EP2235610A1 - Capteur tactile multicontacts avec mode veille monocontact - Google Patents

Capteur tactile multicontacts avec mode veille monocontact

Info

Publication number
EP2235610A1
EP2235610A1 EP08872910A EP08872910A EP2235610A1 EP 2235610 A1 EP2235610 A1 EP 2235610A1 EP 08872910 A EP08872910 A EP 08872910A EP 08872910 A EP08872910 A EP 08872910A EP 2235610 A1 EP2235610 A1 EP 2235610A1
Authority
EP
European Patent Office
Prior art keywords
contact
multicontact
mode
sensor
touch sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08872910A
Other languages
German (de)
English (en)
Inventor
Pascal Joguet
Guillaume Largillier
Julien Olivier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stantum SAS
Original Assignee
Stantum SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stantum SAS filed Critical Stantum SAS
Publication of EP2235610A1 publication Critical patent/EP2235610A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3262Power saving in digitizer or tablet
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/048Indexing scheme relating to G06F3/048
    • G06F2203/04808Several contacts: gestures triggering a specific function, e.g. scrolling, zooming, right-click, when the user establishes several contacts with the surface simultaneously; e.g. using several fingers or a combination of fingers and pen

Definitions

  • the present invention relates to a multicontact touch sensor in standby mode.
  • the present invention relates to the field of multicontact tactile sensors.
  • This type of sensor is provided with means for simultaneous acquisition of the position, the pressure, the size, the shape and the displacement of several fingers on its surface, in order to control an equipment, preferably via an interface graphic.
  • sensors can be used, without limitation, in many devices such as mobile phone, computer, etc.
  • multicontact transparent tactile sensors with resistive slab are known.
  • these sensors comprise a transparent semiconductive active layer located between two transparent conductive layers on which lines or columns corresponding to conducting wires are printed.
  • Said conductive layers are thus arranged in a matrix of cells formed by the intersection of rows and columns.
  • the semiconductor layer acts as an open switch when the touch screen is not touched, and switch closed when the touch screen is touched, which brings into contact the two conductive layers.
  • Said conductive layers are generally a glass plate and a polyester sheet. They play the role of electrodes, and each have on one of their surfaces a conductive layer made of a transparent conductive material.
  • a device further comprising a two-dimensional multi-contact sensor for the acquisition of tactile information.
  • Said sensor as described in said patent consists of a resistive matrix slab further composed of two transparent conductive layers on which are printed lines or columns corresponding to conducting wires, and an insulating material between said two transparent conductive layers.
  • a transparent conductive layer according to the state of the prior art is made of ITO, which is a conductive and transparent material in a very thin layer.
  • a single-contact touch sensor consumes only the energy corresponding to the leakage current
  • a multicontact touch sensor involves feeding one of the two networks of conductive tracks at regular intervals, which is the source of a much higher power consumption.
  • the aim of the present invention is to remedy this drawback by proposing a multicontact touch sensor operating in two distinct modes:
  • a multicontact touch sensor in accordance with the invention thus makes it possible to make significant savings in current, since the high power consumption is limited to the moments when the user uses the sensor, to
  • the present invention proposes a multicontact tactile sensor comprising a matrix formed of two transparent conductive layers, at least one having a network of thin conductive tracks, and a control circuit comprising a supply of one of the layers and detection means of the other layer, said sensor having a mode of operation of the multicontact type corresponding to a scanning of the power supply of the lines of the corresponding layer, characterized in that it also comprises a mode of operation of the single-contact type corresponding to a continuous and uniform power supply over the entire sensor, each operating mode being activated according to the detection or not of at least one contact.
  • the multicontact mode is activated by the detection of at least one contact
  • the single-contact mode is activated by the absence of detection of at least one contact
  • the single-contact mode is activated after a period of latency during which no contact is detected.
  • the mode of operation of the multicontact type corresponds to a sweep of the supply of the lines of the corresponding layer and to a measurement at the terminals of the point of intersection between the fed lines and each of the columns of the other layer.
  • the mode of operation of the monocontact type is a standby mode corresponding to a state at rest of the sensor and the control circuit.
  • the mode of operation of the monocontact type corresponds to a continuous and uniform supply of all the columns and to a detection carried out by a scanning of the lines.
  • the sensor is transparent.
  • FIG. 1 a view of a tactile electronic device
  • FIG. 2 a diagram of the method of acquiring data on the whole of the multicontact tactile sensor
  • acquisition 1 a diagram of the process. analysis of data
  • analysis 1 a diagram of the process of sensor
  • standby 1 a diagram of the process of sensor, "standby 1" according to the present invention
  • a multicontact transparent touch sensor aims to integrate into a multicontact touch screen display.
  • FIG. 1 represents a view of a tactile electronic device comprising:
  • the first fundamental element of said tactile device is the touch sensor 1, necessary for the acquisition - the multicontact manipulation - using a capture interface 3.
  • This capture interface 3 contains the
  • Said touch sensor 1 is of the matrix type. Said sensor can be optionally divided into several parts in order to accelerate the capture, each part being scanned simultaneously.
  • the data from the capture interface 3 is transmitted after filtering to the main processor 4. This executes the local program for associating the data of the slab with graphic objects which are displayed on the screen 2 in order to to be manipulated.
  • the main processor 4 also transmits to the graphic interface 5 the data to be displayed on the screen of 2. This graphical interface can also be controlled by a graphics processor.
  • This exemplary embodiment relates to a passive matrix multicontact touch sensor. It is understood that those skilled in the art are also capable of carrying out the present invention on a transparent active matrix touch sensor.
  • Such a multicontact touch sensor is controlled in the following way: one feeds successively, during a first phase of scanning, the tracks of one of the networks and the response is detected on each of the tracks of the second network.
  • Contact zones corresponding to the nodes whose state is modified with respect to the idle state are determined as a function of these responses.
  • One or more sets of adjacent nodes are determined whose state is changed. A set of such adjacent nodes define contact areas. From this node set is computed a position information qualified in the sense of the present cursor patent.
  • Cursors are created, tracked or destroyed based on information obtained during successive scans.
  • the cursor is for example calculated by a barycentre function of the contact zone.
