EP2229010B1 - Hörgerät und Verfahren zur Störschallkompensation bei einem Hörgerät - Google Patents

Hörgerät und Verfahren zur Störschallkompensation bei einem Hörgerät Download PDF

Info

Publication number
EP2229010B1
EP2229010B1 EP10151957.7A EP10151957A EP2229010B1 EP 2229010 B1 EP2229010 B1 EP 2229010B1 EP 10151957 A EP10151957 A EP 10151957A EP 2229010 B1 EP2229010 B1 EP 2229010B1
Authority
EP
European Patent Office
Prior art keywords
sound
hearing aid
filter
hearing
compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10151957.7A
Other languages
English (en)
French (fr)
Other versions
EP2229010A2 (de
EP2229010A3 (de
Inventor
Robert Kasanmascheff
Ulrich Kornagel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos Pte Ltd
Original Assignee
Sivantos Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sivantos Pte Ltd filed Critical Sivantos Pte Ltd
Publication of EP2229010A2 publication Critical patent/EP2229010A2/de
Publication of EP2229010A3 publication Critical patent/EP2229010A3/de
Application granted granted Critical
Publication of EP2229010B1 publication Critical patent/EP2229010B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17823Reference signals, e.g. ambient acoustic environment
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1783Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase handling or detecting of non-standard events or conditions, e.g. changing operating modes under specific operating conditions
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17855Methods, e.g. algorithms; Devices for improving speed or power requirements
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17873General system configurations using a reference signal without an error signal, e.g. pure feedforward
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1083Reduction of ambient noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/108Communication systems, e.g. where useful sound is kept and noise is cancelled
    • G10K2210/1081Earphones, e.g. for telephones, ear protectors or headsets
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3025Determination of spectrum characteristics, e.g. FFT
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/50Miscellaneous
    • G10K2210/509Hybrid, i.e. combining different technologies, e.g. passive and active
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/50Miscellaneous
    • G10K2210/511Narrow band, e.g. implementations for single frequency cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/01Hearing devices using active noise cancellation

