EP2257656A1 - Method for producing a coating through cold gas spraying - Google Patents

Method for producing a coating through cold gas spraying

Info

Publication number
EP2257656A1
EP2257656A1 EP09725646A EP09725646A EP2257656A1 EP 2257656 A1 EP2257656 A1 EP 2257656A1 EP 09725646 A EP09725646 A EP 09725646A EP 09725646 A EP09725646 A EP 09725646A EP 2257656 A1 EP2257656 A1 EP 2257656A1
Authority
EP
European Patent Office
Prior art keywords
cold gas
layer
particles
photocatalytic
photocatalytic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09725646A
Other languages
German (de)
French (fr)
Other versions
EP2257656B1 (en
Inventor
Christian Doye
Ursus KRÜGER
Uwe Pyritz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2257656A1 publication Critical patent/EP2257656A1/en
Application granted granted Critical
Publication of EP2257656B1 publication Critical patent/EP2257656B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Definitions

  • the invention relates to a method for producing a
  • Layer on a workpiece by cold gas spraying in which a cold gas jet with particles of a layer material is directed onto the workpiece and at the same time the workpiece is irradiated with electromagnetic radiation.
  • a method of the type described above is known for example from DE 10 2005 005 359 Al.
  • the particles are accelerated with the cold gas jet to the surface to be coated of a workpiece toward be acted upon by an amount of energy (kinetic Ener ⁇ energy) which is not sufficient in itself to cause a permanent adhesion of the particles on the surface. Rather, this requires an additional input of energy into the layer being formed on the workpiece.
  • This energy input takes place via a laser whose radiation is focused precisely on the point of impact of the cold gas jet on the workpiece.
  • catalytic layers can also be produced by the method described.
  • particles are selected whose surface causes the desired catalytic effect.
  • layers may be made of a photocatalytic material such as titanium dioxide produced ⁇ the.
  • nitrogen-doped titanium dioxide also (or titanium oxynitride) can USAGE ⁇ be det.
  • ⁇ NEN may also be a sol-gel method can be applied, wherein a blend of titanium dioxide powder at high temperature in ammonia gas are particles of a nitrogen-doped titanium dioxide. Also by an oxidation of titanium nitride production is possible. Another option is ion implantation, magnetron sputtering or PVD.
  • the titanium dioxide layers can be doped with the stated processes with a nitrogen content of 2 to 4.4%. The production of photocatalytic materials such as nitrogen-doped titanium dioxide thus requires a certain effort.
  • Process the ⁇ ser type for example, in Nitrogen-Doped Titanium Dioxide: described An Overview of Function and Introduction to Applications, Matthew Hennek, 20 January 2007, University of Alabama. Therefore, the object of the invention is to provide a method for producing a layer on a workpiece by cold gas spraying, with which catalytic layers can be produced comparatively inexpensively with a comparatively high efficiency.
  • the cold gas jet contains a reactive gas
  • the particles contain a photocatalytic material
  • the electromagnetic radiation contains at least one wavelength with which the photocatalytic mate ⁇ rial is activated.
  • the invention furthermore vorgese ⁇ hen that the intensity of the electromagnetic radiation is set so that the photocatalytic material is activated in the already formed layer and atoms of the
  • the photocatalytic material is titanium dioxide and nitrogen is used as the reactive gas.
  • the stick ⁇ material which thus is also at the location of film formation is available, thus encounter and photocatalytic titanium dioxide ⁇ that is already photoactivated by introduction of UV radiation of a wavelength geeigne- th.
  • nitrogen molecules can be split at the layer surface and stored in the layer surface. This process is carried out by the mechanism of chemisorption, whereby the nitrogen can displace oxygen atoms from the crystal lattice of the titanium dioxide (formation of titanium oxynitride).
  • the titanium dioxide or the photocatalytic material is present in the layer material in the form of nanoparticles.
  • the fact is taken into account that nanoparticles have a pronounced photocatalytic effect.
  • the size of the nanoparticles before the ferred ⁇ wavelength of a photocatalyst excitation can be influenced in other respects.
  • nanoparticles can not be readily separated by cold gas spraying because of their extremely low mass because of the necessary kinetic energy input, it is necessary to clump the nanoparticles into agglomerates of larger dimensions. These clusters with dimensions in the
  • Micrometer range can be easily processed with the cold gas spraying process. However, the resulting microparticles have a nanostructure, which is determined by the nanoparticles used. This nanostructure is also retained after the agglomerates have been deposited on the component to be coated.
  • the layer material also contains a matrix material. points, in which the photocatalytic material is incorporated during the film formation.
  • This matrix material can be supplied to the cold gas jet, for example in the form of a second type of particle. It is advantageous, however, also possible to use a type of particle which already contains the components of the matrix material and of the photocatalytic material. It is particularly advantageous that the matrix material is in the form of micropatterns. These ensure namely the above-mentioned processability of the particles by cold gas spraying.
  • the nanoparticles of the photocatalytic material such as, for example, titanium dioxide, can then be applied to the surface of the microparticles. This also ensures a high degree of efficiency of the photocatalytic material used, since this is present exclusively on the surface of the microparticles and can thus develop the effect as a catalyst.
  • the energy input into the cold gas jet is dimensioned such that pores are formed in the layer between the particles. This can be achieved by the fact that the energy input into the cold gas jet is sufficient for the coating particles to adhere to the component to be coated, but the energy input is too low to ensure a significant compression of the material during the layer ⁇ construction. In other words, the coating particles deform only slightly so that cavities remain between them. The deformation is just sufficient to ensure adhesion of the particles on the surface or with each other. The remaining cavities then form pores or channels, which lead to an increase in surface area of the layer. This surface is then also available for use the catalytic effect of the processed material.
  • the workpiece is heated during the coating.
  • the photocatalytic action for incorporation of the reactive gas can be assisted in addition to the electromagnetic excitation of the photocatalytic effect.
  • the thermal energy is also available for the desired reaction.
  • reactive gas radicals are generated from the reactive gas by an additional energy input into the cold gas jet. This can be achieved for example by impressing an electromagnetic high-frequency or microwave radiation. Also conceivable is an excitation by UV light or laser light. The energy source must be selected depending on the reactive gas ⁇ which is to be excited. The excitation causes the choice of the correct energy source, the formation of reactive gas radicals, which have a significantly increased reactivity compared to the reactive gas molecule.
  • these reactive gas radicals just ⁇ if already meet activated photocatalytic material in the layer formation on the, the doping of the photocatalytic material with the reactive gas radicals is particularly relieved. This increases the rate of incorporation of the dopant can be advantageously raised stabili ⁇ hen.
  • FIG. 1 is a schematic illustration of a cold gas spraying installation, which is suitable for imple ⁇ tion of an embodiment of the inventive method
  • FIGS. 2 and 3 schematically show particles and the layers formed therefrom for various exemplary embodiments of the method according to the invention
  • FIG. 6 shows absorption spectra of titanium dioxide of different particle sizes for UV light.
  • FIG. 1 shows a cold gas injection system.
  • This has a vacuum container 11, in which on the one hand a cold gas spray nozzle 12 and on the other hand a workpiece 13 are arranged ⁇ (fastening not shown in detail).
  • a first line 14 a process gas of the cold gas spray nozzle 12 can be supplied, which is not shown in detail
  • Reactive gas contains (for example, nitrogen).
  • the cold gas injection nozzle 12 is, as indicated by the contour, designed as a valved nozzle, through which the process gas is expanded and accelerated in the form of a cold gas jet (arrow 15) to a surface 16 of the workpiece 13.
  • the process gas is heated in a manner not shown in order to provide the required process temperature in a stagnation chamber 12a upstream of the Laval nozzle 12.
  • particles 19 are supplied, which are accelerated in the cold gas jet 15 and impinge on the surface 16.
  • the kinetic energy of the particles 19 causes them to adhere to the surface 16, with the reactive gas being incorporated into the forming layer 20.
  • the substrate in the direction of the double arrow 21 in front of the 12 Kaltgassprit nozzle 12 are reciprocated.
  • the vacuum container in the vacuum 11 constantly maintains preserver ⁇ th by a vacuum pump 22, wherein the process gas is passed through a filter 23 by the vacuum pump 22 before passing to particles from ⁇ zuscheiden that upon impact with the surface 16 were not tied to this.
  • different particles are used for the coating, ie particles of a matrix material and particles of a photocatalytic material, they can be introduced at different locations of the stagnation chamber 12a using a third line 18b.
  • the particles of the metal matrix material may be introduced through line 18a, the particles such as the titanium dioxide of ⁇ as catalytic material through the third conduit 18b.
  • This has the advantage that the residence time of the photo- tokatalytica material is longer in the stagnation chamber so that this heated more by the process gas who can ⁇ .
  • the particles of catalytic material have a hö ⁇ heren melting point than that of the matrix material, so that a reliable separation can be ensured by previously heating said particles.
  • the particles within the cold gas spray nozzle 12 can be heated. It is thus an additional energy input possible, which can be supplied directly to the particles 19 as thermal energy or by a relaxation in the Laval nozzle in the form of kinetic energy.
  • a UV lamp 24 is installed in the vacuum ⁇ chamber 11, which is directed to the surface 16 of the workpiece 13 ⁇ piece.
  • the electromagnetic energy ensures during formation of the layer 20 that the reactive gas included in the photocatalytic material who can ⁇ .
  • the reactive gas included in the photocatalytic material who can ⁇ .
  • an energy input into the cold gas jet 15 can be accomplished by means of a microwave generator 26.
  • the reactive gas can be split into reactive gas radicals (not shown in detail).
  • the reactive gas radicals support their incorporation into the photocatalytic layer.
  • FIG. 2 shows a particle 19, which consists of an agglomerate of nanoparticles of a photocatalytic material 27. If this is accelerated in the cold gas jet 15 onto the surface 16 of the workpiece 13, then the nanoparticles of the photocatalytic material 27 adhere to the surface, the layer 20 forming. Is erken ⁇ nen that the kinetic energy of the cold gas stream 15 is sufficient due to the selected coating parameters not for densification of the nanoparticles of the photocatalytic material 27, so that form pores 28 between the nanoparticles. These are available as a surface for the be ⁇ ,te photocatalysis available. First, in a manner not shown, the reactive gas can also be applied in the pores.
  • the finished layer 20 can then be supplied to its intended use, the pores and the layer surface being available for catalysis. For example, these could be be a self-cleaning effect of the nitrogen-doped Ti ⁇ tandioxides, which prevents contamination of surfaces.
  • the coating particle 19 consists of the matrix material 29, on the surface of which nanoparticles of the photocatalytic material 27 are applied.
  • the particle of the matrix material 29, for example a metal, has dimensions in the micrometer range.
  • the particles 19 in turn form the layer 20, wherein pores 28 are formed between the particles 19.
  • the walls of these pores are covered with the catalytic material 27, so that it can be used effectively.
  • Inside the particles 19 is no photocatalytic material.
  • the figure 3 can be further deduced that by means of Kaltgassprit zens and multilayer coatings can be generated.
  • a base layer 30 of the matrix material has been produced on the workpiece 13, in which case the coating parameters were set in such a way that a compression of the particles took place, resulting in a massive layer.
  • particles were ver ⁇ applies that contained no photocatalytic material.
  • the layer 20 is positioned ⁇ builds in the manner already described, wherein the thickness of which is chosen such that out via the Overall thickness accessibility of the photocatalytic Mate ⁇ material 27 is ensured by the pore formation.
  • Layer 20 can be designed in a manner not shown as Gra ⁇ serves layer.
  • FIG. 5 shows schematically, using the photocatalytic material titanium dioxide as an example, that oxygen atoms (O) can be displaced by the chemisorption of nitrogen atoms (N). This produces titanium oxynitride (TiO 2 - ⁇ N x ). This process can be assisted by the reactive gas containing radicals 31.
  • the choice of diameter classes of the photocatalytic titanium dioxide nanoparticles can influence the absorption spectrum of UV light.
  • the preferred wavelength of excitation is a tendency for the preferred wavelength of excitation to increase with the mean diameter of the particles.
  • the preferred excitation wavelengths for nanoparticles with a diameter of 40 to 60 nanometers in the UVB range and for nanoparticles with diameters up to 100 nanometers in the UVA range is achieved with the reactive gas when the emission spectrum of the UV lamp 24 is set to the maximum in the respective absorption ⁇ spectrum.
  • the choice of the diameter of the nanoparticles of the catalytic ⁇ is pending from terials also the intended application of the layer. This will be the decisive criterion in the interpretation.