  • the general principle is to create as many sliders as there are zones detected on the touch sensor and to follow their evolution over time. When the user removes his fingers from the sensor, the associated sliders are destroyed. In this way, it is possible to capture the position and the evolution of several fingers on the touch sensor simultaneously.
  • the actual measured electrical characteristic can be resistance or capacitance. We will then speak respectively resistive touch sensor or capacitive.
  • the touch module consisting of the touch sensor and the control circuit, delivers signals on a communication interface. These signals are then processed by the main processor 4 of the computerized equipment whose graphical user interface (GUI) will be adapted to the exploitation of several simultaneous cursors. Cursors allow you to interact with multiple graphic objects simultaneously.
  • GUI graphical user interface
  • the main program considers the positioning of the cursors and on which graphical object each one is located. Depending on the graphic object under consideration, a specific processing is applied to the sensor data. This treatment can take into account, for example, pressure, acceleration, speed, trajectory, etc.
  • the main processor 4 contains the electronic control circuit which makes it possible to control the acquisition and the analysis of the data on the state of the matrix touch sensor 1.
  • FIG. 2 represents a diagram of the data acquisition method on the whole of the multicontact tactile sensor, "acquisition 1" 11.
  • Said sensor comprises M lines and N columns. This method has the function of determining the state of each point of the matrix touch sensor 1, namely whether said point makes contact or not.
  • the sampling frequency of the slab forming the sensor is of the order of 100 Hz for rows and columns. Said method corresponds to the measurement of all the points a "voltage" matrix. Said matrix is a matrix
  • the acquisition method "acquisition 1" 11 begins with a step of initialization 12 of the data obtained during a previous acquisition.
  • the axis of the columns constitutes the axis of supply
  • the axis of the lines constitutes the axis of detection.
  • the method 11 first performs the scanning of the first column. It is powered for example in 5 volts.
  • the electronic circuit measures the voltage across the intersection point between said column and each of the lines from 1 to N.
  • FIG. 3 represents a diagram of the "analysis 1" data analysis method 21.
  • the method consists of a series of algorithms that perform the following steps:
  • the software is able to apply to the virtual graphic objects of the display screen 2 the different specific processes in order to refresh said display screen 2 in real time. Areas encompassing the contact areas detected during the acquisition step 11 are also defined.
  • the electronic circuit repeats the processes 11 and 21 in a loop at a frequency of the order of 100 Hz.
  • the disadvantage of such an electronic circuit lies in the overconsumption of electricity.
  • the electronic circuit incorporates a method for controlling the operating mode of the sensor.
  • two operating modes are thus implemented by the electronic circuit: a first mode of operation of the "multicontact" type 32, where the acquisition and analysis methods of the entire sensor tactile devices conform to the methods 11 and 21 described above, and
  • a second "monocontact" mode of operation 33 in which the acquisition and analysis methods of the entire touch sensor are in accordance with those during a single-contact operation.
  • the "single-contact" operating mode 33 is characterized by a continuous and uniform supply over the entire sensor. It corresponds to a state at rest of the sensor and the control circuit.
  • a method of acquiring data "acquisition 2" 51 is implemented.
  • This method corresponds to the measurement of all the points of the "voltage" matrix, of dimension NxM, which contains at each point (I, J) the value of the voltage measured at the terminals of the point of intersection of line I and of column J, with l ⁇ I ⁇ N and l ⁇ J ⁇ M.
  • the columns are all supplied with voltage in a continuous and uniform manner.
  • no column or line is supplied with voltage.
  • only the leakage currents are measured.
  • the detection is carried out by a scan of the lines. In this case, it is not possible to determine, when there is a contact, the column corresponding to said contact, since all the columns are fed uniformly and continuously.
  • a method of analysis of the "analysis 2" data 61 is then implemented from the data acquired by the method 51.
  • This method contains one or more filtering steps.
  • it does not contain a step of determining a possible contact zone, the position information of the contacts not being made accessible.
  • the standby mode - or single-contact - corresponds to a state at rest of the sensor and the control circuit which must just be able to detect a modification of a parameter electrical sensor when at least one contact is made by the user without being able to analyze the position of said contacts.
  • the conditioned pass in the normal multicontact mode 32 then makes it possible to know in a short time the multicontact position information.
  • FIG. 4 represents a diagram of the method of servocontrol of the operating mode of the sensor, "standby 1" 31, in accordance with the present invention.
  • This method comprises a first loop 32 in "multicontact” mode, corresponding to the succession of acquisition steps 11 and analysis 21. At the end of said first loop 32, conditional control operates. If at least one contact point is detected on the whole of the matrix touch sensor 1, the method enters the second loop 33 in "single-contact” mode, corresponding to the succession of the acquisition 51 and analysis 61 steps.
  • embodiment makes it possible to switch between the multicontact and single-contact modes instantaneously, according to a servocontrol by the possible detection of at least one contact. The power consumption is thus reduced significantly, since the operation in single-contact mode consumes much less electrical energy than in multicontact mode.
  • FIG. 5 represents a diagram of the method of servocontrol of the mode of operation of the sensor, "standby 2" 41, in accordance with the present invention.
  • This method differs from the previous one in that it comprises an iteration N corresponding to a latency time between the multicontact mode and the single-contact mode.
  • the integer N is a characteristic number of the number of consecutive periods of the loop 32 during which no contact is not detected.
  • the predetermined latency time is defined by N latency , which is the number of periods of non-contact detected contact from which the sensor switches to single-contact mode.
  • This method comprises a first "multicontact" loop 32 and a second "single-contact" loop 33. After each loop 32, conditional servocontrol takes place. If at least one contact is detected at the output of the loop 32, the latter is repeated. If no contact is detected at the output of this loop 32, the number N of periods of consecutive contactless is interrogated. If N is less than N latency , N is incremented and loop 32 is repeated. If N is equal to N latency , the "single-contact" loop 33 is executed. As long as no contact is detected at the output of the loop 33, this is
  • This embodiment makes it possible to switch between the multicontact and single-contact modes, according to a servocontrol by the possible detection of at least one contact, with a latency time for switching from the multicontact mode to the single-contact mode.
  • This embodiment of the invention thus has the advantage:
  • N can for example be chosen so as to obtain a latency of the order of 1 second.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Position Input By Displaying (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)
  • User Interface Of Digital Computer (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