Definitions

  • the invention relates to a method for compensating for an interfering sound in a hearing device.
  • the invention also relates to a hearing device which is designed to compensate for an interfering sound.
  • the term hearing device is understood here to mean a hearing aid.
  • Hearing aids are portable hearing devices that are used to care for the hearing impaired.
  • different designs of hearing aids such as behind-the-ear hearing aids (BTE), hearing aid with external receiver (RIC: receiver in the canal) and in-the-ear hearing aids (ITE), e.g. Concha hearing aids or canal hearing aids (ITE - In the ear, CIC - Completely in the canal) are also provided.
  • BTE behind-the-ear hearing aids
  • RIC hearing aid with external receiver
  • ITE in-the-ear hearing aids
  • ITE concha hearing aids or canal hearing aids
  • ITE - In the ear, CIC - Completely in the canal are also provided.
  • the hearing aids listed as examples are worn on the outer ear or in the auditory canal.
  • bone conduction hearing aids, implantable or vibrotactile hearing aids are also available on the market. The damaged hearing is stimulated either mechanically or electrically.
  • hearing aids have an input converter, an amplifier and an output converter as essential components.
  • the input transducer is usually a sound receiver, e.g. B. a microphone, and / or an electromagnetic receiver, e.g. B. an induction coil.
  • the output transducer is usually an electroacoustic transducer, e.g. B. miniature speakers, or as an electromechanical converter, e.g. B. bone conduction receiver realized.
  • the amplifier is usually integrated in a signal processing unit. This basic structure is in FIG 1 using the example of a behind-the-ear hearing aid shown.
  • One or more microphones 2 for picking up the sound from the environment are built into a hearing aid housing 1 to be worn behind the ear.
  • a signal processing unit 3 which is also integrated in the hearing aid housing 1, processes signals from the microphones and amplifies the processed signals.
  • the output signal of the signal processing unit 3 is transmitted to a loudspeaker or earpiece 4, which outputs an acoustic signal. If necessary, the sound is transmitted to the eardrum of the device wearer via a sound tube that is fixed in the ear canal with an otoplastic.
  • the hearing aid, and in particular that of the signal processing unit 3, is supplied with energy by a battery 5 which is also integrated in the hearing aid housing 1.
  • a sound detected by a microphone of a hearing aid also partially contains disturbing noises from the surroundings of the device wearer. These ambient noises can be attenuated in the microphone signal by the signal processing unit of a hearing aid by means of a filter for noise reduction. The filtered microphone signal can then be converted by a listener of the hearing aid into a sound signal that is emitted into the ear canal of the device wearer. It is important that no sound from the environment is also direct, i.e. H. by acoustic means, from the environment into the ear canal to the eardrum.
  • interfering sound Such a sound, which undesirably got from the environment directly into the ear canal of the device wearer, for example through a ventilation opening of an otoplastic, is referred to as interfering sound in the context of this invention.
  • the device wearer can again hear the ambient noises that were elaborately filtered out in the microphone signal of the hearing device.
  • a hearing set for aviation is known from the prior art, in which an ambient sound is compensated broadband by means of a compensation sound.
  • an ambient sound is combined with the compensation sound in the ear canal Superimposed on the carrier of the hearing aid.
  • the compensation sound is phase inverse. It thus compensates for the pressure fluctuations in the ear canal that would be caused by the ambient sound without the compensation sound. In other words, the ambient sound and the compensation sound cancel each other out through their superposition.
  • the compensation of a noise by means of a compensation sound is called active noise compensation (ANC - Active Noise Cancellation) or more generally active noise compensation.
  • components specially designed to generate a compensation sound can usually not be used.
  • the components have to be optimized according to other aspects.
  • EP 1 313 417 A1 describes an earplug for noise damping based on a microphone signal from a microphone directed into the auditory canal.
  • Active noise compensation can be implemented by means of the device.
  • an ambient signal can be reproduced by means of a loudspeaker in the inner ear, several filters being provided for reconstructing the natural voice, between which depending on the speech sounds that the user makes just pronounces, switching between the filters.
  • a cross-fading can be provided when switching between the filters.
  • a hearing protection is described, which can also be designed as an earplug.
  • the hearing protection can be based on active noise compensation, which generates a compensation sound for a given noise and a given frequency band in the ear canal of the user.
  • the noise compensation takes place as a feed-forward method.
  • a transfer function required for this is determined in a calibration process using an artificial head or using a microphone placed in a test person's auditory canal.
  • a third possibility is a user survey in which a user manually sets the transmission functions according to his needs.
  • EP 1 931 172 A1 describes a hearing aid with noise suppression.
  • a transfer function is stored in the hearing aid, by means of which a compensation sound is calculated for a current interference signal.
  • the interference noise suppression is broadband, for which a filter is designed in advance by means of a filter design during a hearing aid fitting.
  • the hearing ability includes a subjective loudness perception by a device wearer. Such a loudness perception can be determined using psychoacoustic methods known per se. However, the hearing ability can also be a hearing threshold, as it is e.g. can be determined using an auditory curve.
  • a compensation sound for a hearing device can be generated with the method. There is compensation not for all frequencies, but only for frequencies in that spectral band in which a device wearer can hear particularly well according to his hearing ability and in which, for example, a noise has a particularly high level of sound energy. Such a spectral band can often be relatively narrow in relation to the total range of audible frequencies.
  • the method can also be designed for compensation in several spectral bands.
  • the compensation sound can in particular also be generated without device components specially optimized for it.
  • an unfavorable group delay which is caused, for example, by the transducers of the hearing device, can possibly be corrected by a group delay of the filter which is negative in the specific spectral band. Such a correction is impossible with a broadband active sound compensation.
  • interfering sound path refers to the entirety of all acoustic transmission paths via which, for example, ambient sound, or a significant proportion of it, can reach his eardrum from the surroundings of a device wearer, where it can then be perceived as interfering sound within the meaning of the invention.
  • the interfering sound path does not include that transmission that is intended to be effected by the hearing device, in part electronically.
  • a transfer function of an interfering sound path can be determined, for example, by a manufacturer through measurements using methods known per se from the prior art.
  • the filtered input signal for the spectral band has the same spectral properties as the background noise.
  • further filtering of the input signal can be provided, by means of which, for example, a transmission behavior of a microphone or a loudspeaker of the hearing device is compensated.
  • the filtered input signal is inverted during or after the filtering results in a signal from which a sound that is phase-inverse to the interfering sound, i.e. a compensation sound, can be generated.
  • the compensation property is ensured by the method according to the invention in particular in the specific spectral band.
  • the spectral band is determined as a function of the spectral distribution of the energy of the interfering sound or the sound causing the interfering sound, an advantageous development results when the determination of the spectral band is repeated periodically or continuously.
  • the spectral band By constantly adapting the spectral band to the spectral distribution of the energy of the sound to be compensated, it is possible to compensate for this even if the spectral composition of an ambient noise changes rapidly.
  • a filter means all those parameters that are necessary to configure a filter algorithm. These parameters of a filter algorithm are also called coefficients of a filter here.
  • the outlay for calculating a compensation sound signal is particularly low.
  • Computing a filter depending on a spectral band makes it possible to provide a filter for any desired spectral band.
  • the processing device comprises a filter bank.
  • the spectral distribution of the sound energy can be determined again and again at intervals of a few milliseconds. That spectral band can thus be determined correspondingly quickly for which a compensation sound signal is to be calculated by the filter device.
  • the hearing device is advantageously developed in that the filter device comprises recursive, linear filtering.
  • a linear filter has the advantage that little computing time is required to calculate a compensation sound signal.
  • a recursive filter has the advantage that particularly few coefficients are required to simulate a transfer function for the sound on an interfering sound path, so that the calculation can be carried out with particularly few computing steps.
  • a particularly short group delay can also be achieved with a recursive filter.
  • the filter device of the hearing device comprises an adaptive filter. This makes it possible to use one and the same filter for different spectral bands.
  • the filter only needs to be adapted to the transfer function of the noise path in the corresponding spectral band before filtering.
  • a plurality of filters is provided in the filter device, from which one of them can be selected for filtering as a function of the specific spectral band.
  • the transfer function is advantageously formed from a spectral profile and a scaling factor.
  • the spectral curve describes the ratio of the influence of the background noise path on the sound in a frequency to the influence of the background noise path to the sound in a different frequency.
  • the spectral curve and the transfer function can still differ by a multiplicative factor. This multiplicative factor is the scaling factor.
  • the division results in the advantage that the hearing device can be adapted particularly easily to a user. While the spectral curve can namely be determined by measurements during the production of the hearing device, the spectral curve can easily be brought into congruence with an actual transfer function as it results when the hearing device is worn by the fact that when the hearing device is adapted for a user only the scaling factor has to be determined.
  • FIG 2 an ear with an auricle 6 and an auditory canal 7 is shown.
  • a hearing aid 8 is inserted into the ear canal 7.
  • a vent 9 is formed in the hearing aid 8, through which fresh air can flow into the auditory canal 7 from the surroundings of the ear. Such ventilation increases the wearing comfort for the user of the hearing aid 8 considerably.
  • a sound source 10 which emits an undesired sound 11, that is to say a noise, towards the auricle 6.
  • the sound 11 can penetrate through the vent 9 into the auditory canal, where it can strike an eardrum 13 of the user as an interfering sound 12.
  • the sound 11 thus reaches the eardrum 13 in a purely acoustic way through the vent 9.
  • the interfering sound 12 shown also represents further interfering sound which penetrates in a different way from the surroundings of the device wearer to his eardrum.
  • the interfering sound 12 is attenuated in an area 14 in front of the eardrum 13 by compensation by means of a compensation sound 15 to such an extent that it can hardly be heard by the user of the hearing aid 8.
  • the compensation sound 15 is superimposed on the interfering sound 12 in such a way that the sound formed by the superimposition of this sound has significantly less energy in the area 14 than the interfering sound 12 alone does.
  • the sound formed from the two superimposed sounds does not have all frequencies in the area 14 away significantly less energy than the background noise 12 alone.
  • the compensation is only effected for those frequencies which, on the one hand, can be perceived relatively well by the user of the hearing aid 8 and in which, on the other hand, the interfering sound 12 has a relatively high amount of energy. All of these frequencies form a spectral band.
  • the compensation sound 15 is part of a sound that a listener 16 of the hearing aid 8 emits.
  • the receiver 16 emits the compensation sound 15 because a compensation sound signal is additively superimposed on a useful signal that the receiver 16 converts into sound.
  • the compensation sound signal is calculated from a microphone signal that a microphone 17 of the hearing aid 8 generates.
  • the microphone signal is an input signal and represents the sound 11 from the user's surroundings.
  • the microphone signal is filtered by means of a filter 18 of the hearing aid 8 in such a way that it has the same spectral properties as the interfering sound 12 in the mentioned spectral band.
  • the compensation sound signal is then generated from the filtered microphone signal, in which the filtered signal is inverted.
  • the inverting takes place by an inverter 19.
  • the filter 18 and the inverter 19 work together as a compensation filter in the sense of the invention.
  • the filter 18 and the inverter 19 can also be combined to form a compensation filter.
  • the filter function of the filter 18 is then such that through it the Filtering and inverting are done together. A separate inverter is then not necessary.
  • the filter 18 is a recursive, linear filter. This makes it possible to provide a required group delay time for the filter in a specific spectral band.
  • the filter 18 reproduces the spectral change of the sound 11 when it passes through the vent 9 and through the other points on the way into the auditory canal 7 only for the aforementioned spectral band. It is also taken into account that a microphone signal to be processed by the filter 18, since it is actually intended to represent the sound 11, has been falsified by a transmission property of the microphone 17. It is also taken into account that the listener 16 also causes a distortion when converting the compensation sound signal into the compensation sound 15. The filter 18 compensates for this influence of the two transducers and other components of the hearing aid.