Abstract

The embodiments include a method for producing a coating through cold gas spraying. In the process, particles according to the embodiments are used which contain a photocatalytic material. In order to improve the effect of this photocatalytic material (such as titanium dioxide), a reactive gas can be added to the cold gas stream, the reactive gas being activated by a radiation source not shown, for example by UV light, on the surface of the coating that forms. This makes it possible to, for example, dose titanium dioxide with nitrogen. This allows the production of in situ layers having advantageously high catalytic effectiveness. The use of cold gas spraying has the additional advantage in that the coating can be designed to contain pores that enlarge the surface available for catalysis.

Description

Beschreibungdescription
Verfahren zum Erzeugen einer Schicht durch KaltgasspritzenMethod for producing a layer by cold gas spraying
Die Erfindung betrifft ein Verfahren zum Erzeugen einerThe invention relates to a method for producing a
Schicht auf einem Werkstück durch Kaltgasspritzen, bei dem ein Kaltgasstrahl mit Partikeln eines Schichtwerkstoffes auf das Werkstück gerichtet wird und gleichzeitig das Werkstück mit elektromagnetischer Strahlung bestrahlt wird.Layer on a workpiece by cold gas spraying, in which a cold gas jet with particles of a layer material is directed onto the workpiece and at the same time the workpiece is irradiated with electromagnetic radiation.
Ein Verfahren der eingangs angegebenen Art ist beispielsweise aus der DE 10 2005 005 359 Al bekannt. Bei diesem Verfahren werden die Partikel, die mit dem Kaltgasstrahl zur zu beschichtenden Oberfläche eines Werkstückes hin beschleunigt werden, mit einer Energiemenge beaufschlagt (kinetische Ener¬ gie) , die an sich nicht ausreicht, um eine bleibende Haftung der Partikel auf der Oberfläche hervorzurufen. Vielmehr ist hierzu ein zusätzlicher Energieeintrag in die in Ausbildung befindliche Schicht auf dem Werkstück notwendig. Dieser Ener- gieeintrag erfolgt über einen Laser, dessen Strahlung genau auf den Auftreffpunkt des Kaltgasstrahls auf dem Werkstück fokussiert ist.A method of the type described above is known for example from DE 10 2005 005 359 Al. In this method, the particles are accelerated with the cold gas jet to the surface to be coated of a workpiece toward be acted upon by an amount of energy (kinetic Ener ¬ energy) which is not sufficient in itself to cause a permanent adhesion of the particles on the surface. Rather, this requires an additional input of energy into the layer being formed on the workpiece. This energy input takes place via a laser whose radiation is focused precisely on the point of impact of the cold gas jet on the workpiece.
Mit dem beschriebenen Verfahren können grundsätzlich auch ka- talytische Schichten hergestellt werden. Hierzu sind Partikel auszuwählen, deren Oberfläche die gewünschte katalytische Wirkung hervorruft. Beispielsweise können Schichten aus einem photokatalytischen Material wie Titandioxid hergestellt wer¬ den. Um die katalytische Wirkung zu verbessern, kann auch Stickstoffdotiertes Titandioxid (oder Titanoxinitrid) verwen¬ det werden.In principle, catalytic layers can also be produced by the method described. For this purpose, particles are selected whose surface causes the desired catalytic effect. For example, layers may be made of a photocatalytic material such as titanium dioxide produced ¬ the. To improve the catalytic effect, nitrogen-doped titanium dioxide also (or titanium oxynitride) can USAGE ¬ be det.
Gemäß der DE 10 2004 038 795 B4 ist es auch bekannt, mittels Kaltgasspritzen katalytische Schichten herzustellen. Hierbei wird auf eine Polymeroberfläche mittels Kaltgasspritzen ein oxidisches Pulver aufgebracht, welches eine mechanisch fest anhaftende Schicht ausbildet. Dabei bleiben die fotoka- talytischen Eigenschaften des oxidischen Pulvers erhalten Gemäß der DE 10 2005 053 263 Al können fotokatalytisch aktive Schichten auch auf metallischen Oberflächen mittels Kaltgassprit ztechnik aufgebracht werden. Da die Erwärmung der Partikel beim Kaltgasspritzen nur gering ist, können auch modifizierte fotokatalytische Materialien verwendet werden, wobei die Modifizierung in der aufgebrachten Schicht erhalten bleibt. So kann z. B. ein Pulver mit dotiertem Titanoxid verwendet werden. Verfahrensparameter zur Erzeugung von Titandioxidschichten mittels Kaltgasspritzen können auch Chang-Jiu Li et al . „Formation of TiO2 photocatalyst through cold spraying" Proc. ITSC, Mai 10 -12, 2004, Osaka, Japan entnommen warden.According to DE 10 2004 038 795 B4, it is also known to produce catalytic layers by means of cold gas spraying. in this connection An oxidic powder is applied to a polymer surface by means of cold gas spraying, which forms a mechanically firmly adhering layer. In the process, the photocatalytic properties of the oxidic powder are retained. According to DE 10 2005 053 263 A1, photocatalytically active layers can also be applied to metallic surfaces by means of cold gas spraying technology. Since the heating of the particles during cold gas spraying is only slight, it is also possible to use modified photocatalytic materials, the modification being retained in the applied layer. So z. For example, a powder with doped titanium oxide can be used. Process parameters for the production of titanium dioxide layers by means of cold gas spraying can also Chang-Jiu Li et al. "Formation of TiO 2 photocatalyst through cold spraying" Proc. ITSC, May 10 -12, 2004, Osaka, Japan.
Um Partikel eines Stickstoffdotierten Titandioxides zu gewin¬ nen, kann aber auch ein Sol-Gel-Verfahren angewendet werden, wobei eine Verschmelzung von Titandioxidpulver bei hohen Temperaturen in Ammoniakgas erfolgt. Auch durch eine Oxidation von Titannitrid ist eine Herstellung möglich. Eine andere Möglichkeit besteht durch Ionenimplantierung, Magnetron Sputtern oder PVD-Verfahren . Die Titandioxidschich- ten können mit den genannten Verfahren mit einem Stickstoffanteil von 2 bis 4,4 % dotiert werden. Die Herstellung von photokatalytischen Materialien wie Stickstoffdotiertem Titandioxid erfordert also einen gewissen Aufwand. Verfahren die¬ ser Art werden beispielsweise in Nitrogen-Doped Titanium Dioxide: An Overview of Function and Introduction to Applications, Matthew Hennek, 20. January 2007, University of Alabama beschrieben. Daher stellt sich die Aufgabe der Erfindung darin, ein Verfahren zum Erzeugen einer Schicht auf einem Werkstück durch Kaltgasspritzen anzugeben, mit dem sich katalytische Schichten mit einem vergleichsweise hohen Wirkungsgrad vergleichs- weise kostengünstig herstellen lassen.To gewin ¬ NEN, but may also be a sol-gel method can be applied, wherein a blend of titanium dioxide powder at high temperature in ammonia gas are particles of a nitrogen-doped titanium dioxide. Also by an oxidation of titanium nitride production is possible. Another option is ion implantation, magnetron sputtering or PVD. The titanium dioxide layers can be doped with the stated processes with a nitrogen content of 2 to 4.4%. The production of photocatalytic materials such as nitrogen-doped titanium dioxide thus requires a certain effort. Process the ¬ ser type, for example, in Nitrogen-Doped Titanium Dioxide: described An Overview of Function and Introduction to Applications, Matthew Hennek, 20 January 2007, University of Alabama. Therefore, the object of the invention is to provide a method for producing a layer on a workpiece by cold gas spraying, with which catalytic layers can be produced comparatively inexpensively with a comparatively high efficiency.