La présente invention concerne un capteur tactile multicontacts (1) comportant une matrice formée de deux couche conductrices transparentes, l'une au moins présentant un réseau de pistes conductrices fines, et un circuit de commande comportant une alimentation de l'une des couches et des moyens de détection de l'autre couche, ledit capteur (1) ayant un mode de fonctionnement de type multicontacts (32) correspondant à un balayage de l'alimentation des lignes de la couche correspondante, caractérisé en ce qu'il comporte également un mode de fonctionnement de type monocontact (33) correspondant à une alimentation continue et uniforme sur l'ensemble du capteur, chaque mode de fonctionnement (32,33) étant activé en fonction de la détection ou non d'au moins un contact.

Description

CAPTEUR TACTILE MULTICONTACTS A MODE VEILLE
La présente invention concerne un capteur tactile multicontacts à mode veille.
La présente invention concerne le domaine des capteurs tactiles multicontacts.
Ce type de capteur est muni de moyens d'acquisition simultanée de la position, la pression, la taille, la forme et le déplacement de plusieurs doigts sur sa surface, afin de commander un équipement, de préférence par l'intermédiaire d'une interface graphique.
Ces capteurs peuvent être utilisés, de manière non limitative, dans de nombreux appareils tels que téléphone portable, ordinateur, etc.
On connaît dans l'état de la technique des capteurs tactiles transparents multicontacts à dalle résistive. De manière avantageuse, ces capteurs comprennent une couche active semi-conductrice transparente située entre deux couches conductrices transparentes sur lesquelles sont imprimées des lignes ou colonnes correspondant à des fils conducteurs. Lesdites couches conductrices sont ainsi agencées en une matrice de cellules formées par l'intersection de lignes et de colonnes. La couche semi-conductrice joue le rôle d'interrupteur ouvert lorsque l'écran tactile n'est pas touché, et d'interrupteur fermé lorsque l'écran tactile est touché, ce qui met en contact les deux couches conductrices. Lesdites couches conductrices sont généralement une plaque de verre et une feuille de polyester. Elles jouent le rôle d'électrodes, et présentent chacune sur une de leurs surfaces une couche conductrice réalisée en un matériau conducteur transparent. On a proposé dans l'état de la technique une solution décrite dans le brevet FR 2,866,726 visant un dispositif comportant en outre un capteur bidimensionnel multi-contact pour l'acquisition d'informations tactiles. Ledit capteur tel que décrit dans ledit brevet est constitué d'une dalle matricielle résistive composée en outre de deux couches conductrices transparentes sur lesquelles sont imprimées des lignes ou colonnes correspondant à des fils conducteurs, et un matériau isolant entre lesdites deux couches conductrices transparentes. De manière avantageuse, une couche conductrice transparente conforme à l'état de la technique antérieure est réalisée en ITO, qui est un matériau conducteur et transparent en couche très fine.
L'inconvénient de cette solution est qu'un tel capteur consomme une énergie électrique bien supérieure à un capteur tactile monocontact.
En effet, un capteur tactile monocontact ne consomme que l'énergie correspondant au courant de fuite, tandis qu'un capteur tactile multicontacts implique l'alimentation d'un des deux réseaux de pistes conductrices à intervalle régulier, ce qui est la source d'une consommation de courant bien supérieure.
Ainsi lorsqu'un utilisateur ne touche pas le capteur et donc ne s'en sert pas, celui-ci consomme malgré tout un courant sensiblement égal à celui consommé lorsque l'utilisateur détermine une ou même plusieurs zones de contact.
Le but de la présente invention est de remédier à cet inconvénient, en proposant un capteur tactile multicontacts fonctionnant sous deux modes distincts :
- un mode monocontact — ou mode veille —, correspondant à un fonctionnement où le capteur se comporte comme un capteur tactile monocontact, lorsque le capteur ne détecte aucun contact, et
- un mode multicontacts — ou mode balayage -, correspondant au fonctionnement usuel du capteur, lorsqu'un contact est détecté lors du fonctionnement en mode monocontact.
L'approche a consisté à étudier l'utilité de fonctionner en multicontacts. Il est apparu qu'un tel fonctionnement peut n'être mis en oeuvre que lorsque l'utilisateur a déterminé au moins une zone de contact. Le reste du temps, un simple fonctionnement assimilé à un monocontact suffit. Dès qu'un contact est détecté, le capteur bascule en mode multicontacts tant qu'au moins un contact est toujours détecté .
Un capteur tactile multicontacts conforme à l'invention permet ainsi d'effectuer des économies importantes de courant, puisque les fortes consommations de courant sont limitées aux instants où l'utilisateur se sert du capteur, à
savoir les instants où au moins un contact est détecté par le capteur.
