EP2236424A1 - Verfahren und Vorrichtung zum Einlegen von Einzelprodukten in Behälter in einer Roboterstrasse - Google Patents

Verfahren und Vorrichtung zum Einlegen von Einzelprodukten in Behälter in einer Roboterstrasse Download PDF

Info

Publication number
EP2236424A1
EP2236424A1 EP09156668A EP09156668A EP2236424A1 EP 2236424 A1 EP2236424 A1 EP 2236424A1 EP 09156668 A EP09156668 A EP 09156668A EP 09156668 A EP09156668 A EP 09156668A EP 2236424 A1 EP2236424 A1 EP 2236424A1
Authority
EP
European Patent Office
Prior art keywords
robot
container
individual products
containers
individual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09156668A
Other languages
English (en)
French (fr)
Other versions
EP2236424B1 (de
Inventor
Matthias Ehrat
Jürgen Renner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veltru AG
Original Assignee
Veltru AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veltru AG filed Critical Veltru AG
Priority to EP09156668.7A priority Critical patent/EP2236424B1/de
Priority to US12/732,420 priority patent/US8549818B2/en
Publication of EP2236424A1 publication Critical patent/EP2236424A1/de
Application granted granted Critical
Publication of EP2236424B1 publication Critical patent/EP2236424B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B5/00Packaging individual articles in containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, jars
    • B65B5/10Filling containers or receptacles progressively or in stages by introducing successive articles, or layers of articles
    • B65B5/105Filling containers or receptacles progressively or in stages by introducing successive articles, or layers of articles by grippers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B35/00Supplying, feeding, arranging or orientating articles to be packaged
    • B65B35/30Arranging and feeding articles in groups
    • B65B35/36Arranging and feeding articles in groups by grippers

Definitions

  • the invention relates to a method and a device for inserting individual products into containers in a robot line according to the preamble of claim 1.
  • the invention relates to a robot road, as used for converting individual products into storage groups, which can accommodate a certain number of individual products.
  • the term container is used instead of the term storage group, which means less of the container as such, but much more individual products or a group of individual products, which after the implementation by the robot in a defined position relative to a transport device and possibly in a defined position within the group of individual products.
  • a container belt can be a transport device on the fixed or variable distance, but with respect to the transport device itself stationary container or Cartesian certain deposit positions be introduced. It may be in container tapes but also thermoforming machines or conveyor chains, which are in fixed, or only due to the indexing variable distance troughs or containers.
  • the containers to be filled are usually delivered to a first transport device and accumulated there. Subsequently, the containers are transferred from the first transport device to a second transport device, effectively the actual container belt, on which the filling with the individual products happens, and after complete filling, transferred to a third transport device for the removal of the filled containers.
  • a second transport device effectively the actual container belt, on which the filling with the individual products happens
  • a third transport device for the removal of the filled containers.
  • the pre-entry, filling and removal of the container takes place on a single transport device.
  • EP 0'749'902 B1 shows a robot road, in which at the inlet of the individual products in the robot road, the individual products are counted and in each of which a new container is released onto the container band upon reaching the necessary for complete filling of a container number of individual products. It is further shown that the container band and the product band move in synchronism or that the container band and the product band are realized by a common band. It is problematic that with irregular introduction of individual products or their introduction on narrow product bands can not be ensured that all containers are completely filled.
  • Either WO 2004/113030 A1 , as well as EP 1'285'851 A1 take this problem and show a robot road, in which the individual products are also counted at the entrance to the robot road and in which by means of a mathematical optimization each counted individual product in a robot road in the container, respectively a storage position, for loading by a particular robot in assigned to the robot road.
  • This discrete loading optimization is computationally expensive in practice and likewise does not ensure that in case of irregular or in relation to the depositing positions to be filled per container less introduction of individual products all containers are completely occupied.
  • Another generic method is off EP 0'856'465 B1 known.
  • individual products and containers are fed in parallel transport facilities for individual products and containers in countercurrent along a robot road.
  • the transport direction of the product band and the container band is also chosen so that the principle of Gegenstromwirkweise is maintained.
  • the relative speed of the irregularly supplied individual products to the delivered containers, but also the delivery of the next to be filled Container controlled by the last in the conveying direction of the container or, in the case of failure, penultimate robot so that only completely filled containers leave the working area of this last robot.
  • Both the picking up of the products, as well as the storage of the products take place, as in DE 42 08 818 C2 shown by synchronization of the robot on the moving product band or container band.
  • EP 0'856'465 B1 described that as far as possible no individual products should leave the working area of the last robot in the direction of the individual products. From the representation of the invention of EP 0'856'465 B1 various measures are taken to see how this is achieved. From paragraphs 61 and 62 it can be seen that the control of the last robot in the direction of the container belt or, if it fails, the second robot can reduce the speed of the container belt, if otherwise an incompletely filled container from the working area of the last or penultimate robot would move. Further, it is described in paragraph 64 that thereby the containers located in the working area of the previous robots in the running direction of the container band are more or less filled by these previous robots. The fact that the performance of all robots is used until the container is completely filled when the container belt is retarded can be used to ensure that no individual products that have not been transferred into containers leave the robot line.
  • a robot line according to EP 0'856'465 B1 is therefore a combination of several, possibly due to the amount of supplied individual products, additionally necessary robots which translate as many individual products maximum to their complete filling in containers and a single-working, last or at the time of its failure second last robot, whose job is to fill containers completely and release after full filling, and release the next empty container in the robot road.
  • This method is therefore particularly suitable for robot lines, in which there are often complete interruptions in the introduction of individual products and in which the product band in the robot line can not be stopped or at least delayed.
  • the method proves to be disadvantageous when it comes to the supply of individual products by the majority only to fluctuations or if in the case of an interruption in the supply of individual products, the product band in the Umsetz Scheme the robot road can be stopped, which is usually the case.
  • this method requires a complex adjustment of the speed of the product strip and the container band relative to each other for different types of individual products, as far as the robots should be used evenly.
  • EP 1'819'994 B1 provides a method and an apparatus for the weight-determined formation of groups and containers, where several transport devices are used there for discharging the groups and containers formed. It is particularly important to form different groups on different transport devices and thereby increase the efficiency of the system. In this case, this method proves to be disadvantageous when it comes to form groups and containers as similar as possible and to ensure that all supplied individual products are implemented without at most incomplete groups or containers must be re-supplied.
  • EP 0'781'172 B1 is less concerned with the weight-determined loading by means of a robot road, but presents a method of making a prediction of the probability that a container can be filled completely effectively on the basis of historical weight values of the individual products. It turns out that above all the numerous presence of individual products for Ready loading of a container is critical.
  • the invention is based on the principle of cascaded countercurrent.
  • the conversion efficiency of each individual robot in a robotic route can be designed such that, regardless of the number of individual products brought about, an increase in the concentration of the container in the direction of travel of the container belt, for example linear or digressive, is ensured.
  • the number of robots in a robot road is determined by the individual products introduced. In the case of different types of individual products, which are processed in lots on the same robot line, the single product which requires the greatest utilization is determining. This utilization is usually determined by the number of individual products introduced, but in a few cases also by other criteria such as the weight of the individual products. If, for example, the number of brought-up individual products to determine the number of robots, the interpretation is carried out in practice according to the following procedure. In a first step, an average conversion time per individual product is calculated. This average turnaround time is determined by the pick and place handling time, the travel time between place of pickup and place of picking, product distribution of the individual products on the product line, and the size and geometry of the work area of each robot.
  • This Value is usually corrected in practice with a safety factor to compensate for disturbances such as missing containers, bad individual products, robot stop due to contamination, disturbances in the position and rotational position detection, etc.
  • the transport device for the individual products can be stopped in the transfer area of the robot road.
  • conversion region of the robot road is understood here and below to mean that region in which the products to be converted are detected by the robots of the robot road and converted into the corresponding containers to be filled.
  • working area of a robot is understood to mean that area which is covered by a single robot.
  • the work areas of the individual robots can overlap.
  • the conversion area of the robot road is made up of the sum of the work areas of the individual robots.
  • the filling of the depositing positions of each container in a robot line with at least two robots, which operate in a cascaded countercurrent process, realized so that the increase of the levels of the container in the Umsetz Scheme the robot road is maintained by each robot independently and as accurately as possible.
  • Concentration refers to the amount of currently delivered individual products in relation to the maximum expected number of individual products. Ideally, the concentration of individual products currently in the implementation area of the robot road is also taken into account. This measured concentration determines at all times which robot currently has control of the product band, the container band and the transfer performance of the robots.
  • Essential for the uniform utilization of the robot road is the setting of the desired filling level of the last in the running direction of the container belt and second last robot for that single product, which is introduced with the maximum number expected for the robot road.
  • the system is designed in such a way that the delivery of the maximum expected number of individual products means that the container belt is not controlled by the last robot.
  • one will set the desired level of the last and the second last robot so that Accordingly, the control of the container belt by the second-last robot takes place, thereby using the robot road more evenly.
  • a robot located in the middle between, in the direction of transport of the containers, first and last robot, or a degressive increase in the nominal filling levels assumes control of the container band, if half the number of maximum expected individual products - corresponds to concentration 50 - is delivered to the inlet of the robot road.
  • a threshold for the decrease in concentration is determined. If the decrease in concentration is less than the threshold value, the transition of the control of the container belt to a robot positioned further back in the transport direction of the container is shifted synchronously with the point in the single product flow at which the concentration decrease has occurred.
  • the permissible fill level of all robots is increased in accordance with the decrease in concentration. It should be noted that at most the permissible level of the first robot in the direction of the container must be increased more than the allowable level of the last in the direction of the container robot.
  • the robot which, because of the concentration of the individual products at the inlet, has the control of constantly checking whether this robot and the robots lying behind it in the running direction of the containers exceeds its set level or not, begins. As soon as these no longer exceed their nominal level, this robot takes control of the container belt from the second-to-last robot.
  • This process step ensures that even with a strong decrease in concentration in the individual product supply all individual products can be converted into containers and that as many containers in the front of the container band are still completely filled and can be removed. At best, a small overflow can not be avoided since the containers can no longer be completely filled by the third robot.
  • each robot is set based on the maximum expected concentration so that all robots together are able to completely translate the individual products on the product belt into containers on the container belt. Further, each individual robot is set to translate maximally so many products into containers that the increase in fill levels of the individual product containers on each robotic robot robot is maintained upon delivery of the maximum expected products.
  • the increase of the levels can be predicted depending on the relative speed of the transport devices for the individual products and for the container preferably linear or degressive rising.
  • the nominal speed of the transport device for the containers is set so that the number of deposit positions brought up per container corresponds to the maximum expected number of individual products. Ideally, this coordination is done in such a way that each robot is able to implement the corresponding number of individual products during a continuous activity. In practice, it will therefore be considered, for varieties of individual products, which differ significantly in the maximum concentration, in each case, the nominal conversion performance of each robot for each variety of individual products adapt.
  • the actual concentration measurement is carried out by transmitting the current production quantity to the robot road or by a measurement as accurate as possible with a sensor on or before the inlet to the robot road.
  • the earliest possible transmission of the number of brought-up individual products to the robot road has the advantage that it can react more quickly in case of strong concentration differences in the introduction of individual products.
  • the concentration is measured with a sensor, the position and rotational position or another characteristic of the individual products can be determined at best with the same sensor.
  • the concentration measurement must also take this speed into consideration.
  • the speed of containers on the one hand and individual products on the other hand relative to each other is controlled uniformly by the method, and it is ensured that each container leaves the transfer area of the robot road as completely as possible.
  • a further advantage is that transport belts, ie transport means in which the containers are arranged at fixed distances on the means of transport, can also be used as depositing belts.
  • transport chains which carry containers via fixedly mounted on the chain carrier or thermoforming machines, which introduce formed at regular intervals wells.
  • both partial goals ie the one hand as complete as possible filling all container leaving the conversion area and at the same time complete emptying of the product band, simultaneously be realized depends inter alia on whether only a single variety of products on the product tape is present and must be implemented in the container , or if several varieties are mixed up on the product line. In this case, the simultaneous achievement of both objectives is hardly possible, unless the composition of the products on the product band can be quantitatively controlled by the individual varieties, or no specific composition of products within the containers is necessary.
  • FIG. 1 run the product band 6 and the container belt 7 in the opposite direction parallel to each other and the container 3 are introduced at a fixed distance.
  • the controller 11a of the last robot 4a takes over the central control function.
  • the counting and at the same time the position recognition of the products takes place with the camera 9a of the last robot 4a.
  • FIG. 2 In addition, a central controller 11 is used. The counting of the products takes place with a camera 8 at the inlet of the product belt 6.
  • FIG. 1 On the container belt 7 is in FIG. 1 a motor 19 is shown, which is connected to the controller 11a of the last robot 4a, and whose speed and thus the transport speed of the container 3 is controlled on this container belt 7 accordingly. If instead of a controller 11a, 11b, 11c to each individual robot a - in FIG. 2 As shown, central controller 11 is used for all robots 4a, 4b,..., 4n, motor 19 is correspondingly connected to this controller 11. If a thermoforming machine or a tubular bag machine is used to feed the containers, their own control system is to be connected to the controller 11a of the last robot 4a, or alternatively to the central controller 11.
  • the drive 18 of the product belt 6 is shown without connection to a controller, as illustrated thereby is to be that the product belt runs at a predetermined speed and, accordingly, the amount of brought up on the product band 6 individual products 2 can not be influenced.
  • the motor 18 to be connected to the central controller 11 or with the controllers 11a, ..., 11n, so that the central controller 11 or the controllers 11a, ..., 11n the respective speed of the product strip 6 for the calculation of can calculate the effective position of the individual products 2 on the product band 6 at a certain time and so that the controls can bring the product band to a standstill when no more individual products 2 are fed to the inlet.
  • a camera 8 is shown, which detects the entire width of the product band 6 and counts the zoomed individual products 2 and transmits the value to the central controller 11.
  • a camera 9a is shown, which also detects the entire width of the product band and counts the products and transmits them to the robot controller 11a.
  • the camera 9a detects the position, ie the position and rotational position, of the individual products 2. If necessary, this camera 9a will scan and evaluate only a specific region of the product band 6 for position detection.
  • All further robots 4b, 4c are likewise equipped with a sensor, here camera, 9b, 9c, these cameras detecting the rotational position and position of those individual products 2 which are necessary for the filling of the containers 3 by the robots 4b, 4c according to the invention.
  • a sensor here camera, 9b, 9c
  • the camera 8 detects the entire product band 6 and the central controller 11 transmit the results to the controllers 11a, 11b,..., 11n.
  • the central controller 11 can manage the results and possibly also the motion planning for all robots 4a, 4b,..., 4n.
  • FIG. 3 a schematic course for the most common product which robots street with full supply of individual products most heavily utilizes.
  • FIG. 4 shows a schematic course for a medium product.
  • FIG. 5 finally shows a course for a product with a relatively low supply, which does not load the plant.
  • the design of the plant is carried out according to the variety, which requires the largest capacity of robot road 1.
  • the number of required robots 4a, 4b, ..., 4n set and determines the target speed of the container belt 7.
  • a threshold 32 is set. This threshold value 32 determines how much the supply of individual products 2 may go back so that the robot 4b, 4n retains control over the supply of the containers 3, which alone would have control over the container band 7 due to the supply.
  • the product belt 6 is stopped and the control responsibility is transferred to the last robot 4a. All robots 4a, ..., 4n go into waiting position and the system goes on hold until at position 27 again products are supplied. Due to the then brought up number 28 of individual products 2 immediately a transition of control responsibility to one of the robots 4a, ..., 4n instead.
  • FIG. 6 This control transition is in FIG. 6 shown.
  • On the left side of the scheme is the case according to FIG. 5 represented where the threshold value 32 is not exceeded due to the decrease 30.
  • On the right side is the case according to FIG. 3 and 4 represented where the threshold 32 is exceeded.
  • It is essential that all robots 4c, ..., 4n are instructed immediately to fill the containers 3 as far as possible to the desired level of robot 4b and that at the same robot 4b takes control of the container belt 7. Only when point 30 has reached the actually responsible robot 4c,..., 4n, the nominal filling levels are lowered back to normal level. The then responsible robot takes control of the container belt 7 as soon as all the robots behind him are also below the desired level. Until then, robot 4b retains control of container belt 7.
  • the setpoint levels are set during the commissioning of robot road 1 for each type of individual product 2.
  • FIG. 7 is shown as an example for two grades how the nominal levels are set.
  • the curve 41 shows the desired filling levels for a single product 2, which in terms of numbers requires the entire capacity 100% of the robot road 1.
  • the setpoint levels rise linearly because there are no reserves available for a degressive increase in the level.
  • Curve 40 shows a declining slope - represented by points 40d and 40e.
  • curve 42 even with maximum introduction of the variety of individual products 2, only so many individual products 2 are introduced that the 70% capacity is required.
  • the robot 4d has the control responsibility over the container belt 7 at maximum delivery of individual products. This definition is shown by the lines 42c and 42d. Although Robot 4d has the responsibility, at his position in Robot Street 1 he will never completely fill the container, but only to about 55% as shown in point 42e.
  • a failure is compensated by, on the one hand, the desired levels of the still be adapted to operating robots and in that in the event of failure of a controlling robot, the immediately adjacent, underlying robot takes control of the pre-accession of the container 3.
  • the operating principle can also be applied to product band 6 and container band 7 running at an angle to each other, as long as the crossing region is large enough, although disadvantages must be accepted through this crossing and the resulting level differences and mutual covers of the individual transport devices 6 and 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Warehouses Or Storage Devices (AREA)