  • the hearing aid 8 is not only a hearing aid for the user, but also acts like an active earplug, ie it compensates for the interfering sound 12 that reaches the user's eardrum 13, for example through the vent 9.
  • the ambient sound 11 is recorded with the aid of the microphone 17 of the hearing aid 8 and the spectral characteristics of the microphone signal are modified by the filter 18 and the inverter 19.
  • the compensation sound is then generated by means of the receiver 16 from the filtered and inverted microphone signal (compensation sound signal).
  • the filter 18 In the case of the hearing aid 8, it is not possible to dimension the filter 18 in such a way that it covers the entire audio frequency range works ideally. This is because a hearing aid is not built solely for the purpose of active noise cancellation. Therefore, the components used in the hearing aid 8, that is to say for example the microphone, the earpiece, the shape of the housing and the damping materials, are not such that active noise compensation can ideally be achieved. The active noise compensation in the hearing aid 8 is therefore limited to a specific spectral band.
  • the filter 18 By suitably dimensioning the filter 18, it is possible to control in which frequency band active noise compensation is particularly effective and in which frequency band or in which frequency bands the active noise compensation behaves suboptimally. The consequence is that the active noise compensation decreases in certain frequency ranges or even instead of sound cancellation in certain frequency bands, sound amplification takes place.
  • the frequency band in which the active noise compensation works particularly well is placed in the frequency band in which the wearer of the hearing aid perceives an interfering sound relatively clearly or loudly. Conversely, the artifacts that arise in frequency ranges with poor noise compensation are masked by the hearing loss of the hearing aid wearer.
  • FIG 3 is associated with FIG 2 once again illustrates how the signal of the sound 11 from the sound source 10 reaches the area 14 in the user's auditory canal on an interfering sound path 20a and on a signal path 20b.
  • the interfering sound path 20a represents the unwanted transmission of the sound 11 through the vent and along the other paths from the environment into the interior of the auditory canal.
  • the sound 11 reaches the area 14 as interfering sound.
  • the sound 11 is in its spectral properties changed. This is done in FIG 3 symbolized by a transfer function H of the interfering sound path 20a.
  • the signal path 20b represents the path of the signal of the sound 11 as determined by the electronic processing of the sound 11 in the in FIG 2 hearing aid shown is formed.
  • the signal path 20b comprises the conversion of the sound 11 into a microphone signal, the filtering of the microphone signal by means of the in FIG 2 illustrated filter 18 and the inverter 19 as well as the generation of the also in FIG 2 compensation sound 15 illustrated via the earpiece 16.
  • the filter modifies the microphone signal in accordance with a transfer function H ′ of the filter 18.
  • the transfer function H 'it is possible for the specific spectral band to generate a sound in the region 14 which has approximately the same spectral properties as the sound transmitted via the interfering sound path 20a.
  • the correspondence is so great that only barely audible artifacts arise in the spectral band when compensated. At best, the match is perfect, so that the artifacts do not arise.
  • the effect of the inverter 19 is that the signal filtered by the filter 18 in accordance with the transfer function H ′ in the spectral band has the properties of a compensation sound signal.
  • the output signal of the inverter 19 is then converted using the in FIG 2
  • the receiver 16 shown is converted into a compensation sound 15 and is also emitted in the direction of the area 14. In the area 14, the signals of the interfering sound paths 20a and the signal path 20b cancel each other out in the spectral band in the manner described.
  • FIG 4 The circuit diagram shown of an active noise compensation in a hearing aid shows how a compensation sound signal is obtained from an input signal obtained by means of a microphone 21 can be generated, which can then be converted into a compensation sound with a receiver 22.
  • the microphone signal of the microphone 21 is spectrally analyzed with a filter bank 23.
  • individual bandpass filters 24a, 24b, 24c of the filter bank are shown.
  • the filter bank 23 has more than the three illustrated bandpass filters 24a, 24b, 24c.
  • the bandpass filters, not shown for the sake of clarity, are symbolized by ellipses.
  • the signals at the outputs of the bandpass filters 24a, 24b, 24c of the filter bank 23 are compared with one another by a power meter 25.
  • An output signal of a bandpass filter 24a, 24b, 24c reflects how much energy is present in a spectral band for which the corresponding bandpass filter 24a, 24b, 24c is permeable.
  • the power meter 25 uses the output signals of the bandpass filters 24a, 24b, 24c to determine the spectral band in which an equipment wearer would most clearly perceive an interfering sound. Several spectral bands can also be combined.
  • the power meter 25 does not directly use the distribution of the energy, as can be read off at the outputs of the filter bank 23. Instead, a spectral distribution of the energy of the noise is calculated.
  • the spectral distribution of the energy of the microphone signal calculated by the filter bank 23 is initially weighted with a magnitude spectrum of a transfer function for the interfering sound path.
  • the power meter 25 is also able to weight the information received from the bandpass filters 24a, 24b, 24c with an auditory curve of a user in such a way that the subjective volume perception of the user is also taken into account for the individual spectral bands that are passed through the bandpass filters 24a, 24b, 24c are represented. This can lead to the fact that a spectral band in which there is a relatively large amount of spectral energy of the interfering sound is nevertheless not selected by the power meter 25 because the user of the hearing aid has poor hearing in this spectral band. It can also be provided that the subjective loudness perception is further estimated by means of a psychoacoustic model.
  • the selection unit 26 configures a filter unit 27 in such a way that the microphone signal of the microphone 21, after being filtered by the filter unit 27, forms a compensation sound signal for the spectral band selected by the power meter 25.
  • FIG 4 the configuration is symbolized in such a way that the selection unit 26 acts on a selection switch 28.
  • the selection switch 28 can be used to switch symbolically between the outputs of various filters 29a to 29d. As in the case of the filter bank 23, not all of the filters 29a to 29d present are in the filter unit 27 FIG 4 shown.
  • the filters (not shown) are again indicated by ellipses. In the in FIG 4
  • the switching state of the selection switch 28 shown, the filter 29a is active.
  • the form shown of the selection by means of the selection switch 28 is only a symbolic representation of the process.
  • a change between the various filters 29a to 29d is actually made possible in that a filter algorithm of the filter unit 27 is configured using coefficients.
  • a corresponding set of coefficients must be transferred to the filter algorithm.
  • the various sets of coefficients which the filters 29a to 29d represent are stored in a table.
  • the selection unit 26 makes a selection from this. As already described, this selection depends on the one determined spectral band or the spectral bands and thus in the sense of the invention dependent on the spectral distribution of the energy of the microphone signal and also on the hearing ability of the user.
  • the filter unit 27 by restricting the compensation to a relatively narrow spectral band, it is possible to achieve a correct transit time for this band when processing the sound through the hearing aid. It is accepted that in other frequency ranges, that is to say outside the spectral bands determined by the computing unit 25, the compensation works suboptimally. However, this is not perceived by the user.
  • the microphone signal is continuously spectrally analyzed by the filter bank 23.
  • An optimal filter 29a to 29d is selected for the respective spectral distribution of the energy of the interfering sound. Switching between the coefficient sets can be done as a fading process to avoid switching artifacts.
  • the filter unit 27 as a filter algorithm can also contain an adaptive filter as a whole or in part.
  • the in FIG 5 The programming device 30 shown schematically is used to measure a hearing loss of a wearer of a hearing device 32 by means of an audiometer 31.
  • the hearing loss is determined depending on the frequency.
  • the hearing ability of the device wearer determined by means of the audiometer 31 is transmitted to an acoustician on an in FIG 5 screen, not shown, displayed as an audio curve.
  • Filters 34a to 34c developed by the manufacturer of hearing aid 32 are also stored in the control device.
  • the filters are compensation filters within the meaning of the invention, with which an interfering sound can be compensated for in different spectral bands for the hearing aid 32 when the hearing aid is worn 32 through an in FIG 5 otoplastic, not shown, of the hearing aid 32 can penetrate the eardrum of the wearer.
  • the filters can also be calculated in such a way that they effect active noise compensation for typical hearing losses determined in advance. For such typical hearing losses, spectral bands for which compensation is necessary can also be determined in advance.
  • the hearing curve measured with the audiometer 31 can then be compared with the typical hearing curves. The filter is selected for that typical hearing curve which has the greatest similarity to the measured hearing curve.
  • FIG 5 Ellipsis symbols symbolize that there are other filters in addition to the filters 34a to 34c shown.
  • the filters are stored as sets of coefficients that can be fed to an appropriate filter algorithm. Also in FIG 5 is accordingly to FIG 4 symbolizes the selection of a set of coefficients from a list by acting on a selection switch 35. In FIG 5 the filter 34a is currently selected by the selection switch 35.
  • the set of coefficients for the selected filter is transmitted to the hearing aid 32 by means of a transfer device 36.
  • the set of coefficients is then stored in hearing aid 32. In the in FIG 5 In the example shown, it is the filter 34a that is dubbed.
  • the transfer functions of the filters 34a to 34c only describe a basic spectral curve.
  • a scaling factor is then determined with the aid of sample signals and is stored in the hearing aid. This scaling factor is applied multiplicatively to a filtered signal so that active noise compensation is actually brought about by the filtered and scaled signal.
  • Diagrams D1 to D5 shown show graphs of various sizes as a function of a frequency f.
  • the frequency range shown is an audio frequency range. Frequencies between 0 Hz and approximately 15000 Hz are shown here.
  • Horizontal frequency axes of the individual diagrams D1 to D5 are not divided linearly so that the properties of the individual graphs explained below can be more easily represented. However, all diagrams D1 to D5 have the same non-linear division.
  • a hearing curve 37 for a wearer of a hearing aid is shown in diagram D1, the method for which the in FIG 6 Diagrams D1 to D5 shown belong.
  • a comparison with a hearing curve 38 of a person with normal hearing shows that the wearer of the hearing aid 37 has poorer hearing ability than a healthy person for all frequencies shown.
  • the diagram D2 shows a spectral distribution 41 of the energy of a sound over the frequency.
  • the sound comes from the environment of the wearer of the hearing aid and is partly Unintentionally transmitted acoustically, for example through a vent of the hearing aid, as interference sound to the eardrum of the wearer of the hearing aid.
  • the distribution 41 there is a spectral band 42 in which the energy of the sound is particularly large.
  • the subjective perception 43 of individual frequencies of the sound by the wearer of the hearing aid has been calculated.
  • the subjective perception 43 results from a weighting of the distribution 41 of the energy of the sound with the hearing curve 37 of the wearer of the hearing aid.
  • the curve for the subjective perception 43 shows that a spectral band 44, for which the wearer of the hearing aid perceives the sound particularly clearly, lies between the area 42 in which the energy of the sound is concentrated and the area 40, in which the wearer of the hearing aid can hear relatively well.
  • a set of coefficients of a compensation filter is determined in the hearing device, with which a compensation sound signal can be generated from a microphone signal which represents the sound with the energy distribution 41.
  • the compensation filter is chosen so that the compensation in particular for the area 44 is effected.
  • the compensation filter is only determined as a function of the auditory curve 37. If the compensation filter is only determined as a function of a hearing curve, the compensation filter naturally only has to be determined once, for example when the hearing aid is being adjusted.
  • a set of coefficients ie a compensation filter, is now selected as a function of the area 44 in which the sound can be perceived particularly well by the wearer of the hearing aid.
  • the compensation filter for the spectral band 45b is selected.
  • the limits of the spectral band 45b are plotted in both diagram D3 and diagram D5 by dashed lines.
  • the diagram D5 shows a transfer function 46 of that filter which belongs to the set of coefficients for the spectral band 45b. Furthermore, a transfer function 47 of an interfering sound path is shown in diagram D5, via which the sound arrives acoustically from the surroundings of the wearer of the hearing aid as interfering sound to his eardrum. As can be seen from a comparison of the two transfer functions 46 and 47, the two transfer functions almost coincide in the region of the spectral band 45b. This makes it possible in the spectral band 45b with a filter unit that has the appropriate set of coefficients is used to generate a compensation sound signal from a microphone signal representing the sound.
  • the limits of a spectral band do not have to be sharp limits.