À cet effet, la présente invention propose un capteur tactile multicontacts comportant une matrice formée de deux couche conductrices transparentes, l'une au moins présentant un réseau de pistes conductrices fines, et un circuit de commande comportant une alimentation de l ' une des couches et des moyens de détection de l'autre couche, ledit capteur ayant un mode de fonctionnement de type multicontacts correspondant à un balayage de l'alimentation des lignes de la couche correspondante, caractérisé en ce qu'il comporte également un mode de fonctionnement de type monocontact correspondant à une alimentation continue et uniforme sur l'ensemble du capteur, chaque mode de fonctionnement étant activé en fonction de la détection ou non d'au moins un contact.
Selon des modes particuliers de réalisation de l'invention : - le mode multicontacts est activé par la détection d'au moins un contact,
- le mode monocontact est activé par l ' absence de détection d'au moins un contact,
- le mode monocontact est activé après un temps de latence lors duquel aucun contact n'est détecté.
- le mode de fonctionnement de type multicontacts correspond à un balayage de l'alimentation des lignes de la couche correspondante et à une mesure aux bornes du point d'intersection entre les lignes alimentées et chacune des colonnes de l'autre couche.
- le mode de fonctionnement de type monocontact est un mode veille correspondant à un état au repos du capteur et du circuit de commande.
- le mode de fonctionnement de type monocontact correspond à une alimentation continue et uniforme de toutes les colonnes et à une détection s 'effectuant par un balayage des lignes.
- le capteur est transparent.
L'invention sera mieux comprise à la lecture de la description détaillée d'un exemple
non limitatif de réalisation, accompagné de figures annexées représentant respectivement :
- la figure 1, une vue d'un dispositif électronique tactile, - la figure 2, un diagramme du procédé d'acquisition des données sur l'ensemble du capteur tactile multicontacts, « acquisition 1 » , la figure 3, un diagramme du procédé d'analyse des données, « analyse 1 », - la figure 4, un diagramme du procédé de mise en veille du capteur, « veille 1 », conformément à la présente invention, et
- la figure 5, un diagramme du procédé de mise en veille du capteur, « veille 2 », conformément à la présente invention.
Un capteur tactile transparent multicontacts conforme à l'invention vise à s'intégrer dans un écran de visualisation tactile multicontacts.
La figure 1 représente une vue d'un dispositif électronique tactile comprenant :
- un capteur tactile matriciel 1,
- un écran de visualisation 2,
- une interface de capture 3, - un processeur principal 4, et
- un processeur graphique 5.
Le premier élément fondamental dudit dispositif tactile est le capteur tactile 1, nécessaire à l'acquisition - la manipulation multicontacts - à l'aide d'une interface de capture 3. Cette interface de capture 3 contient les
circuits d'acquisition et d'analyse.
Ledit capteur tactile 1 est de type matriciel. Ledit capteur peut être éventuellement divisé en plusieurs parties afin d'accélérer la captation, chaque partie étant scannée simultanément . Les données issues de l'interface de capture 3 sont transmises après filtrage, au processeur principal 4. Celui- ci exécute le programme local permettant d'associer les données de la dalle à des objets graphiques qui sont affichés sur l'écran 2 afin d'être manipulés. Le processeur principal 4 transmet également à l'interface graphique 5 les données à afficher sur l'écran de visualisation 2. Cette interface graphique peut en outre être piloté par un processeur graphique.
Le présent exemple de réalisation concerne un capteur tactile multicontacts à matrice passive. Il est entendu que l'homme du métier est également capable de réaliser la présente invention sur un capteur tactile transparent à matrice active .
Un tel capteur tactile multicontacts est commandé de la façon suivante : on alimente successivement, lors d'une première phase de balayage, les pistes d'un des réseaux et on détecte la réponse sur chacune des pistes du second réseau. On détermine en fonction de ces réponses des zones de contact qui correspondent aux nœuds dont l'état est modifié par rapport à l'état au repos. On détermine un ou plusieurs ensembles de nœuds adjacents dont l'état est modifié. Un ensemble de tels nœuds adjacents définissent des zones de contact. On calcule à partir de cet ensemble de nœud une information de position qualifiée au sens de présent brevet de curseur.
Dans le cas de plusieurs ensembles de nœuds séparés par des zones non actives, on déterminera plusieurs curseurs indépendants pendant une même phase de balayage. Cette information est rafraichie périodiquement au cours de nouvelles phases de balayage.
Les curseurs sont créés, suivis ou détruits en fonction des informations obtenues au cours des balayages successifs. Le curseur est à titre d'exemple calculé par une fonction barycentre de la zone de contact.
Le principe général est de créer autant de curseurs qu'il y a de zones détectées sur le capteur tactile et de suivre leur évolution dans le temps. Lorsque l'utilisateur retire ses doigts du capteur, les curseurs associés sont détruits. De cette manière, il est possible de capter la position et l'évolution de plusieurs doigts sur le capteur tactile simultanément .