Abstract

In einem Verfahren zum Einsetzen von Einzelprodukten (2) in Behälter (3) mittels werden in einer Roboterstrasse (1) mit aus mindestens zwei Robotern (4a, 4b, 4c) Einzelprodukte (2) in einem Umsetzbereich der Roboterstrasse (1) einzeln ergriffen und in Behälter (3) eingesetzt. Die Einzelprodukte (2) und die Behälter (3) werden im Gegenstrom auf mindestens einer Transportvorrichtung (6) für die Einzelprodukte und auf mindestens einer Transportvorrichtung (7) für die Behälter (7) herantransportiert. Die Anlieferung eines nächsten zu befüllenden Behälters (3) in den Umsetzbereich wird dabei durch einen beliebigen Roboter (4a, 4b, 4c) gesteuert. Der Roboter (4a, 4b, 4c), welcher die Anlieferung des nächsten zu befüllenden Behälters (3) steuert, wird aus der Anzahl der gegenwärtig am Einlauf der Roboterstrasse (1) herangeführten Einzelprodukte (2) bestimmt.

Description

    Technisches Gebiet
  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Einlegen von Einzelprodukten in Behälter in einer Roboterstrasse gemäss Oberbegriff des Anspruchs 1.
  • Stand der Technik
  • Die Erfindung betrifft eine Roboterstrasse, wie sie zum Umsetzen von Einzelprodukten in Ablegegruppen verwendet wird, die eine bestimmte Anzahl von Einzelprodukten aufnehmen können. Im Folgenden wird anstelle des Begriffs Ablegegruppe der Begriff Behälter verwendet, wobei darunter weniger der Behälter als solches, sondern viel mehr Einzelprodukte oder eine Gruppe von Einzelprodukten verstanden wird, welche nach dem Umsetzen durch die Roboter in einer definierten Position gegenüber einer Transportvorrichtung und allenfalls in einer definierten Position innerhalb der Gruppe von Einzelprodukten zu liegen kommen.
  • Dabei werden üblicherweise die Einzelprodukte auf einem Produktband und die Behälter auf einem Behälterband angeliefert und an den an fester Position stehenden Robotern entlang geführt. Ein Behälterband kann dabei eine Transportvorrichtung sein, auf der in festem oder veränderlichen Abstand, aber in Bezug auf die Transportvorrichtung selber ortsfeste Behälter oder kartesisch bestimmte Ablegepositionen herangeführt werden. Es kann sich bei Behälterbändern aber auch um Tiefziehmaschinen oder Förderketten handeln, auf welchen sich in festem, oder nur aufgrund der Indexierung veränderlichem, Abstand Mulden oder Behälter befinden.
  • Aus Sicht einer zentralen Steuerung oder der einzelnen Steuerungen jedes Roboters einer solchen Roboterstrasse besteht kein Unterschied, ob es sich um Behälter oder Mulden oder kartesische Ablegepositionen handelt.
  • In der Praxis werden die zu befüllenden Behälter meist auf einer ersten Transportvorrichtung angeliefert und dort angestaut. Anschliessend werden die Behälter von der ersten Transportvorrichtung auf eine zweite Transportvorrichtung, effektiv das eigentliche Behälterband, übergeben, auf welcher das Füllen mit den Einzelprodukten geschieht, und nach vollständiger Befüllung auf eine dritte Transportvorrichtung für den Abtransport der befüllten Behälter übergeben. Bei der Befüllung von ortsfest mit dem Behälterband verbundenen Behältern, insbesondere Mulden einer Tiefziehmaschine oder Einlaufketten von Schlauchbeutelmaschinen, dagegen erfolgt die Heranführung, Befüllung und der Abtransport der Behälter auf einer einzigen Transportvorrichtung.
  • In DE 42'08'818 C2 ist eine Roboterstrasse gezeigt, bei der die Roboter bezüglich des Produktbandes und Behälterbandes nicht an fester Position stehen, sondern in deren Laufrichtung begrenzt und mechanisch gekoppelt bewegbar sind und welche orthogonal zu deren Laufrichtung einzeln bewegbar sind. Dabei kann sowohl das Aufgreifen der Einzelprodukte, als auch das Ablegen der Einzelprodukte in einen Behälter bei sich bewegendem Produktband oder Behälterband erfolgen. Allenfalls wird das die Einzelprodukte heranführende Produktband zeitweise gestoppt, was die Kopplung an eine kontinuierlich produzierende Herstellmaschine für Einzelprodukte erschwert, und es kann jeweils nur ein Roboter zu einem bestimmten Zeitpunkt ein Produkt aufnehmen oder ablegen und nicht beide Roboter gemeinsam. Auch wird kein Vorteil aus der gezeigten Anordnung des Produktbandes in Gleichlauf- und in Gegenlaufrichtung ersichtlich.
  • EP 0'749'902 B1 zeigt demgegenüber eine Roboterstrasse, bei welcher am Einlauf der Einzelprodukte in die Roboterstrasse die Einzelprodukte gezählt werden und bei welcher jeweils bei Erreichen der zur vollständigen Befüllung eines Behälters notwendigen Zahl von Einzelprodukten ein neuer Behälter auf das Behälterband freigegeben wird. Weiter ist gezeigt, dass das Behälterband und das Produktband sich im Gleichlauf bewegen oder dass das Behälterband und das Produktband durch ein gemeinsames Band realisiert werden. Dabei ist problematisch, dass bei unregelmässiger Heranführung von Einzelprodukten oder bei deren Heranführung auf schmalen Produktbändern nicht sichergestellt werden kann, dass alle Behälter vollständig befüllt sind.
  • Sowohl WO 2004/113030 A1 , als auch EP 1'285'851 A1 nehmen diese Problemstellung auf und zeigen eine Roboterstrasse, bei welcher die Einzelprodukte am Einlauf in die Roboterstrasse ebenfalls gezählt werden und bei welcher mittels einer mathematischen Optimierung jedes gezählte Einzelprodukt einem sich in der Roboterstrasse befindenden Behälter, respektive einer Ablegeposition, zur Beladung durch einen bestimmten Roboter in der Roboterstrasse zugewiesen wird. Diese diskrete Beladeoptimierung gestaltet sich in der Praxis rechenaufwendig und stellt ebenfalls nicht sicher, dass bei unregelmässiger oder im Verhältnis zu den zu befüllenden Ablegepositionen je Behälter geringeren Heranführung von Einzelprodukten alle Behälter vollständig belegt sind.
  • Dieses Problem der unvollständigen Befüllung wird sowohl bei DE 29817239 U , als auch bei EP 1'352'831 B1 angesprochen, wobei dort jeweils eine Zwischenspeicherung von Einzelprodukten vorgeschlagen wird, welche bei Bedarf zur vollständigen Befüllung von Behältern verwendet werden können. Nachteilig dabei ist, dass die Leistung zur Speicherung und Entnahme von Einzelprodukten durch einen oder mehrere Roboter in den Zwischenspeicher an der Gesamtleistung der Roboterstrasse in Abzug zu bringen ist.
  • Weitere vergleichbare Anlagen sind aus EP 1'160'166 B1 , hier zur gleichzeitigen Befüllung von stehenden und liegenden Produkten, sowie aus FR 2754239 A1 bezüglich separater Zuführung verschiedener Einzelprodukte bekannt. Diese Anlagen weisen aber allesamt keine neuen Ansätze bezüglich der eingangs erwähnten Problemstellung auf.
  • Ein anderes gattungsgemässes Verfahren ist aus EP 0'856'465 B1 bekannt. Hier werden Einzelprodukte und Behälter bei parallelen Transporteinrichtungen für Einzelprodukte und Behälter im Gegenstrom entlang einer Roboterstrasse geführt. Bei sich einfach oder mehrfach kreuzenden Transporteinrichtungen wird die Transportrichtung des Produktbandes und des Behälterbandes ebenfalls so gewählt, dass das Prinzip der Gegenstromwirkweise aufrecht erhalten bleibt. Dabei wird die Relativgeschwindigkeit der unregelmässig angelieferten Einzelprodukte zu den angelieferten Behältern, aber auch die Anlieferung des nächsten zu befüllenden Behälters, von der Steuerung des in Förderrichtung der Behälter letzten oder, bei dessen Ausfall, vorletzten Roboters so gesteuert, dass nur vollständig gefüllte Behälter den Arbeitsbereich dieses letzten Roboters verlassen. Sowohl das Aufgreifen der Produkte, als auch das Ablegen der Produkte erfolgen dabei, wie in DE 42 08 818 C2 gezeigt, durch Aufsynchronisation des Roboters auf das bewegte Produktband oder Behälterband. Weiter ist in EP 0'856'465 B1 beschrieben, dass möglichst keine Einzelprodukte den Arbeitsbereich des in Laufrichtung der Einzelprodukte letzten Roboters verlassen sollen. Aus der Darstellung der Erfindung von EP 0'856'465 B1 gehen verschiedene Massnahmen hervor, wie das erreicht wird. Aus Absatz 61 und 62 geht hervor, dass die Steuerung des in Laufrichtung des Behälterbandes letzten Roboters, oder, bei dessen Ausfall, vorletzten Roboter das Behälterband in der Geschwindigkeit reduzieren kann, wenn sich ansonsten ein unvollständig befüllter Behälter aus dem Arbeitsbereich des letzten oder vorletzten Roboters bewegen würde. Weiter ist in Absatz 64 beschrieben, dass dadurch sich die in Laufrichtung des Behälterbandes im Arbeitsbereich der vorherigen Roboter befindlichen Behälter durch diese vorherigen Roboter stärker oder vollständig befüllt werden. Dadurch, dass bei Verzögerung des Behälterbandes die Leistung aller Roboter bis zur vollständigen Befüllung der Behälter genutzt wird, kann sichergestellt werden, dass keine nicht in Behälter übersetzten Einzelprodukte die Roboterstrasse verlassen.
  • Weiter wird aus EP 0'856'465 B1 bekannt, dass dieses Prinzip auch nur mit einem einzelnen Roboter realisiert werden kann, was bei einer entsprechend geringen Anzahl an in Behälter zu übersetzenden Einzelprodukten häufig der Fall ist.
  • Aus US 6'122'895 und EP 0'856'465 B1 gehen noch weitere Ausführungsmerkmale hervor. Insbesondere wird auch ein Verfahren beschrieben, bei welchem die Anlieferung des nächsten zu befüllenden Behälters in den Arbeitsbereich der Roboter abhängig von der Anlieferung der notwendigen Anzahl von Einzelprodukte erfolgt.
  • Zusammenfassend handelt es sich bei einer Roboterstrasse gemäss EP 0'856'465 B1 also um eine Kombination von mehreren, allenfalls aufgrund der Menge der zugeführten Einzelprodukte, zusätzlich notwendigen Robotern, welche möglichst viele Einzelprodukte maximal bis zu deren vollständigen Befüllung in Behälter übersetzen und um einen einzeln arbeitenden, letzten oder bei dessen Ausfall zweitletzten Roboter, dessen Aufgabe es ist, Behälter vollständig zu befüllen und nach vollständiger Befüllung freizugeben, sowie den nächsten leeren Behälter in die Roboterstrasse freizugeben.
  • Dieses Verfahren eignet sich daher insbesondere für Roboterstrassen, bei welchen es häufig zu kompletten Unterbrüchen in der Heranführung von Einzelprodukten kommt und bei welchen das Produktband im Bereich der Roboterstrasse nicht gestoppt oder zumindest verzögert werden kann. Dort ist es erforderlich, dass alle Roboter möglichst viele Einzelprodukte in Behälter umsetzen, weil es aufgrund des Unterbruchs in der Heranführung von Einzelprodukten zu einem Stillstand des Behälterbandes kommt, da keine vollständig befüllten Behälter aus dem Arbeitsbereich des letzen Roboters bewegt werden können, aber im hinteren Bereich der Roboterstrasse noch Einzelprodukte in Behälter umgesetzt werden müssen. Es kommt in diesem Fall zu einer anschliessenden unvermeidbaren Beschleunigung des Behälterbandes, sobald auf dem Produktband wieder Einzelprodukte angeliefert werden, da der in Laufrichtung des Behälterbandes letzte Roboter selber nicht arbeiten kann, da er in den bereits vollständig oder nahezu vollständig befüllten Behältern keine oder nur einzelne leere Ablegepositionen mehr vorfindet.