Diese Aufgabe wird erfindungsgemäß mit dem eingangs genannten Verfahren dadurch gelöst, dass der Kaltgasstrahl ein Reaktivgas enthält, die Partikel ein photokatalytisches Material enthalten und die elektromagnetische Strahlung mindestens eine Wellenlänge enthält, mit der das photokatalytische Mate¬ rial aktivierbar ist. Weiterhin ist erfindungsgemäß vorgese¬ hen, dass die Intensität der elektromagnetischen Strahlung so eingestellt wird, dass das photokatalytische Material in der bereits ausgebildeten Schicht aktiviert wird, und Atome desThis object is achieved by the method mentioned in the fact that the cold gas jet contains a reactive gas, the particles contain a photocatalytic material and the electromagnetic radiation contains at least one wavelength with which the photocatalytic mate ¬ rial is activated. The invention furthermore vorgese ¬ hen that the intensity of the electromagnetic radiation is set so that the photocatalytic material is activated in the already formed layer and atoms of the
Reaktivgases in das photokatalytische Material eingebaut wer¬ den. Auf diese Weise kann vorteilhaft eine Dotierung des pho- tokatalytischen Materials mit den Atomen des Reaktivgases er¬ folgen. Hierbei wird erfindungsgemäß gerade der photokataly- tische Effekt des in die Schicht eingebauten Materials ausge¬ nutzt. Es hat sich nämlich gezeigt, dass die beim Kaltgas¬ spritzen während des Schichtaufbaus herrschenden Verhältnisse geeignet sind, ein photokatalytisches Material in der Schicht sozusagen in situ bei der Entstehung der Schicht durch Dotie- ren mit Reaktivgasanteilen aus dem Kaltgasstrahl zu modifizieren. Hierbei wird vorteilhaft eine aufwendige Herstellung der dotierten photokatalytischen Materialien umgangen. Vielmehr ist es möglich, das Reaktivgas kostengünstig in den Kaltgasstrahl einzubringen und als Beschichtungsstoff das kostengünstigere undotierte photokatalytische Material zu verwenden .Reactive gases incorporated in the photocatalytic material who ¬ . In this way, he advantageous ¬ follow doping of photo- tokatalytischen material with the atoms of the reactive gas. Here, exactly the photocatalytic effect of the tables installed in the layer material is inventively exploited ¬. It has been shown that the prevailing during the cold gas ¬ splash while the layer structure conditions are suitable, a photocatalytic material in the layer as it were in situ in the formation of the layer by doping of modifying with a reactive gas components from the cold gas jet ren. In this case, an expensive production of the doped photocatalytic materials is advantageously avoided. Rather, it is possible to introduce the reactive gas inexpensively in the cold gas jet and to use as a coating material, the less expensive undoped photocatalytic material.
Gemäß einer besonderen Ausgestaltung der Erfindung ist vorgesehen, dass das photokatalytische Material Titandioxid ist und als Reaktivgas Stickstoff zum Einsatz kommt. Der Stick¬ stoff, der damit auch an der Stelle der Schichtausbildung zur Verfügung steht, trifft hier auf das photokatalytische Titan¬ dioxid, das durch Einbringen von UV-Strahlung einer geeigne- ten Wellenlänge bereits photoaktiviert ist. Hierdurch können Stickstoffmoleküle an der Schichtoberfläche aufgespalten und in die Schichtoberfläche eingelagert werden. Dieser Prozess erfolgt nach dem Mechanismus der Chemisorption, wobei der Stickstoff auch Sauerstoffatome aus dem Kristallgitter des Titandioxides verdrängen kann (Bildung von Titanoxinitrid) .According to a particular embodiment of the invention, it is provided that the photocatalytic material is titanium dioxide and nitrogen is used as the reactive gas. The stick ¬ material, which thus is also at the location of film formation is available, thus encounter and photocatalytic titanium dioxide ¬ that is already photoactivated by introduction of UV radiation of a wavelength geeigne- th. As a result, nitrogen molecules can be split at the layer surface and stored in the layer surface. This process is carried out by the mechanism of chemisorption, whereby the nitrogen can displace oxygen atoms from the crystal lattice of the titanium dioxide (formation of titanium oxynitride).
Gemäß einer anderen Ausgestaltung der Erfindung ist vorgesehen, dass das Titandioxid oder das photokatalytische Material in dem Schichtwerkstoff in Form von Nanopartikeln vorliegt. Hierbei wird dem Umstand Rechnung getragen, dass Nanopartikel eine ausgeprägte photokatalytische Wirkung aufweisen. Durch die Größe der Nanopartikel lässt sich im Übrigen die bevor¬ zugte Wellenlänge einer photokatalytischen Anregung beeinflussen .According to another embodiment of the invention, it is provided that the titanium dioxide or the photocatalytic material is present in the layer material in the form of nanoparticles. Here, the fact is taken into account that nanoparticles have a pronounced photocatalytic effect. By the size of the nanoparticles before the ferred ¬ wavelength of a photocatalyst excitation can be influenced in other respects.
Da sich Nanopartikel aufgrund ihrer äußerst geringen Masse mittels Kaltgasspritzen wegen des notwendigen kinetischen Energieeintrags nicht ohne weiteres abscheiden lassen, ist es notwendig, die Nanopartikel zu Agglomeraten mit größeren Ab- messungen zu Clustern. Diese Cluster mit Abmessungen imSince nanoparticles can not be readily separated by cold gas spraying because of their extremely low mass because of the necessary kinetic energy input, it is necessary to clump the nanoparticles into agglomerates of larger dimensions. These clusters with dimensions in the
Mikrometer-Bereich lassen sich mit dem Kaltgasspritzverfahren ohne Weiteres verarbeiten. Die so entstehenden Mikropartikel weisen jedoch eine Nanostruktur auf, welche durch die verwendeten Nanopartikel bestimmt wird. Diese Nanostruktur bleibt auch erhalten, nachdem die Agglomerate auf dem zu beschichtenden Bauteil abgeschieden wurden.Micrometer range can be easily processed with the cold gas spraying process. However, the resulting microparticles have a nanostructure, which is determined by the nanoparticles used. This nanostructure is also retained after the agglomerates have been deposited on the component to be coated.
Besonders vorteilhaft ist es, wenn der Schichtwerkstoff neben dem photokatalytischen Material auch ein Matrixmaterial auf- weist, in das das photokatalytische Material während der Schichtbildung eingebaut wird. Dieses Matrixmaterial kann beispielsweise in Form einer zweiten Sorte von Partikeln dem Kaltgasstrahl zugeführt werden. Es ist vorteilhaft aber auch möglich, eine Art von Partikeln zu verwenden, welche bereits die Komponenten des Matrixmaterials und des photokatalyti- schen Materials enthält. Besonders vorteilhaft ist es dabei, dass das Matrixmaterial in Form von Mikropatikeln vorliegt. Diese gewährleisten nämlich die oben bereits angesprochene Verarbeitbarkeit der Partikel durch Kaltgasspritzen. Auf der Oberfläche der Mikropartikel können dann die Nanopartikel des photokatalytischen Materials, wie beispielsweise Titandioxid, aufgebracht sein. Hierdurch wird auch ein hoher Wirkungsgrad des zum Einsatz kommenden photokatalytischen Materials ge- währleistet, da dieses ausschließlich an der Oberfläche der Mikropartikel vorliegt und so die Wirkung als Katalysator entfalten kann.It is particularly advantageous if, in addition to the photocatalytic material, the layer material also contains a matrix material. points, in which the photocatalytic material is incorporated during the film formation. This matrix material can be supplied to the cold gas jet, for example in the form of a second type of particle. It is advantageous, however, also possible to use a type of particle which already contains the components of the matrix material and of the photocatalytic material. It is particularly advantageous that the matrix material is in the form of micropatterns. These ensure namely the above-mentioned processability of the particles by cold gas spraying. The nanoparticles of the photocatalytic material, such as, for example, titanium dioxide, can then be applied to the surface of the microparticles. This also ensures a high degree of efficiency of the photocatalytic material used, since this is present exclusively on the surface of the microparticles and can thus develop the effect as a catalyst.
