgestaltet, so kann beispielsweise der Vergusskörper auch mehrere Filtermittel enthalten, die nur Licht in einem gewissen Spektralbereich zum Halbleiterchip hin durchlassen. Über ein geeignetes Konversionsmittel als Beimengung kann beispielsweise eine blau emittierende Leuchtdiode dazu verwendet werden, um ein Halbleiterbauelement als Weißlichtquelle zu verwenden. Über Diffusormittel wie etwa TiO2-Partikel, beispielsweise in der Zwischenfolie, ist es möglich, eine über deren gesamte strahlende Fläche homogen abstrahlende Beleuchtungseinrichtung zu realisieren.In accordance with at least one embodiment of the optoelectronic semiconductor component, the potting body and / or the intermediate foil contain at least one admixture in the form of a diffuser, conversion or filter medium. Potting body and / or intermediate film may in particular each contain more admixtures, potting and intermediate film may also contain different pronounced admixtures. If the semiconductor chip is configured approximately as a photodiode, then, for example, the potting body can also contain a plurality of filter means which only transmit light in a certain spectral range to the semiconductor chip. By way of a suitable conversion agent as an admixture, it is possible, for example, to use a blue-emitting light-emitting diode to use a semiconductor component as a white-light source. It is via diffuser agents such as TiO 2 particles, for example in the intermediate film it is possible to realize a lighting device radiating homogeneously over the entire radiating surface thereof.

Gemäß zumindest einer Ausführungsform des optoelektronischen Halbleiterbauteils ist der Anschlussträger mit einem Metall oder einer Metalllegierung, einem Kunststoff oder einer Keramik gestaltet. Der Anschlussträger kann aus einem einzigen Material, beispielsweise aus Kupfer, bestehen, oder auch ein Mehrschichtsystem sein, das beispielsweise eine besonders gute thermische Leitfähigkeit aufweist. Über die Wahl geeigneter Keramiken kann der Anschlussträger im relevanten Spektralbereich etwa transparent oder reflektierend sein.In accordance with at least one embodiment of the optoelectronic semiconductor component, the connection carrier is designed with a metal or a metal alloy, a plastic or a ceramic. The connection carrier may consist of a single material, for example of copper, or may also be a multilayer system which has, for example, a particularly good thermal conductivity. By choosing suitable ceramics, the connection carrier in the relevant spectral range can be approximately transparent or reflective.

Gemäß zumindest einer Ausführungsform des optoelektronischen Halbleiterbauteils ist dieses bis auf Anschlussträger, Zwischenfolie und Vergusskörper gehäusefrei. Zwischenfolie und/oder Vergusskörper können Beimengungen aufweisen. Ein derartiges Halbleiterbauteil kann besonders kompakt hergestellt werden, umfasst wenige Komponenten und ist daher auch kostengünstig.According to at least one embodiment of the optoelectronic semiconductor component, this is housing-free except for connection carrier, intermediate film and potting body. Intermediate foil and / or potting body can have admixtures. Such a semiconductor device can be made particularly compact, comprises few components and is therefore also inexpensive.

Gemäß zumindest einer Ausführungsform des optoelektronischen Halbleiterbauteils ist die Strahlungsdurchtrittsfläche des Halbleiterchips dem Anschlussträger abgewandt. Ferner überdeckt der Vergusskörper, in einer Richtung senkrecht zur Strahlungsdurchtrittsfläche, den gesamten Halbleiterchip.In accordance with at least one embodiment of the optoelectronic semiconductor component, the radiation passage area of the semiconductor chip faces away from the connection carrier. Furthermore, the potting body, in a direction perpendicular to the radiation passage area, covers the entire semiconductor chip.

Gemäß zumindest einer Ausführungsform des optoelektronischen Halbleiterbauteils ist der Vergusskörper als optisches Element gestaltet. Zum Beispiel bildet der Vergusskörper eine Linse aus.In accordance with at least one embodiment of the optoelectronic semiconductor component, the potting body is designed as an optical element. For example, the potting body forms a lens.

Gemäß zumindest einer Ausführungsform des optoelektronischen Halbleiterbauteils wird von der Zwischenfolie, dem Anschlussträger und den elektrischen Leitungen ein weiterer Hohlraum eingeschlossen. Alternativ ist der weitere Hohlraum vom Halbleiterchip, dem Anschlussträger und den elektrischen Leitungen eingeschlossen, der weitere Hohlraum weist dann also bevorzugt keinen Kontakt zur Zwischenfolie auf. Auch ein Isolator, der sich zum Beispiel zwischen dem Anschlussträger und den elektrischen Leitungen befindet, kann an den weiteren Hohlraum grenzen. Der weitere Hohlraum ist zum Beispiel mit einem Gas gefüllt oder evakuiert. Jedoch ist der weitere Hohlraum frei von einer Flüssigkeit oder einem Festkörper.In accordance with at least one embodiment of the optoelectronic semiconductor component, a further cavity is enclosed by the intermediate foil, the connection carrier and the electrical leads. Alternatively, the further cavity is enclosed by the semiconductor chip, the connection carrier and the electrical leads, the further cavity then preferably has no contact with the intermediate foil. An insulator, which is located for example between the connection carrier and the electrical lines, can adjoin the further cavity. The further cavity is filled or evacuated, for example, with a gas. However, the further cavity is free of a liquid or a solid.

Es wird darüber hinaus ein Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils angegeben. Beispielsweise kann mittels des Verfahrens ein optoelektronisches Halbleiterbauteil hergestellt werden, wie es in Verbindung mit einem oder mehrerer der oben genannten Ausführungsformen beschrieben ist.In addition, a method for producing an optoelectronic semiconductor component is specified. For example, by means of the method, an optoelectronic semiconductor component can be produced, as described in conjunction with one or more of the abovementioned embodiments.

Das Verfahren weist die folgenden Verfahrensschritte auf:

  • Bereitstellen eines Anschlussträgers mit einer Anschlussseite,
  • Bereitstellen mindestens eines Halbleiterchips,
  • Anbringen des Halbleiterchips auf der Anschlussseite,
  • Aufbringen einer Zwischenfolie auf der Anschlussseite, und
  • Erstellen eines Vergusskörpers.
The method comprises the following method steps:
  • Providing a connection carrier with a connection side,
  • Providing at least one semiconductor chip,
  • Mounting the semiconductor chip on the connection side,
  • Apply an intermediate foil on the connection side, and
  • Creating a potting body.

Das Bereitstellen des mindestens einen Halbleiterchips kann auch derart geschehen, dass der Halbleiterchip auf einem geeigneten Anschlussträger, beispielsweise epitaktisch, aufgewachsen wird. Hierbei stellt die Anschlussseite bevorzugt eine geeignete Aufwachsfläche dar, etwa in Form eines Halbleitermaterials. Der Verfahrensschritt des Aufbringens des Halbleiterchips ist in diesem Falle im Verfahrensschritt des Bereitstellens beinhaltet. Das Verfahren kann zumindest teilweise im Wafer-Verbund stattfinden.The provision of the at least one semiconductor chip can also take place in such a way that the semiconductor chip is grown on a suitable connection carrier, for example epitaxially. In this case, the connection side preferably represents a suitable growth surface, for example in shape a semiconductor material. The method step of applying the semiconductor chip is in this case included in the method step of providing. The process can take place at least partially in the wafer composite.

Ein solches Verfahren ermöglicht es, effizient alterungsstabile optoelektronische Bauteile herzustellen.Such a method makes it possible to produce aging-resistant optoelectronic components efficiently.

Gemäß zumindest einer Ausführungsform des Verfahrens wird die Zwischenfolie ganzflächig auf der Anschlussseite sowie auf dem mindestens einen Halbleiterchip aufgebracht. Die Folie überdeckt also durchgängig die Anschlussseite und die sich darauf befindlichen Halbleiterchips. Ein derartiges Aufbringen der Zwischenfolie kann einfach realisiert werden und senkt die Herstellungskosten.In accordance with at least one embodiment of the method, the intermediate film is applied over the whole area on the connection side as well as on the at least one semiconductor chip. The film thus consistently covers the connection side and the semiconductor chips located thereon. Such an application of the intermediate foil can be easily realized and lowers the manufacturing costs.

Gemäß dem Verfahren umfasst das Aufbringen der Zwischenfolie die Schritte:

  • Auflaminieren einer teilvernetzten Zwischenfolie, und
  • Aushärten der auflaminierten Zwischenfolie.
According to the method, the application of the intermediate film comprises the steps:
  • Laminating a partially cross-linked intermediate film, and
  • Curing of the laminated intermediate film.