  • Das Verfahren erweist sich aber als nachteilig, wenn es bei der Zuführung von Einzelprodukten mehrheitlich nur zu Schwankungen kommt oder wenn im Falle eines Unterbruchs in der Zuführung von Einzelprodukten das Produktband im Umsetzbereich der Roboterstrasse gestoppt werden kann, was meist der Fall ist. In diesen Fällen kommt es zu einer übermässigen Auslastung der Roboter in einzelnen Bereichen der Roboterstrasse und es kommt zu deutlich grösseren Geschwindigkeitsunterschieden des Behälterbandes, als es aufgrund der Schwankungen der Zuführung der Einzelprodukte erforderlich wäre. Weiter nachteilig ist, dass dieses Verfahren bei unterschiedlichen Sorten von Einzelprodukten eine jeweils aufwendige Abstimmung der Geschwindigkeit des Produktebandes und des Behälterbandes relativ zueinander erfordert, soweit die Roboter gleichmässig ausgelastet sein sollen.
  • Weiter ist es so, dass in der Praxis auch bei Anwendung dieses Verfahrens jeweils häufig noch eine Kontrolle der vollständigen Befüllung der Behälter im Anschluss an den Umsetzbereich der Roboterstrasse erforderlich ist. Obwohl der letzte Roboter steuerungstechnisch sicherstellt, dass alle Behälter vollständig beladen sind, so ist es aus praktischen Gesichtspunkten so, dass gewisse Produkte nicht sauber ergriffen werden, beim Ergreifen beschädigt werden oder nicht präzise umgesetzt werden. Entsprechend kann davon ausgegangen werden, dass das Ziel der vollständigen Befüllung der Behälter mittels dieses Verfahrens zwar theoretisch erreicht wird, aber in der Praxis trotzdem eine Prüfung erforderlich ist.
  • Schliesslich ist aus EP 1'226'408 B1 eine Anlage mit mindestens zwei Robotern bekannt, bei welcher aufgrund einer Gewichtsbestimmung der umzusetzenden Einzelprodukte eine gewichtsbestimmte Beladung der Behälter erfolgt.
  • EP 1'819'994 B1 dagegen stellt ein Verfahren und eine Vorrichtung zur gewichtsbestimmten Bildung von Gruppen und Behältern vor, wobei dort mehrere Transportvorrichtungen zum Abführen der gebildeten Gruppen und Behälter zum Einsatz kommen. Dabei geht es insbesondere darum, unterschiedliche Gruppen auf unterschiedlichen Transportvorrichtungen zu bilden und dadurch die Effizienz der Anlage zu steigern. Dabei erweist sich dieses Verfahren als nachteilig, wenn es darum geht, möglichst gleichartige Gruppen und Behälter zu bilden und dabei sicherzustellen, dass alle zugeführten Einzelprodukte umgesetzt werden ohne dass allenfalls unvollständige Gruppen oder Behälter erneut zugeführt werden müssen.
  • EP 0'781'172 B1 geht demgegenüber weniger auf die gewichtsbestimmte Beladung mittels einer Roboterstrasse selber ein, sondern stellt ein Verfahren vor, wie aufgrund historischer Gewichtswerte der Einzelprodukte eine Vorausbestimmung der Wahrscheinlichkeit gemacht wird, dass ein Behälter effektiv vollständig gefüllt werden kann. Dabei zeigt sich, dass vor allem das zahlreiche Vorhandensein von Einzelprodukten zur Fertigbeladung eines Behälters kritisch ist.
  • Es ist daher die Aufgabe gemäss der vorliegenden Erfindung, ein Verfahren, sowie eine zugehörige Vorrichtung, zu schaffen, bei welchen in einer Roboterstrasse im Gegenstromverfahren eine möglichst gleichmässige Umsetzung von Einzelprodukten in Behälter, beispielsweise Blister auf einer Transportvorrichtung, Mulden einer Gruppierkette, Einzelproduktestapel einer mit Mitnehmern versehenen Kette oder auch tiefgezogene Mulden einer Tiefziehverpackungsmaschine, realisiert werden kann, um so die Effizienz und den gleichmässigen Betrieb der Anlage zu verbessern, ohne gleichzeitig den Aufwand für das Handling der zu befüllenden Behälter massgeblich zu erhöhen.
  • Diese Aufgabe lösen ein Verfahren und eine Vorrichtung mit den Merkmalen des Patentanspruchs 1 beziehungsweise 16.
  • Darstellung der Erfindung
  • Der Erfindung liegt das Prinzip des kaskadierten Gegenstromes zugrunde. Durch den Einsatz des kaskadierten Gegenstromes kann die Umsetzleistung jedes einzelnen Roboters in einer Roboterstrasse derart ausgelegt werden, dass unabhängig von der Anzahl der herangeführten Einzelprodukte eine, beispielsweise lineare oder degressive, Zunahme der Konzentration der Befüllung der Behälter in Laufrichtung des Behälterbandes gewährleistet ist.
  • Die Anzahl der Roboter in einer Roboterstrasse wird durch die herangeführten Einzelprodukte bestimmt. Dabei ist bei unterschiedlichen Sorten von Einzelprodukten, welche auf der gleichen Roboterstrasse in Losen verarbeitet werden, dasjenige Einzelprodukt bestimmend, welches die grösste Auslastung erfordert. Meist ist diese Auslastung durch die Anzahl der herangeführten Einzelprodukte bestimmt, in wenigen Fällen aber auch durch andere Kriterien wie beispielsweise dem Gewicht der Einzelprodukte. Soweit beispielsweise die Anzahl der herangeführten Einzelprodukte die Anzahl der Roboter bestimmen soll, erfolgt die Auslegung in der Praxis nach folgendem Verfahren. In einem ersten Schritt errechnet man eine durchschnittliche Umsetzzeit je Einzelprodukt. Diese durchschnittliche Umsetzzeit wird bestimmt durch die Handlingzeit beim Aufnehmen und Ablegen, durch die Verfahrzeit zwischen Aufnehmeort und Ablegeort, durch die Produktverteilung der Einzelprodukte auf dem Produktband und durch die Grösse und Geometrie des Arbeitsbereiches jedes Roboters. Aus dieser durchschnittlichen Umsetzzeit und aus der Anzahl der maximal zu erwartenden Anzahl Einzelprodukte bestimmt sich nach Aufrundung die minimal notwendige Anzahl der Roboter. Dieser Wert wird in der Praxis meist noch mit einem Sicherheitsfaktor korrigiert, um Störungen, wie fehlende Behälter, schlechte Einzelprodukte, Roboterhalt aufgrund von Verschmutzung, Störungen in der Positions- und Drehlageerkennung, etc., zu kompensieren.
  • Ebenfalls ist es in der Praxis meist so, dass die Transportvorrichtung für die Einzelprodukte im Umsetzbereich der Roboterstrasse gestoppt werden kann.
  • Unter Umsetzbereich der Roboterstrasse wird hier und im Folgenden derjenige Bereich verstanden, in welchem die umzusetzenden Produkte von den Robotern der Roboterstrasse erfasst und in die entsprechenden zu befüllenden Behälter umgesetzt werden. Im Gegensatz hierzu wird unter dem Arbeitsbereich eines Roboters derjenige Bereich verstanden, welcher von einem einzigen Roboter abgedeckt wird. Die Arbeitsbereiche der einzelnen Roboter können sich überschneiden. Der Umsetzbereich der Roboterstrasse setzt sich aus der Summe der Arbeitsbereiche der einzelnen Roboter zusammen.
  • Erfindungsgemäss wird die Befüllung der Ablegepositionen jedes Behälters bei einer Roboterstrasse mit mindestens zwei Robotern, welche im kaskadierten Gegenstromverfahren arbeiten, so realisiert, dass der Anstieg der Füllstände der Behälter im Umsetzbereich der Roboterstrasse durch jeden Roboter selbständig und möglichst genau aufrechterhalten wird.
  • Wesentlich für die Funktionsweise des kaskadierten Gegenstromverfahrens ist, dass die Konzentration der Einzelprodukte am Einlauf der Roboterstrasse gemessen wird. Unter Konzentration versteht man die Menge der gegenwärtig angelieferten Einzelprodukte im Verhältnis zur maximal erwarteten Anzahl der Einzelprodukte. Idealerweise wird auch die Konzentration der sich gegenwärtig im Umsetzbereich der Roboterstrasse befindenden Einzelprodukte mitberücksichtigt. Diese gemessene Konzentration bestimmt zu jedem Zeitpunkt, welcher Roboter gegenwärtig die Kontrolle über das Produkteband, über das Behälterband und über die Umsetzleistung der Roboter hat.
  • Soweit auf dem Produktband am Einlauf der Roboterstrasse keine Einzelprodukte - entspricht Konzentration 0 - herangeführt werden, wie das unmittelbar vor Produktionsbeginn oder bei Produktionsunterbrüchen der Fall ist, werden alle Roboter angewiesen, ihre gegenwärtig laufende Umsetzung eines Einzelproduktes abzuschliessen und danach in Wartestellung zu gehen. Ebenfalls wird die Transportvorrichtung für die Einzelprodukte und für die Behälter im Umsetzbereich zum Stillstand gebracht. Durch diesen Stillstand kann vermieden werden, dass es bei der erneuten Zuführung von Einzelprodukten zu grossen Schwankungen in der Umsetzleistung der Roboter kommt.
  • Wesentlich für die gleichmässige Auslastung der Roboterstrasse ist die Einstellung des Sollfüllstandes des in Laufrichtung des Behälterbandes letzten und zweitletzten Roboters für dasjenige Einzelprodukt, welches mit der maximal für die Roboterstrasse erwarteten Anzahl herangeführt wird. Dazu legt man die Anlage so aus, dass auch bei Anlieferung der maximal erwarteten Anzahl Einzelprodukte die Steuerung des Behälterbandes nicht durch den letzten Roboter erfolgt. Dazu wird man den Sollfüllstand des letzten und des zweitletzten Roboters so einstellen, dass entsprechend die Steuerung des Behälterbandes durch den zweitletzten Roboter erfolgt, um dadurch die Roboterstrasse gleichmässiger auszulasten.
  • Sobald auf dem Produktband am Einlauf der Roboterstrasse nur vereinzelt Einzelprodukte - entspricht Konzentration >0, aber nahezu =0 - angeliefert werden, übernimmt der in Transportrichtung der Behälter erste Roboter die Steuerung des Behälterbandes.
  • Entsprechend übernimmt bei linearem Anstieg der Sollfüllstände ein in der Mitte zwischen, in Transportrichtung der Behälter, erstem und letzten Roboter liegender Roboter oder bei degressivem Anstieg der Sollfüllstände ein um die Degression aus der Mitte verschobener Roboter die Steuerung des Behälterbandes, wenn die halbe Anzahl der maximal erwarteten Einzelprodukte - entspricht Konzentration 50 - am Einlauf der Roboterstrasse angeliefert wird.
  • Wenn auf der Roboterstrasse unterschiedliche Einzelproduktesorten in Losen verarbeitet werden, welche sich in der maximalen Anzahl der je Sorte herangeführten Einzelprodukte unterscheiden, unterscheidet sich die maximale Konzentration entsprechend dieser Differenz.
  • Der Übergang der Steuerung des Behälterbandes an einen in Transportrichtung der Behälter weiter hinten positionierten Roboter aufgrund eines Konzentrationsrückgangs ist hauptsächlich davon abhängig, wie gross der Konzentrationsrückgang ist. Entsprechend sind dort Vorkehrungen zu treffen, dass der, bevorzugterweise linear oder degressiv, steigende Füllstand der Behälter möglichst genau aufrecht erhalten bleibt. Gleichzeitig muss aber ausreichend Umsetzkapazität im Bereich der in Transportrichtung der Behälter ersten Roboter der Anlage vorhanden sein, damit die sich auf dem Produktband befindenden Produkte möglichst vollständig in Behälter umgesetzt werden können.