La caractéristique électrique effectivement mesurée peut être la résistance ou la capacité. On parlera alors respectivement de capteur tactile résistif ou capacitif.
Le module tactile, constitué du capteur tactile et du circuit de commande, délivre des signaux sur une interface de communication. Ces signaux sont ensuite traités par le processeur principal 4 de l'équipement informatisé dont l'interface graphique utilisateur (GUI) sera adaptée à l'exploitation de plusieurs curseurs simultanés. Les curseurs permettent d' interagir avec plusieurs objets graphiques simultanément. Le programme principal considère le positionnement des curseurs et sur quel objet graphique chacun se situe. En fonction de l'objet graphique considéré, un traitement spécifique est appliqué aux données du capteur. Ce traitement peut tenir compte par exemple de mesures de pression, d'accélération, de vitesse, de trajectoire, etc. Le processeur principal 4 contient le circuit électronique de commande qui permet de commander l'acquisition et l'analyse des données sur l'état du capteur tactile matriciel 1.
La figure 2 représente un diagramme du procédé d'acquisition des données sur l'ensemble du capteur tactile multicontacts, « acquisition 1 » 11. Ledit capteur comprend M lignes et N colonnes . Ce procédé a pour fonction de déterminer l'état de chaque point du capteur tactile matriciel 1, à savoir si ledit point réalise un contact ou pas.
La fréquence d'échantillonnage de la dalle formant le capteur est de l'ordre de 100 Hz pour les lignes et les colonnes . Ledit procédé correspond à la mesure de tous les points d'une matrice « tension ». Ladite matrice est une matrice
[N,M] contenant à chaque point (I,J) la valeur de la tension mesurée aux bornes du point d'intersection de la ligne I et de la colonne J, avec l≤l≤N et l≤J≤M. Cette matrice permet de donner l'état de chacun des points du capteur tactile matriciel 1 à un instant donné.
Le procédé d'acquisition « acquisition 1 » 11 commence par une étape d'initialisation 12 des données obtenues lors d'une acquisition précédente. De manière arbitraire, l'axe des colonnes constitue l'axe d'alimentation, et l'axe des lignes constitue l'axe de détection.
Le procédé 11 réalise d'abord le balayage de la première colonne. Elle est alimentée par exemple en 5 Volts. Pour ladite colonne, le circuit électronique mesure la tension aux bornes du point d'intersection entre ladite colonne et chacune des lignes de 1 à N.
Lorsque la mesure a été effectuée auprès de la N-ième ligne, le procédé passe à la colonne suivante et recommence les mesures de tensions aux bornes de l'intersection de la nouvelle colonne considérée et de chacune des lignes de 1 à
N.
Lorsque toutes les colonnes ont été balayées, les tensions aux bornes de chacun des points du capteur tactile matriciel 1 ont été mesurées. Alors le procédé est terminé, et le circuit électronique peut procéder à l'analyse de la matrice
« tension » obtenue.
La figure 3 représente un diagramme du procédé d'analyse des données « analyse 1 » 21.
Ledit procédé est constitué d'une série d'algorithmes réalisant les étapes suivantes :
- un ou plusieurs filtrages 22,
- la détermination 23 des zones englobantes de chaque zone de contact, - la détermination 24 du barycentre de chaque zone de contact,
- l'interpolation 25 de la zone de contact, et
- la prédiction 26 de la trajectoire de la zone de contact. Une fois terminé le procédé d'analyse 21, le logiciel est apte à appliquer aux objets graphiques virtuels de l'écran de visualisation 2 les différents traitements spécifiques afin de rafraîchir ledit écran de visualisation 2 en temps réel. Des zones englobant les zones de contact détectées lors de l'étape d'acquisition 11 sont également définies.
Conformément à l'état de la technique antérieure, le circuit électronique répète en boucle les procédés 11 et 21 à une fréquence de l'ordre de 100Hz. L'inconvénient d'un tel circuit électronique réside dans la surconsommation électrique.
Afin de pallier les inconvénients de l'art antérieur, le circuit électronique intègre un procédé d'asservissement du mode de fonctionnement du capteur.
Comme illustrés en figures 4 et 5, deux modes de fonctionnement sont ainsi mis en oeuvre par le circuit électronique : un premier mode de fonctionnement de type « multicontacts » 32, où les procédés d'acquisition et d'analyse de l'ensemble du capteur tactile sont conformes aux procédés 11 et 21 décrits ci-dessus, et
- un deuxième mode de fonctionnement de type « monocontact » 33, où les procédés d'acquisition et d'analyse de l'ensemble du capteur tactile sont conformes à ceux lors d'un fonctionnement monocontact.
Le mode de fonctionnement « monocontact » 33 est caractérisé par une alimentation continue et uniforme sur l'ensemble du capteur. Il correspond à un état au repos du capteur et du circuit de commande.