Bei der teilvernetzten Zwischenfolie handelt es sich um eine Silikonfolie, die in noch weichem, duktilem oder zähflüssigem Zustand auf die Anschlussseite des Anschlussträgers aufgebracht wird. Die teilvernetzte Zwischenfolie kann sich hierdurch gut der Oberflächenstruktur des Anschlussträgers, sowohl mikro- als auch makroskopisch, anpassen. In dem nachfolgenden Verfahrensschritt wird die auflaminierte Zwischenfolie voll vernetzt beziehungsweise ausgehärtet. Dies kann etwa temperaturinduziert oder mittels UV-Strahlung geschehen. Die durch das Aushärten bedingte Volumenschrumpfung der Zwischenfolie beträgt bevorzugt weniger als 10%, besonders bevorzugt weniger als 3%. Dieses zweistufige Aufbringen der Zwischenfolie birgt den Vorteil, dass eine besonders gute Haftung der Zwischenfolie am Anschlussträger bewirkt wird.The partially cross-linked intermediate film is a silicone film which is applied to the connection side of the connection carrier in a still soft, ductile or viscous state. The partially cross-linked intermediate film can thereby easily adapt to the surface structure of the connection carrier, both microscopically and macroscopically. In the subsequent process step, the laminated intermediate film is fully crosslinked or cured. This can be about temperature induced or done by means of UV radiation. The volume shrinkage of the intermediate film due to curing is preferred less than 10%, more preferably less than 3%. This two-stage application of the intermediate foil has the advantage that a particularly good adhesion of the intermediate foil to the connection carrier is effected.

Gemäß zumindest einer Ausführungsform des Verfahrens wird der Vergusskörper mittels Compression Molding erstellt, wobei der Anschlussträger beziehungsweise dessen Anschlussseite einen Teil der Gussform bildet. Beim Compression Molding wird üblicherweise eine Gießfolie verwendet, auf die anschließend die Gussform aufgedrückt wird. Über die Gießfolie wird die Gussform abgedichtet. Je nach Ausgestaltung der Zwischenfolie kann die Gießfolie entfallen, da eine ausreichende Abdichtung zwischen Gussform und Anschlussträger über die Zwischenfolie erfolgen kann. Mit anderen Worten kann die Zwischenfolie neben ihrer Eigenschaft als Haftvermittler auch eine Gießfolie für das Compression Molding-Verfahren darstellen. Compression Molding vereinfacht das Herstellungsverfahren und reduziert die Herstellungskosten.In accordance with at least one embodiment of the method, the potting body is produced by means of compression molding, wherein the connection carrier or its connection side forms part of the casting mold. Compression molding usually uses a cast film onto which the casting mold is then pressed. About the cast film, the mold is sealed. Depending on the configuration of the intermediate film, the cast film can be omitted since an adequate seal between the mold and connection carrier can be made via the intermediate film. In other words, the intermediate film can also represent a cast film for the compression molding process in addition to their property as a primer. Compression molding simplifies the manufacturing process and reduces manufacturing costs.

Gemäß zumindest einer Ausführungsform des Verfahrens werden in der Zwischenfolie Aussparungen mittels Laserablation erzeugt. Für die Laserablation ist die Zwischenfolie bevorzugt in einem Spektralbereich absorbierend ausgestaltet. Beispielsweise kann die Zwischenfolie unterhalb vom etwa 400 nm absorbierend sein, so dass zum Beispiel Laserstrahlung im UV-Spektralbereich von der Folie absorbiert wird und diese sich somit ablatieren lässt. Bevorzugt wird für die Laserablation ein Kurzimpulslaser mit Impulsdauern im Nanosekundenbereich oder auch im Femtosekundenbereich verwendet. Insbesondere geeignet sind frequenzverdreifachte Festkörperlaser. Die Laserstrahlung kann auf die Zwischenfolie fokussiert werden. Je nach Erfordernissen kann die Größe des Fokusdurchmessers über geeignete Optiken angepasst werden, so dass sich automatisch eine bestimmte Strukturgröße ergibt. Beträgt der Fokusdurchmesser beispielsweise 20 µm, so lassen sich auf einfache Art und Weise etwa Aussparungen mit einem Durchmesser von 20 µm erzeugen. Alternativ kann auch mittels der Laserstrahlung die Zwischenfolie abgerastert werden, so dass auch größere, durchgehende Muster in dieser hergestellt werden können. Neben Kurzimpulslasern ist es prinzipiell auch möglich, insbesondere beim Abrastern fokussierte Dauerstrichlaser mit geeigneten Wellenlängen zu verwenden. Mittels Laserablation können besonders einfach und schonend für die unter der Zwischenfolie liegenden Strukturen beziehungsweise Schichten Aussparungen mit hoher Genauigkeit in dieser erzeugt werden.In accordance with at least one embodiment of the method, recesses are produced in the intermediate foil by means of laser ablation. For laser ablation, the intermediate foil is preferably made absorbent in a spectral range. For example, the intermediate film can be absorbent below about 400 nm, so that, for example, laser radiation in the UV spectral range is absorbed by the film and can therefore be ablated. For laser ablation, a short-pulse laser with pulse durations in the nanosecond range or also in the femtosecond range is preferably used. Especially suitable are frequency tripled solid state lasers. The laser radiation can be focused on the intermediate foil. Depending on requirements The size of the focus diameter can be adjusted via suitable optics, so that automatically results in a certain structure size. If the focus diameter is, for example, 20 μm, it is possible in a simple manner to produce approximately recesses with a diameter of 20 μm. Alternatively, the intermediate film can also be scanned by means of the laser radiation, so that larger, continuous patterns can be produced in this. In addition to short-pulse lasers, it is in principle also possible to use in particular during scanning focused continuous wave laser with suitable wavelengths. By means of laser ablation, recesses can be produced with high accuracy in this device in a particularly simple and gentle manner for the structures or layers located below the intermediate foil.

Nötige Aussparungen etwa für die elektrische Kontaktierungen von Halbleiterchips können neben Laserablation alternativ etwa durch lithografische Verfahren oder Ätzverfahren ebenso erzeugt werden. Auch mechanische Methoden, wie beispielsweise Präzisionsfräsen, sind denkbar.Necessary recesses, for example for the electrical contacting of semiconductor chips, can also be generated in addition to laser ablation alternatively, for example by lithographic methods or etching methods. Also mechanical methods, such as precision milling, are conceivable.

Einige Anwendungsbereiche, in denen hier beschriebene optoelektronische Bauteile Verwendung finden könnten, sind etwa die Hinterleuchtungen von Displays oder Anzeigeeinrichtungen. Weiterhin können die hier beschriebenen optoelektronischen Bauteile etwa auch in Beleuchtungseinrichtungen zu Projektionszwecken, in Scheinwerfern oder Lichtstrahlern oder bei der Allgemeinbeleuchtung eingesetzt werden.Some application areas in which optoelectronic components described here could be used are, for example, the backlighting of displays or display devices. Furthermore, the optoelectronic components described here can also be used, for example, in illumination devices for projection purposes, in headlights or light emitters or in general lighting.

Nachfolgend wird ein hier beschriebenes Bauteil sowie ein hier beschriebenes Verfahren unter Bezugnahme auf die Zeichnung anhand von Ausführungsbeispielen näher erläutert.Hereinafter, a described herein component and a method described herein with reference to the drawings using exemplary embodiments.

Gleiche Bezugszeichen geben dabei gleiche Elemente in den einzelnen Figuren an. Es sind dabei jedoch keine maßstäblichen Bezüge dargestellt, vielmehr können einzelne Elemente zum besseren Verständnis übertrieben groß dargestellt sein.The same reference numerals indicate the same elements in the individual figures. However, there are no scale relationships shown, but individual elements can be shown exaggerated for better understanding.

Es zeigen:

Figur 1
eine schematische Schnittdarstellung eines Ausführungsbeispiels,
Figur 2
eine schematische Schnittdarstellung eines weiteren Ausführungsbeispiels,
Figur 3
eine schematische Schnittdarstellung eines Ausführungsbeispiels mit Fresnel-Linse,
Figur 4
eine schematische Schnittdarstellung eines weiteren Ausführungsbeispiels,
Figur 5
eine schematische Schnittdarstellung eines Ausführungsbeispiels mit mehreren Halbleiterchips,
Figur 6
eine schematische Schnittdarstellung eines Ausführungsbeispiels mit einem Dünnfilmchip, und
Figur 7a-f
schematische Schnittdarstellungen verschiedener Verfahrensschritte der Herstellung eines Ausführungsbeispiels.
Show it:
FIG. 1
a schematic sectional view of an embodiment,
FIG. 2
a schematic sectional view of another embodiment,
FIG. 3
a schematic sectional view of an embodiment with Fresnel lens,
FIG. 4
a schematic sectional view of another embodiment,
FIG. 5
FIG. 2 is a schematic sectional view of an exemplary embodiment with a plurality of semiconductor chips, FIG.
FIG. 6
a schematic sectional view of an embodiment with a thin-film chip, and
Figure 7a-f
schematic sectional views of various process steps of the production of an embodiment.