  • Dazu wird ein Schwellwert für den Konzentrationsrückgang bestimmt. Ist der Konzentrationsrückgang kleiner als der Schwellwert, wird der Übergang der Steuerung des Behälterbandes an einen in Transportrichtung der Behälter weiter hinten positionierten Roboter synchron mit der Stelle im Einzelproduktestrom verschoben, bei welcher der Konzentrationsrückgang eingetreten ist.
  • Ist der Konzentrationsrückgang dagegen grösser als der Schwellwert, wird der zulässige Füllstand aller Roboter entsprechend dem Konzentrationsrückgang erhöht. Dabei ist zu berücksichtigen, dass allenfalls der zulässige Füllstand der in Laufrichtung der Behälter ersten Roboter stärker erhöht werden muss als der zulässige Füllstand der in Laufrichtung der Behälter letzten Roboter.
  • Diese Erhöhung erfolgt so, dass der in Laufrichtung der Behälter zweitletzte Roboter sofort vollständig befüllen muss. Damit wird sichergestellt, dass der zweitletzte Roboter später die Kontrolle der Roboterstrasse übernehmen kann, bis die Anlage wieder im Gleichgewicht ist. Alle weiteren Roboter dürfen dann soweit befüllen, dass diese einen Füllstand erreichen könnten, welcher dem normalen Füllstand des zweitletzten Roboters entspricht. Der zweitletzte Roboter wird mit dem nun geringeren Produktestrom weiterhin voll arbeiten. Sobald die Stelle des Konzentrationsrückgangs denjenigen in Transportrichtung der Behälter weiter hinten positionierten Roboter erreicht hat, welcher aufgrund der Konzentration der Einzelprodukte am Einlauf der Roboterstrasse die Kontrolle hat, werden die zulässigen Füllstände in allen Robotern, ausser dem zweitletzten, wieder auf das normale Niveau abgesenkt. Gleichzeitig beginnt nun derjenige Roboter, welcher aufgrund der Konzentration der Einzelprodukte am Einlauf die Kontrolle hat, laufend zu prüfen, ob dieser und die in Laufrichtung der Behälter hinter ihm liegenden Roboter ihren Sollfüllstand überschreiten oder nicht. Sobald diese ihren Sollfüllstand nicht mehr überschreiten, übernimmt dieser Roboter die Kontrolle des Behälterbandes vom zweitletzten Roboter.
  • Durch diesen Verfahrensschritt wird sichergestellt, dass auch bei einem starken Konzentrationsrückgang in der Einzelproduktezuführung alle Einzelprodukte in Behälter umgesetzt werden können und dass möglichst viele Behälter im vorderen Bereich des Behälterbandes noch vollständig befüllt werden und abgeführt werden können. Dabei lässt sich ein kleiner Überlauf allenfalls nicht vermeiden, da die Behälter vom dritten Roboter an nicht mehr vollständig befüllt werden dürfen.
  • Der Übergang der Steuerung des Behälterbandes an einen in Transportrichtung der Behälter weiter vorne positionierten Roboter aufgrund eines Konzentrationsanstiegs erfolgt immer unmittelbar wenn ein solcher Konzentrationsanstieg am Einlauf der Roboterstrasse festgestellt wird. Dadurch wird sichergestellt, dass auch bei stossweiser Anlieferung von Einzelprodukten immer alle Einzelprodukte umgesetzt werden können.
  • Jeweils alle Roboter, welche Ihren Sollfüllstand der Behälter erreicht haben und welche in Transportrichtung der Behälter vor dem Roboter, welcher gegenwärtig das Behälterband steuert, angeordnet sind, gehen in Warteposition, obwohl allenfalls Einzelprodukte in Ihrem Arbeitsbereich sind und die Behälter in Ihrem Arbeitsbereich noch nicht vollständig belegt sind. Damit wird insbesondere sichergestellt, dass Einzelprodukte auch in die Arbeitsbereiche der in Laufrichtung der Behälter ersten Roboter gelangen und dort umgesetzt werden.
  • Die Nominalleistung jedes Roboters wird aufgrund der maximal erwarteten Konzentration, so eingestellt, dass alle Roboter gemeinsam in der Lage sind, die Einzelprodukte auf dem Produktband vollständig in Behälter auf dem Behälterband zu übersetzen. Weiter wird jeder einzelne Roboter so eingestellt, dass er maximal so viele Produkte in Behälter übersetzt, dass der Anstieg der Füllstände der Behälter mit Einzelprodukten an jedem Roboter der Roboterstrasse bei Anlieferung der maximal erwarteten Produkte aufrechterhalten bleibt. Der Anstieg der Füllstände kann dabei in Abhängigkeit der Relativgeschwindigkeit der Transporteinrichtungen für die Einzelprodukte und für die Behälter bevorzugterweise linear oder degressiv steigend vorausbestimmt werden. Die nominale Geschwindigkeit der Transportvorrichtung für die Behälter wird so eingestellt, dass die Anzahl der je Behälter herangeführten Ablegepositionen der maximal erwarteten Anzahl Einzelprodukte entspricht. Idealerweise erfolgt diese Abstimmung so, dass jeder Roboter bei dauernder Tätigkeit in der Lage ist, die entsprechende Anzahl Einzelprodukte umzusetzen. In der Praxis wird man sich daher überlegen, für Sorten von Einzelprodukten, welche sich in der maximalen Konzentration deutlich unterscheiden, jeweils auch die nominelle Umsetzleistung jedes Roboters für jede Sorte von Einzelprodukten anzupassen.
  • Die eigentliche Konzentrationsmessung erfolgt durch Übermittlung der gegenwärtigen Produktionsmenge an die Roboterstrasse oder durch eine möglichst genaue Messung mit einem Sensor am oder vor dem Einlauf zur Roboterstrasse. Eine möglichst frühe Übermittlung der Anzahl der herangeführten Einzelprodukte an die Roboterstrasse hat den Vorteil, dass bei starken Konzentrationsunterschieden in der Heranführung von Einzelprodukten schneller reagiert werden kann. Soweit die Konzentration mit einem Sensor gemessen wird, kann allenfalls mit demselben Sensor auch die Position und Drehlage oder eine andere Eigenschaft der Einzelprodukte ermittelt werden.
  • Eine zusätzliche Verbesserung der Gleichmässigkeit der Auslastung der Roboterstrasse und der möglichst vollständigen Befüllung der Behälter kann dadurch erreicht werden, dass auch die Verteilung der Einzelprodukte im Umsetzbereich der Roboterstrasse berücksichtigt wird.
  • Wenn das Produktband in seiner Geschwindigkeit kontinuierlich angepasst werden kann, dann muss entsprechend die Konzentrationsmessung auch diese Geschwindigkeit laufend mitberücksichtigen.
  • Dadurch wird sichergestellt, dass die Roboterstrasse zu jedem Zeitpunkt möglichst effizient arbeitet und dass die einzelnen Roboter gleichmässig ausgelastet sind. Gleichzeitig wird durch die kaskadierte Steuerung des Anstiegs der Füllstände der Behälter erreicht, dass keine aufwendige Vorausberechnung und Zuweisung von umzusetzenden Produkten an einzelne Roboter notwendig wird. Schliesslich wird auch erreicht, dass es nicht mehr zu grossen Geschwindigkeitsunterschieden auf der Transportvorrichtung der Behälter kommt.
  • Die Geschwindigkeit von Behältern einerseits und Einzelprodukten andererseits relativ zueinander wird durch das Verfahren gleichmässig gesteuert, und es wird sichergestellt, dass jeder Behälter den Umsetzbereich der Roboterstrasse möglichst vollständig befüllt verlässt.
  • Ein weiterer Vorteil besteht darin, dass als Ablegebänder auch Transportketten, also Transportmittel, bei welchen die Behälter in festen Abständen auf dem Transportmittel angeordnet sind, verwendet werden können. Beispiele dafür sind Transportketten, welche über fest auf der Kette montierte Mitnehmer Behälter mitnehmen oder Tiefziehmaschinen, welche in festen Abständen geformte Mulden heranführen.
  • Ob beide Teilziele, also einerseits möglichst vollständige Befüllung aller den Umsetzbereich verlassenden Behälter und zugleich vollständiges Leeren des Produktbandes, gleichzeitig realisierbar sind, hängt unter anderem davon ab, ob nur eine einzige Sorte von Produkten auf dem Produktband vorhanden ist und in die Behälter umgesetzt werden muss, oder ob mehrere Sorten durcheinander auf dem Produktband angeliefert werden. In diesem Fall ist ein gleichzeitiges Erreichen beider Ziele kaum möglich, es sei denn, die Zusammensetzung der Produkte auf dem Produktband nach den einzelnen Sorten kann mengenmässig gesteuert werden, oder es ist keine bestimmte Zusammensetzung nach Produkten innerhalb der Behälter notwendig.
  • Weitere funktionale Vorteile liegen darin, dass - in Laufrichtung der Behälter betrachtet - am Anfang des Umsetzbereiches immer eine freie Ablegeposition im Behälter verfügbar ist, und gegen Ende des Umsetzbereiches - insbesondere, wenn auf dem Produktband verschiedene Produkte durcheinander angeliefert werden - die Wahrscheinlichkeit am grössten ist, dass sich ein gerade benötigtes Einzelprodukt im Arbeitsbereich dieses in Laufrichtung der Behälter letzten Roboters befindet und das Verlangsamen bzw. Abstoppen des Behälterbandes auf ein Minimum reduziert werden kann.
  • Diese Tatsache erweist sich als besonders wertvoll, wenn auf dem Produktband Einzelprodukte herangeführt werden, welche nach bestimmten Kriterien aufgrund von deren Eigenschaften und/oder Verteilung sortiert werden müssen. Beispielsweise können dadurch Einzelprodukte mit unterschiedlichen, normalverteilten Gewichten so umgesetzt werden, dass eine gleichgewichtige Befüllung der Behälter erfolgen kann.
  • Dadurch, dass für jedes Einzelprodukt eine Gewichts- oder Typbestimmung erfolgt, ist es auch naheliegend, dass direkt eine Einzelcharakteristik - beispielsweise eine Erfassung einer Seriennummer oder einer Trackingnummer - erfasst wird und dass aufgrund dieser Einzelcharakteristik Behälter mit einer oder mehreren bestimmten und dadurch bekannten Einzelcharakteristiken gebildet werden.
  • Bei Anordnung der Behälter in festen Abständen und damit auf festen Positionen des Behälterbandes ist meist keine Kontrolle der Behälter und keine Kontrolle, ob in den Behältern bestimmte Ablegepositionen frei sind, notwendig, da ausgehend von den festen vorhandenen Leerpositionen am Behältereinlauf der Roboterstrasse für jeden Behälter zu Beginn des Umsetzbereiches bekannt ist, an welcher Position - sowohl relativ innerhalb eines Behälter, als auch absolut entlang des Behälterbandes - eine freie Ablegeposition, allenfalls für welche Sorte, welches Merkmal oder welches Gewicht des Einzelproduktes, vorhanden ist.
  • Soweit die Behälter nicht in regelmässigem Abstand herangeführt werden können, muss die laufende Berechnung der Umsetzleistung jedes Roboters berücksichtigen, dass entsprechend der Anstieg des Sollfüllstandes jedes Roboters sich laufend verändern kann.
  • Mit dem erfindungsgemässen Verfahren und der Vorrichtung lässt sich bei einer hohen Verpackungsleistung erreichen, dass die Behälter stets möglichst vollständig gefüllt sind und dass die Roboter einer Roboterstrasse gleichmässig arbeiten, ohne dass aufwendige und rechenintensive Optimierungsmassnahmen ergriffen werden müssen. Zudem lässt sich erreichen, dass stets möglichst alle Einzelprodukte verpackt werden.