Um einen möglichst hohen Wirkungsgrad des photokatalytischen Materials zu gewährleisten, ist es besonders vorteilhaft, wenn der Energieeintrag in den Kaltgasstrahl so bemessen wird, dass sich zwischen den Partikeln in der Schicht Poren bilden. Dies lässt sich dadurch erreichen, dass der Energieeintrag in den Kaltgasstrahl zwar ausreicht, damit die Be- Schichtungspartikel auf dem zu beschichtenden Bauteil haften bleiben, jedoch der Energieeintrag zu gering ist, um eine nennenswerte Verdichtung des Materials während des Schicht¬ aufbaus zu gewährleisten. Mit anderen Worten verformen sich die Beschichtungspartikel nur gering, so dass zwischen ihnen Hohlräume verbleiben. Die Verformung reicht gerade aus, um eine Haftung der Partikel auf der Oberfläche bzw. untereinander zu gewährleisten. Die verbleibenden Hohlräume bilden dann Poren bzw. Kanäle, die zu einer Oberflächenvergrößerung der Schicht führen. Diese Oberfläche steht dann auch zur Nutzung des katalytischen Effektes des verarbeiteten Materials zur Verfügung.In order to ensure the highest possible efficiency of the photocatalytic material, it is particularly advantageous if the energy input into the cold gas jet is dimensioned such that pores are formed in the layer between the particles. This can be achieved by the fact that the energy input into the cold gas jet is sufficient for the coating particles to adhere to the component to be coated, but the energy input is too low to ensure a significant compression of the material during the layer ¬ construction. In other words, the coating particles deform only slightly so that cavities remain between them. The deformation is just sufficient to ensure adhesion of the particles on the surface or with each other. The remaining cavities then form pores or channels, which lead to an increase in surface area of the layer. This surface is then also available for use the catalytic effect of the processed material.
Weiterhin ist es vorteilhaft, wenn das Werkstück während des Beschichtens beheizt wird. Hierdurch kann die photokatalyti- sche Wirkung zum Einbau des Reaktivgases zusätzlich zur elektromagnetischen Anregung des photokatalytischen Effektes unterstützt werden. Die thermische Energie steht nämlich ebenso für die gewünschte Reaktion zur Verfügung.Furthermore, it is advantageous if the workpiece is heated during the coating. As a result, the photocatalytic action for incorporation of the reactive gas can be assisted in addition to the electromagnetic excitation of the photocatalytic effect. The thermal energy is also available for the desired reaction.
Außerdem ist es vorteilhaft auch möglich, dass durch einen zusätzlichen Energieeintrag in den Kaltgasstrahl aus dem Reaktivgas Reaktivgasradikale erzeugt werden. Dies lässt sich beispielsweise durch Einprägen einer elektromagnetischen Hochfrequenz- oder Mikrowellenstrahlung erreichen. Denkbar ist auch eine Anregung durch UV-Licht bzw. Laserlicht. Die Energiequelle muss abhängig von dem Reaktivgas gewählt wer¬ den, welches angeregt werden soll. Die Anregung bewirkt bei Wahl der richtigen Energiequelle die Ausbildung von Reaktiv- gasradikalen, die im Vergleich zum Reaktivgasmolekül eine deutlich erhöhte Reaktionsfreudigkeit aufweisen. Wenn diese Reaktivgasradikale bei der Schichtausbildung auf das eben¬ falls bereits aktivierte photokatalytische Material treffen, wird die Dotierung des photokatalytischen Materials mit den Reaktivgasradikalen besonders erleichtert. Hierdurch lässt sich die Einbaurate des Dotierungsmaterials vorteilhaft erhö¬ hen .Moreover, it is also advantageously possible that reactive gas radicals are generated from the reactive gas by an additional energy input into the cold gas jet. This can be achieved for example by impressing an electromagnetic high-frequency or microwave radiation. Also conceivable is an excitation by UV light or laser light. The energy source must be selected depending on the reactive gas ¬ which is to be excited. The excitation causes the choice of the correct energy source, the formation of reactive gas radicals, which have a significantly increased reactivity compared to the reactive gas molecule. When these reactive gas radicals just ¬ if already meet activated photocatalytic material in the layer formation on the, the doping of the photocatalytic material with the reactive gas radicals is particularly relieved. This increases the rate of incorporation of the dopant can be advantageously raised stabili ¬ hen.
Weitere Einzelheiten der Erfindung werden nachfolgend anhand der Zeichnung beschrieben. Gleiche oder sich entsprechende Zeichnungselemente sind jeweils mit den gleichen Bezugszei¬ chen versehen und werden nur insoweit mehrfach erläutert, wie sich Unterschiede zwischen den einzelnen Figuren ergeben. Es zeigen Figur 1 die schematische Darstellung einer Kaltgas- Spritzanlage, welches sich für die Durchfüh¬ rung eines Ausführungsbeispiels des erfin- dungsgemäßen Verfahrens eignet,Further details of the invention are described below with reference to the drawing. Identical or corresponding drawing elements are each provided with the same Bezugszei ¬ chen and are only explained several times as far as differences arise between the individual figures. Show it Figure 1 is a schematic illustration of a cold gas spraying installation, which is suitable for imple ¬ tion of an embodiment of the inventive method,
Figur 2 und 3 Partikel und die sich daraus bildenden Schichten für verschiedene Ausführungsbeispiele des erfindungsgemäßen Verfahrens schematisch,FIGS. 2 and 3 schematically show particles and the layers formed therefrom for various exemplary embodiments of the method according to the invention,
Figur 4 und 5 unterschiedliche Einlagerungsmechanismen von Stickstoff bei der Dotierung von Titandioxid bei dem Ausführungsbeispiel des erfindungsge¬ mäßen Verfahrens zur Herstellung von dotiertem Titandioxid bzw. Titanoxinitrid und4 and 5 different storage mechanisms of nitrogen in the doping of titanium dioxide in the embodiment of erfindungsge ¬ MAESSEN method for producing doped titanium dioxide or titanium oxynitride and
Figur 6 Absorptionsspektren von Titandioxid unterschiedlicher Partikelgrößen für UV-Licht.FIG. 6 shows absorption spectra of titanium dioxide of different particle sizes for UV light.
In Figur 1 ist eine Kaltgas-Spritzanlage dargestellt. Diese weist einen Vakuumbehälter 11 auf, in dem einerseits eine Kaltgas-Spritzdüse 12 und andererseits ein Werkstück 13 ange¬ ordnet sind (Befestigung nicht näher dargestellt) . Durch eine erste Leitung 14 kann ein Prozessgas der Kaltgas-Spritzdüse 12 zugeführt werden, welches ein nicht näher dargestelltesFIG. 1 shows a cold gas injection system. This has a vacuum container 11, in which on the one hand a cold gas spray nozzle 12 and on the other hand a workpiece 13 are arranged ¬ (fastening not shown in detail). Through a first line 14, a process gas of the cold gas spray nozzle 12 can be supplied, which is not shown in detail