In Figur 1 ist ein Ausführungsbeispiel eines optoelektronischen Halbleiterbauteils 1 gezeigt. Auf einer eben ausgestalteten Anschlussseite 20 eines Anschlussträgers 2, der aus einem keramischen Werkstoff mit hoher Wärmeleitfähigkeit hergestellt ist, sind elektrische Leitungen 8 angebracht. Auf der dem Anschlussträger 2 abgewandten Seite der elektrischen Leitungen 8 ist ein optoelektronischer Halbleiterchip 3 angebracht. Die elektrische Verbindung zwischen Halbleiterchip 3 und elektrischen Leitungen 8 ist zum Beispiel mittels elektrisch leitfähigem Kleber erfolgt.In FIG. 1 an embodiment of an optoelectronic semiconductor device 1 is shown. On a newly designed connection side 20 of a connection carrier 2, which is made of a ceramic material with high thermal conductivity, electrical lines 8 are attached. On the side facing away from the connection carrier 2 side of the electrical lines 8, an optoelectronic semiconductor chip 3 is attached. The electrical connection between the semiconductor chip 3 and electrical lines 8 is effected for example by means of electrically conductive adhesive.

Die dem Anschlussträger 2 abgewandte Seite des Halbleiterchips 3 bildet dessen Strahlungsdurchtrittsfläche 30. Die Chipflanken 6 werden durch die senkrecht zur Strahlungsdurchtrittsfläche 30 ausgerichteten Begrenzungsflächen des Halbleiterchips 3 gebildet, die die Strahlungsdurchtrittsfläche 30 mit der dem Anschlussträger 2 zugewandten Seite des Halbleiterchips 3 verbinden. Über der Anschlussseite 20 ist eine Zwischenfolie 5 aufgebracht. Die Zwischenfolie 5 überdeckt elektrische Leitungen 8 und den Halbleiterchip 3. Die gesamte Strahlungsdurchtrittsfläche 30 des Halbleiterchips 3 ist ebenfalls von der Zwischenfolie 5 bedeckt. Die Zwischenfolie 5 ist hierbei eine Silikonfolie. Der als Flipchip ausgestaltete Halbleiterchip 3 weist eine Dicke in Richtung senkrecht zur Anschlussseite 20 von zirka 150 µm auf. Die Dicke der Silikonfolie 5 beträgt etwa 50 µm.The side facing away from the connection carrier 2 of the semiconductor chip 3 forms its radiation passage area 30. The chip edges 6 are formed by the perpendicular to the radiation passage surface 30 aligned boundary surfaces of the semiconductor chip 3, which connect the radiation passage surface 30 with the connection carrier 2 side facing the semiconductor chip 3. Over the connection side 20, an intermediate film 5 is applied. The intermediate foil 5 covers electrical leads 8 and the semiconductor chip 3. The entire radiation passage area 30 of the semiconductor chip 3 is likewise covered by the intermediate foil 5. The intermediate foil 5 is in this case a silicone foil. The semiconductor chip 3 embodied as a flip chip has a thickness in the direction perpendicular to the connection side 20 of approximately 150 μm. The thickness of the silicone film 5 is about 50 microns.

An den Chipflanken 6, eingeschlossen von der Zwischenfolie 5 und der Anschlussseite 20, ist ein Hohlraum 11 gebildet. Gemäß Figur 1 weist der Hohlraum 11 ein vergleichsweise kleines Volumen auf. Die Zwischenfolie 5 liegt teilweise an den Chipflanken 6 an. An der vom Anschlussträger 2 abgewandten Seite der Zwischenfolie 5 ist ein Vergusskörper 4 aufgebracht. Der Vergusskörper umgibt den Halbleiterchip 3 im Wesentlichen an dessen Strahlungsdurchtrittsfläche 30 sowie an den Chipflanken 6. Die mechanische Verbindung zwischen Vergusskörper 4 und Anschlussträger 2 ist über die Zwischenfolie 5 hergestellt. In den Bereichen, in denen sich der Halbleiterchip 3 befindet, erfolgt die Verbindung der Zwischenfolie 5 zum Anschlussträger 2 indirekt über den Halbleiterchip 3, das heißt, die Zwischenfolie 5 haftet auf dem Halbleiterchip 3, der wiederum auf dem Anschlussträger 2 haftet.At the chip edges 6, enclosed by the intermediate foil 5 and the connection side 20, a cavity 11 is formed. According to FIG. 1 the cavity 11 has a comparatively small volume. The intermediate film 5 is partially against the chip edges 6. At the side facing away from the connection carrier 2 side of the intermediate foil 5, a potting body 4 is applied. The potting body substantially surrounds the semiconductor chip 3 at its radiation passage area 30 as well on the chip flanks 6. The mechanical connection between potting body 4 and connection carrier 2 is made via the intermediate foil 5. In the areas in which the semiconductor chip 3 is located, the intermediate film 5 is connected to the connection carrier 2 indirectly via the semiconductor chip 3, that is, the intermediate film 5 adheres to the semiconductor chip 3, which in turn adheres to the connection carrier 2.

Der Halbleiterchip 3 kann beispielsweise als Leuchtdiode ausgestaltet sein. Die Materialien des Vergusskörpers 4 und der Zwischenfolie 5 sind bevorzugt so zu wählen, dass die vom Halbleiterchip 3 in dessen Betrieb emittierte elektromagnetische Strahlung vom Vergusskörper 4 nicht absorbiert wird. Durch eine linsenartige Formgebung des Vergusskörpers 4 wird das vom Halbleiterchip 3 emittierte Licht in einen bestimmten Raumbereich hin gelenkt.The semiconductor chip 3 can be configured, for example, as a light-emitting diode. The materials of the potting body 4 and the intermediate foil 5 are preferably to be selected so that the electromagnetic radiation emitted by the semiconductor chip 3 in its operation is not absorbed by the potting body 4. By means of a lenticular shape of the potting body 4, the light emitted by the semiconductor chip 3 is directed into a specific spatial region.

Im Betrieb des Halbleiterchips 3 erhitzt sich dieser im Normalfall signifikant. Temperaturunterschiede zwischen Ruhezustand und Betriebstemperatur von 50 °C, oder gar 100 °C und mehr können auftreten. Durch die verschiedenen thermischen Ausdehnungen von Halbleiterchip 3 und Vergusskörper 4 treten mechanische Spannungen auf. Ausgehend von den Kanten des Halbleiterchips 3 besteht aufgrund der thermischen Ausdehnung die Gefahr einer Rissbildung im Vergusskörper 4. Neben der verbesserten Haftvermittlung zwischen Anschlussträger 2 und Vergusskörper 4 wird durch die Zwischenfolie 5, die aus einem auch in ausgehärtetem Zustand eine gewisse Flexibilität aufweisenden Silikon gestaltet sein kann, die mechanische Belastung aufgrund der Wärmeausdehnung reduziert. Die Zwischenfolie 5 wirkt als eine Art Puffer zwischen Halbleiterchip 3 und Vergusskörper 4.During operation of the semiconductor chip 3, this normally heats up significantly. Temperature differences between resting state and operating temperature of 50 ° C, or even 100 ° C and more may occur. Due to the different thermal expansions of the semiconductor chip 3 and the potting body 4, mechanical stresses occur. Starting from the edges of the semiconductor chip 3, there is the risk of crack formation in the potting body 4 due to the thermal expansion. In addition to the improved bonding between the connection carrier 2 and the potting body 4, the interlayer 5, which is made from a silicone which also has a certain flexibility when cured, forms it can reduce the mechanical stress due to thermal expansion. The intermediate foil 5 acts as a kind of buffer between the semiconductor chip 3 and the potting body 4.

Durch den Anschlussträger 2, die elektrischen Leitungen 8 und den Halbleiterchip 3 ist ein weiterer Hohlraum gebildet, der sich zwischen dem Anschlussträger 2 und dem Halbleiterchip 3 befindet. Der weitere Hohlraum grenzt nicht an die Zwischenfolie 5.Through the connection carrier 2, the electrical lines 8 and the semiconductor chip 3, a further cavity is formed, which is located between the connection carrier 2 and the semiconductor chip 3. The further cavity does not adjoin the intermediate foil 5.