  • Weitere vorteilhafte Varianten des Verfahrens und vorteilhafte Ausführungsformen gehen aus den abhängigen Patentansprüchen hervor.
  • Zeichnungen und Abbildungen
  • Im Folgenden wird der Erfindungsgegenstand anhand eines bevorzugten Ausführungsbeispiels, welches in den beiliegenden Zeichnungen dargestellt ist, erläutert.
  • Es zeigen:
  • Figur 1:
    eine Aufsicht auf eine Roboterstrasse im Gegen- strombetrieb, wobei die Behälter in gleichmässigem Abstand mittels einer Transportkette oder Tief- ziehmaschine herangeführt werden. Dabei verfügt jeder Roboter über eine Steuerung und über einen Sensor.
    Figur 2:
    eine Aufsicht auf eine Roboterstrasse im Gegen- strombetrieb, wobei zusätzlich eine Zentralsteuerung und eine zentrale Sensoreinheit gezeigt sind.
    Figur 3:
    beispielhafter Verlauf der Heranführung von Ein- zelprodukten. Hier mit maximalem Produktestrom.
    Figur 4:
    ditto mit mittlerem Produktestrom.
    Figur 5:
    ditto mit minimalem Produktestrom.
    Figur 6:
    Ablauf der Schwellwertüberprüfung
    Figur 7:
    Ermittlung der Sollfüllstände
    Wege zur Ausführung der Erfindung
  • Eine Ausführungsform gemäss der Erfindung ist im Folgenden anhand der Figuren 1 und 2 näher beschrieben.
  • In Figur 1 laufen das Produktband 6 und das Behälterband 7 in Gegenrichtung parallel zueinander und die Behälter 3 werden in festem Abstand herangeführt. Die Steuerung 11a des letzten Roboters 4a übernimmt die Zentralsteuerungsfunktion. Die Zählung und gleichzeitig die Lageerkennung der Produkte erfolgt mit der Kamera 9a des letzten Roboters 4a.
  • In Figur 2 kommt zusätzlich eine Zentralsteuerung 11 zum Einsatz. Die Zählung der Produkte erfolgt mit einer Kamera 8 am Einlauf des Produktbandes 6.
  • Am Behälterband 7 ist in Figur 1 ein Motor 19 dargestellt, der mit der Steuerung 11a des letzten Roboters 4a verbunden ist, und dessen Drehzahl und damit die Transportgeschwindigkeit der Behälter 3 auf diesem Behälterband 7 entsprechend geregelt wird. Wird anstelle einer Steuerung 11a, 11b, 11c zu jedem einzelnen Roboter eine - in Figur 2 gezeigte - zentrale Steuerung 11 für alle Roboter 4a, 4b, ..., 4n verwendet, so ist der Motor 19 entsprechend mit dieser Steuerung 11 verbunden. Kommt zur Heranführung der Behälter eine Tiefziehmaschine oder eine Schlauchbeutelmaschine zum Einsatz, so ist deren eigene Steuerung mit der Steuerung 11a des letzten Roboters 4a, oder alternativ mit der Zentralsteuerung 11, zu verbinden.
  • Der Antrieb 18 des Produktebandes 6 ist ohne Verbindung zu einer Steuerung dargestellt, da dadurch veranschaulicht werden soll, dass das Produkteband mit vorgegebener Geschwindigkeit läuft und entsprechend die Menge der auf dem Produktband 6 herangeführten Einzelprodukte 2 nicht beinflusst werden kann. In der Praxis ist allerdings der Motor 18 mit der Zentralsteuerung 11 oder mit den Steuerungen 11a, ..., 11n zu verbinden, damit die Zentralsteuerung 11 oder die Steuerungen 11a, ..., 11n die jeweilige Geschwindigkeit des Produktebandes 6 für die Berechnung der effektiven Position der Einzelprodukte 2 auf dem Produkteband 6 zu einem bestimmten Zeitpunkt berechnen können und damit die Steuerungen das Produktband zum Stehen bringen können, wenn am Einlauf keine Einzelprodukte 2 mehr zugeführt werden.
  • Die eigentliche Erkennung der Produkte erfolgt mit einem oder mehreren Sensoren. In Figur 2 ist eine Kamera 8 gezeigt, welche die ganze Breite des Produktbandes 6 erfasst und die herangeführten Einzelprodukte 2 zählt und den Wert an die Zentralsteuerung 11 übermittelt. Alternativ ist in Fig. 1 am Produkteinlauf des Roboters 4a eine Kamera 9a gezeigt, welche ebenfalls die gesamte Breite des Produktbandes erfasst und die Produkte zählt und an die Robotersteuerung 11a überträgt. Daneben erfasst die Kamera 9a die Lage, also die Position und Drehlage, der Einzelprodukte 2. Allenfalls wird diese Kamera 9a für die Lageerkennung nur einen bestimmten Bereich des Produktbandes 6 abtasten und auswerten. Alle weiteren Roboter 4b, 4c sind ebenfalls mit einem Sensor, hier Kamera, 9b, 9c ausgerüstet, wobei diese Kameras die Drehlage und Position derjenigen Einzelprodukte 2 erfassen, welche zur erfindungsgemässen Befüllung der Behälter 3 durch die Roboter 4b, 4c notwendig sind. Mit einer hochauflösenden Kamera 8 kann es sich unter Umständen erübrigen, dass weitere Kameras 9a, 9b, 9c notwendig sind. Die Kamera 8 erfasst dann das gesamte Produktband 6 und die Zentralsteuerung 11 übermittelt die Resultate an die Steuerungen 11a, 11b, ..., 11n. Alternativ kann natürlich auch nur eine einzige Zentralsteuerung 11 die Resultate und allenfalls auch die Bewegungsplanung für alle Roboter 4a, 4b, ..., 4n verwalten.
  • Das eigentliche Verfahren wird anhand der Figuren 3 bis 5 beschrieben. Dabei zeigt Figur 3 einen schematischen Verlauf für das häufigste Produkt welches die Roboterstrasse bei voller Zuführung von Einzelprodukten am stärksten auslastet. Figur 4 zeigt einen schematischen Verlauf für ein mittelhäufiges Produkt. Figur 5 zeigt schliesslich einen Verlauf für ein Produkt mit verhältnismässig geringer Zuführung, welches die Anlage nicht auslastet.
  • Die Auslegung der Anlage erfolgt gemäss der Sorte, welche die grösste Kapazität der Roboterstrasse 1 erfordert. In Figur 3 wird das mit der maximalen Heranführung (=100) von Einzelprodukten 2 dargestellt. Anhand dieser maximalen Heranführung und anhand der Grösse der Behälter 3 wird die Anzahl der benötigten Roboter 4a, 4b, ..., 4n festgelegt und die Sollgeschwindigkeit des Behälterbandes 7 bestimmt. Weiter wird ein Schwellwert 32 festgelegt. Dieser Schwellwert 32 legt fest, wie stark die Zuführung von Einzelprodukten 2 zurückgehen darf, damit derjenige Roboter 4b, 4n die Kontrolle über die Zuführung der Behälter 3 behält, welcher alleine aufgrund der Zuführung die Kontrolle über das Behälterband 7 hätte. Ein Rückgang 23, welcher kleiner ist als der Schwellwert 32, bedeutet, dass nur eine Verschiebung der Kontrolle über die Zuführung der Behälter 3 zu einem der hinteren Roboter 4b, ..., 4n notwendig ist. Ein Rückgang 29 auf einen Wert 30, welcher stärker ausfällt als der Schwellwert 32 dagegen bedeutet, dass die Steuerung des zweitletzten Roboters 4b die Kontrolle über das Behälterband 7 hat. Man beachte aber, dass bei einer geringen Zuführung, wie in Figur 5 gezeigt, dieser Fall nicht eintreten kann, weil der Rückgang in der Produktzuführung nicht unter den Schwellwert 32 sinken kann. Kommt es zu einem Produktionsausfall 24-27, so wird das Produktband 6 angehalten und die Steuerungsverantwortung geht an den letzten Roboter 4a über. Alle Roboter 4a, ..., 4n gehen in Wartestellung und die Anlage geht in Wartestellung bis an Stelle 27 wieder Produkte zugeführt werden. Aufgrund der dann herangeführten Anzahl 28 von Einzelprodukten 2 findet sofort ein Übergang der Kontrollverantwortung an einen der Roboter 4a, ..., 4n statt.
  • Bei einem Rückgang in der Produktzuführung 30, bei welcher der Schwellwert 32 unterschritten wird und entsprechend der zweitletzte Roboter 4b die Kontrolle über die Zuführung der Behälter 3 hat, sind zwei Ziele zu erreichen. Einerseits sind alle Produkte 29 umzusetzen, welche vor dem Rückgang noch herangeführt wurden. Andererseits muss bei einem wieder einsetzenden normalen Produktstrom 33 die Kontrolle wieder an den aufgrund der zugeführten Anzahl 33 der Einzelprodukte 2 für die Kontrolle der Zuführung der Behälter 3 zuständigen Roboter 4a, ..., 4n übergehen.
  • Dieser Kontrollübergang ist in Figur 6 dargestellt. Auf der linken Seite des Schemas ist der Fall gemäss Figur 5 dargestellt, wo der Schwellwert 32 aufgrund des Rückgangs 30 nicht unterschritten wird. Auf der rechten Seite ist der Fall gemäss Figur 3 und 4 dargestellt, wo der Schwellwert 32 unterschritten wird. Wesentlich ist, dass alle Roboter 4c, ..., 4n sofort angewiesen werden, die Behälter 3 möglichst bis auf den Sollfüllstand von Roboter 4b zu befüllen und dass gleichzeitig Roboter 4b die Kontrolle über das Behälterband 7 übernimmt. Erst wenn Stelle 30 den eigentlich zuständigen Roboter 4c, ..., 4n erreicht hat, werden die Sollfüllstände wieder auf normales Niveau abgesenkt. Der dann zuständige Roboter übernimmt die Kontrolle über das Behälterband 7, sobald alle hinter ihm liegenden Roboter ebenfalls wieder unter Sollfüllstand liegen. Bis dahin behält Roboter 4b die Kontrolle über das Behälterband 7.
  • Die Einstellung der Sollfüllstände erfolgt bei der Inbetriebnahme der Roboterstrasse 1 für jede Sorte von Einzelprodukten 2. In Figur 7 ist beispielhaft für zwei Sorten dargestellt, wie die Sollfüllstände eingestellt werden. Dabei zeigt die Kurve 41 die Sollfüllstände für ein Einzelprodukt 2, welches anzahlmässig die ganze Kapazität 100% der Roboterstrasse 1 erfordert. Die Sollfüllstände steigen linear an, da keine Reserven für einen degressiven Anstieg der Füllstande zur Verfügung stehen. Kurve 40 zeigt einen degressiven Anstieg - dargestellt durch die Punkte 40d und 40e. Bei Kurve 42 dagegen werden auch bei maximaler Heranführung der Sorte von Einzelprodukten 2 nur soviele Einzelprodukte 2 herangeführt, dass die Kapazität 70% erforderlich ist. Entsprechend hat hier der Roboter 4d bei maximaler Heranlieferung von Einzelprodukten die Steuerungsverantwortung über das Behälterband 7. Diese Festlegung ist mit den Linien 42c und 42d dargestellt. Obwohl Roboter 4d die Verantwortung hat, wird er an seiner Position in der Roboterstrasse 1 aber den Behälter nie ganz befüllen, sondern nur bis etwa 55% wie in Punkt 42e dargestellt.
  • Nicht näher anhand von Figuren erläutert wird der Ausfall eines Roboters 4a, ..., 4n. Ein Ausfall wird dadurch kompensiert, dass einerseits die Sollfüllstände der noch arbeitenden Roboter angepasst werden und dadurch, dass im Falle eines Ausfalls eines kontrollierenden Roboters, der jeweils unmittelbar benachbarte, dahinterliegende Roboter die Kontrolle über die Heranführung der Behälter 3 übernimmt.
  • Diese Vorgehensweise kann nicht mit einem einzelnen Roboter 4a angewandt werden, da es das Verfahren erfordert, dass mit Ausnahme eines über den Schwellwert 32 hinausgehenden Produktionsrückgangs, teilbefüllte Behälter 3 von mindestens einem Roboter 4b in den Arbeitsbereich des Roboters 4a angeliefert werden.
  • Das Funktionsprinzip kann auch bei im Winkel zueinander laufenden Produktband 6 und Behälterband 7 angewandt werden, solange der Kreuzungsbereich gross genug ist, obwohl durch dieses Kreuzen und der daraus resultierenden Niveauunterschiede und gegenseitigen Abdeckungen der einzelnen Transportvorrichtungen 6 und 7 Nachteile in Kauf genommen werden müssen.