Selon ce mode de fonctionnement, un procédé d'acquisition des données « acquisition 2 » 51 est mis en œuvre. Ce procédé correspond à la mesure de tous les points de la matrice « tension » , de dimension NxM et qui contient à chaque point (I, J) la valeur de la tension mesurée aux bornes du point d'intersection de la ligne I et de la colonne J, avec l≤I≤N et l≤J≤M. Lors de ce procédé 51, les colonnes sont toutes alimentées en tension de manière continue et uniforme. Avantageusement, aucune colonne ni ligne n'est alimentée en tension. De ce fait, seuls les courants de fuite sont mesurés. La détection s'effectue par un balayage des lignes. Dans ce cas, il n'est pas possible de déterminer, lorsqu'il y a un contact, la colonne correspondant audit contact, puisque toutes les colonnes sont alimentées de manière uniforme et continue. Ainsi l'information de position du contact n'est pas fournie. Un procédé d'analyse des données « analyse 2 » 61 est ensuite mis en œuvre à partir des données acquises par le procédé 51. Ce procédé contient une ou plusieurs étapes de filtrage. Avantageusement, il ne contient pas d'étape de détermination d'une éventuelle zone de contact, l'information de position des contacts n'étant pas rendue accessible.
En effet, lorsque l'utilisateur ne touche pas le capteur, il est inutile de recueillir une image complète dudit capteur en permanence. De plus, lorsque l'utilisateur pose ses doigts sur le capteur, si la commutation entre le mode veille et le mode normal est assez rapide, il n'est pas nécessaire de connaître la position des doigts sur le capteur lors de la première information de contact. Le mode veille — ou monocontact - correspond à un état au repos du capteur et du circuit de commande qui doit juste être capable de détecter une modification d'un paramètre électrique du capteur lorsqu'au moins un contact est réalisé par l'utilisateur sans pour autant être capable d'analyser la position desdits contacts.
Le passage conditionné au mode normal multicontacts 32 permet alors de connaître dans un laps de temps réduit l'information de position multicontacts.
La figure 4 représente un diagramme du procédé d'asservissement du mode de fonctionnement du capteur, « veille 1 » 31, conformément à la présente invention.
Ce procédé comprend une première boucle 32 en mode « multicontacts » , correspondant à la succession des étapes d'acquisition 11 et d'analyse 21. À la fin de ladite première boucle 32, un asservissement conditionnel s'opère. Si au moins un point de contact est détecté sur l'ensemble du capteur tactile matriciel 1, le procédé rentre dans la deuxième boucle 33 en mode « monocontact», correspondant à la succession des étapes d'acquisition 51 et d'analyse 61. Ce mode de réalisation permet de permuter entre les modes multicontacts et monocontact de manière instantanée, selon un asservissement par la détection éventuelle d'au moins un contact. La consommation électrique est ainsi réduite de manière significative, puisque le fonctionnement en mode monocontact consomme une énergie électrique très inférieure à celui en mode multicontacts.
La figure 5 représente un diagramme du procédé d'asservissement du mode de fonctionnement du capteur, « veille 2 » 41, conformément à la présente invention.
Ce procédé diffère du précédent en ce qu'il comporte une itération N correspondant à un temps de latence entre le mode multicontacts et le mode monocontact. L'entier N est nombre caractéristique du nombre de périodes d'affilée de la boucle 32 lors de laquelle aucun contact n'est détecté. Le temps de latence prédéterminé est défini par Nlatence, qui correspond au nombre de périodes d'affilées sans contact détecté à partir duquel le capteur passe en mode monocontact. Ce procédé comprend une première boucle « multicontacts » 32 et une deuxième boucle « monocontact » 33. Après chaque boucle 32, un asservissement conditionnel s'opère. Si au moins un contact est détecté en sortie de la boucle 32, cette dernière est répétée. Si aucun contact n'est détecté en sortie de cette boucle 32, le nombre N de périodes d'affilées sans contact est interrogé. Si N est inférieur à Nlatence, N est incrémenté et la boucle 32 est répétée. Si N est égal à Nlatence, c'est la boucle « monocontact » 33 qui est exécutée. Tant qu'aucun contact n'est détecté en sortie de la boucle 33, celle-ci est répétée.
Dès qu'un contact est détecté en sortie de cette boucle 33, N repasse à 0 et c'est à nouveau la boucle 32 « multonctacts » qui est exécutée. Ce mode de réalisation permet de permuter entre les modes multicontacts et monocontact, selon un asservissement par la détection éventuelle d'au moins un contact, avec un temps de latence pour le passage du mode multicontacts au mode monocontact . Ce mode de réalisation de l'invention présente ainsi l ' avantage :
- de passer de manière instantanée du monocontact vers le multicontacts, par la détection d'un contact, et
- de passer avec un temps de latence prédéterminé du multicontacts vers le monocontact, ce qui permet d'éviter des permutations multicontacts/monocontact trop fréquentes dans le cas où un contact n'est malencontreusement pas détecté lors d'une seule période.
N peut par exemple être choisi de sorte à obtenir un temps de latence de l'ordre de 1 seconde. Les modes de réalisation précédemment décrits de la présente invention sont donnés à titre d'exemples et ne sont nullement limitatifs. Il est entendu que l'homme du métier est à même de réaliser différentes variantes de l'invention sans pour autant sortir du cadre du brevet.