Optional kann der Anschlussträger 2 und auch die elektrischen Leitungen 8 aus einem Material ausgeformt sein, das für die vom Halbleiterchip 3 zu emittierende oder zu empfangende elektromagnetische Strahlung durchlässig ist. Dadurch kann ein auch allseitig zum Beispiel emittierendes Halbleiterbauteil realisiert werden. Alternativ können die elektrischen Leitungen 8 beispielsweise aus einem Metall ausgestaltet sein, so dass die vom Halbleiterchip 3 in Richtung Anschlussträger 2 etwa emittierte Strahlung von den elektrischen Leitungen 8 in Richtung Vergusskörper 4 reflektiert wird.Optionally, the connection carrier 2 and also the electrical lines 8 may be formed from a material which is permeable to the electromagnetic radiation to be emitted or received by the semiconductor chip 3. As a result, a semiconductor component that also emits on all sides, for example, can be realized. Alternatively, the electrical lines 8 may be configured, for example, of a metal, so that the radiation emitted by the semiconductor chip 3 in the direction of the connection carrier 2 is reflected by the electrical lines 8 in the direction of the potting body 4.

In Figur 2 ist ein weiteres Ausführungsbeispiel gezeigt. Der Aufbau ähnelt dem gemäß Figur 1. Der Anschlussträger 2 ist aus einem Metall gefertigt. Zur Vermeidung von Kurzschlüssen ist zwischen Leiterbahnen 8 und Anschlussträger 2 an den entsprechenden Stellen ein elektrischer Isolator 12 aufgebracht. Der Halbleiterchip 3 ist derart auf den elektrischen Leitungen 8 aufgebracht, dass die gesamte dem Anschlussträger 2 zugewandte Fläche des Halbleiterchips 3 auf der elektrischen Leitung 8a aufsitzt. Eine zweite elektrische Leitung 8c ist von der Lichtdurchtrittsfläche 30 zu einer weiteren elektrischen Leitung 8b geführt. Die als Bonddraht ausgeführte elektrische Leitung 8c ist durch Ausnehmungen 10 in der Zwischenfolie 5 geführt. Die Zwischenfolie 5 liegt an den Chipflanken 6 in diesem Ausführungsbeispiel dicht an, so dass der Hohlraum 11 nur ein sehr kleines Volumen einnimmt. Die elektrischen Leitungen 8a, 8b sind so ausgestaltet, dass sie als Reflektor für die vom Halbleiterchip 3 zu empfangende oder zu emittierende Strahlung dienen können. Der Vergusskörper 4 ist als Fresnel-Linse ausgestaltet. Hierdurch kann sich ein besonders flaches optoelektronisches Bauteil 1 ergeben.In FIG. 2 another embodiment is shown. The structure is similar to that according to FIG. 1 , The connection carrier 2 is made of a metal. To avoid short circuits, an electrical insulator 12 is applied between conductor tracks 8 and connection carrier 2 at the corresponding locations. The semiconductor chip 3 is applied to the electrical lines 8 such that the entire surface of the semiconductor chip 3 facing the connection carrier 2 is seated on the electrical line 8a. A second electrical line 8c is led from the light passage surface 30 to a further electrical line 8b. The electric wire 8c designed as a bonding wire is guided through recesses 10 in the intermediate foil 5. The intermediate foil 5 lies close to the chip flanks 6 in this embodiment, so that the cavity 11 occupies only a very small volume. The electrical lines 8a, 8b are designed such that they can serve as a reflector for the radiation to be received or emitted by the semiconductor chip 3. The potting body 4 is designed as a Fresnel lens. This can result in a particularly flat optoelectronic component 1.

Alternativ kann der Vergusskörper 4 auch andere Strukturierungen, wie etwa Rillen, aufweisen, die beispielsweise eine gerichtet Lichtabstrahlung, verbesserten Lichtein- oder Lichtaustritt, oder eine gleichförmige Lichtabstrahlung des Bauteils 1 bewirken können.Alternatively, the potting body 4, other structuring, such as grooves, which may cause, for example, a directed light emission, improved light input or light output, or a uniform light emission of the component 1.

Im Ausführungsbeispiel gemäß Figur 3 ist der Halbleiterchip 3 auf einem Anschlussträger 2, der beispielsweise metallisch ausgestaltet sein kann, aufgeklebt. Die dem Anschlussträger 2 zugewandte Seite des Halbleiterchips 3 ist bevorzugt elektrisch isolierend ausgestaltet. Die Anschlussseite 20 des Anschlussträgers 2 wirkt reflektierend auf die vom Halbleiterchip 3 zu empfangende oder zu emittierende Strahlung. Alternativ kann der Halbleiterchip 3 als so genannter Top-Emitter ausgestaltet sein. Das heißt, die vom Halbleiterchip 3 zu emittierende Strahlung wird nahe der Strahlungsdurchtrittsfläche 30 erzeugt. Bei der Verwendung eines Top-Emitters sind keine reflektierenden Elemente etwa an der Anschlussseite 20 nötig.In the embodiment according to FIG. 3 is the semiconductor chip 3 on a connection carrier 2, which may be configured, for example, metallic, glued. The side of the semiconductor chip 3 facing the connection carrier 2 is preferably made electrically insulating. The connection side 20 of the connection carrier 2 has a reflective effect on the radiation to be received or emitted by the semiconductor chip 3. Alternatively, the semiconductor chip 3 may be designed as a so-called top emitter. That is, the radiation to be emitted from the semiconductor chip 3 is generated near the radiation passage area 30. When using a top emitter no reflective elements such as on the connection side 20 are necessary.

Die Zwischenfolie 5 ist ganzflächig über Anschlussträger 2 und Halbleiterchip 3 aufgetragen. Der Hohlraum 11 ist relativ großvolumig ausgeprägt. Dadurch ist die Zwischenfolie 5, die die komplette Strahlungsdurchtrittsfläche 30 bedeckt und die Chipflanken 6 frei lässt, relativ flach zum Anschlussträger 2 hin auslaufend. Hierdurch wird es ermöglicht, dass die dem Anschlussträger 2 abgewandte Fläche der Zwischenfolie 5 nicht signifikant größer ist, als die Projektion dieser Fläche auf den Anschlussträger 2. Das bedeutet insbesondere, dass auf der Zwischenfolie 5, etwa mittels eines photolithographischen Verfahrens oder mittels Aufdampfen, elektrische Leitungen 8 erstellt werden können. Zur Kontaktierung des Halbleiterchips 3 sind Ausnehmungen 10 in der Zwischenfolie 5 an der dem Anschlussträger 2 abgewandten Seite des Halbleiterchips 3, die auch der Strahlungsdurchtrittsfläche 30 entspricht, angebracht.The intermediate foil 5 is applied over the entire surface via connection carrier 2 and semiconductor chip 3. The cavity 11 is pronounced relatively large volume. As a result, the intermediate foil 5, which covers the entire radiation passage area 30 and leaves the chip flanks 6 free, is relatively flat to the connection carrier 2 going out. This makes it possible that the surface of the intermediate film 5 facing away from the connection carrier 2 is not significantly larger than the projection of this surface on the connection carrier 2. This means in particular that on the intermediate film 5, for example by means of a photolithographic process or by vapor deposition, electrical Lines 8 can be created. For contacting the semiconductor chip 3 are recesses 10 in the intermediate foil 5 at the side facing away from the connection carrier 2 side of the semiconductor chip 3, which also corresponds to the radiation passage area 30, attached.

Über die Ausnehmungen 10 erfolgt eine Durchkontaktierung 9 von den nicht gezeichneten Kontaktflächen des Halbleiterchips 3 zu den elektrischen Leitungen 8. Die Durchkontaktierungen 9 können ebenfalls etwa mittels eines photolithographischen Verfahrens erstellt werden. Die beispielsweise metallischen elektrischen Leitungen 8 nehmen nur einen kleinen Flächenanteil der Zwischenfolie 5 und der Strahlungsdurchtrittsfläche 30 ein. Der mit einer ebenen Oberfläche versehene Vergusskörper 4 haftet daher im Wesentlichen auf der Zwischenfolie 5 und über diese am Anschlussträger 2.Via the recesses 10, a plated-through 9 takes place from the contact surfaces, not shown, of the semiconductor chip 3 to the electrical leads 8. The plated-through holes 9 can likewise be made by means of a photolithographic method. The metallic electrical lines 8, for example, occupy only a small area proportion of the intermediate foil 5 and the radiation passage area 30. The potting body 4 provided with a planar surface therefore adheres substantially to the intermediate film 5 and via this to the connection carrier 2.