Claims (19)

  1. Verfahren zum Einsetzen von mindestens einer Sorte von in Losen herangeführten Einzelprodukten in eine bestimmte Anzahl von Einzelprodukten aufnehmende Behälter mittels einer Roboterstrasse bestehend aus mindestens zwei Robotern, wobei die Einzelprodukte an einem Einlauf der Roboterstrasse unregelmässig herantransportiert werden um diese in einem Umsetzbereich der Roboterstrasse einzeln zu ergreifen und in Behälter einzusetzen und wobei die Einzelprodukte und die Behälter im Gegenstrom auf mindestens einer Transportvorrichtung für die Einzelprodukte und auf mindestens einer Transportvorrichtung für die Behälter herantransportiert werden,
    dadurch gekennzeichnet, dass
    die Anlieferung eines nächsten zu befüllenden Behälters in den Umsetzbereich durch einen beliebigen Roboter gesteuert wird und dadurch, dass der Roboter, welcher die Anlieferung des nächsten zu befüllenden Behälters steuert, aus der Anzahl der gegenwärtig am Einlauf der Roboterstrasse herangeführten Einzelprodukte bestimmt wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    für die Bestimmung des Roboters, welcher die Anlieferung des nächsten zu befüllenden Behälters steuert, die Verteilung der sich gegenwärtig im Umsetzbereich der Roboterstrasse befindenden Einzelprodukte berücksichtigt wird.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    für jeden Roboter ein Sollfüllstand der Behälter bestimmt wird und dadurch, dass
    der Sollfüllstand der Behälter in Laufrichtung der Behälter ansteigend festgelegt wird und dadurch, dass von jedem Roboter, welcher seinen Sollfüllstand erreicht hat und die Anlieferung des nächsten zu befüllenden Behälters gegenwärtig nicht steuert, keine Einzelprodukte mehr in Behälter umgesetzt werden und dadurch, dass
    der nächste zu befüllende Behälter in den Umsetzbereich eingesteuert und der vorderste Behälter abgeführt wird, wenn der Roboter, welcher die Anlieferung des nächsten zu befüllenden Behälters gegenwärtig steuert, seinen Sollfüllstand erreicht hat.
  4. Verfahren nach Anspruch 3
    dadurch gekennzeichnet, dass
    für jede Sorte von Einzelprodukten aufgrund Ihrer maximal herangeführten Anzahl oder aufgrund anderer leistungsbestimmender Eigenschaften im Voraus eine maximal erforderliche Umsetzleistung bestimmt wird und dadurch, dass
    aufgrund dieser maximal erforderlichen Umsetzleistung bestimmt wird, welcher Roboter die Anlieferung des nächsten zu befüllenden Behälters steuert, wenn von dieser Sorte von Einzelprodukten die maximale Anzahl herangeführt wird und dadurch, dass
    aufgrund dieser maximal erforderlichen Umsetzleistung und eines im Voraus festgelegten Anstiegs der Sollfüllstände bestimmt wird, welcher in Laufrichtung der Behälter dahinter liegende Roboter die Anlieferung des nächsten zu befüllenden Behälters steuert, wenn von dieser Sorte von Einzelprodukten entsprechend weniger als die maximale Anzahl herangeführt wird.
  5. Verfahren nach Anspruch 4
    dadurch gekennzeichnet, dass
    die Anlieferung des nächsten zu befüllenden Behälters durch den in Laufrichtung der Behälter ersten Roboter gesteuert wird, wenn von einer Sorte von Einzelprodukten weniger als die erforderliche Umsetzleistung dieses ersten Roboters herangeführt wird.
  6. Verfahren nach Anspruch 4
    dadurch gekennzeichnet, dass
    alle Roboter ihre gegenwärtige Umsetzbewegung eines Einzelproduktes abschliessen und in Ruhestellung gehen und das Produkteband im Umsetzbereich zum Stillstand gebracht wird, wenn keine Einzelprodukte angeliefert werden.
  7. Verfahren nach Anspruch 4
    dadurch gekennzeichnet, dass
    für jede Sorte von Einzelprodukten ein Schwellwert festgelegt wird, welcher einem maximalen Wert entspricht, um welchen die Anzahl der am Einlauf herangeführten Einzelprodukte dieser Sorte maximal zurückgehen darf damit von dem dieser Anzahl herangeführter Einzelprodukte entsprechenden Roboter die Anlieferung des nächsten zu befüllenden Behälters gesteuert wird.
  8. Verfahren nach Anspruch 7,
    dadurch gekennzeichnet, dass
    bei Überschreitung des Schwellwertes der in Laufrichtung der Behälter zweitletzte Roboter die Anlieferung des nächsten zu befüllenden Behälters steuert und dadurch, dass
    dieser Roboter die Behälter vollständig befüllt, bevor dieser den nächsten zu befüllenden Behälter in den Umsetzbereich anliefert und dadurch, dass bei allen weiteren Robotern der zulässige Füllstand auf den Sollfüllstand des zweitletzten Roboters erhöht wird und dadurch, dass
    sobald die Stelle auf dem Produktband, an welcher die Anzahl der herangeführten Produkte zurückgegangen ist, denjenigen Roboter erreicht, welcher aufgrund der am Einlauf herangeführten Produkte die Anlieferung der Behälter steuern würde, die zulässigen Füllstände für alle Roboter wieder auf den normalen Sollfüllstand abgesenkt werden und dadurch, dass
    dieser Roboter die Steuerung der Anlieferung des nächsten zu befüllenden Behälters übernimmt, sobald dieser und alle in Laufrichtung der Behälter hinter ihm angeordneten Roboter ihren Sollfüllstand nicht mehr überschreiten.
  9. Verfahren nach Anspruch 7 und 8,
    dadurch gekennzeichnet, dass
    für die Überprüfung des Schwellwertes zusätzlich die Verteilung der Einzelprodukte im Umsetzbereich mitberücksichtigt wird.
  10. Verfahren nach Anspruch 4
    dadurch gekennzeichnet, dass
    für jede Sorte von Einzelprodukten aufgrund der für jeden Roboter vorgegebenen Umsetzleistung mindestens ein Kontrollwert bestimmt wird und dadurch, dass bei einer Abweichung von diesem Kontrollwert die Geschwindigkeit von mindestens einem Roboter und/oder die Geschwindigkeit von mindestens einer Transportvorrichtung angepasst wird, bis dieser Kontrollwert wieder erreicht wird.
  11. Verfahren nach Anspruch 4,
    dadurch gekennzeichnet, dass
    zu einer Gruppe zusammengefasste Behälter von einem Roboter wie ein einzelner Behälter behandelt wird.
  12. Verfahren nach Anspruch 4,
    dadurch gekennzeichnet, dass
    bei Ausfall eines Roboters die Sollfüllstände jedes Roboters angepasst werden und dadurch, dass zur Bestimmung des Roboters, welcher die Anlieferung des nächsten zu befüllenden Behälters steuert, wenigstens eine der folgenden Informationen berücksichtigt werden:
    - die Anzahl der gegenwärtig herangeführten Einzelprodukte,
    - die angepassten Sollfüllstände,
    - die Anzahl Einzelprodukte im Umsetzbereich,
    - eine erfolgte Schwellwertüberschreitung.
  13. Verfahren nach Anspruch 4,
    dadurch gekennzeichnet, dass
    die Umsetzung der Einzelproduktes in die Behälter zusätzlich aufgrund einer oder mehrerer Eigenschaften jedes Einzelproduktes in Bezug auf mindestens eine andere Eigenschaft optimiert erfolgt.
  14. Verfahren, nach einem der vorhergehenden Ansprüche 1 bis 13,
    dadurch gekennzeichnet, dass
    die Steuerung der Roboterstrasse durch eine einzige Steuerung oder durch mehrere, untereinander verbundene, einzelne Steuerungen der Roboter erfolgt.
  15. Verfahren nach Anspruch 14,
    dadurch gekennzeichnet, dass
    Datenwerte, welche die Behälter hinsichtlich Ihrer Gewichts- und/oder Einzelcharakteristik und/oder Typbestimmung bestimmen und beschreiben, durch die Steuerung der Roboterstrasse bei der Abführung der Behälter aus dem Umsetzbereich der Roboterstrasse mitübertragen werden.
  16. Vorrichtung zum Einsetzen von Einzelprodukten in eine bestimmte Anzahl von Einzelprodukten aufnehmende Behälter mit mindestens zwei hintereinander angeordneten Robotern, wobei die Einzelprodukte und die Behälter im Gegenstrom oder zumindest mit Gegenstromwirkweise auf mindestens einer Transporteinrichtung für die Einzelprodukte und auf mindestens einer Transporteinrichtung für die Behälter herangeführt werden,
    dadurch gekennzeichnet, dass
    die Vorrichtung Steuerungsmittel aufweist, welche derart ausgebildet sind, um das Einsetzen der Einzelprodukte in die Behälter nach einem der Verfahren der Ansprüche 1 bis 15 ermöglichen.
  17. Vorrichtung nach Anspruch 16,
    dadurch gekennzeichnet, dass
    zur Bestimmung der Anzahl der Einzelprodukte und zur Bestimmung der Position, Drehlage und Eigenschaft dieser Einzelprodukte mindestens ein Sensor, insbesondere eine Kamera, Lichttaster, Näherungsensor, 3D Bildverarbeitungssystem, Wägeeinheit oder anstelle des Sensors oder der Sensoren ein Datenbus zum vorgelagerten Produktionsprozess der Einzelprodukte oder zu den vor- und nachgelagerten Steuerungen vorhanden ist.
  18. Vorrichtung nach Anspruch 16 oder 17,
    dadurch gekennzeichnet, dass
    die Vorrichtung Mittel aufweist, welche für jedes herangeführte Einzelprodukt eine Gewichts-, Einzelcharakteristik- und/oder Typbestimmung ermöglicht und dadurch, dass
    aufgrund dieser Bestimmung die Einzelprodukte selektiv in gewichts-, einzelcharakteristik- und/oder typbestimmte Behälter einsetzbar sind.
  19. Vorrichtung nach Anspruch 18,
    dadurch gekennzeichnet, dass
    die Vorrichtung eine Datenschnittstelle aufweist, an welcher bei der Abführung jedes Behälters aus dem Umsetzbereich der Roboterstrasse ein diesem Behälter zugehöriger Datenwert, welcher der Gewichts-, Einzelcharakteristik- und/oder Typbestimmung der im Behälter eingesetzten Einzelprodukte entspricht, übertragen wird.
EP09156668.7A 2009-03-30 2009-03-30 Verfahren und Vorrichtung zum Einlegen von Einzelprodukten in Behälter in einer Roboterstrasse Not-in-force EP2236424B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09156668.7A EP2236424B1 (de) 2009-03-30 2009-03-30 Verfahren und Vorrichtung zum Einlegen von Einzelprodukten in Behälter in einer Roboterstrasse
US12/732,420 US8549818B2 (en) 2009-03-30 2010-03-26 Process and apparatus for introducing products into containers in a picker line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09156668.7A EP2236424B1 (de) 2009-03-30 2009-03-30 Verfahren und Vorrichtung zum Einlegen von Einzelprodukten in Behälter in einer Roboterstrasse