Claims

REVENDICATIONS
1 — Capteur tactile multicontacts (1) comportant une matrice formée de deux couche conductrices transparentes, l'une au moins présentant un réseau de pistes conductrices fines, et un circuit de commande comportant une alimentation de l'une des couches et des moyens de détection de l'autre couche, ledit capteur (1) ayant un mode de fonctionnement de type multicontacts (32) correspondant à un balayage de l'alimentation des lignes de la couche correspondante, caractérisé en ce qu'il comporte également un mode de fonctionnement de type monocontact (33) correspondant à une alimentation continue et uniforme sur l'ensemble du capteur, chaque mode de fonctionnement (32,33) étant activé en fonction de la détection ou non d'au moins un contact.
2 — Capteur tactile multicontacts ( 1 ) selon la revendication précédente, caractérisé en ce que le mode multicontacts (32) est activé par la détection d'au moins un contact.
3 — Capteur tactile multicontacts (1) selon l'une au moins des revendications précédentes, caractérisé en ce que le mode monocontact (33) est activé par l'absence de détection d'au moins un contact.
4 — Capteur tactile multicontacts (1) selon la revendication précédente, caractérisé en ce que le mode monocontact (33) est activé après un temps de latence lors duquel aucun contact n'est détecté.
5 — Capteur tactile multicontacts (1) selon l'une au moins des revendications précédentes, caractérisé en ce que le mode de fonctionnement de type multicontacts (32) correspond à un balayage de l'alimentation des lignes de la couche correspondante et à une mesure aux bornes du point d'intersection entre les lignes alimentées et chacune des colonnes de l'autre couche.
6 — Capteur tactile multicontacts (1) selon l'une au moins des revendications précédentes, caractérisé en ce que le mode de fonctionnement de type monocontact (33) est un mode veille correspondant à un état au repos du capteur et du circuit de commande.
7 — Capteur tactile multicontacts (1) selon l'une au moins des revendications précédentes, caractérisé en ce que le mode de fonctionnement de type monocontact (33) correspond à une alimentation continue et uniforme de toutes les colonnes et à une détection s 'effectuant par un balayage des lignes.
8 — Capteur tactile multicontacts (1) selon l'une au moins des revendications précédentes, caractérisé en ce qu'il est transparent.
EP08872910A 2007-12-19 2008-12-19 Capteur tactile multicontacts avec mode veille monocontact Withdrawn EP2235610A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0760012A FR2925713B1 (fr) 2007-12-19 2007-12-19 Capteur tactile multicontacts a mode veille
PCT/FR2008/001807 WO2009106738A1 (fr) 2007-12-19 2008-12-19 Capteur tactile multicontacts avec mode veille monocontact