Reaktivgas enthält (beispielsweise Stickstoff) . Die Kaltgas- spritzdüse 12 ist, wie durch die Kontur angedeutet, als La- val-Düse ausgeführt, durch die das Prozessgas entspannt und in Form eines Kaltgasstrahls (Pfeil 15) zu einer Oberfläche 16 des Werkstückes 13 hin beschleunigt wird. Das Prozessgas wird in nicht dargestellter Weise erwärmt, um in einer der Laval-Düse 12 vorgeschalteten Stagnationskammer 12a die geforderte Prozesstemperatur zur Verfügung zu stellen. Durch eine zweite Leitung 18a können der Stagnationskammer 12a Partikel 19 zugeführt werden, die in dem Kaltgasstrahl 15 beschleunigt werden und auf die Oberfläche 16 auftreffen. Die kinetische Energie der Partikel 19 führt zu einem Anhaften derselben auf der Oberfläche 16, wobei das Reaktivgas in die sich ausbildende Schicht 20 eingebaut wird. Zur Ausbildung der Schicht kann das Substrat in Richtung des Doppelpfeils 21 vor der Kaltgassprit zdüse 12 hin- und herbewegt werden. Wäh¬ rend dieses Beschichtungsprozesses wird das Vakuum im Vakuum- behälter 11 durch eine Vakuumpumpe 22 ständig aufrechterhal¬ ten, wobei das Prozessgas vor Durchleitung durch die Vakuumpumpe 22 durch einen Filter 23 geführt wird, um Partikel ab¬ zuscheiden, die beim Auftreffen auf die Oberfläche 16 nicht an diese gebunden wurden.Reactive gas contains (for example, nitrogen). The cold gas injection nozzle 12 is, as indicated by the contour, designed as a valved nozzle, through which the process gas is expanded and accelerated in the form of a cold gas jet (arrow 15) to a surface 16 of the workpiece 13. The process gas is heated in a manner not shown in order to provide the required process temperature in a stagnation chamber 12a upstream of the Laval nozzle 12. Through a second line 18a of the stagnation chamber 12a particles 19 are supplied, which are accelerated in the cold gas jet 15 and impinge on the surface 16. The kinetic energy of the particles 19 causes them to adhere to the surface 16, with the reactive gas being incorporated into the forming layer 20. To form the layer, the substrate in the direction of the double arrow 21 in front of the 12 Kaltgassprit nozzle 12 are reciprocated. Currency ¬ rend this coating process, the vacuum container in the vacuum 11 constantly maintains preserver ¬ th by a vacuum pump 22, wherein the process gas is passed through a filter 23 by the vacuum pump 22 before passing to particles from ¬ zuscheiden that upon impact with the surface 16 were not tied to this.
Werden unterschiedliche Partikel für die Beschichtung verwendet, also Partikel eines Matrixmaterials und Partikel eines photokatalytischen Materials, so können diese unter Verwendung einer dritten Leitung 18b an unterschiedlichen Stellen der Stagnationskammer 12a eingeleitet werden. Die Partikel des metallischen Matrixmaterials können durch die Leitung 18a eingeleitet werden, die Partikel beispielsweise des Titan¬ dioxides als katalytischem Material durch die dritte Leitung 18b. Dies hat den Vorteil, dass die Aufenthaltsdauer des pho- tokatalytischen Materials in der Stagnationskammer länger ist, so dass diese durch das Prozessgas stärker erwärmt wer¬ den können. Hierbei kann dem Umstand Rechnung getragen werden, dass die Partikel des katalytischen Materials einen hö¬ heren Schmelzpunkt aufweisen als die des Matrixmaterials, so dass eine zuverlässige Abscheidung durch vorheriges Erwärmen dieser Partikel gewährleistet werden kann.If different particles are used for the coating, ie particles of a matrix material and particles of a photocatalytic material, they can be introduced at different locations of the stagnation chamber 12a using a third line 18b. The particles of the metal matrix material may be introduced through line 18a, the particles such as the titanium dioxide of ¬ as catalytic material through the third conduit 18b. This has the advantage that the residence time of the photo- tokatalytischen material is longer in the stagnation chamber so that this heated more by the process gas who can ¬. Here can be worn into account the fact that the particles of catalytic material have a hö ¬ heren melting point than that of the matrix material, so that a reliable separation can be ensured by previously heating said particles.
Weiterhin kann mittels einer Heizung 23 eine Beheizung der Partikel innerhalb der Kaltgas-Spritzdüse 12 erfolgen. Es ist damit ein zusätzlicher Energieeintrag möglich, der direkt als thermische Energie oder durch eine Entspannung in der Laval- Düse in Form von kinetischer Energie den Partikeln 19 zugeführt werden kann.Furthermore, by means of a heater 23, the particles within the cold gas spray nozzle 12 can be heated. It is thus an additional energy input possible, which can be supplied directly to the particles 19 as thermal energy or by a relaxation in the Laval nozzle in the form of kinetic energy.
Als weitere Energiequelle ist eine UV-Lampe 24 in der Vakuum¬ kammer 11 installiert, die auf die Oberfläche 16 des Werk¬ stückes 13 gerichtet ist. Die elektromagnetische Energie sorgt während der Ausbildung der Schicht 20 dafür, dass das Reaktivgas in das photokatalytische Material eingebunden wer¬ den kann. Hierbei wird, wie im Folgenden noch näher erläutert wird, die photokatalytische Eigenschaft des Materials ausge¬ nutzt .As a further energy source, a UV lamp 24 is installed in the vacuum ¬ chamber 11, which is directed to the surface 16 of the workpiece 13 ¬ piece. The electromagnetic energy ensures during formation of the layer 20 that the reactive gas included in the photocatalytic material who can ¬. Here, is explained in greater detail below, exploited the photocatalytic property of the material ¬.
Zusätzlich lässt sich mittels eines Mikrowellengenerators 26 ein Energieeintrag in den Kaltgasstrahl 15 bewerkstelligen. Mit Hilfe dieses Energieeintrages lässt sich das Reaktivgas in Reaktivgasradikale aufspalten (nicht näher dargestellt) . Die Reaktivgasradikale unterstützen ihren Einbau in die pho- tokatalytische Schicht.In addition, an energy input into the cold gas jet 15 can be accomplished by means of a microwave generator 26. With the help of this energy input, the reactive gas can be split into reactive gas radicals (not shown in detail). The reactive gas radicals support their incorporation into the photocatalytic layer.