Optional kann der Zwischenträger 5 eine Beimengung 7 enthalten. Ist der Halbleiterchip 3 beispielsweise als Photodiode ausgestaltet, so kann über die Beimengung 7 der Spektralbereich, den der Halbleiterchip 3 detektieren soll, eingeschränkt werden. Mögliche Beimengungen 7 sind in diesem Falle zum Beispiel Pigmente oder Farbstoffe. Die Zwischenfolie 5 kann auch mehrere verschiedene Beimengungen 7 wie Konversionsmittel, Lumineszenzstoffe, Filtermittel oder Diffusionsmittel aufweisen.Optionally, the intermediate carrier 5 may contain an admixture 7. If the semiconductor chip 3 is designed, for example, as a photodiode, then the spectral range which the semiconductor chip 3 is intended to detect can be limited via the admixture 7. Possible admixtures 7 in this case are, for example, pigments or dyes. The intermediate film 5 can also have a plurality of different admixtures 7, such as conversion agents, luminescent substances, filter media or diffusion media.

Beim Ausführungsbeispiel gemäß Figur 4 ist der Vergusskörper 4 mit einer Beimengung 7 versehen. Die eine oder auch die mehrere Beimengungen 7 können beispielsweise wie in Figur 3 beschrieben gestaltet sein. Auch Beimengungen 7, die beispielsweise die mechanischen oder chemischen Eigenschaften des Vergusskörpers 4 beeinflussen, sind möglich. Der Halbleiterchip 3 ist, wie im Ausführungsbeispiel gemäß Figur 1, als Flipchip ausgeführt. Die elektrischen Leitungen 8 nehmen einen Großteil der dem Anschlussträger 2 zugewandten Seite des Halbleiterchips 3 ein. Der Halbleiterchip 3 ist mittels SMT-Löttechnik, also mittels Surface Mount Technology, mit den elektrischen Leitungen 8 und somit mit dem Anschlussträger 2 verbunden.According to the embodiment FIG. 4 the potting body 4 is provided with an admixture 7. The one or more admixtures 7, for example, as in FIG. 3 be designed described. Also admixtures 7, for example, affect the mechanical or chemical properties of the potting body 4 are possible. The semiconductor chip 3 is, as in the embodiment according to FIG. 1 , designed as a flip chip. The electrical lines 8 occupy a majority of the side of the semiconductor chip 3 facing the connection carrier 2. The semiconductor chip 3 is connected to the electrical lines 8 and thus to the connection carrier 2 by means of SMT soldering technology, that is to say by means of surface mount technology.

Die Zwischenfolie 5 weist in diesem Ausführungsbeispiel eine Ausnehmung 10 im Bereich der Strahlungsdurchtrittsfläche 30 auf, so dass diese von der Zwischenfolie 5 im Wesentlichen unbedeckt ist. Mit Ausnahme der Ausnehmung 10 ist die Zwischenfolie über dem gesamten Anschlussträger 2 aufgebracht.In this exemplary embodiment, the intermediate film 5 has a recess 10 in the area of the radiation passage area 30, so that it is essentially uncovered by the intermediate film 5. With the exception of the recess 10, the intermediate film is applied over the entire connection carrier 2.

Die Zwischenfolie 5 kann optional mit einem Strahlung undurchlässigen Material gestaltet sein, so dass zum Beispiel die elektrischen Leitungen 8 verdeckt sind. Hierdurch sind insbesondere die Leitungen 8 von außerhalb des Bauteils 1 nicht sichtbar.The intermediate foil 5 can optionally be designed with a radiation-impermeable material, so that, for example, the electrical leads 8 are covered. As a result, in particular, the lines 8 are not visible from outside the component 1.

Der Anschlussträger 2 kann etwa in Form einer bedruckten Leiterplatte mit mechanisch flexiblen Kunststoffsubstrat ausgestaltet sein.The connection carrier 2 can be designed approximately in the form of a printed circuit board with a mechanically flexible plastic substrate.

In Figur 5 ist ein Ausführungsbeispiel gezeigt, bei dem zwei Halbleiterchips 3 von einem einzigen Vergusskörper 4 überdeckt sind. Die Halbleiterchips 3, die beispielsweise als Laserdioden ausgeführt sein können, sind jeweils in der gesamten, dem Anschlussträger 2 zugewandten Fläche auf elektrischen Leitungen 8a, 8b aufgebracht. Die elektrischen Leitungen 8a, 8b sind metallisch ausgeführt und wirken reflektierend für die von den Halbleiterchips 3 zu emittierende oder zu empfangende elektromagnetische Strahlung. Der Anschlussträger 2 selbst wird mit einer bevorzugt thermisch leitfähigen Keramik gebildet. Die Zwischenfolie 5 überdeckt die beiden Halbleiterchips 3 derart, dass ein Hohlraum 11b zwischen den einander zugewandten Chipflanken 6 gebildet wird.In FIG. 5 an embodiment is shown in which two semiconductor chips 3 are covered by a single potting body 4. The semiconductor chips 3, which may be embodied, for example, as laser diodes, are respectively applied to electrical leads 8a, 8b in the entire area facing the terminal carrier 2. The electrical lines 8a, 8b are made metallic and have a reflective effect on the electromagnetic radiation to be emitted or received by the semiconductor chips 3. The connection carrier 2 itself is formed with a preferably thermally conductive ceramic. The intermediate foil 5 covers the two semiconductor chips 3 such that a cavity 11b is formed between the mutually facing chip flanks 6.

An den Strahlungsdurchtrittsflächen 30 der Halbleiterchips 3 weist die Zwischenfolie 5, die transparent für die von den Halbleiterchips 3 zu emittierende oder zu empfangende Strahlung ist, Ausnehmungen 10 auf. In diesen Ausnehmungen 10 befinden sich Durchkontaktierungen 9, die über eine elektrische Leitung 8b beide Chips miteinander elektrisch in Verbindung setzen. Hierdurch wird eine elektrische Reihenschaltung realisiert. Die Durchkontaktierungen 9 und die elektrische Leitung 8b können beispielsweise durch Aufdampfen erstellt sein. Sie nehmen nur eine geringe Fläche der Strahlungsdurchtrittsflächen 30 ein. Beide Halbleiterchips 3 sind von einem Vergusskörper 4, der linsenartig ausgestaltet ist, überdeckt. Anders als in Figur 5 gezeigt, kann der Vergusskörper 4 auch Sublinsen für jeden einzelnen Halbleiterchip 3 aufweisen.At the radiation passage areas 30 of the semiconductor chips 3, the intermediate foil 5, which is transparent to the radiation to be emitted or to be received by the semiconductor chips 3, has recesses 10. In these recesses 10 are plated-through holes 9, the two chips electrically connect with each other via an electrical line 8b. As a result, an electrical series circuit is realized. The plated-through holes 9 and the electrical line 8b can be created for example by vapor deposition. They occupy only a small area of the radiation passage areas 30. Both semiconductor chips 3 are covered by a potting body 4, which is designed lens-like. Unlike in FIG. 5 As shown, the potting body 4 may also have sublenses for each individual semiconductor chip 3.

Es ist auch möglich, dass mehrere Halbleiterchips 3 zweidimensional angeordnet sind, beispielsweise in einem 2 x 2 Muster. Die dann vier Halbleiterchips 3 können etwa aus zwei grün emittierenden, einem rot und einem blau emittierenden Halbleiterchip 3 bestehen und ergeben in Summe etwa eine Weißlichtquelle. Auch größere Arrays aus beispielsweise 3 x 3 oder 4 x 4 Halbleiterchips 3, die auch unregelmäßig angeordnet sein können, sind möglich. Insbesondere gilt dies, wenn der Anschlussträger 2 aus einem gut thermisch leitfähigen Material gestaltet ist und etwa zusätzlich Kontakt zu einer externen, nicht gezeichneten Wärmesenke hat.It is also possible that a plurality of semiconductor chips 3 are arranged two-dimensionally, for example in a 2 x 2 patterns. The then four semiconductor chips 3 may consist of approximately two green-emitting, one red and one blue emitting semiconductor chip 3 and result in total about a white light source. Larger arrays of, for example, 3 × 3 or 4 × 4 semiconductor chips 3, which may also be arranged irregularly, are possible. In particular, this applies if the connection carrier 2 is made of a good thermally conductive material and about additionally has contact with an external, not shown heat sink.