Publications (1)

Publication Number Publication Date
EP2235610A1 true EP2235610A1 (fr) 2010-10-06

Family

ID=39619398

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08872910A Withdrawn EP2235610A1 (fr) 2007-12-19 2008-12-19 Capteur tactile multicontacts avec mode veille monocontact

Country Status (8)

Country Link
US (1) US8427180B2 (fr)
EP (1) EP2235610A1 (fr)
JP (1) JP2011507122A (fr)
KR (1) KR20100108388A (fr)
CN (1) CN101903851A (fr)
CA (1) CA2709733A1 (fr)
FR (1) FR2925713B1 (fr)
WO (1) WO2009106738A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9018030B2 (en) 2008-03-20 2015-04-28 Symbol Technologies, Inc. Transparent force sensor and method of fabrication
US20090237374A1 (en) * 2008-03-20 2009-09-24 Motorola, Inc. Transparent pressure sensor and method for using
FR2934921B1 (fr) * 2008-08-05 2010-09-24 Stantum Capteur tactile multicontacts a moyens d'espacement de taille et impedance variables
US8988191B2 (en) 2009-08-27 2015-03-24 Symbol Technologies, Inc. Systems and methods for pressure-based authentication of an input on a touch screen
JP5663980B2 (ja) * 2010-06-29 2015-02-04 ブラザー工業株式会社 画像処理装置
US8963874B2 (en) 2010-07-31 2015-02-24 Symbol Technologies, Inc. Touch screen rendering system and method of operation thereof
JP2012103797A (ja) * 2010-11-08 2012-05-31 Sony Corp 入力装置、座標検出方法及びプログラム
EP3457264A4 (fr) * 2017-07-20 2019-05-22 Shenzhen Goodix Technology Co., Ltd. Procédé de détection d'un point de toucher, et dispositif de commande tactile

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3349223B2 (ja) * 1993-10-13 2002-11-20 株式会社デジタル 指示座標検知方法および装置
US5559301A (en) * 1994-09-15 1996-09-24 Korg, Inc. Touchscreen interface having pop-up variable adjustment displays for controllers and audio processing systems
US6762752B2 (en) * 2001-11-29 2004-07-13 N-Trig Ltd. Dual function input device and method
KR101171185B1 (ko) * 2005-09-21 2012-08-06 삼성전자주식회사 접촉 감지 기능이 있는 표시 장치, 그 구동 장치 및 방법
JP5427421B2 (ja) * 2009-01-19 2014-02-26 富士通コンポーネント株式会社 タッチパネル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009106738A1 *

Also Published As

Publication number Publication date
CN101903851A (zh) 2010-12-01
JP2011507122A (ja) 2011-03-03
US8427180B2 (en) 2013-04-23
WO2009106738A1 (fr) 2009-09-03
US20110001487A1 (en) 2011-01-06
FR2925713B1 (fr) 2010-03-19
CA2709733A1 (fr) 2009-09-03
FR2925713A1 (fr) 2009-06-26
KR20100108388A (ko) 2010-10-06

Similar Documents

Publication Publication Date Title
EP2235610A1 (fr) Capteur tactile multicontacts avec mode veille monocontact
EP2235614B1 (fr) Circuit electronique d'analyse a alternance de mesure capacitive/ resistive pour capteur tactile multicontacts a matrice passive
EP2235615B1 (fr) Circuit electronique d'analyse a modulation de caracteristiques de balayage pour capteur tactile multicontacts a matrice passive
EP2310932B1 (fr) Procédé d'acquisition et d'analyse d'un capteur tactile multicontacts suivant un principe dichotomique, circuit électronique et capteur tactile multicontacts mettant en oeuvre un tel procédé
FR2934921A1 (fr) Capteur tactile multicontacts a moyens d'espacement de taille et impedance variables
WO2008000964A1 (fr) Capteur tactile multipoint a matrice active
EP2235616A1 (fr) Circuit électronique d'analyse a alternance axe d'alimentation/axe de détection pour capteur tactile multicontactsà matrice passive
FR2914756A1 (fr) Capteur multi-tactile transparent.
FR2925717A1 (fr) Capteur tactile transparent multicontatcs a base de depot surfacique metallise
WO2004049364A1 (fr) Dispositif d'entree de donnees
FR2954982A1 (fr) Capteur tactile multicontacts a resistance de contact electrique elevee
EP2671140B1 (fr) Procede et dispositif d'acquisition de donnees d'un capteur tactile matriciel multicontacts
EP2769290B1 (fr) Procède d'acquisition de données d'un capteur tactile matriciel, notamment pour un écran tactile
FR3025042A1 (fr) Dispositif d'acquisition d'empreintes digitales
FR2607289A1 (fr) Dispositif du genre tablette graphique pour convertir un trace en donnees representatives dudit trace

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: OLIVIER, JULIEN

Inventor name: LARGILLIER, GUILLAUME

Inventor name: JOGUET, PASCAL

17Q First examination report despatched

Effective date: 20101202

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20121106