In Figur 2 ist ein Partikel 19 dargestellt, was aus einem Agglomerat von Nanopartikeln eines photokatalytischen Materials 27 besteht. Wird dieses im Kaltgasstrahl 15 auf die Oberfläche 16 des Werkstückes 13 beschleunigt, so haften die Nanopartikel des photokatalytischen Materials 27 auf der Oberfläche an, wobei sich die Schicht 20 ausbildet. Zu erken¬ nen ist, dass die kinetische Energie des Kaltgasstrahls 15 aufgrund der gewählten Beschichtungsparameter nicht für eine Verdichtung der Nanopartikel aus dem photokatalytischen Material 27 ausreicht, so dass sich zwischen den Nanopartikeln Poren 28 bilden. Diese stehen als Oberfläche für die be¬ zweckte Fotokatalyse zur Verfügung. Zunächst kann in nicht dargestellter Weise das Reaktivgas auch in den Poren angela- gert werden, wobei hierbei zu berücksichtigen ist, dass die Zugänglichkeit durch den gerade erfolgenden Schichtaufbau ohne Weiteres gegeben ist. Die fertiggestellte Schicht 20 kann dann ihrem bestimmungsgemäßen Gebrauch zugeführt werden, wobei die Poren sowie die Schichtoberfläche zur Katalyse zur Verfügung stehen. Beispielsweise könnte es sich hierbei um einen Selbstreinigungseffekt des mit Stickstoff dotierten Ti¬ tandioxides handeln, der einer Verschmutzung von Oberflächen vorbeugt .FIG. 2 shows a particle 19, which consists of an agglomerate of nanoparticles of a photocatalytic material 27. If this is accelerated in the cold gas jet 15 onto the surface 16 of the workpiece 13, then the nanoparticles of the photocatalytic material 27 adhere to the surface, the layer 20 forming. Is erken ¬ nen that the kinetic energy of the cold gas stream 15 is sufficient due to the selected coating parameters not for densification of the nanoparticles of the photocatalytic material 27, so that form pores 28 between the nanoparticles. These are available as a surface for the be ¬ zweckte photocatalysis available. First, in a manner not shown, the reactive gas can also be applied in the pores. It should be taken into account here that the accessibility is readily given by the currently occurring layer structure. The finished layer 20 can then be supplied to its intended use, the pores and the layer surface being available for catalysis. For example, these could be be a self-cleaning effect of the nitrogen-doped Ti ¬ tandioxides, which prevents contamination of surfaces.
Gemäß Figur 3 besteht das Beschichtungspartikel 19 aus dem Matrixmaterial 29, wobei an dessen Oberfläche Nanopartikel des photokatalytischen Materials 27 aufgebracht sind. Das Partikel aus dem Matrixmaterial 29, beispielsweise ein Me- tall, weist Abmessungen im Mikrometer-Bereich auf.According to FIG. 3, the coating particle 19 consists of the matrix material 29, on the surface of which nanoparticles of the photocatalytic material 27 are applied. The particle of the matrix material 29, for example a metal, has dimensions in the micrometer range.
Der Figur 3 ebenfalls zu entnehmen ist es, dass die Partikel 19 wiederum die Schicht 20 bilden, wobei Poren 28 zwischen den Partikeln 19 ausgebildet sind. Die Wände dieser Poren sind mit dem katalytischen Material 27 belegt, so dass dieses wirkungsvoll zum Einsatz kommen kann. Im Inneren der Partikel 19 befindet sich kein photokatalytisches Material.It can also be seen from FIG. 3 that the particles 19 in turn form the layer 20, wherein pores 28 are formed between the particles 19. The walls of these pores are covered with the catalytic material 27, so that it can be used effectively. Inside the particles 19 is no photocatalytic material.
Der Figur 3 lässt sich weiterhin entnehmen, dass mittels des Kaltgassprit zens auch mehrlagige Schichten erzeugt werden können. Auf dem Werkstück 13 ist zunächst eine Grundschicht 30 aus dem Matrixmaterial erzeugt worden, wobei hier die Be- schichtungsparameter so eingestellt wurden, dass eine Verdichtung der Partikel erfolgte und so eine massive Schicht entstand. Da in diesem Schichtbereich ein photokatalytisches Material keine Wirkung entfalten könnte, wurden Partikel ver¬ wendet, die kein photokatalytisches Material enthielten. Erst die Schicht 20 ist in der bereits beschriebenen Weise aufge¬ baut, wobei deren Dicke so gewählt wird, dass über die ge- samte Dicke eine Zugänglichkeit des photokatalytischen Mate¬ rials 27 durch die Porenbildung gewährleistet ist. Die Schicht 20 kann in nicht dargestellter Weise auch als Gra¬ dientenschicht ausgeführt sein.The figure 3 can be further deduced that by means of Kaltgassprit zens and multilayer coatings can be generated. Firstly, a base layer 30 of the matrix material has been produced on the workpiece 13, in which case the coating parameters were set in such a way that a compression of the particles took place, resulting in a massive layer. In this layer region as a photocatalytic material could not be effective, particles were ver ¬ applies that contained no photocatalytic material. First the layer 20 is positioned ¬ builds in the manner already described, wherein the thickness of which is chosen such that out via the Overall thickness accessibility of the photocatalytic Mate ¬ material 27 is ensured by the pore formation. Layer 20 can be designed in a manner not shown as Gra ¬ serves layer.
Der Figur 4 lässt sich schematisch entnehmen, wie das Reaktivgas Stickstoff unter Wirkung von UV-Licht an die Oberflä¬ che der Schicht 20 durch Chemisorption angelagert werden kann. Dabei werden schrittweise die Bindungen des Stickstoff- moleküls aufgebrochen und es wird eine Anlagerung der einzel¬ nen Stickstoffatome an der Oberfläche der Schicht 20 bewirkt.Of Figure 4 can be deduced schematically how the reactive gas is nitrogen can be deposited under the effect of UV light on the Oberflä ¬ surface of layer 20 by chemisorption. The bonds of the nitrogen molecule are gradually broken up and is caused an accumulation of the individual ¬ NEN nitrogen atoms on the surface of the layer twentieth
Der Figur 5 lässt sich am Beispiel des photokatalytischen Materials Titandioxid schematisch entnehmen, dass durch die Chemisorption von Stickstoffatomen (N) Sauerstoffatome (O) verdrängt werden können. Dabei entsteht Titanoxinitrid (TiO2-χNx) . Dieser Prozess kann dadurch unterstützt werden, dass das Reaktivgas Radikale 31 enthält.FIG. 5 shows schematically, using the photocatalytic material titanium dioxide as an example, that oxygen atoms (O) can be displaced by the chemisorption of nitrogen atoms (N). This produces titanium oxynitride (TiO 2 -χN x ). This process can be assisted by the reactive gas containing radicals 31.
Wie sich der Figur 6 entnehmen lässt, kann durch die Wahl von Durchmesserklassen der photokatalytischen Nanopartikel aus Titandioxid das Absorptionsspektrum an UV-Licht beeinflusst werden. Es ist die Tendenz erkennbar, dass die bevorzugte Wellenlänge einer Anregung mit dem mittleren Durchmesser der Partikel steigt. So liegen die bevorzugten Anregungs-Wellenlängen bei Nanopartikeln mit einem Durchmesser von 40 bis 60 Nanometern im UVB-Bereich und bei Nanopartikeln mit Durchmessern bis 100 Nanometer im UVA-Bereich. Dies bedeutet, dass bei bekannten mittleren Durchmessern des verwendeten photoka- talytischen Materials ein optimales Ergebnis der Dotierung mit dem Reaktivgas erreicht wird, wenn das Emissionsspektrum der UV-Lampe 24 auf das Maximum im jeweiligen Absorptions¬ spektrum eingestellt wird. Zu bemerken ist hierbei, dass die Wahl des Durchmessers der Nanopartikel des katalytischen Ma- terials auch vom intendierten Anwendungsfall der Schicht ab¬ hängig ist. Dies wird bei der Auslegung das ausschlaggebende Kriterium darstellen. As can be seen from FIG. 6, the choice of diameter classes of the photocatalytic titanium dioxide nanoparticles can influence the absorption spectrum of UV light. There is a tendency for the preferred wavelength of excitation to increase with the mean diameter of the particles. Thus, the preferred excitation wavelengths for nanoparticles with a diameter of 40 to 60 nanometers in the UVB range and for nanoparticles with diameters up to 100 nanometers in the UVA range. This means that in the known average diameters of the photocatalytic material used talytischen an optimum result of the doping is achieved with the reactive gas when the emission spectrum of the UV lamp 24 is set to the maximum in the respective absorption ¬ spectrum. It should be noted that the choice of the diameter of the nanoparticles of the catalytic ¬ is pending from terials also the intended application of the layer. This will be the decisive criterion in the interpretation.