Die Halbleiterchips 3 können, wie in Figur 5 gezeigt, in Serie geschaltet sein. Da über den Zwischenträger 5 eine isolierende Zwischenschicht beziehungsweise Abdeckschicht auf den Halbleiterchips 3 gegeben ist, ist es auf besonders einfache Art und Weise möglich, auch über den Strahlungsdurchtrittsflächen 30 der Halbleiterchips 3 elektrische Leitungen 8c anzubringen, die über Durchkontaktierungen 9 mit den Halbleiterchips 3 verbunden sind. Hierdurch kann sich ein hochdicht gepacktes Chiparray ergeben.The semiconductor chips 3 can, as in FIG. 5 shown to be connected in series. Since an insulating intermediate layer or covering layer is provided on the semiconductor chips 3 via the intermediate carrier 5, it is possible in a particularly simple manner to mount electrical lines 8c over the radiation passage areas 30 of the semiconductor chips 3, which are connected to the semiconductor chips 3 via plated-through holes 9 , This can result in a high density packed chip array.

Alternativ zu der in Figur 5 gezeigten Reihenschaltung ist es ebenso möglich, dass die einzelnen Halbleiterchips 3, die in einer gewissen Farbe emittieren, parallel geschalten oder in separaten Stromkreisen angeordnet sind, um etwa die von den Halbleiterchips 2 emittierte Farbe über die Stromzuführung der Halbleiterchips 3 steuern und variieren zu können. Die elektrischen Leitungen 8c können dann im Wesentlichen parallel zu und über den elektrischen Leitungen 8a, 8b verlaufen. Die isolierende Zwischenfolie 5 ermöglicht es somit, auf einfache Art und Weise, eine zweilagige, sich beiderseits der Zwischenfolie 5 befindliche Leitungsführung zu realisieren.Alternatively to the in FIG. 5 it is also possible that the individual semiconductor chips 3, which emit in a certain color, are connected in parallel or arranged in separate circuits in order to be able to control and vary the color emitted by the semiconductor chips 2 via the power supply of the semiconductor chips 3. The electrical leads 8c may then extend substantially parallel to and over the electrical leads 8a, 8b. The insulating intermediate film 5 thus makes it possible, in a simple manner, a two-ply, itself To realize on both sides of the intermediate foil 5 located wiring.

Gemäß dem Ausführungsbeispiel in Figur 6, ist ein Dünnfilmchip 3 verwendet. Dieser Halbleiterchip 3 ist als Flipchip ausgeführt. Er weist eine Dicke von lediglich 6 µm auf. Die Zwischenfolie 5, die mit einer Beimengung 7 versehen ist, ist somit deutlich dicker als der Halbleiterchip 3 selbst. Durch die Verwendung sehr dünner Halbleiterchips 3 wird das Auflaminieren der Zwischenfolie 5 erleichtert, da im Vergleich zur Dicke der Zwischenfolie 5 die Strukturen auf der Anschlussseite 20 vergleichsweise klein sind. Der als Linse ausgeformte Vergusskörper 4 enthält ebenfalls eine Beimengung 7.According to the embodiment in FIG. 6 , a thin-film chip 3 is used. This semiconductor chip 3 is designed as a flip chip. It has a thickness of only 6 microns. The intermediate film 5, which is provided with an admixture 7, is thus significantly thicker than the semiconductor chip 3 itself. By using very thin semiconductor chips 3, the lamination of the intermediate film 5 is facilitated, as compared to the thickness of the intermediate film 5, the structures on the connection side 20 are comparatively small. The potting body 4 shaped as a lens likewise contains an admixture 7.

In den Figuren 7a bis 7f sind schematisch Verfahrensschritte zur Herstellung eines optoelektronischen Bauteils 1 dargestellt. Die in Figur 7 gezeigte Reihenfolge der Verfahrensschritte ist als vorteilhaft anzusehen, kann aber, je nach Erfordernissen, auch abgewandelt werden. Dies gilt insbesondere für den Schritt des Aufbringens der elektrischen Leitungen 8.In the FIGS. 7a to 7f schematically process steps for the production of an optoelectronic device 1 are shown. In the FIG. 7 shown sequence of the method steps is to be regarded as advantageous, but can, depending on the requirements, also be modified. This applies in particular to the step of applying the electrical lines 8.

In einem ersten Verfahrensschritt gemäß Figur 7a wird ein Anschlussträger 2 und eine Mehrzahl von Halbleiterchips 3 bereitgestellt. Abweichend von Figur 7a können mehr als zwei Halbleiterchips 3 auf dem Anschlussträger 2 etwa mittels Kleben oder Löten oder epitaktischem Wachsen aufgebracht sein. Die Halbleiterchips 3 können auch in einem zweidimensionalen Muster angeordnet sein.In a first method step according to Figure 7a For example, a connection carrier 2 and a plurality of semiconductor chips 3 are provided. Deviating from Figure 7a For example, more than two semiconductor chips 3 can be applied to the connection carrier 2, for example by means of gluing or soldering or epitaxial growth. The semiconductor chips 3 may also be arranged in a two-dimensional pattern.

In einem nächsten Verfahrensschritt, siehe Figur 7b, wird ein Zwischenträger 5 auflaminiert. Der Zwischenträger 5 ist aus einer Silikonfolie gebildet. Bevorzugt ist das Aufbringen des Zwischenträgers 5 ein zweistufiger Prozess, das heißt, in einem ersten Schritt wird eine vorvernetzte Silikonfolie aufgebracht, die eine weiche oder zähflüssige Konsistenz aufweist. In einem zweiten Schritt wird die vorvernetzte Zwischenfolie 5 dann beispielsweise mittels UV-Strahlung oder Wärmebehandlung ausgehärtet. Durch das Aufbringen der vorvernetzten Zwischenfolie und dem anschließenden vollständigen Vernetzen wird ein besonders guter Kontakt zum Anschlussträger 2 gewährleistet, so dass die Zwischenfolie 5 gut am Anschlussträger 2 haftet.In a next step, see FIG. 7b , an intermediate carrier 5 is laminated. The intermediate carrier 5 is off formed of a silicone film. Preferably, the application of the intermediate carrier 5 is a two-stage process, that is, in a first step, a pre-crosslinked silicone film is applied, which has a soft or viscous consistency. In a second step, the precrosslinked intermediate film 5 is then cured, for example, by means of UV radiation or heat treatment. By applying the precrosslinked intermediate film and the subsequent complete crosslinking, a particularly good contact with the connection carrier 2 is ensured, so that the intermediate film 5 adheres well to the connection carrier 2.

In einem nächsten Verfahrensschritt, gezeigt in Figur 7c, sind Ausnehmungen 10 in der Zwischenfolie 5 erstellt. Dies kann beispielsweise mittels Laserablation erfolgen. Hierbei wird ein beispielsweise gepulster Laser, der bevorzugt eine Wellenlänge aufweist, die von der Zwischenfolie 10 absorbiert wird, auf die Zwischenfolie 5 fokussiert. Der Laser kann etwa ein bei 355 nm emittierender, frequenzverdreifachter Nd:YAG-Laser mit ns-Impulsen sein. Die Fokusgröße des Lasers kann beispielsweise die Strukturgrößen vorgeben. Ebenso ist es möglich, mittels eines Rasterverfahrens Strukturen in der Zwischenfolie 5 zu erzeugen. Alternativ können Ausnehmungen auch beispielsweise mittels lithographischer Verfahren, auch in Kombination mit Ätzverfahren, oder auch mechanisch, beispielsweise durch Fräsen, erstellt sein.In a next process step, shown in FIG. 7c , recesses 10 are created in the intermediate film 5. This can be done for example by means of laser ablation. In this case, for example, a pulsed laser, which preferably has a wavelength which is absorbed by the intermediate foil 10, is focused onto the intermediate foil 5. The laser may be, for example, a 355 nm frequency-tripled Nd: YAG laser with ns pulses. The focus size of the laser can for example specify the structure sizes. Likewise, it is possible to produce structures in the intermediate film 5 by means of a raster method. Alternatively, recesses can also be produced, for example, by means of lithographic methods, also in combination with etching methods, or also mechanically, for example by milling.

In Figur 7d ist gezeigt, dass elektrische Leitungen 8 und Durchkontaktierungen 9 auf der dem Anschlussträger 2 abgewandten Seite der Zwischenfolie 5 aufgebracht sind. Durchkontaktierungen 9 und elektrische Leitungen 8 nehmen nur einen sehr kleinen Anteil der dem Anschlussträger 2 abgewandten Fläche des Zwischenträgers 5 und somit auch der Strahlungsdurchtrittsflächen 30 ein. Da die elektrischen Leitungen 8 beispielsweise aufgedampft werden können, können auch komplexere Leitungsmuster einfach realisiert werden.In FIG. 7d It is shown that electrical lines 8 and plated-through holes 9 are applied on the side of the intermediate foil 5 facing away from the connection carrier 2. Through holes 9 and electrical lines 8 take only a very small portion of the connection carrier 2 facing away from the surface of the intermediate carrier 5 and thus also the Radiation passage surfaces 30 a. Since the electrical lines 8 can be vapor-deposited, for example, even more complex line patterns can be easily realized.