Publications (2)

Publication Number Publication Date
EP2236424A1 true EP2236424A1 (de) 2010-10-06
EP2236424B1 EP2236424B1 (de) 2016-02-24

Family

ID=41279429

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09156668.7A Not-in-force EP2236424B1 (de) 2009-03-30 2009-03-30 Verfahren und Vorrichtung zum Einlegen von Einzelprodukten in Behälter in einer Roboterstrasse

Country Status (2)

Country Link
US (1) US8549818B2 (de)
EP (1) EP2236424B1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2520497A1 (de) 2011-05-04 2012-11-07 Matthias Ehrat Verfahren zum Einlegen von Einzelprodukten in Behälter in einer Roboterstrasse
EP2586712A1 (de) 2011-10-31 2013-05-01 Veltru AG Verfahren und Vorrichtung zum Einlegen von Produkten in Behälter in einer Roboterstrasse
EP2664553A2 (de) 2012-05-03 2013-11-20 Matthias Ehrat Verfahren zum Einlegen von Einzelprodukten in Behälter in einer Roboterstrasse
DE102011014697B4 (de) 2010-10-04 2018-09-13 Gerhard Schubert Gmbh Pickerstraße sowie Verfahren zum Füllen von Behältern mit Einzelprodukten
EP2471728B1 (de) 2011-01-03 2019-06-12 Krones AG Anordnung mehrerer miteinander gekoppelter Behälterhandhabungs- und/oder Behälterbehandlungs- und/oder Behältertransportmodule sowie Verfahren zum Transport, zur Behandlung und/oder Handhabung von Behältern

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005010296D1 (de) * 2004-12-10 2008-11-20 Scanvaegt Int As Verfahren und system zum chargieren von objekten
DE102006061571A1 (de) * 2006-12-27 2008-07-03 Robert Bosch Gmbh Verfahren und Vorrichtung zum Umsetzen von Stückgütern
FR2939769B1 (fr) * 2008-12-11 2010-12-31 Ballina Freres De Procede et installation de distribution de produits pour leur conditionnement
EP2610036B1 (de) * 2011-12-30 2015-02-11 CAMA 1 SpA Verfahren zur Kollisionsschutzsteuerung und Verwaltung von Kommissioniervorrichtungen mit gemeinsam genutzten Arbeitsbereichen in einer Verpackungslinie
DE102012010844A1 (de) * 2012-05-31 2013-12-05 Multivac Sepp Haggenmüller Gmbh & Co. Kg Verfahren für Pickerstraße und Verpackungsanlage
ITMI20121243A1 (it) * 2012-07-17 2014-01-18 I M A Ind Macchine Automatic He S P A Gruppo distributore per pastiglie o capsule
CN104589357B (zh) * 2014-12-01 2016-08-17 佛山市万世德机器人技术有限公司 基于视觉跟踪的delta机器人控制***和方法
US9617074B2 (en) 2015-09-08 2017-04-11 Carefusion Germany 326 Gmbh Method and picking device for storing a plurality of identical piece goods
JP6888775B2 (ja) * 2016-04-05 2021-06-16 川崎重工業株式会社 搬送装置、それを用いた製造ライン、及び製造ラインの変更方法
US20230083483A1 (en) * 2021-09-10 2023-03-16 Ats Automation Tooling Systems Inc. Automated repitch system and related methods