Claims

Patentansprüche claims
1. Verfahren zum Erzeugen einer Schicht auf einem Werkstück (13) durch Kaltgasspritzen, bei dem • ein Kaltgasstrahl (15) mit Partikeln (19) eines1. A method for producing a layer on a workpiece (13) by cold gas spraying, in which • a cold gas jet (15) with particles (19) of a
Schichtwerkstoffes auf das Werkstück (13) gerichtet wird undLayer material is directed to the workpiece (13) and
• gleichzeitig das Werkstück (13) mit elektromagnetischer Strahlung bestrahlt wird, d a d u r c h g e k e n n z e i c h n e t, dass• At the same time the workpiece (13) is irradiated with electromagnetic radiation, d a d c o v e c i n e s that
• der Kaltgasstrahl (15) ein Reaktivgas enthält,The cold gas jet (15) contains a reactive gas,
• die Partikel (19) ein photokatalytisches Material (27) enthalten undThe particles (19) contain a photocatalytic material (27) and
• die elektromagnetische Strahlung mindestens eine Wellen- länge enthält, mit der das photokatalytische Material (27) aktivierbar ist, wobei die Intensität der elektromagnetischen Strahlung so eingestellt wird, dass das photokatalytische Material (27) in der bereits ausgebildeten Schicht aktiviert wird, und Atome des Reaktivgases in das photokatalytische Material (27) ein¬ gebaut werden.The electromagnetic radiation comprises at least one wavelength with which the photocatalytic material (27) can be activated, the intensity of the electromagnetic radiation being adjusted so as to activate the photocatalytic material (27) in the already formed layer, and atoms of the Reactive gases in the photocatalytic material (27) are ¬ built.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass als photokatalytisches Material (27) Titandioxid und als Reaktivgas Stickstoff zum Einsatz kommt.2. Method according to claim 1, characterized in that titanium dioxide is used as the photocatalytic material (27) and nitrogen is used as the reactive gas.
3. Verfahren nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass das katalytische Material in dem Schichtwerkstoff in Form von Nanopartikeln vorliegt.3. Method according to one of the preceding claims, characterized in that the catalytic material is present in the layer material in the form of nanoparticles.
4. Verfahren nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass der Schichtwerkstoff neben dem katalytischen Material (27) auch ein Matrixmaterial (29) aufweist, in das das katalyti- sche Material (27) während der Schichtbildung eingebaut wird.4. Method according to one of the preceding claims, characterized in that the layer material in addition to the catalytic material (27) and a matrix material (29), in which the catalytic material (27) is incorporated during the film formation.
5. Verfahren nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass der Energieeintrag in den Kaltgasstrahl (15) so bemessen wird, dass sich zwischen den Partikeln (19) in der Schicht Poren (28) bilden.5. Method according to one of the preceding claims, characterized in that the energy input into the cold gas jet (15) is dimensioned such that pores (28) form in the layer between the particles (19).
6. Verfahren nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass das Werkstück (13) während des Beschichtens beheizt wird.6. Method according to one of the preceding claims, characterized in that the workpiece (13) is heated during the coating.
7. Verfahren nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass durch einen zusätzlichen Energieeintrag in den Kaltgasstrahl (15) aus dem Reaktivgas Reaktivgasradikale erzeugt werden. 7. Method according to one of the preceding claims, characterized in that reactive gas is generated from the reactive gas by an additional energy input into the cold gas jet (15).
EP09725646A 2008-03-28 2009-03-25 Method for producing a coating through cold gas spraying Not-in-force EP2257656B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008016969A DE102008016969B3 (en) 2008-03-28 2008-03-28 Method for producing a layer by cold gas spraying
PCT/EP2009/053504 WO2009118335A1 (en) 2008-03-28 2009-03-25 Method for producing a coating through cold gas spraying