Alternativ ist es möglich, dass die Kontaktierungen der Halbleiterchips über die Anschlussseite 20 erfolgen, wie etwa in Figur 1 gezeigt, oder auf gegenüberliegenden Seiten des Halbleiterchips 3 über Bonddrähte, wie etwa in Figur 2 dargestellt.Alternatively, it is possible for the contacts of the semiconductor chips to take place via the connection side 20, such as in FIG FIG. 1 shown, or on opposite sides of the semiconductor chip 3 via bonding wires, such as in FIG. 2 shown.

In einem weiteren Verfahrensschritt, dargestellt in Figur 7e, wird eine Gießform 40 auf dem Anschlussträger 2 aufgepresst. Der Anschlussträger 2 bildet hierbei einen Teil der für das Gießen maßgeblichen Form. Je nach Ausgestaltung der Zwischenfolie 5 ist es möglich, auf eine üblicherweise verwendete Dichtfolie, die an der Gießform 40 angebracht ist, zu verzichten, da die Zwischenfolie 5 eine ausreichende Dichtigkeit zwischen Gießform 40 und Anschlussträger 2 gewährleisten kann. Nach dem Aufbringen der Gießform 40 wird der Vergusskörper 4 dann gegossen. Die Haftvermittlung zwischen Vergusskörper 4 und Anschlussträger 2 erfolgt über die Zwischenfolie 5.In a further method step, shown in FIG Figure 7e , A mold 40 is pressed onto the connection carrier 2. The connection carrier 2 in this case forms part of the form relevant for casting. Depending on the design of the intermediate film 5, it is possible to dispense with a commonly used sealing film, which is attached to the mold 40, since the intermediate film 5 can ensure a sufficient tightness between the mold 40 and connection carrier 2. After the casting mold 40 has been applied, the potting body 4 is then cast. The adhesion between potting 4 and connection carrier 2 via the intermediate film. 5

In einem weiteren Verfahrensschritt, siehe Figur 7f, können die Halbleiterchips 3 mit zugehörigen Vergusskörpern 4 vereinzelt werden, so dass sich eine Vielzahl von optoelektronischen Halbleiterbauteilen 1 ergibt.In a further process step, see Figure 7f , the semiconductor chips 3 can be singulated with associated potting bodies 4, so that a large number of optoelectronic semiconductor components 1 results.

Dieser Vereinzelungsschritt kann, je nach Erfordernissen, auch entfallen. Es ist dann möglich, dass verschiedenartig emittierende Halbleiterchips 3 beziehungsweise verschiedene Beimengungen 7, speziell Konversionsmittel, in verschiedenen Bereichen auf dem Anschlussträger 2 aufgebracht sind, so dass sich, in Entsprechung zum Ausführungsbeispiel gemäß Figur 5, etwa Weißlichtquellen ergeben können.This separating step can also be dispensed with, depending on the requirements. It is then possible that differently emitting semiconductor chips 3 or different admixtures 7, especially conversion agents, are applied in different areas on the connection carrier 2, so that itself, in accordance with the embodiment according to FIG. 5 , about white light sources can result.

Claims (15)

  1. Optoelectronic semiconductor component (1) comprising
    - a connection carrier (2) having a connection side (20),
    - at least one optoelectronic semiconductor chip (3), which has chip sidewalls (6) and which is fitted on the connection side (20) and is electrically connected to the connection carrier (2),
    - an adhesion-promoting intermediate film (5) which comprises a silicone film or consists of a silicone film and which is applied on the connection side (20) and covers the latter at least in places, and
    - at least one radiation-transmissive potting body (4), which comprises a silicone or consists of a silicone and which at least partly surrounds the semiconductor chip (3), wherein the potting body (4) is mechanically connected to the connection carrier (2) by means of the intermediate film (5),
    characterized in that
    the intermediate film (5), the connection side (20) and the chip sidewalls (6) enclose a cavity (11).
  2. Optoelectronic semiconductor component (1) according to Claim 1, wherein a radiation passage surface (30) of the semiconductor chip (3) is covered by the intermediate film (5) at least in places.
  3. Optoelectronic semiconductor component (1) according to Claim 1 or 2, wherein an angle between a plane defined by a radiation passage surface of the semiconductor chip (3) and a surface of the intermediate film (5) facing away from the connection side (20) is less than 45°.
  4. Optoelectronic semiconductor component (1) according to any of the preceding claims, wherein a further cavity is enclosed by the semiconductor chip (3), the connection carrier (2) and electrical lines (8) at the connection side (20), said further cavity being filled with a gas or being evacuated.
  5. Optoelectronic semiconductor component (1) according to any of the preceding claims, wherein the chip sidewalls (6) in their entirety are left such that they are not covered by the intermediate film (5), and a thickness of the intermediate film (5) is between 20 µm and 200 µm.
  6. Optoelectronic semiconductor component (1) according to any of the preceding claims, wherein the potting body (4) and/or the intermediate film (5) contains at least one admixture in the form of a diffuser medium, conversion medium and/or filter medium.
  7. Optoelectronic semiconductor component (1) according to any of the preceding claims, wherein the connection carrier (2) is fashioned with a metal or a metal alloy, a plastic or a ceramic.
  8. Optoelectronic semiconductor component (1) according to any of the preceding claims, wherein the intermediate film (5) is non-transmissive to radiation, and wherein the intermediate film (5) has a cutout (10) at least in places at the radiation passage surface (20).
  9. Optoelectronic semiconductor component (1) according to any of the preceding claims, which apart from the connection carrier (2), the intermediate film (5) and the potting body (4) is free of a housing.
  10. Method for producing an optoelectronic semiconductor component (1) according to Claim 1 comprising the following steps:
    - providing a connection carrier (2) having a connection side (20),
    - providing at least one semiconductor chip (3),
    - fitting the semiconductor chip (3) on the connection side (20),
    - applying an intermediate film (5) on the connection side (20), wherein the intermediate film (5) comprises a silicone film or consists of a silicone film, and
    - creating a potting body (4), which comprises a silicone or consists of a silicone,
    characterized in that
    applying the intermediate film (5) comprises the following steps:
    - laminating the intermediate film (5) on the connection side (20) in a partly crosslinked state, and
    - curing the laminated intermediate film (5) before the process of creating the potting body (4).
  11. Method according to Claim 10, wherein the intermediate film (5) is applied over the whole area on the connection side (20) and on the semiconductor chip (3).
  12. Method according to Claim 10 or 11, wherein, during curing, a volume shrinkage of the intermediate film (5) is less than 3%.
  13. Method according to any of Claims 10 to 12, wherein the potting body (4) is created by means of compression moulding, and the connection carrier (2) forms a part of the mould.
  14. Method according to any of Claims 10 to 13, wherein at least one cutout (10) is produced in the intermediate film (5) by means of laser ablation.
  15. Method according to any of Claims 10 to 14, wherein a semiconductor component (1) according to any of Claims 2 to 9 is produced.
EP09728784.1A 2008-03-31 2009-03-26 Optoelectronic semiconductor component and method for producing said component Not-in-force EP2258000B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008016487A DE102008016487A1 (en) 2008-03-31 2008-03-31 Optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component
PCT/DE2009/000417 WO2009121339A1 (en) 2008-03-31 2009-03-26 Optoelectronic semiconductor component and method for producing said component

Publications (2)

Publication Number Publication Date
EP2258000A1 EP2258000A1 (en) 2010-12-08
EP2258000B1 true EP2258000B1 (en) 2016-03-23

Family

ID=40999773

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09728784.1A Not-in-force EP2258000B1 (en) 2008-03-31 2009-03-26 Optoelectronic semiconductor component and method for producing said component

Country Status (7)