  • the limits are a transition area in which a deviation of the transfer function 46 of the compensation filter from the transfer function 47 of the interfering sound path gradually increases.
  • a threshold value can be set for the deviation, for example, which can be determined, for example, as a function of the perceptibility or measurability of artifacts during active sound compensation.
  • the examples show how a compensation of an interfering sound is made possible by means of the invention, even if the hearing device is not designed for such compensation. Very little computing capacity is required to calculate a compensation sound signal.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Kompensieren eines Störschalls bei einer Hörvorrichtung. Die Erfindung betrifft auch eine Hörvorrichtung, die zum Kompensieren eines Störschalls ausgelegt ist. Unter dem Begriff Hörvorrichtung wird hier ein Hörgerät verstanden.
  • Hörgeräte sind tragbare Hörvorrichtungen, die zur Versorgung von Hörgeschädigten dienen. Um den zahlreichen individuellen Bedürfnissen entgegenzukommen, werden unterschiedliche Bauformen von Hörgeräten wie Hinter-dem-Ohr-Hörgeräte (HdO), Hörgerät mit externem Hörer (RIC: receiver in the canal) und In-dem-Ohr-Hörgeräte (IdO), z.B. auch Concha-Hörgeräte oder Kanal-Hörgeräte (ITE - In the ear, CIC - Completely in the canal), bereitgestellt. Die beispielhaft aufgeführten Hörgeräte werden am Außenohr oder im Gehörgang getragen. Darüber hinaus stehen auf dem Markt aber auch Knochenleitungshörhilfen, implantierbare oder vibrotaktile Hörhilfen zur Verfügung. Dabei erfolgt die Stimulation des geschädigten Gehörs entweder mechanisch oder elektrisch.
  • Hörgeräte besitzen prinzipiell als wesentliche Komponenten einen Eingangswandler, einen Verstärker und einen Ausgangswandler. Der Eingangswandler ist in der Regel ein Schallempfänger, z. B. ein Mikrofon, und/oder ein elektromagnetischer Empfänger, z. B. eine Induktionsspule. Der Ausgangswandler ist meist als elektroakustischer Wandler, z. B. Miniaturlautsprecher, oder als elektromechanischer Wandler, z. B. Knochenleitungshörer, realisiert. Der Verstärker ist üblicherweise in eine Signalverarbeitungseinheit integriert. Dieser prinzipielle Aufbau ist in FIG 1 am Beispiel eines Hinter-dem-Ohr-Hörgeräts dargestellt. In ein Hörgerätegehäuse 1 zum Tragen hinter dem Ohr sind ein oder mehrere Mikrofone 2 zur Aufnahme des Schalls aus der Umgebung eingebaut. Eine Signalverarbeitungseinheit 3, die ebenfalls in das Hörgerätegehäuse 1 integriert ist, verarbeitet Signale der Mikrofone und verstärkt die verarbeiteten Signale. Das Ausgangssignal der Signalverarbeitungseinheit 3 wird an einen Lautsprecher bzw. Hörer 4 übertragen, der ein akustisches Signal ausgibt. Der Schall wird gegebenenfalls über einen Schallschlauch, der mit einer Otoplastik im Gehörgang fixiert ist, zum Trommelfell des Geräteträgers übertragen. Die Energieversorgung des Hörgeräts und insbesondere die der Signalverarbeitungseinheit 3 erfolgt durch eine ebenfalls ins Hörgerätegehäuse 1 integrierte Batterie 5.
  • Ein von einem Mikrofon eines Hörgeräts erfasster Schall enthält auch teilweise störende Geräusche aus einer Umgebung des Geräteträgers. Diese Umgebungsgeräusche können in dem Mikrofonsignal durch die Signalverarbeitungseinheit eines Hörgeräts mittels eines Filters zur Geräuschreduktion gedämpft werden. Das gefilterte Mikrofonsignal kann anschließend von einem Hörer des Hörgeräts in ein Schallsignal gewandelt werden, der in den Gehörgang des Geräteträgers abgegeben wird. Dabei ist es wichtig, dass nicht auch ein Schall aus der Umgebung direkt, d. h. auf akustischem Weg, von der Umgebung in den Gehörgang zum Trommelfell gelangt. Ein solcher Schall, der unerwünscht aus der Umgebung direkt beispielsweise durch eine Belüftungsöffnung einer Otoplastik hindurch in den Gehörgang des Geräteträgers gelangt ist, wird im Rahmen dieser Erfindung als Störschall bezeichnet. In Form des Störschalls werden für den Geräteträger die Umgebungsgeräusche wieder hörbar, die in dem Mikrofonsignal des Hörgeräts aufwändig herausgefiltert wurden.
  • Aus dem Stand der Technik ist eine Hörgarnitur für die Luftfahrt bekannt, bei der ein Umgebungsschall mittels eines Kompensationsschalls breitbandig kompensiert wird. Dazu wird ein Umgebungsschall mit dem Kompensationsschall im Gehörgang eines Trägers der Hörgarnitur überlagert. Der Kompensationsschall ist dabei phaseninvers. Er gleicht damit in dem Gehörgang die Druckschwankungen aus, die ohne den Kompensationsschall durch den Umgebungsschall hervorgerufen würden. Mit anderen Worten löschen sich der Umgebungsschall und der Kompensationsschall durch ihre Überlagerung gegenseitig aus. Das Kompensieren eines Geräuschs mittels eines Kompensationsschalls wird aktive Geräuschkompensation (ANC - Active Noise Cancellation) oder allgemeiner aktive Schallkompensation genannt.
  • Um mit einer Hörgarnitur einen Kompensationsschall erzeugen zu können, müssen spezielle Komponenten, insbesondere spezielle Wandler, verwendet werden. Andernfalls weist ein aus den Wandlern und einem Kompensationsfilter gebildetes System eine zu große Gruppenlaufzeit auf. Mit anderen Worten ist es ohne die speziellen Komponenten nicht möglich, einen Kompensationsschall mit einer korrekten Phase bereitzustellen.
  • In Hörvorrichtungen, wie z. B. Hörgeräten, können meist keine speziell zum Bilden eines Kompensationsschalls ausgelegten Komponenten verwendet werden. Für Hörvorrichtungen müssen die Komponenten nämlich bereits nach anderen Gesichtspunkten optimiert sein. Als eine Folge daraus lässt sich für eine aktive Geräuschkompensation kein System mit der benötigten Gruppenlaufzeit bilden. Auch ist es meistens nicht möglich, beispielsweise bei einer Otoplastik des Hörgeräts einen Umgebungsschall stark zu dämpfen, wenn dieser z.B. durch eine Belüftungsöffnung der Otoplastik, einen sogenannten Vent, als Störschall zu einem Trommelfell eines Geräteträgers gelangt. Eine Dämpfung in einem Vent würde bedeuten, dass auch der durch den Vent ermöglichte Austausch von Luft zwischen der Umgebung des Geräteträgers und dem Gehörgang verschlechtert würde.
  • In dem Dokument JP H04 359297 A ist eine aktive Geräuschkompensation beschrieben, mittels welcher an einer vorbestimmten Raumposition ein Umgebungsgeräusch kompensiert wird, wobei hierzu im Raum ein Mikrofon positioniert wird und mit dem Mikrofonsignal und einer LMS-Methode in ein Lautsprechersignal das Kompensationssignal eingefügt wird. Bei der Berechnung des Kompensationssignals kann eine Bandbegrenzung sowie eine Berücksichtigung von Höreigenschaften einer Person vorgesehen sein.
  • In dem Dokument EP 1 313 417 A1 ist ein Ohrstöpsel für eine Geräuschdämpfung beschrieben, die auf einem Mikrofonsignal eines in den Gehörgang gerichteten Mikrofons beruht. Mittels der Vorrichtung kann eine aktive Geräuschkompensation realisiert werden. Um einen Okklusionseffekt zu vermeiden, durch welchen ein Benutzer seine Eigenstimme nur gedämpft und verzerrt wahrnimmt, kann ein Umgebungssignal mittels eines Lautsprechers im Innenohr wiedergegeben werden, wobei zur Rekonstruktion der Eigenstimme mehrere Filter vorgesehen sind, zwischen denen in Abhängigkeit von den Sprachlauten, die der Benutzer gerade ausspricht, zwischen den Filtern umgeschaltet wird. Beim Umschalten zwischen den Filtern kann ein Überblenden vorgesehen sein.
  • In dem Dokument WO 2008/090342 A2 ist ein Gehörschutz beschrieben, der auch als Ohrstöpsel ausgestaltet sein kann. Der Gehörschutz kann auf einer aktiven Geräuschkompensation basieren, die für ein vorgegebenes Geräusch und ein vorgegebenes Frequenzband im Gehörgang des Benutzers einen Kompensationsschall erzeugt. Die Geräuschkompensation erfolgt als Feed-Forward-Verfahren. Eine hierzu nötige Übertragungsfunktion wird in einem Kalibrierverfahren mittels eines Kunstkopfes oder mittels eines im Gehörgang einer Testperson platzierten Mikrofons ermittelt. Eine dritte Möglichkeit stellt eine Benutzerbefragung dar, bei welcher ein Benutzer manuell die Übertragungsfunktionen nach seinen Bedürfnissen einstellt.
  • In dem Dokument EP 1 931 172 A1 ist ein Hörgerät mit Störschallunterdrückung beschrieben. In dem Hörgerät ist eine Übertragungsfunktion gespeichert, mittels welcher ein Kompensationsschall zu einem aktuellen Störsignal berechnet wird. Die Störschallunterdrückung erfolgt breitbandig, wofür vorab ein Filter mittels eines Filter-Designs bei einer Hörgeräteanpassung entworfen wird.
  • Es ist Aufgabe der vorliegenden Erfindung für einen Geräteträger die Wahrnehmbarkeit eines Störschalls zu vermindern, der auf direktem, also akustischem Weg an sein Ohr dringt. Weiter ist es Aufgabe der Erfindung, eine entsprechende Hörvorrichtung bereitzustellen.
  • Die Erfindung wird mit den Gegenständen der unabhängigen Patentansprüche gelöst.
  • Erfindungsgemäß wird ein Verfahren zum Kompensieren eines Störschalls bei einem Hörgerät bereitgestellt. Dieses Verfahren umfasst die Schritte:
    • Bestimmen eines spektralen Bands in Abhängigkeit von einem Hörvermögen,
    • Filtern eines Eingangssignals des Hörgerätes, welches einen den Störschall (12) hervorrufenden Schall (11) repräsentiert, in dem spektralen Band gemäß einer Übertragungsfunktion, die in dem spektralen Band einer Übertragungsfunktion für den Schall auf einem Störschallpfad entspricht, und
    • Erzeugen eines Kompensationsschalls mit Hilfe des invertierten gefilterten Eingangssignals.
  • Das Hörvermögen umfasst eine subjektive Lautheitswahrnehmung durch einen Geräteträger. Eine solche Lautheitswahrnehmung kann mit an sich bekannten Verfahren der Psychoakustik ermittelt werden. Es kann sich bei dem Hörvermögen aber auch um eine Hörschwelle handeln, wie sie z.B. anhand einer Hörkurve bestimmt werden kann.
  • Mit dem Verfahren kann ein Kompensationsschall für eine Hörvorrichtung erzeugt werden. Eine Kompensation findet dabei nicht für alle Frequenzen statt, sondern nur für Frequenzen in demjenigen spektralen Band, in dem ein Geräteträger gemäß seinem Hörvermögen besonders gut hört und in dem beispielsweise ein Geräusch besonders viel Schallenergie aufweist. Ein solches spektrales Band kann oftmals verhältnismäßig schmal in Bezug auf den Gesamtbereich hörbarer Frequenzen sein. Das Verfahren kann auch für ein Kompensieren in mehreren spektralen Bändern ausgelegt sein.
  • Der Kompensationsschall kann insbesondere auch ohne speziell dafür optimierte Gerätekomponenten erzeugt werden. Beim Filtern kann nämlich eine ungünstige Gruppenlaufzeit, die beispielsweise durch die Wandler der Hörvorrichtung verursacht wird, gegebenenfalls durch eine Gruppenlaufzeit des Filters korrigiert werden, die in dem bestimmten spektralen Band negativ ist. Eine solche Korrektur ist bei einer breitbandigen aktiven Schallkompensation unmöglich.
  • Mit dem Begriff Störschallpfad ist die Gesamtheit aller akustischen Übertragungswege gemeint, über die beispielsweise ein Umgebungsschall, oder ein signifikanter Anteil desselben, von einer Umgebung eines Geräteträgers an sein Trommelfell gelangen kann, wo er dann als Störschall im Sinne der Erfindung wahrnehmbar ist. Der Störschallpfad umfasst nicht diejenige Übertragung, die bestimmungsgemäß durch die Hörvorrichtung auf teilweise elektronischem Wege bewirkt wird.
  • Beim unerwünschten Vordringen des Umgebungsschalls zum Trommelfell wird der Umgebungsschall spektral verändert. Diese spektrale Veränderung wird durch eine Übertragungsfunktion des Störschallpfads beschrieben. Eine Übertragungsfunktion eines Störschallpfads kann beispielsweise von einem Hersteller durch Messungen mit an sich aus dem Stand der Technik bekannten Verfahren ermittelt werden.
  • Indem das Eingangssignal mit einer Übertragungsfunktion gefiltert wird, die in einem bestimmten spektralen Band der Übertragungsfunktion des Störschallpfads entspricht, weist das gefilterte Eingangssignal für das spektrale Band die gleichen spektralen Eigenschaften wie der Störschall auf. Selbstverständlich kann im Rahmen der Erfindung eine weitere Filterung des Eingangssignals vorgesehen sein, durch die beispielsweise ein Übertragungsverhalten eines Mikrofons oder eines Lautsprechers der Hörvorrichtung ausgeglichen wird.
  • Indem das gefilterte Eingangssignal während der Filterung oder anschließend invertiert wird, ergibt sich ein Signal, aus dem ein zum Störschall phaseninverser Schall, also ein Kompensationsschall, erzeugbar ist. Die Kompensationseigenschaft ist durch das erfindungsgemäße Verfahren dabei insbesondere in dem bestimmten spektralen Band gewährleistet.
  • Wenn bei dem Verfahren das spektrale Band in Abhängigkeit von der spektralen Verteilung der Energie des Störschalls oder des den Störschall hervorrufenden Schalls bestimmt wird, ergibt sich eine vorteilhafte Weiterbildung, wenn das Bestimmen des spektralen Bands periodisch wiederholt wird oder kontinuierlich erfolgt. Durch ein ständiges Anpassen des spektralen Bands an die spektrale Verteilung der Energie des zu kompensierenden Schalls ist es möglich, diesen auch dann zu kompensieren, wenn sich ein Umgebungsgeräusch in seiner spektralen Zusammensetzung schnell ändert.
  • Ein weiterer Vorteil ergibt sich, wenn zum Filtern in Abhängigkeit von dem spektralen Band ein Filter aus einer Mehrzahl von vorbestimmten Filtern ausgewählt wird oder ein Filter berechnet wird. Mit einem Filter sind hier all diejenigen Parameter gemeint, die zum Konfigurieren eines Filteralgorithmus nötig sind. Diese Parameter eines Filteralgorithmus werden hier auch Koeffizienten eines Filters genannt.
  • Durch Bereitstellen von mehreren bereits berechneten Filtern für unterschiedliche spektrale Bänder, in denen eine Kompensation mittels des Kompensationsschalls ermöglicht werden soll, ist der Aufwand zum Berechnen eines Kompensationsschallsignals besonders gering. Ein Berechnen eines Filters in Abhängigkeit von einem spektralen Band erlaubt es, ein Filter für ein beliebiges spektrales Band bereitzustellen.
  • Eine vorteilhafte Weiterbildung des Verfahrens ergibt sich, wenn bei dem Filter die Übertragungsfunktion mit einem vorbestimmten Faktor multipliziert wird, der einen Einfluss auf die Übertragungsfunktion in dem bestimmten spektralen Band beschreibt, den ein Zusammenwirken der Hörvorrichtung mit einem Ohr eines Benutzers hat. Mittels des multiplikativen Faktors ist es möglich, das erfindungsgemäße Verfahren mit einem sehr geringen Aufwand für einen bestimmten Benutzer der Hörvorrichtung anzupassen.
  • Zu der Erfindung gehört auch ein Hörgerät mit
    • einer Verarbeitungseinrichtung zum Bereitstellen eines spektralen Bands in Abhängigkeit von einem Hörvermögen,
    • einer Filtereinrichtung zum Filtern eines Eingangssignals des Hörgerätes, welches einen den Störschall (12) hervorrufenden Schall (11) repräsentiert, in dem spektralen Band gemäß einer Übertragungsfunktion, die in dem spektralen Band einer Übertragungsfunktion für den Schall auf einem Störschallpfad entspricht, und
    • einer Schallausgabeeinrichtung zum Erzeugen eines Kompensationsschalls mit Hilfe des invertierten gefilterten Eingangssignals.