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4208818C2 (de) 1992-03-19 1994-09-08 Haensel Otto Gmbh Verfahren und Vorrichtung zum Einlegen von Artikeln in Verpackungseinsätze
FR2754239A1 (fr) 1996-10-08 1998-04-10 Euresko Dispositif alimentaire pour chaine de conditionnement d'assortiment d'articles et chaine mettant en oeuvre un tel dispositif
EP0856465A1 (de) * 1997-01-30 1998-08-05 Gerhard Schubert GmbH Entgegengesetzter Traytransport bei Pickerstrassen
DE29817239U1 (de) 1997-11-07 1998-11-26 Hans Paal KG Maschinenbau (GmbH & Co.), 73630 Remshalden Vorrichtung zum Zwischenspeichern
EP0781172B1 (de) 1994-09-15 2002-07-24 Scanvaegt A/S Verfahren und vorrichtung zum unterteilen nach gewicht von artikeln ungleichmässiger gewichte
EP1160166B1 (de) 2000-05-31 2003-06-04 SIG Pack Systems AG Vorrichtung zur Gruppenbildung sowie Verfahren zum Betreiben derselben
EP1352831A1 (de) 2002-04-02 2003-10-15 SIG Pack Systems AG Verfahren und Vorrichtung zum Einfüllen von Stückgütern in Behälter
EP1226408B1 (de) 1999-09-10 2004-12-15 Scanvaegt International A/S Sortiervorrichtung
WO2004113030A1 (en) 2003-06-26 2004-12-29 Abb Ab Control method for machines, including a system, computer program, data signal and gui
EP1717150A1 (de) * 2005-04-19 2006-11-02 Gerhard Schubert GmbH Verfahren und Vorrichtung zum Herstellen von befüllten und dicht versiegelten Kunststoff-Tiefziehbehältern
DE102006061571A1 (de) * 2006-12-27 2008-07-03 Robert Bosch Gmbh Verfahren und Vorrichtung zum Umsetzen von Stückgütern
EP1819994B1 (de) 2004-12-10 2008-10-08 Scanvaegt International A/S Verfahren und system zum chargieren von objekten

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4901504A (en) * 1987-04-13 1990-02-20 Mitsubishi Jukogyo Kabushiki Kaisha Filling and casing system
US4912904A (en) * 1988-06-24 1990-04-03 Tri/Valley Growers Cocktail filling apparatus
US5121589A (en) * 1991-09-05 1992-06-16 Bud Of California Apparatus and process for the automated packing of lettuce
US5727365A (en) * 1996-01-16 1998-03-17 Riverwood International Corporation Apparatus for packaging article groups
DE29701564U1 (de) * 1997-01-30 1997-03-27 Gerhard Schubert GmbH, 74564 Crailsheim Pickerstraße mit entgegengesetztem Traytransport
JP2002173103A (ja) * 2000-12-07 2002-06-18 Ajinomoto Co Inc 食品固形物の計数充填方法及び装置
US6826444B2 (en) * 2001-08-22 2004-11-30 Robert Bosch Gmbh Method and apparatus for filling containers with piece goods
NZ518851A (en) * 2002-05-08 2004-12-24 Anzpac Systems Ltd Sorting apparatus and method
US20040079053A1 (en) * 2002-10-25 2004-04-29 Christoph Rohr Apparatus and process for filling containers
US7325375B2 (en) * 2004-06-23 2008-02-05 Quad/Graphics, Inc. Selective product inserter apparatus and process
DK2018528T3 (en) * 2006-05-19 2016-01-11 Marel As Method and system for batch formation of objects
PL2040984T3 (pl) * 2006-07-04 2010-06-30 Bosch Gmbh Robert Sposób napełniania pojemników towarami drobnymi
WO2009021171A1 (en) * 2007-08-09 2009-02-12 Aylward Enterprises, Llc Packaging apparatus for handling pills and associated method
DE102007049702A1 (de) * 2007-10-17 2009-04-23 Robert Bosch Gmbh Pickerstrasse

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4208818C2 (de) 1992-03-19 1994-09-08 Haensel Otto Gmbh Verfahren und Vorrichtung zum Einlegen von Artikeln in Verpackungseinsätze
EP0781172B1 (de) 1994-09-15 2002-07-24 Scanvaegt A/S Verfahren und vorrichtung zum unterteilen nach gewicht von artikeln ungleichmässiger gewichte
FR2754239A1 (fr) 1996-10-08 1998-04-10 Euresko Dispositif alimentaire pour chaine de conditionnement d'assortiment d'articles et chaine mettant en oeuvre un tel dispositif
EP0856465A1 (de) * 1997-01-30 1998-08-05 Gerhard Schubert GmbH Entgegengesetzter Traytransport bei Pickerstrassen
EP0856465B1 (de) 1997-01-30 2001-09-05 Gerhard Schubert GmbH Entgegengesetzter Traytransport bei Pickerstrassen
DE29817239U1 (de) 1997-11-07 1998-11-26 Hans Paal KG Maschinenbau (GmbH & Co.), 73630 Remshalden Vorrichtung zum Zwischenspeichern
EP1226408B1 (de) 1999-09-10 2004-12-15 Scanvaegt International A/S Sortiervorrichtung
EP1160166B1 (de) 2000-05-31 2003-06-04 SIG Pack Systems AG Vorrichtung zur Gruppenbildung sowie Verfahren zum Betreiben derselben
EP1352831A1 (de) 2002-04-02 2003-10-15 SIG Pack Systems AG Verfahren und Vorrichtung zum Einfüllen von Stückgütern in Behälter
WO2004113030A1 (en) 2003-06-26 2004-12-29 Abb Ab Control method for machines, including a system, computer program, data signal and gui
EP1819994B1 (de) 2004-12-10 2008-10-08 Scanvaegt International A/S Verfahren und system zum chargieren von objekten
EP1717150A1 (de) * 2005-04-19 2006-11-02 Gerhard Schubert GmbH Verfahren und Vorrichtung zum Herstellen von befüllten und dicht versiegelten Kunststoff-Tiefziehbehältern
DE102006061571A1 (de) * 2006-12-27 2008-07-03 Robert Bosch Gmbh Verfahren und Vorrichtung zum Umsetzen von Stückgütern

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011014697B4 (de) 2010-10-04 2018-09-13 Gerhard Schubert Gmbh Pickerstraße sowie Verfahren zum Füllen von Behältern mit Einzelprodukten
EP2471728B1 (de) 2011-01-03 2019-06-12 Krones AG Anordnung mehrerer miteinander gekoppelter Behälterhandhabungs- und/oder Behälterbehandlungs- und/oder Behältertransportmodule sowie Verfahren zum Transport, zur Behandlung und/oder Handhabung von Behältern
EP2520497A1 (de) 2011-05-04 2012-11-07 Matthias Ehrat Verfahren zum Einlegen von Einzelprodukten in Behälter in einer Roboterstrasse
EP2586712A1 (de) 2011-10-31 2013-05-01 Veltru AG Verfahren und Vorrichtung zum Einlegen von Produkten in Behälter in einer Roboterstrasse
US9908646B2 (en) 2011-10-31 2018-03-06 Veltru Ag Method and apparatus for placing products into containers in a robot line
EP2664553A2 (de) 2012-05-03 2013-11-20 Matthias Ehrat Verfahren zum Einlegen von Einzelprodukten in Behälter in einer Roboterstrasse

Also Published As

Publication number Publication date
EP2236424B1 (de) 2016-02-24
US8549818B2 (en) 2013-10-08
US20100242415A1 (en) 2010-09-30

Similar Documents

Publication Publication Date Title
EP2236424B1 (de) Verfahren und Vorrichtung zum Einlegen von Einzelprodukten in Behälter in einer Roboterstrasse
EP2669202B1 (de) Verfahren für Pickerstraße und Verpackungsanlage
EP2664553B1 (de) Verfahren zum Einlegen von Einzelprodukten in Behälter in einer Roboterstrasse
EP2741986B1 (de) Verfahren und vorrichtung zur bildung von lagen aus artikeln, stückgütern oder gebinden
EP2139776B1 (de) Vorrichtung und verfahren zum handhaben von flachen gegenständen, insbesondere windeln
EP2586712B1 (de) Verfahren und Vorrichtung zum Einlegen von Produkten in Behälter in einer Roboterstrasse
EP2040984B1 (de) Verfahren zum befüllen von behältern mit stückgütern
DE102006015689B4 (de) System und Verfahren zum Steuern einer Fördertechnik mittels rechnergestützter Bilderkennung
AT508843A1 (de) Kommissioniersystem und verfahren zur beladung von ladungsträgern
EP1352831A1 (de) Verfahren und Vorrichtung zum Einfüllen von Stückgütern in Behälter
DE60204347T2 (de) Förder-/sortiersystem mit hoher kapazität
CH706807A1 (de) Produktfluss-Regulator.
EP2763918B1 (de) Verfahren und vorrichtung zum fördern von streifenförmigen oder plattenförmigen produkten
WO2014127972A1 (de) Vorrichtung und verfahren zum transportieren von gegenständen
EP2818421A1 (de) Schalenverschließmaschine mit Trayzuführung und Verfahren für eine Verpackungsanlage
EP3313737A1 (de) Verpackungsanlage sowie verfahren zum betreiben einer verpackungsanlage
EP3757042A1 (de) Vorrichtung und verfahren zum umgang mit in mindestens einer reihe nacheinander bewegten stückgütern
EP2520497B1 (de) Verfahren zum Einlegen von Einzelprodukten in Behälter in einer Roboterstrasse
WO2006111147A1 (de) Wiegevorrichtung und -verfahren
EP0680883A1 (de) Zuführ- und Verteilsystem für Gegenstände
DE60313946T2 (de) Einrichtung zum Fördern von Stückgütern, insbesondere für eine automatische Verpackungsmaschine, und Verfahren zu ihrer Verwendung
DE19506031C1 (de) Verfahren zum Speichern von Fördergut und Einrichtung zur Durchführung des Verfahrens
EP0835217B1 (de) Verfahren zum steuern der transportgeschwindigkeit einer transport- und zusammentragbahn
DE19805143A1 (de) Verpackungsstraße zum automatischen Verpacken von Umlaufmünzen
DE102019215675A1 (de) Sacktransport- und Sackstapeleinrichtung sowie Verfahren zum Transportieren von Säcken oder Sackstapeln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20110308

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20150602

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150826

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 776539

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009012163

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160524

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160624

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009012163

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160330

26N No opposition filed

Effective date: 20161125

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170321

Year of fee payment: 9

Ref country code: FR

Payment date: 20170227

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 776539

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160330

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170329

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160330

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090330

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160330

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009012163

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331