Country Link
US (1) US8563998B2 (en)
EP (1) EP2258000B1 (en)
KR (1) KR101550476B1 (en)
CN (1) CN101978515B (en)
DE (1) DE102008016487A1 (en)
TW (1) TWI389328B (en)
WO (1) WO2009121339A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009009483A1 (en) * 2009-02-19 2010-08-26 Osram Opto Semiconductors Gmbh Lighting device manufacturing method, involves placing LED chips adjacent to each other on upper side of connection carrier, and structuring film between or on radiation exit surfaces after placing film on radiation exit surfaces
DE202010017532U1 (en) 2010-03-16 2012-01-19 Eppsteinfoils Gmbh & Co.Kg Foil system for LED applications
CN102456803A (en) * 2010-10-20 2012-05-16 展晶科技(深圳)有限公司 Packaging structure of light emitting diode
CN102456801A (en) * 2010-10-20 2012-05-16 展晶科技(深圳)有限公司 Packaging structure of light emitting diode
CN102468400B (en) * 2010-11-12 2015-05-06 良盟塑胶股份有限公司 Light-emitting diode (LED) packaging structure, and manufacturing method thereof
EP2466655A1 (en) * 2010-12-14 2012-06-20 Liang Meng Plastic Share Co. Ltd. LED package structure and manufacturing method for the same
DE102011100028A1 (en) 2011-04-29 2012-10-31 Osram Opto Semiconductors Gmbh Component and method for manufacturing a device
DE102011055549A1 (en) 2011-09-30 2013-04-04 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic component with a wireless contacting
DE102012216738A1 (en) * 2012-09-19 2014-03-20 Osram Opto Semiconductors Gmbh OPTOELECTRONIC COMPONENT
JP6053473B2 (en) * 2012-11-26 2016-12-27 矢崎総業株式会社 Guideline structure
JP6352202B2 (en) * 2015-02-16 2018-07-04 株式会社ミツバ Brake actuator and brake device
US20160359080A1 (en) 2015-06-07 2016-12-08 Solarcity Corporation System, method and apparatus for chemical vapor deposition
DE102015117932A1 (en) * 2015-10-21 2017-04-27 Osram Oled Gmbh Organic optoelectronic component and method for producing an organic optoelectronic component
US9748434B1 (en) 2016-05-24 2017-08-29 Tesla, Inc. Systems, method and apparatus for curing conductive paste
US9954136B2 (en) 2016-08-03 2018-04-24 Tesla, Inc. Cassette optimized for an inline annealing system
US10115856B2 (en) 2016-10-31 2018-10-30 Tesla, Inc. System and method for curing conductive paste using induction heating
DE102017205268A1 (en) * 2017-03-29 2018-10-04 Robert Bosch Gmbh Method for manufacturing a crystal body unit for a sensor device, method for producing a sensor device, system and method for detecting a measured variable and sensor device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5353498A (en) * 1993-02-08 1994-10-11 General Electric Company Method for fabricating an integrated circuit module
JPH0855648A (en) * 1994-08-12 1996-02-27 Shinano Polymer Kk Elastomer connector
DE19806818C1 (en) * 1998-02-18 1999-11-04 Siemens Matsushita Components Method for producing an electronic component, in particular an SAW component working with acoustic surface waves
JP3915873B2 (en) * 2000-11-10 2007-05-16 セイコーエプソン株式会社 Manufacturing method of optical device
DE10238523B4 (en) * 2002-08-22 2014-10-02 Epcos Ag Encapsulated electronic component and method of manufacture
DE10339985B4 (en) * 2003-08-29 2008-12-04 Osram Opto Semiconductors Gmbh Optoelectronic component with a transparent contact layer and method for its production
JP4195352B2 (en) 2003-09-10 2008-12-10 三星エスディアイ株式会社 Light emitting element substrate and light emitting element using the same
KR101332771B1 (en) 2004-02-20 2013-11-25 오스람 옵토 세미컨덕터스 게엠베하 Optoelectronic component, device comprising a plurality of optoelectronic components, and method for the production of an optoelectronic component
US7868343B2 (en) * 2004-04-06 2011-01-11 Cree, Inc. Light-emitting devices having multiple encapsulation layers with at least one of the encapsulation layers including nanoparticles and methods of forming the same
DE102004018475A1 (en) * 2004-04-16 2005-11-10 eupec Europäische Gesellschaft für Leistungshalbleiter mbH A power semiconductor device
DE102004050371A1 (en) 2004-09-30 2006-04-13 Osram Opto Semiconductors Gmbh Optoelectronic component with a wireless contact
US7858408B2 (en) * 2004-11-15 2010-12-28 Koninklijke Philips Electronics N.V. LED with phosphor tile and overmolded phosphor in lens
JP4634810B2 (en) * 2005-01-20 2011-02-16 信越化学工業株式会社 Silicone sealed LED
US20060186428A1 (en) 2005-02-23 2006-08-24 Tan Kheng L Light emitting device with enhanced encapsulant adhesion using siloxane material and method for fabricating the device
JP4819471B2 (en) * 2005-10-12 2011-11-24 日本電気株式会社 Wiring substrate, semiconductor device using the wiring substrate, and manufacturing method thereof
US20070215998A1 (en) * 2006-03-20 2007-09-20 Chi Lin Technology Co., Ltd. LED package structure and method for manufacturing the same
DE102006025162B3 (en) * 2006-05-30 2008-01-31 Epcos Ag Flip-chip device and method of manufacture
JP5250949B2 (en) 2006-08-07 2013-07-31 デクセリアルズ株式会社 Light emitting element module
JP2010510671A (en) * 2006-11-17 2010-04-02 スリーエム イノベイティブ プロパティズ カンパニー Optical adhesive composition for LED light source

Also Published As

Publication number Publication date
US20110024790A1 (en) 2011-02-03
TWI389328B (en) 2013-03-11
KR20110006648A (en) 2011-01-20
US8563998B2 (en) 2013-10-22
CN101978515B (en) 2013-03-27
CN101978515A (en) 2011-02-16
KR101550476B1 (en) 2015-09-04
TW200947732A (en) 2009-11-16
EP2258000A1 (en) 2010-12-08
DE102008016487A1 (en) 2009-10-01
WO2009121339A1 (en) 2009-10-08

Similar Documents

Publication Publication Date Title
EP2258000B1 (en) Optoelectronic semiconductor component and method for producing said component
EP2002176B1 (en) Optoelectronic headlight
EP1328976B1 (en) Led module
EP2281316B1 (en) Optoelectronic semiconductor component
EP2281315B1 (en) Semiconductor arrangement
DE102012002605B4 (en) Method for producing an optoelectronic semiconductor component and optoelectronic semiconductor component
EP2901479B1 (en) Optoelectronic component
EP2583319B1 (en) Optoelectronic component
DE102007021009A1 (en) Light-emitting diode arrangement and method for producing such
WO2009030204A2 (en) Semiconductor component and method for producing a semiconductor component
WO2020169524A1 (en) Optoelectronic semiconductor component, and method for producing optoelectronic semiconductor components
WO2009132618A1 (en) Surface-mounted led module and method for producing a surface-mounted led module
DE102008010512A1 (en) Optoelectronic component, particularly light emitting diode or photodiode, has semiconductor chip with chip lower side, and two electrical bondings with contact lower sides
DE102008038748B4 (en) Surface-mount optoelectronic semiconductor component
DE102008019902A1 (en) Optoelectronic component and production method for an optoelectronic component
DE102008049188A1 (en) Optoelectronic module with a carrier substrate and a plurality of radiation-emitting semiconductor components and method for its production
DE102014102184A1 (en) Production of an optoelectronic component
DE102015107593A1 (en) Optoelectronic semiconductor chip and illuminant
WO2015162023A1 (en) Optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component
DE102008049399B4 (en) Optoelectronic component, optoelectronic device and method for producing an optoelectronic component
DE102012110957A1 (en) Optoelectronic semiconductor component for emitting mixed color radiation, has converter converting wavelength of radiations emitted by optoelectronic semiconductor chip, where side surfaces of chip are partially covered by converter
WO2009103285A1 (en) Optoelectronic component
DE102015115900A1 (en) Semiconductor device and method for manufacturing a semiconductor device
WO2020239852A1 (en) Arrangement having semiconductor components that emit electromagnetic radiation, and production method therefor
WO2012013435A1 (en) Light-emitting semiconductor component and method for manufacturing a light-emitting semiconductor component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502009012295

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01L0033000000

Ipc: H01L0033440000

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 33/44 20100101AFI20150911BHEP

Ipc: H01L 33/56 20100101ALN20150911BHEP

Ipc: H01L 33/62 20100101ALN20150911BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 33/44 20100101AFI20151021BHEP

Ipc: H01L 33/56 20100101ALN20151021BHEP

Ipc: H01L 33/62 20100101ALN20151021BHEP

INTG Intention to grant announced

Effective date: 20151110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 783912

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009012295

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160624

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160623

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160723

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160725

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009012295

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160326

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160623

26N No opposition filed

Effective date: 20170102

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160523

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 783912

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160326

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090326

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160326

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210319

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009012295

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221001