  • Mit einer solchen Hörvorrichtung ist es möglich, einen Schall in einem bestimmten spektralen Band zu kompensieren, ohne dass dabei andere Funktionalitäten der Hörvorrichtung, wie z.B. eine Geräuschreduktion oder eine Belüftung durch einen Vent, beeinträchtigt werden.
  • Für den Fall, dass mit der Verarbeitungseinrichtung der Hörvorrichtung eine spektrale Verteilung der Energie des Schalls bestimmbar ist, ergibt sich eine vorteilhafte Weiterbildung, wenn die Verarbeitungseinrichtung eine Filterbank umfasst. Mit einer Filterbank ist die spektrale Verteilung der Schallenergie in zeitlichen Abständen von wenigen Millisekunden immer wieder neu bestimmbar. Entsprechend schnell kann somit dasjenige spektrale Band bestimmt werden, für welches durch die Filtereinrichtung ein Kompensationsschallsignal zu berechnen ist.
  • Die Hörvorrichtung wird in vorteilhafter Weise dadurch weitergebildet, dass die Filtereinrichtung ein rekursives, lineares Filtern umfasst. Durch Verwenden eines linearen Filters ergibt sich der Vorteil, dass zum Berechnen eines Kompensationsschallsignals wenig Rechenzeit benötigt wird. Ein rekursives Filter hat den Vorteil, dass besonders wenig Koeffizienten zum Nachbilden einer Übertragungsfunktion für den Schall auf einem Störschallpfad benötigt werden, so dass sich die Berechnung mit besonders wenig Rechenschritten durchführen lässt. Mit einem rekursiven Filter kann auch eine besonders geringe Gruppenlaufzeit erzielt werden.
  • Vorteilhaft ist es des Weiteren, wenn die Filtereinrichtung der Hörvorrichtung ein adaptives Filter umfasst. Damit wird es möglich, ein und dasselbe Filter für verschiedene spektrale Bänder zu nutzen. Das Filter muss lediglich vor dem Filtern in dem entsprechenden spektralen Band an die Übertragungsfunktion des Störschallpfads adaptiert werden.
  • Alternativ zu einem adaptiven Filter ist es auch vorteilhaft, wenn in der Filtereinrichtung eine Mehrzahl von Filtern bereitgestellt ist, aus denen zum Filtern eines davon in Abhängigkeit von dem bestimmten spektralen Band auswählbar ist. Durch Berechnen der Filter, d.h. also der Parameter oder Koeffizienten, im Voraus wird ermöglicht, das Kompensationsschallsignals sehr schnell zu berechnen.
  • In vorteilhafter Weise wird bei der Hörvorrichtung die Übertragungsfunktion aus einem spektralen Verlauf und einem Skalierungsfaktor gebildet. Der spektrale Verlauf beschreibt dabei das Verhältnis des Einflusses des Störschallpfads auf den Schall in einer Frequenz zu dem Einfluss des Störschallpfads auf den Schall in einer anderen Frequenz. Mit anderen Worten wird durch den spektralen Verlauf lediglich die prinzipielle Form der Übertragungsfunktion betrieben. Der spektrale Verlauf und die Übertragungsfunktion können sich dabei noch um einen multiplikativen Faktor unterscheiden. Dieser multiplikative Faktor ist der Skalierungsfaktor.
  • Durch die Aufteilung ergibt sich der Vorteil, dass die Hörvorrichtung besonders leicht an einen Benutzer angepasst werden kann. Während der spektrale Verlauf nämlich durch Messungen bei der Herstellung der Hörvorrichtung ermittelt werden kann, lässt sich der spektrale Verlauf mit einer tatsächlichen Übertragungsfunktion, wie sie sich beim Tragen der Hörvorrichtung ergibt, leicht dadurch in Deckung bringen, dass bei einem Anpassen der Hörvorrichtung für einen Benutzer lediglich der Skalierungsfaktor ermittelt werden muss.
  • Die Erfindung wird im Folgenden anhand von Beispielen näher erläutert. Dazu zeigen:
  • FIG 1
    eine schematische Darstellung einer Hörvorrichtung aus dem Stand der Technik mit darin enthaltenen Komponenten,
    FIG 2
    eine Darstellung eines Gehörgangs mit einem darin befindlichen In-dem-Ohr-Hörgerät gemäß einer Ausführungsform einer erfindungsgemäßen Hörvorrichtung,
    FIG 3
    einen Signalflussgraphen für ein Schallsignal, wie er sich bei einer Ausführungsform eines erfindungsgemäßen Verfahrens zum Kompensieren eines Störschalls ergibt,
    FIG 4
    einen Schaltplan eines Hörgeräts gemäß einer Ausführungsform einer erfindungsgemäßen Hörvorrichtung,
    FIG 5
    einen Schaltplan eines Programmiergeräts für ein Hörgerät gemäß einer Ausführungsform einer erfindungsgemäßen Vorrichtung zum Anpassen einer Hörvorrichtung und
    FIG 6
    eine Zusammenstellung von Diagrammen mit Graphen von mehreren spektralen Größen, wie sie sich bei einer Ausführungsform eines erfindungsgemäßen Verfahrens zum Kompensieren eines Störschalls ergeben.
  • Die erläuterten Beispiele stellen bevorzugte Ausführungsformen der Erfindung dar.
  • In FIG 2 ist ein Ohr mit einer Ohrmuschel 6 und einem Gehörgang 7 gezeigt. In den Gehörgang 7 ist ein Hörgerät 8 eingeführt. In dem Hörgerät 8 ist ein Vent 9 ausgebildet, durch den Frischluft von einer Umgebung des Ohrs in den Gehörgang 7 einströmen kann. Eine solche Belüftung erhöht den Tragekomfort für den Benutzer des Hörgeräts 8 erheblich.
  • In der Umgebung befindet sich auch eine Schallquelle 10, die einen unerwünschten Schall 11, also ein Geräusch, zur Ohrmuschel 6 hin abstrahlt. Der Schall 11 kann durch den Vent 9 in den Gehörgang vordringen, wo er als Störschall 12 auf ein Trommelfell 13 des Benutzers treffen kann. Der Schall 11 gelangt also auf rein akustischem Weg durch den Vent 9 zum Trommelfell 13.
  • Der in FIG 2 dargestellte Störschall 12 repräsentiert in dem Beispiel auch weiteren Störschall, der auf anderem Weg von der Umgebung des Geräteträgers zu dessen Trommelfell vordringt.
  • Der Störschall 12 wird in einem Bereich 14 vor dem Trommelfell 13 durch Kompensation mittels eines Kompensationsschalls 15 soweit abgeschwächt, dass er für den Benutzer des Hörgeräts 8 kaum mehr hörbar ist. Der Kompensationsschall 15 überlagert sich derart mit dem Störschall 12, dass der durch die Überlagerung dieser Schalle gebildete Schall im Bereich 14 deutlich weniger Energie aufweist, als es der Störschall 12 allein tut. Der aus den beiden überlagerten Schallen gebildete Schall weist im Bereich 14 dabei aber nicht über alle Frequenzen hinweg signifikant weniger Energie als der Störschall 12 alleine auf. Die Kompensation wird lediglich für solche Frequenzen bewirkt, die zum einen von dem Benutzer des Hörgeräts 8 verhältnismäßig gut wahrgenommen werden können und in denen zum anderen der Störschall 12 verhältnismäßig viel Energie aufweist. Die Gesamtheit dieser Frequenzen bildet ein spektrales Band.
  • Der Kompensationsschall 15 ist Bestandteil eines Schalls, den ein Hörer 16 des Hörgeräts 8 abstrahlt. Der Hörer 16 strahlt den Kompensationsschall 15 ab, weil einem Nutzsignal, das der Hörer 16 in Schall wandelt, ein Kompensationsschallsignal additiv überlagert ist. Das Kompensationsschallsignal wird aus einem Mikrofonsignal berechnet, dass ein Mikrofon 17 des Hörgeräts 8 erzeugt. Das Mikrofonsignal ist im Sinne der Erfindung ein Eingangssignal und repräsentiert den Schall 11 aus der Umgebung des Benutzers.
  • Um aus dem Mikrofonsignal das Kompensationsschallsignal zu berechnen, wird mittels eines Filters 18 des Hörgeräts 8 das Mikrofonsignal derart gefiltert, dass es in dem erwähnten spektralen Band dieselben spektralen Eigenschaften wie der Störschall 12 aufweist. Aus dem gefilterten Mikrofonsignal wird dann das Kompensationsschallsignal erzeugt, in dem das gefilterte Signal invertiert wird. Für einen Verlauf eines Graphs des gefilterten Mikrofonsignals bedeutet dies, dass für jede Stelle des Graphen sein Vorzeichen umgekehrt wird. Für ein Spektrum des gefilterten Mikrofonsignals bedeutet dies, dass für jede Frequenz des Spektrums die Phase um 180° verändert wird. Das Invertieren erfolgt in dem Beispiel durch einen Invertierer 19. Das Filter 18 und der Invertierer 19 wirken zusammen als ein Kompensationsfilter im Sinne der Erfindung.
  • Das Filter 18 und der Invertierer 19 können auch zu einem Kompensationsfilter zusammengefasst werden. Die Filterfunktion des Filters 18 ist dann so beschaffen, dass durch sie das Filtern und das Invertieren zusammen erfolgt. Ein gesonderter Invertierer ist dann nicht nötig.
  • Das Filter 18 ist ein rekursives, lineares Filter. Dadurch ist es möglich, eine benötigte Gruppenlaufzeit des Filters in einem bestimmten spektralen Band bereitzustellen. Das Filter 18 bildet die spektrale Veränderung des Schalls 11 beim Durchtritt durch den Vent 9 und durch die übrigen Stellen auf dem Weg in den Gehörgang 7 nur für das erwähnte spektrale Band genau nach. Dabei ist auch berücksichtigt, dass ein von dem Filter 18 zu verarbeitendes Mikrofonsignal, da ja eigentlich den Schall 11 repräsentieren soll, durch eine Übertragungseigenschaft des Mikrofons 17 verfälscht worden ist. Außerdem ist berücksichtigt, dass auch der Hörer 16 beim Wandeln des Kompensationsschallsignals in den Kompensationsschall 15 ebenfalls eine Verzerrung bewirkt. Das Filter 18 gleicht diesen Einfluss der beiden Wandler und weiterer Komponenten des Hörgeräts aus.
  • Die Funktion des in FIG 2 dargestellten Hörgeräts wird hier noch einmal kurz zusammengefasst: Das Hörgerät 8 ist für den Benutzer nicht nur eine Hörhilfe, sondern es wirkt auch wie ein aktiver Hörstöpsel, d. h. es kompensiert den Störschall 12, der das Trommelfell 13 des Benutzers beispielsweise durch den Vent 9 erreicht. Dazu wird der Umgebungsschall 11 mit Hilfe des Mikrofons 17 des Hörgeräts 8 aufgenommen und die spektrale Charakteristik des Mikrofonsignals mittels des Filters 18 und des Invertierers 19 modifiziert. Aus dem gefilterten und invertierten Mikrofonsignal (Kompensationsschallsignal) wird mittels des Hörers 16 dann der Kompensationsschall erzeugt. Die Überlagerung des Schalls 11, der das Trommelfell 13 als Störschall 12 ungewollt erreicht, mit dem Kompensationsschall 15, welchen das Hörgerät 8 abgibt, führt zu der erwünschten Auslöschung des Störschalls im Bereich 14 unmittelbar am Trommelfell 13 des Benutzers.
  • Bei dem Hörgerät 8 ist es nicht möglich, das Filter 18 derart zu dimensionieren, dass es für den gesamten Audio-Frequenzbereich ideal funktioniert. Dies liegt daran, dass ein Hörgerät nicht ausschließlich für den Zweck der aktiven Geräuschkompensation gebaut ist. Daher sind die verwendeten Komponenten des Hörgeräts 8, also beispielsweise das Mikrofon, der Hörer, die Gehäuseform und dämpfende Materialien, nicht so beschaffen, dass sich eine aktive Geräuschkompensation ideal erwirken lässt. Deshalb ist die aktive Geräuschkompensation bei dem Hörgerät 8 auf ein bestimmtes spektrales Band beschränkt.
  • Durch geeignete Dimensionierung des Filters 18 kann gesteuert werden, in welchem Frequenzband eine aktive Geräuschkompensation besonders gut erwirkt und in welchem Frequenzband bzw. in welchen Frequenzbändern sich die aktive Geräuschkompensation suboptimal verhält. Die Konsequenz ist, dass die aktive Geräuschkompensation in gewissen Frequenzbereichen nachlässt bzw. sogar statt einer Schallauslöschung in gewissen Frequenzbändern eine Schallverstärkung stattfindet.
  • In Kombination mit dem Wissen über einen Hörverlust des Benutzers wird das Frequenzband, in dem die aktive Geräuschkompensation besonders gut arbeitet in dasjenige Frequenzband gelegt, in dem der Träger des Hörgeräts einen Störschall verhältnismäßig deutlich oder laut wahrnimmt. Umgekehrt werden die Artefakte, die in Frequenzbereichen mit schlechter Geräuschkompensation entstehen, durch den Hörverlust des Hörgeräteträgers maskiert.
  • In FIG 3 ist in Verbindung mit FIG 2 noch einmal verdeutlicht, wie das Signal des Schalls 11 der Schallquelle 10 auf einem Störschallpfad 20a und auf einem Signalpfad 20b zu dem Bereich 14 im Gehörgang des Benutzers gelangt. Der Störschallpfad 20a repräsentiert die ungewollte Übertragung des Schalls 11 durch den Vent und entlang der übrigen Wege von der Umgebung in das Innere des Gehörgangs. Über den Störschallpfad 20a gelangt der Schall 11 als Störschall zum Bereich 14. Beim Durchtritt durch den Vent und bei der Übertragung entlang der übrigen Wege wird der Schall 11 in seinen spektralen Eigenschaften verändert. Dies wird in FIG 3 durch eine Übertragungsfunktion H des Störschallpfads 20a symbolisiert.
  • Der Signalpfad 20b repräsentiert den Weg des Signals des Schalls 11, wie er durch die elektronische Verarbeitung des Schalls 11 in dem in FIG 2 gezeigten Hörgerät gebildet ist. Der Signalpfad 20b umfasst das Wandeln des Schalls 11 in ein Mikrofonsignal, das Filtern des Mikrofonsignals mittels des in FIG 2 dargestellten Filters 18 und des Invertierers 19 sowie das Erzeugen des ebenfalls in FIG 2 dargestellten Kompensationsschalls 15 über den Hörer 16. Das Filter modifiziert das Mikrofonsignal gemäß einer Übertragungsfunktion H' des Filters 18.
  • Mittels der Übertragungsfunktion H' ist es für das bestimmte spektrale Band möglich, in dem Bereich 14 einen Schall zu erzeugen, der annähernd dieselben spektralen Eigenschaften aufweist wie der über den Störschallpfad 20a übertragene Schall. Die Übereinstimmung ist dabei so groß, dass bei einer Kompensation nur kaum hörbare Artefakte in dem spektralen Band entstehen. Günstigstenfalls ist die Übereinstimmung aber perfekt, so dass die Artefakte nicht entstehen.
  • Durch den Invertierer 19 wird erreicht, dass das durch den Filter 18 entsprechend der Übertragungsfunktion H' gefilterte Signal in dem spektralen Band die Eigenschaften eines Kompensationsschallsignals erlangt. Das Ausgangssignal des Invertierers 19 wird anschließend mittels des in FIG 2 gezeigten Hörers 16 in einen Kompensationsschall 15 gewandelt und ebenfalls in Richtung des Bereichs 14 abgestrahlt. Im Bereich 14 löschen sich damit in der beschriebenen Weise in dem spektralen Band die Signale der Störschallspfads 20a und des Signalpfads 20b gegenseitig aus.
  • Das in FIG 4 gezeigte Schaltbild einer aktiven Geräuschkompensation in einem Hörgerät zeigt, wie aus einem Eingangssignal, das mittels eines Mikrofons 21 gewonnen wird, ein Kompensationsschallsignal erzeugt werden kann, das dann mit einem Hörer 22 in einen Kompensationsschall wandelbar ist.
  • Das Mikrofonsignal des Mikrofons 21 wird dazu mit einer Filterbank 23 spektral analysiert. In FIG 4 sind einzelne Bandpassfilter 24a, 24b, 24c der Filterbank dargestellt. Die Filterbank 23 weist mehr als die drei dargestellten Bandpassfilter 24a, 24b, 24c auf. Die der Übersicht halber nicht dargestellten Bandpassfilter sind durch Auslassungspunkte symbolisiert.
  • Die Signale an den Ausgängen der Bandpassfilter 24a, 24b, 24c der Filterbank 23 werden von einem Leistungsmesser 25 miteinander verglichen. Ein Ausgangssignal eines Bandpassfilters 24a, 24b, 24c gibt dabei wieder, wie viel Energie in einem spektralen Band vorhanden ist, für welches das entsprechende Bandpassfilter 24a, 24b, 24c durchlässig ist. Der Leistungsmesser 25 ermittelt anhand der Ausgangssignale der Bandpassfilter 24a, 24b, 24c dasjenige spektrale Band, in welchem ein Geräteträger einen Störschall am deutlichsten wahrnehmen würde. Es können auch mehrere spektrale Bänder kombiniert werden.