Publications (2)

Publication Number Publication Date
EP2257656A1 true EP2257656A1 (en) 2010-12-08
EP2257656B1 EP2257656B1 (en) 2011-08-24

Family

ID=40719629

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09725646A Not-in-force EP2257656B1 (en) 2008-03-28 2009-03-25 Method for producing a coating through cold gas spraying

Country Status (8)

Country Link
US (1) US8241702B2 (en)
EP (1) EP2257656B1 (en)
CN (1) CN101978098B (en)
AT (1) ATE521731T1 (en)
CA (1) CA2719545C (en)
DE (1) DE102008016969B3 (en)
DK (1) DK2257656T3 (en)
WO (1) WO2009118335A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012001361A1 (en) 2012-01-24 2013-07-25 Linde Aktiengesellschaft Method for cold gas spraying

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009033620A1 (en) 2009-07-17 2011-01-20 Mtu Aero Engines Gmbh Cold gas spraying of oxide-containing protective layers
DE102009043319A1 (en) * 2009-09-28 2011-07-07 Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg, 22043 Photocatalytically active coatings of titanium dioxide
KR101380836B1 (en) * 2011-01-18 2014-04-09 한국기계연구원 Brittle material granules for room temperature granule spray in vacuum and the method for formation of coating layer using the same
US20170355018A1 (en) * 2016-06-09 2017-12-14 Hamilton Sundstrand Corporation Powder deposition for additive manufacturing
JP2022547067A (en) * 2019-09-03 2022-11-10 ジョージア テック リサーチ コーポレイション Deep Rechargeable Battery System and Method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6364932B1 (en) * 2000-05-02 2002-04-02 The Boc Group, Inc. Cold gas-dynamic spraying process
US8679580B2 (en) * 2003-07-18 2014-03-25 Ppg Industries Ohio, Inc. Nanostructured coatings and related methods
DE102004038795B4 (en) * 2004-08-09 2007-07-19 Atg- Advanced Technology Group S.R.O. Process for the preparation of photocatalytically active polymers
DE102005005359B4 (en) 2005-02-02 2009-05-07 Siemens Ag Method for cold gas spraying
US7438948B2 (en) * 2005-03-21 2008-10-21 Ppg Industries Ohio, Inc. Method for coating a substrate with an undercoating and a functional coating
DE102005031101B3 (en) 2005-06-28 2006-08-10 Siemens Ag Producing a ceramic layer by spraying polymer ceramic precursor particles onto a surface comprises using a cold gas spray nozzle
DE102005053263A1 (en) * 2005-11-08 2007-05-10 Linde Ag Process to manufacture metallic objects e.g. foil, sheet metal components or formed components bearing a photo-catalytic active surface
US8114382B2 (en) 2006-12-11 2012-02-14 General Electric Company Myelin detection using benzofuran derivatives

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009118335A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012001361A1 (en) 2012-01-24 2013-07-25 Linde Aktiengesellschaft Method for cold gas spraying
EP2620525A1 (en) 2012-01-24 2013-07-31 Linde Aktiengesellschaft Method for cold gas spraying
WO2013110441A1 (en) 2012-01-24 2013-08-01 Linde Aktiengesellschaft Method for cold gas spraying

Also Published As

Publication number Publication date
CN101978098A (en) 2011-02-16
US20110027496A1 (en) 2011-02-03
CN101978098B (en) 2013-02-13
CA2719545C (en) 2016-03-22
US8241702B2 (en) 2012-08-14
EP2257656B1 (en) 2011-08-24
WO2009118335A1 (en) 2009-10-01
DK2257656T3 (en) 2011-12-05
ATE521731T1 (en) 2011-09-15
CA2719545A1 (en) 2009-10-01
DE102008016969B3 (en) 2009-07-09

Similar Documents

Publication Publication Date Title
EP2486163B1 (en) Atmospheric pressure plasma method for producing surface-modified particles and coatings
EP2257656B1 (en) Method for producing a coating through cold gas spraying
WO2013110441A1 (en) Method for cold gas spraying
WO2008116616A1 (en) Method for producing an anti-reflection surface on an optical element, and optical elements comprising an anti-reflection surface
DE102008029681A1 (en) Method and device for applying a layer, in particular a self-cleaning and / or antimicrobial photocatalytic layer, to a surface
WO2007033936A1 (en) Cold gas spraying method
EP2460595A2 (en) Device and method for producing a magnesium-based substrate coated with at least one anti-corrosive layer
EP2576862A1 (en) Method for cold gas spraying of a layer having a metal microstructure phase and a microstructure phase made of plastic, component having such a layer, and use of said component
DE10131173C2 (en) Process for the production of core-shell particles and their use
EP2243862A2 (en) Solar absorber coating and method for producing such a solar absorber coating
DE102006015591B3 (en) Organic material with a catalytically coated surface and process for its production
EP1785508B1 (en) Method of manufacturing a photocatalytic active layer
DE102017216139B3 (en) Process for producing a layer
EP3570973B1 (en) Additive manufacturing process
DE102005062225B3 (en) MCrAIX-type alloy product and process for producing a layer of this alloy product
DE102007041544A1 (en) Method of making DLC layers and doped polymers or diamond-like carbon layers
DE102016104130A1 (en) Method for coating a component surface and method for producing a coating material
DE102007026866A1 (en) Coating composition for producing photocatalytically active layer for cleaning air and water, comprises mixture of nanocrystalline titanium dioxide material and sol of photocatalytically active metal oxide
EP2029289A1 (en) Method for producing a component with a nanostructured coating
DE102017106272A1 (en) Method for applying titanium oxide to a substrate
DE102011004750A1 (en) Apparatus and method for processing a SiO 2 -containing material
EP2718475B1 (en) Tungsten-carbide-based spray powder
WO2023118420A1 (en) Solution precursor plasma spraying method for applying a partial coating to a substrate
DE10009598A1 (en) Method and device for depositing a coating on a substrate by spraying a liquid
DE10164768A1 (en) Unagglomerated core-shell particles, useful e.g. as biocide, UV-protection and luminescent pigment or pigment for water treatment, have inorganic core, e.g. of oxide or semiconductor, and shell of inorganic oxide or metal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100907

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009001199

Country of ref document: DE

Effective date: 20111103

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111224

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111226

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111125

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120525

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009001199

Country of ref document: DE

Effective date: 20120525

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200602

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210315

Year of fee payment: 13

Ref country code: IT

Payment date: 20210325

Year of fee payment: 13

Ref country code: NL

Payment date: 20210302

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20210305

Year of fee payment: 13

Ref country code: DK

Payment date: 20210323

Year of fee payment: 13

Ref country code: AT

Payment date: 20210208

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210519

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210406

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009001199

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20220331

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20220401

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 521731

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220325

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220326

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220401

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220325

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221001

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220325