  • Für das Bestimmen des spektralen Bands wird durch den Leistungsmesser 25 nicht unmittelbar die Verteilung der Energie herangezogen, wie sie sich an den Ausgängen der Filterbank 23 ablesen lässt. Es wird stattdessen eine spektrale Verteilung der Energie des Störschalls berechnet. Dazu wird die von der Filterbank 23 berechnete spektrale Verteilung der Energie des Mikrofonsignals zunächst mit einem Betragsspektrum einer Übertragungsfunktion für den Störschallpfad gewichtet.
  • Der Leistungsmesser 25 ist außerdem in der Lage, die von den Bandpassfiltern 24a, 24b, 24c empfangenen Informationen mit einer Hörkurve eines Benutzers derart zu gewichten, dass auch das subjektive Lautstärkeempfinden des Benutzers für die einzelnen spektralen Bänder berücksichtigt wird, die durch die Bandpassfilter 24a, 24b, 24c repräsentiert werden. Dies kann dazu führen, dass ein spektrales Band, in dem sich verhältnismäßig viel spektrale Energie des Störschalls befindet, dennoch nicht von dem Leistungsmesser 25 ausgewählt wird, weil der Benutzer des Hörgeräts in diesem spektralen Band ein schlechtes Hörvermögen hat. Es kann auch vorgesehen sein, das subjektive Lautheitsempfinden des Weiteren mittels eines psychoakustischen Modells zu schätzen.
  • Eine Information über die ausgewählten spektralen Bänder wird von dem Leistungsmesser 25 an eine Auswahleinheit 26 übergeben. Die Auswahleinheit 26 konfiguriert eine Filtereinheit 27 in der Weise, dass das Mikrofonsignal des Mikrofons 21 nach einem Filtern durch die Filtereinheit 27 ein Kompensationsschallsignal für das von dem Leistungsmesser 25 ausgewählte spektrale Band bildet. In FIG 4 ist das Konfigurieren in der Weise symbolisiert, dass die Auswahleinheit 26 auf einen Auswahlschalter 28 einwirkt. Mit dem Auswahlschalter 28 kann symbolisch zwischen den Ausgängen von verschiedenen Filtern 29a bis 29d umgeschaltet werden. Wie im Fall der Filterbank 23 sind auch bei der Filtereinheit 27 nicht alle vorhandenen Filter 29a bis 29d in FIG 4 dargestellt. Die nicht dargestellten Filter sind wiederum durch Auslassungspunkte angedeutet. In dem in FIG 4 gezeigten Schaltzustand des Auswahlschalters 28 ist das Filter 29a aktiv.
  • Wie bereits erwähnt, ist die in FIG 4 dargestellte Form der Auswahl mittels des Auswahlschalters 28 nur eine symbolische Darstellung des Vorgangs. In dem Hörgerät ist ein Wechsel zwischen den verschiedenen Filtern 29a bis 29d tatsächlich dadurch ermöglicht, dass ein Filteralgorithmus der Filtereinheit 27 über Koeffizienten konfiguriert wird. Damit die Filtereinheit 27 das Mikrofonsignal entsprechend eines der Filter 29a bis 29d filtert, muss ein entsprechender Satz von Koeffizienten an den Filteralgorithmus übergeben werden. Die verschiedenen Sätze von Koeffizienten, welche die Filter 29a bis 29d repräsentieren, sind in einer Tabelle abgespeichert. Aus dieser trifft die Auswahleinheit 26 eine Auswahl. Diese Auswahl ist, wie bereits beschrieben, abhängig von dem ermittelten spektralen Band bzw. der spektralen Bänder und somit im Sinne der Erfindung abhängig von der spektralen Verteilung der Energie des Mikrofonsignals und auch von dem Hörvermögen des Benutzers.
  • Bei der Filtereinheit 27 ist es durch ein Einschränken auf ein verhältnismäßig schmales spektrales Band für die Kompensation möglich, für dieses Band eine korrekte Laufzeit beim Prozessieren des Schalls durch das Hörgerät zu erreichen. Dabei wird hingenommen, dass in anderen Frequenzbereichen, also außerhalb der von der Recheneinheit 25 bestimmten spektralen Bänder, die Kompensation suboptimal arbeitet. Dies wird von dem Benutzer allerdings nicht wahrgenommen.
  • Das Mikrofonsignal wird fortlaufend durch die Filterbank 23 spektral analysiert. Für die jeweilige spektrale Verteilung der Energie des Störschalls wird ein optimales Filter 29a bis 29d ausgewählt. Das Umschalten zwischen den Koeffizientensätzen kann zur Vermeidung von Umschaltartefakten als Umblendvorgang geschehen. Anstelle einer Tabelle mit Sätzen von Koeffizienten kann die Filtereinheit 27 als Filteralgorithmus auch als Ganzes oder zum Teil ein adaptives Filter enthalten.
  • Bei dem in FIG 5 schematisch dargestellten Programmiergerät 30 wird mittels eines Audiometers 31 ein Hörverlust eines Trägers eines Hörgeräts 32 gemessen. Der Hörverlust wird dabei frequenzabhängig ermittelt. Das mittels des Audiometers 31 ermittelte Hörvermögen des Geräteträgers wird durch ein Bediengerät 33 einem Akustiker auf einem in FIG 5 nicht dargestellten Bildschirm als Hörkurve angezeigt.
  • In dem Bediengerät sind außerdem vom Hersteller des Hörgeräts 32 entwickelte Filter 34a bis 34c gespeichert. Die Filter sind Kompensationsfilter im Sinne der Erfindung, mit denen in unterschiedlichen spektralen Bändern für das Hörgerät 32 ein Störschall kompensiert werden kann, der beim Tragen des Hörgeräts 32 durch eine in FIG 5 nicht dargestellte Otoplastik des Hörgeräts 32 zum Trommelfell des Trägers dringen kann.
  • Im Sinne der Erfindung können die Filter auch in der Weise berechnet sein, dass sie eine aktive Geräuschkompensation für typische, im Voraus ermittelte Hörverluste bewirken. Für solche typischen Hörverluste lassen sich nämlich auch im Voraus spektrale Bänder bestimmen, für die eine Kompensation nötig ist. Zum Auswählen eines Filters kann dann die mit dem Audiometer 31 gemessene Hörkurve mit den typischen Hörkurven verglichen werden. Es wird das Filter zu derjenigen typischen Hörkurve gewählt, welche die größte Ähnlichkeit zu der gemessenen Hörkurve aufweist.
  • Auch in FIG 5 symbolisieren Auslassungssymbole, dass es neben den dargestellten Filtern 34a bis 34c noch weitere Filter gibt. Die Filter sind als Sätze von Koeffizienten gespeichert, die einem entsprechenden Filteralgorithmus zugeführt werden können. Auch in FIG 5 ist entsprechend zu FIG 4 das Auswählen eines Satzes von Koeffizienten aus einer Liste durch ein Einwirken auf einen Auswahlschalter 35 symbolisiert. In FIG 5 wird durch den Auswahlschalter 35 gerade das Filter 34a ausgewählt.
  • Der Satz von Koeffizienten zu dem ausgewählten Filter wird mittels eines Überspielgeräts 36 zum Hörgerät 32 übertragen. Im Hörgerät 32 wird der Satz von Koeffizienten dann gespeichert. In dem in FIG 5 gezeigten Beispiel ist es das Filter 34a, das überspielt wird.
  • Es kann auch vorgesehen sein, sämtliche Koeffizientensätze der Filter 34a bis 34c im Hörgerät 32 selbst zu speichern und mittels des Bediengeräts 33 lediglich die Information darüber an das Hörgerät 32 zu übermitteln, welches der Filter 34a bis 34c tatsächlich benutzt werden soll.
  • Beim Entwurf der Filter 34a bis 34c konnte nicht berücksichtigt werden, in wieweit der spezielle Gehörgang des Trägers des Hörgeräts 32 im Zusammenwirken mit der Otoplastik des Hörgeräts 32 einen weiteren Einfluss beim Übertragen eines Umgebungsschalls in den Gehörgang hat. Es kann deshalb vorgesehen sein, dass die Übertragungsfunktionen der Filter 34a bis 34c lediglich einen prinzipiellen spektralen Verlauf beschreiben. In einem abschließendem Schritt des Anpassens des Hörgeräts 32 an den Geräteträger wird mit Hilfe von Probesignalen dann ein Skalierungsfaktor ermittelt, der in dem Hörgerät gespeichert wird. Dieser Skalierungsfaktor wird multiplikativ auf ein gefiltertes Signal angewendet, damit durch das gefilterte und skalierte Signal tatsächlich eine aktive Geräuschkompensation bewirkt wird.
  • Es kann auch vorgesehen sein, eine mittels des Audiometers 31 ermittelte Hörkurve dazu zu verwenden, ein Kompensationsfilter individuell für eine Hörkurve eines Geräteträgers zu entwerfen. Dies kann durch den Akustiker geschehen, der das entsprechende Programmiergerät bedient. Es kann aber auch vorgesehen sein, die ermittelte Hörkurve beispielsweise an ein Labor für Hörgeräte zu übermitteln. Ein in Abhängigkeit von der übermittelten Hörkurve und einer Übertragungsfunktion, die das Übertragungsverhalten eines Störschallpfads eines bestimmten Modells eines Hörgeräts beschreibt, kann dann ein Satz von Koeffizienten berechnet werden, der wieder an den Akustiker übermittelt wird, damit dieser den Satz von Koeffizienten in das Hörgerät überträgt.
  • Die in FIG 6 gezeigten Diagramme D1 bis D5 zeigen Graphen von verschiedenen Größen in Abhängigkeit von einer Frequenz f. Der dargestellte Frequenzbereich ist ein Audio-Frequenzbereich. Hier sind Frequenzen zwischen 0 Hz und ungefähr 15000 Hz dargestellt. Die in FIG 6 horizontal verlaufenden Frequenzachsen der einzelnen Diagramme D1 bis D5 sind nicht linear aufgeteilt, damit die im Folgenden erläuterten Eigenschaften der einzelnen Graphen leichter darstellbar sind. Alle Diagramme D1 bis D5 haben allerdings dieselbe nicht lineare Aufteilung.
  • In dem Diagramm D1 ist eine Hörkurve 37 eines Trägers eines Hörgeräts dargestellt, wobei in dem Hörgerät das Verfahren ausgeführt wird, zu dem die in FIG 6 dargestellten Diagramme D1 bis D5 gehören. Ein Vergleich mit einer Hörkurve 38 eines normal Hörenden zeigt, dass der Träger des Hörgeräts 37 für alle dargestellten Frequenzen ein schlechteres Hörvermögen als eine gesunde Person hat. Insbesondere gibt es ein spektrales Band 39, in dem der Träger des Hörgeräts besonders schlecht hört. Außerdem gibt es ein spektrales Band 40, in dem der Träger des Hörgeräts vergleichsweise gut hören kann.
  • In dem Diagramm D2 ist eine spektrale Verteilung 41 der Energie eines Schalls über der Frequenz gezeigt. Der Schall stammt aus einer Umgebung des Trägers des Hörgeräts und wird z.T. auf akustischem Wege ungewollt beispielsweise durch einen Vent des Hörgeräts als Störschall zum Trommelfell des Trägers des Hörgeräts übertragen. Bei der Verteilung 41 gibt es ein spektrales Band 42, in dem die Energie des Schalls besonders groß ist.
  • In dem Diagramm D3 ist die subjektive Wahrnehmung 43 einzelner Frequenzen des Schalls durch den Träger des Hörgeräts berechnet worden. Die subjektive Wahrnehmung 43 ergibt sich aus einer Gewichtung der Verteilung 41 der Energie des Schalls mit der Hörkurve 37 des Trägers des Hörgeräts. An der Kurve für die subjektive Wahrnehmung 43 ist zu erkennen, dass ein spektrales Band 44, für die der Träger des Hörgeräts den Schall besonders deutlich wahrnimmt, zwischen dem Bereich 42, in dem die Energie des Schalls konzentriert ist, und dem Bereich 40 liegt, in welchem der Träger des Hörgeräts verhältnismäßig gut hören kann.
  • Entsprechend der subjektiven Wahrnehmung 43 wird in dem Hörgerät ein Satz von Koeffizienten eines Kompensationsfilters bestimmt, mit dem sich aus einem Mikrofonsignal, welches den Schall mit der Energieverteilung 41 repräsentiert, ein Kompensationsschallsignal erzeugt werden kann. Das Kompensationsfilter ist dabei so gewählt, dass die Kompensation insbesondere für den Bereich 44 bewirkt wird. Es kann aber auch vorgesehen sein, das Kompensationsfilter nur abhängig von der Hörkurve 37 zu bestimmen. Wird das Kompensationsfilter nur abhängig von einer Hörkurve bestimmt, muss das Kompensationsfilter natürlich nur einmal, etwa bei einem Anpassen des Hörgeräts, bestimmt werden.
  • In dem Hörgerät stehen mehrere Sätze von Koeffizienten zur Verfügung, die jeweils eine Kompensation in verschiedenen spektralen Bändern bewirken können. In dem Diagramm D4 sind für die einzelnen Sätze von Koeffizienten diejenigen Frequenzbereiche, d. h. diejenigen spektralen Bänder 45a bis 45e, eingetragen, für die jeweils ein Satz von Koeffizienten in dem Hörgerät gespeichert ist. Die spektralen Bänder. die zu weiteren Sätzen von Koeffizienten gehören, sind in dem Diagramm nicht eingetragen, um das Diagramm übersichtlich zu halten. Im Diagramm D4 ist dies durch Punkte angedeutet.
  • Abhängig von dem Bereich 44, in dem der Schall von dem Träger des Hörgeräts besonders gut wahrnehmbar ist, wird nun ein Satz von Koeffizienten, d.h. ein Kompensationsfilter, ausgewählt. In dem in FIG 6 gezeigten Fall wird das Kompensationsfilter für das spektrale Band 45b gewählt. In FIG 6 sind die Grenzen des spektralen Bands 45b sowohl in dem Diagramm D3 als auch in dem Diagramm D5 durch gestrichelte Linien eingetragen.
  • In dem Diagramm D5 ist eine Übertragungsfunktion 46 desjenigen Filters gezeigt, das zu dem Satz von Koeffizienten für das spektrale Band 45b gehört. Des Weiteren ist in das Diagramm D5 eine Übertragungsfunktion 47 eines Störschallpfads dargestellt, über den der Schall auf akustischem Wege von der Umgebung des Trägers des Hörgeräts als Störschall zu seinem Trommelfell gelangt. Wie aus einem Vergleich der beiden Übertragungsfunktionen 46 und 47 zu erkennen ist, stimmen die beiden Übertragungsfunktionen im Bereich des spektralen Bands 45b nahezu überein. Dadurch ist es möglich, in dem spektralen Band 45b mit einer Filtereinheit, das den entsprechenden Satz von Koeffizienten verwendet, aus einem den Schall repräsentierenden Mikrofonsignal ein Kompensationsschallsignal zu erzeugen.
  • In dem Diagramm D5 ist auch zu erkennen, dass die Grenzen eines spektralen Bands, hier des spektralen Bands 45b, keine scharfen Grenzen sein müssen. Es handelt sich bei den Grenzen um einen Übergangsbereich, in dem eine Abweichung der Übertragungsfunktion 46 des Kompensationsfilters von der Übertragungsfunktion 47 des Störschallpfads graduell immer größer wird. Um scharfe Grenzen zu erhalten, lässt sich beispielsweise ein Schwellwert für die Abweichung festlegen, der beispielsweise in Abhängigkeit von einer Wahrnehmbarkeit oder Messbarkeit von Artefakten bei der aktiven Schallkompensation bestimmt werden kann.
  • Obwohl für die Frequenzen außerhalb des spektralen Bands 45b die beiden Übertragungsfunktionen 46, 47 nicht übereinstimmen, hört der Träger des Hörgeräts dennoch keinen Störschall in diesen Frequenzen. Aus dem Graph für die subjektive Wahrnehmung 43 ist zu entnehmen, dass er in den Frequenzen außerhalb des spektralen Bands 45b einen schlecht kompensierten oder sogar verstärkten Störschall nicht wahrnimmt.
  • Durch die Beispiele ist gezeigt, wie mittels der Erfindung ein Kompensieren eines Störschalls ermöglicht ist, auch wenn die Hörvorrichtung nicht für ein solches Kompensieren ausgelegt ist. Für ein Berechnen eines Kompensationsschallsignals wird dabei sehr wenig Rechenkapazität benötigt.
  • Bezugszeichenliste
  • 1
    Hörgerätegehäuse
    2
    Mikrofon
    3
    Signalverarbeitungseinheit
    4
    Hörer
    5
    Batterie
    6
    Ohrmuschel
    7
    Gehörgang
    8
    Hörgerät
    9
    Vent
    10
    Schallquelle
    11
    Schall
    12
    Störschall
    13
    Trommelfell
    14
    Bereich
    15
    Kompensationsschall
    16
    Hörer
    17
    Mikrofon
    18
    Filter
    19
    Invertierer
    20a
    Störschallpfad
    20b
    Signalpfad
    21
    Mikrofon
    22
    Hörer
    23
    Filterbank
    24a, 24b, 24c
    Bandpassfilter
    25
    Leistungsmesser
    26
    Auswahleinheit
    27
    Filtereinheit
    28
    Auswahlschalter
    29a, 29b, 29c, 29d
    Filter
    30
    Programmiergerät
    31
    Audiometer
    32
    Hörgerät
    33
    Bediengerät
    34a, 34b, 34c
    Filter
    35
    Auswahlschalter
    36
    Überspielgerät
    37, 38
    Hörkurve
    39, 40
    spektrales Band
    41
    spektrale Verteilung der Energie
    42
    spektrales Band
    43
    Graph des subjektiven Hörvermögens
    44, 45a bis 45e
    spektrales Band
    46, 47
    Übertragungsfunktion
    f
    Frequenz
    D1, D2, D3, D4, D5
    Diagramm
    H,H'
    Übertragungsfunktion

Claims (12)

  1. Verfahren zum Kompensieren eines Störschalls (12) bei einem Hörgerät (8,32) durch
    - Bestimmen eines spektralen Bands (45b) in Abhängigkeit eines Hörvermögens (37),
    - Filtern eines Eingangssignals des Hörgerätes (8,32), welches einen den Störschall (12) hervorrufenden Schall (11) repräsentiert, in dem spektralen Band (45b) gemäß einer Übertragungsfunktion (46, H'), die in dem spektralen Band (45b) einer Übertragungsfunktion (47,H) für den Schall (11) auf einem Störschallpfad (20a) entspricht, und
    - Erzeugen eines Kompensationsschalls (15) mit Hilfe des invertierten gefilterten Eingangssignals.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    das spektrale Band (45b) in Abhängig einer spektralen Verteilung (41) der Energie des Störschalls (12) oder eines den Störschall (12) hervorrufenden Schalls (11) bestimmt wird.
  3. Verfahren nach Anspruch 2,
    dadurch gekennzeichnet, dass
    das spektrale Band (45b) in Abhängigkeit von der spektralen Verteilung (41) der Energie des Störschalls (12) oder des den Störschall (12) hervorrufenden Schalls (11) bestimmt wird und das Bestimmen periodisch wiederholt wird oder kontinuierlich erfolgt.
  4. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    zum Filtern in Abhängigkeit von dem spektralen Band (45b)
    - ein Filter (29a,34a) aus einer Mehrzahl von vorbestimmten Filtern (29a-29d,34a-34c) ausgewählt wird oder
    - ein Filter berechnet wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    beim Filtern die Übertragungsfunktion mit einem vorbestimmten Faktor multipliziert wird, der einen Einfluss auf die Übertragungsfunktion (H) in dem bestimmten spektralen Band (45b) beschreibt, den ein Zusammenwirken des Hörgerätes (8,32) mit einem Ohr (6,7) eines Benutzers hat.
  6. Hörgerät (8, 32) mit
    - einer Verarbeitungseinrichtung (23,25,26) zum Bereitstellen eines spektralen Bands (45b) in Abhängigkeit von einem Hörvermögen (37),
    - einer Filtereinrichtung (18,27) zum Filtern eines Eingangssignals des Hörgerätes (8,32), welches einen den Störschall (12) hervorrufenden Schall (11) repräsentiert, in dem spektralen Band (45b) gemäß einer Übertragungsfunktion (46, H'), die in dem spektralen Band (45b) einer Übertragungsfunktion (47) für den Schall (11) auf einem Störschallpfad (20a) entspricht, und
    - einer Schallausgabeeinrichtung (16,22) zum Erzeugen eines Kompensationsschalls (15) mit Hilfe des invertierten gefilterten Eingangssignals.
  7. Hörgerät (8,32) nach Anspruch 6,
    dadurch gekennzeichnet, dass
    mit der Verarbeitungseinrichtung (23,25,26) ein spektrales Band (45b) in Abhängigkeit von einer spektralen Verteilung (41) der Energie eines Störschalls (12) oder eines den Störschall (12) hervorrufenden Schalls (11) bestimmbar ist.
  8. Hörgerät (8,32) nach Anspruch 7,
    dadurch gekennzeichnet, dass
    mit der Verarbeitungseinrichtung (23,25,26) eine spektrale Verteilung (41) der Energie des Störschalls (12) oder des den Störschall (12) hervorrufenden Schalls (11) bestimmbar ist und die Verarbeitungseinrichtung (23,25,26) eine Filterbank (23) umfasst.
  9. Hörgerät (8,32) nach einem der Ansprüche 6 bis 8,
    dadurch gekennzeichnet, dass
    die Filtereinrichtung (18,27) ein rekursives, lineares Filter umfasst.
  10. Hörgerät (8,32) nach einem der Ansprüche 6 bis 9,
    dadurch gekennzeichnet, dass
    die Filtereinrichtung ein adaptives Filter umfasst.
  11. Hörgerät (8,32) nach einem der Ansprüche 6 bis 9,
    dadurch gekennzeichnet, dass
    in der Filtereinrichtung (8,27) eine Mehrzahl von Filtern (29a-29d,34a-34c) bereitgestellt ist, aus denen zum Filtern eines (29a,34a) in Abhängigkeit von dem bestimmten spektralen Band (45b) auswählbar ist.
  12. Hörgerät nach einem der Ansprüche 6 bis 11,
    dadurch gekennzeichnet, dass
    die Übertragungsfunktion aus einem spektralen Verlauf und einem Skalierungsfaktor gebildet ist.
EP10151957.7A 2009-03-12 2010-01-28 Hörgerät und Verfahren zur Störschallkompensation bei einem Hörgerät Active EP2229010B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009012745A DE102009012745A1 (de) 2009-03-12 2009-03-12 Verfahren zum Kompensieren eines Störschalls bei einer Hörvorrichtung, Hörvorrichtung und Verfahren zum Anpassen derselben

Publications (3)

Publication Number Publication Date
EP2229010A2 EP2229010A2 (de) 2010-09-15
EP2229010A3 EP2229010A3 (de) 2013-12-04
EP2229010B1 true EP2229010B1 (de) 2020-08-26

Family

ID=42199311

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10151957.7A Active EP2229010B1 (de) 2009-03-12 2010-01-28 Hörgerät und Verfahren zur Störschallkompensation bei einem Hörgerät

Country Status (4)

Country Link
US (1) US8693717B2 (de)
EP (1) EP2229010B1 (de)
DE (1) DE102009012745A1 (de)
DK (1) DK2229010T3 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011087692B4 (de) * 2011-12-05 2014-07-10 Siemens Medical Instruments Pte. Ltd. Hörvorrichtung und Verfahren zur Verbesserung der Wahrnehmbarkeit eines Anteils eines Eingangssignals für einen Benutzer der Hörvorrichtung
EP3020213A4 (de) * 2013-07-09 2017-03-01 Raphael Rembrand Verfahren und vorrichtung zur überwachung der subkognitiven aktivität eines menschlichen gehirns mithilfe oto-akustischer emissionen
FR3019961A1 (fr) * 2014-04-11 2015-10-16 Parrot Casque audio a controle actif de bruit anc avec reduction du souffle electrique
DE102015121333A1 (de) * 2015-12-08 2017-06-08 Sennheiser Electronic Gmbh & Co. Kg Elektroakustische Schallwandlereinheit und Hörer
WO2017196453A1 (en) * 2016-05-09 2017-11-16 Snorehammer, Inc. Snoring active noise-cancellation, masking, and suppression
DE102016011719B3 (de) * 2016-09-30 2017-09-07 Rheinisch-Westfälische Technische Hochschule Aachen Aktive Unterdrückung des Okklusionseffektes in Hörhilfen
US10104459B2 (en) * 2016-10-14 2018-10-16 Htc Corporation Audio system with conceal detection or calibration
EP3681175B1 (de) * 2019-01-09 2022-06-01 Oticon A/s Hörgerät mit direkter schallkompensation
DK180916B1 (en) * 2020-07-09 2022-06-23 Gn Hearing As HEARING DEVICE WITH ACTIVE VENTILATION CLICK COMPENSATION
DE102022111300A1 (de) * 2022-05-06 2023-11-09 Elevear GmbH Vorrichtung zur Reduzierung des Rauschens bei der Wiedergabe eines Audiosignals mit einem Kopfhörer oder Hörgerät und entsprechendes Verfahren

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007011337A1 (en) * 2005-07-14 2007-01-25 Thomson Licensing Headphones with user-selectable filter for active noise cancellation
EP1940197A1 (de) * 2006-12-27 2008-07-02 Sony Corporation Geräuschunterdrückungsvorrichtung mit kontrolliertem Umschalten von Geräuschunterdrückungscharakteristiken

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2894001B2 (ja) * 1991-06-06 1999-05-24 松下電器産業株式会社 消音装置
US5740258A (en) * 1995-06-05 1998-04-14 Mcnc Active noise supressors and methods for use in the ear canal
US6480610B1 (en) * 1999-09-21 2002-11-12 Sonic Innovations, Inc. Subband acoustic feedback cancellation in hearing aids
NO314380B1 (no) 2000-09-01 2003-03-10 Nacre As Öreterminal
DE502006004146D1 (de) * 2006-12-01 2009-08-13 Siemens Audiologische Technik Hörgerät mit Störschallunterdrückung und entsprechendes Verfahren
GB2445984B (en) * 2007-01-25 2011-12-07 Sonaptic Ltd Ambient noise reduction
DK2023664T3 (da) * 2007-08-10 2013-06-03 Oticon As Aktiv støjudligning i høreapparater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007011337A1 (en) * 2005-07-14 2007-01-25 Thomson Licensing Headphones with user-selectable filter for active noise cancellation
EP1940197A1 (de) * 2006-12-27 2008-07-02 Sony Corporation Geräuschunterdrückungsvorrichtung mit kontrolliertem Umschalten von Geräuschunterdrückungscharakteristiken

Also Published As

Publication number Publication date
EP2229010A2 (de) 2010-09-15
US20100232622A1 (en) 2010-09-16
EP2229010A3 (de) 2013-12-04
US8693717B2 (en) 2014-04-08
DE102009012745A1 (de) 2010-09-23
DK2229010T3 (da) 2020-11-30

Similar Documents

Publication Publication Date Title
EP2229010B1 (de) Hörgerät und Verfahren zur Störschallkompensation bei einem Hörgerät
DE69933141T2 (de) Tonprozessor zur adaptiven dynamikbereichsverbesserung
EP1931172B1 (de) Hörgerät mit Störschallunterdrückung und entsprechendes Verfahren
EP1750481A2 (de) Automatische Verstärkungseinstellung bei einem Hörhilfegerät
EP2164283B1 (de) Hörgerät und Betrieb eines Hörgeräts mit Frequenztransposition
EP2988529B1 (de) Adaptive teilungsfrequenz in hörhilfegeräten
DE102007033484A1 (de) Hörgerät
EP2224752A1 (de) Vorrichtung und Verfahren zur Reduzierung von Trittschallwirkungen bei Hörvorrichtungen mit aktiver Okklusionsreduktion
DE102011006129B4 (de) Hörvorrichtung mit Rückkopplungsunterdrückungseinrichtung und Verfahren zum Betreiben der Hörvorrichtung
EP2114089A1 (de) Verfahren und Vorrichtung zur Bestimmung eines Verschlussgrads bei Hörgeräten
EP3951780B1 (de) Verfahren zum betrieb eines hörgeräts und hörgerät
EP2584795B1 (de) Verfahren zum Ermitteln einer Kompressionskennlinie
DE102006015497B4 (de) Audiosystem und Verfahren sowie Computerprogramm und Datenträger der das Computerprogramm enthält zur Anpassung der Übertragungsfunktion eines Audiosystems mittels Sprachsteuerung
EP2373063A1 (de) Hörvorrichtung und Verfahren zum Einstellen derselben für einen rückkopplungsfreien Betrieb
EP2434781A1 (de) Verfahren zum Rekonstruieren eines Sprachsignals und Hörvorrichtung
EP2437521B2 (de) Verfahren zur Frequenzkompression mit harmonischer Korrektur und entsprechende Vorrichtung
EP3913618A1 (de) Verfahren zum betrieb eines hörgeräts und hörgerät
DE102011006472B4 (de) Verfahren zur Verbesserung der Sprachverständlichkeit mit einem Hörhilfegerät sowie Hörhilfegerät
DE102020114429A1 (de) Verfahren, vorrichtung, kopfhörer und computerprogramm zur aktiven unterdrückung des okklusionseffektes bei der wiedergabe von audiosignalen
DE102020201615B3 (de) Hörsystem mit mindestens einem im oder am Ohr des Nutzers getragenen Hörinstrument sowie Verfahren zum Betrieb eines solchen Hörsystems
DE102007030067B4 (de) Hörgerät mit passiver, eingangspegelabhängiger Geräuschreduktion und Verfahren
EP3793217A1 (de) Hörgerät mit aktiver geräuschunterdrückung und verfahren zum betrieb desselben
DE102011087692B4 (de) Hörvorrichtung und Verfahren zur Verbesserung der Wahrnehmbarkeit eines Anteils eines Eingangssignals für einen Benutzer der Hörvorrichtung
DE102022202266A1 (de) Verfahren zum Betrieb eines Hörgeräts
EP4134002A1 (de) Verfahren zum erstellen eines audiogramms einer testperson mittels eines hörinstruments

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RTI1 Title (correction)

Free format text: METHOD FOR COMPENSATING FOR INTERFERENCE IN A HEARING AID, HEARING AID AND METHOD FOR ADAPTING THE SAME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RIC1 Information provided on ipc code assigned before grant

Ipc: G10K 11/178 20060101ALI20131024BHEP

Ipc: H04R 25/00 20060101AFI20131024BHEP

Ipc: H04R 1/10 20060101ALI20131024BHEP

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20140602

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIVANTOS PTE. LTD.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIVANTOS PTE. LTD.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180327

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200325

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KASANMASCHEFF, ROBERT

Inventor name: KORNAGEL, ULRICH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1307572

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010016738

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20201123

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201127

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201126

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201126

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201226

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010016738

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

26N No opposition filed

Effective date: 20210527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210128

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210128

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1307572

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100128

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 15

Ref country code: GB

Payment date: 20240124

Year of fee payment: 15

Ref country code: CH

Payment date: 20240202

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240124

Year of fee payment: 15

Ref country code: DK

Payment date: 20240123

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826