EP2225037B1 - Dispositif de stockage microfluidique - Google Patents

Dispositif de stockage microfluidique Download PDF

Info

Publication number
EP2225037B1
EP2225037B1 EP08857884.4A EP08857884A EP2225037B1 EP 2225037 B1 EP2225037 B1 EP 2225037B1 EP 08857884 A EP08857884 A EP 08857884A EP 2225037 B1 EP2225037 B1 EP 2225037B1
Authority
EP
European Patent Office
Prior art keywords
storage chamber
transport
storage
storage apparatus
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08857884.4A
Other languages
German (de)
English (en)
Other versions
EP2225037A1 (fr
Inventor
Lutz Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thinxxs Microtechnology GmbH
Original Assignee
Thinxxs Microtechnology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thinxxs Microtechnology GmbH filed Critical Thinxxs Microtechnology GmbH
Publication of EP2225037A1 publication Critical patent/EP2225037A1/fr
Application granted granted Critical
Publication of EP2225037B1 publication Critical patent/EP2225037B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0605Metering of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/123Flexible; Elastomeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0481Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure squeezing of channels or chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0677Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers
    • B01L2400/0683Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers mechanically breaking a wall or membrane within a channel or chamber

Definitions

  • the invention relates to a microfluidic storage device with at least one hermetically sealed storage chamber for a fluid formed by a bulge in a film or membrane, a predetermined breaking point formed by a welding or adhesive area to form an opening in the storage chamber and with a transport path leading from the storage chamber to an opening in the storage device for transporting fluid from the storage device when the storage chamber is compressed, wherein the internal volume of the transport path is zero when the storage chamber is hermetically sealed, the transport path can be opened up to form a transport channel by a fluid flow emerging from the storage chamber when the storage chamber is compressed, and wherein the transport path has channel walls which lie against one another and are each formed by a film or a film and a rigid plate when the storage chamber is hermetically sealed, and at least one channel wall can be deformed by the fluid flow while opening up the transport channel.
  • a storage device In addition to storage, a storage device is used for the transport and/or targeted release of fluids. In conjunction with a processing device, it can be used, for example, for the analysis of fluids (gases and liquids) in medical diagnostics and analytics as well as environmental analysis.
  • a memory device with features of the preamble of claim 1 is known from WO/002007002480A2
  • the predetermined breaking point breaks open under the pressure of the fluid and the fluid can flow through a channel forming the transport path to the opening mentioned.
  • the predetermined breaking point suddenly breaks open, This leads to a strong pressure fluctuation and thus to the fluids escaping intermittently. Controlled dosing is impossible.
  • air bubbles will form when the fluid is escaping intermittently into the transport section, because the air in the transport channel cannot be completely displaced.
  • the uncontrolled transport of air bubbles significantly impairs the function of the fluid during further processing in the fluid processing device. Further such microfluidic flow cells are being developed from the DE 103 36 850 A1 , the US2006/0057030 A1 and the EP 0 583 833 A out.
  • the US 4,952,068 A describes a storage container with two storage chambers, each containing a liquid component. Predetermined breaking points separate the storage chamber from a mixing chamber, which includes a discharge area. By squeezing the storage chambers, the liquid components reach the mixing chamber with the discharge area. The mixture of components can be discharged by squeezing the mixing chamber through an opening to be formed in the discharge area.
  • a microfluidic flow cell with all the features mentioned above is based on the US 2006/01311890 A1
  • This known storage device comprises a storage chamber, which is followed by a transport path.
  • the transport path comprises adjacent channel walls that are connected to one another by welding or gluing.
  • the transport path also forms a predetermined breaking point.
  • the channel walls are continuously torn apart to form a transport channel until the end of the transport path.
  • the invention is based on the object of creating a new microfluidic storage device of the type mentioned at the beginning, which enables a more precise dosing of the fluid quantities that can be extracted therefrom and in particular avoids the formation of air bubbles. Furthermore, further possible uses of the transport path are to be developed.
  • the storage device which achieves this object is characterized in that the welding or adhesive region forming the predetermined breaking point separates the interior of the storage chamber from the transport path and that the films or the film and the rigid plate lie against one another without connection in the region of the transport path before opening into the transport channel.
  • the transport path itself has practically no volume.
  • the expansion into a channel occurs through the pressurized fluid itself only when the fluid is removed from the storage container.
  • the predetermined breaking point is located directly at the storage chamber and the transport route leads from the predetermined breaking point to the opening, e.g. at an interface.
  • the transport path has at least one wall on adjacent channel walls through which the fluid can be deformed to form the transport channel.
  • the wall can be stretched by the fluid to form the transport channel.
  • the channel walls are each formed by a flexible film or membrane or by a flexible film and a rigid plate.
  • the said films or the film and the plate are not connected to one another in the region of the transport path.
  • the storage device according to the invention can be integrated into said microfluidic processing device.
  • the transport route can comprise several sections, between which, for example, a container is arranged.
  • This may be a measuring container or a container containing a reagent, in particular a dry reagent.
  • the transport paths of several storage containers have a common section, e.g. leading from a mixing chamber to the said opening at the interface.
  • the transport path can have several sections connected in parallel or in series, which lead, for example, from a distribution chamber to several openings at the interface.
  • the storage device shown for storing a fluid 1 is connected to a flow cell 2 which processes the fluid 1, e.g. as a reagent, and which has a base plate 3 and a lower cover film 4.
  • the storage device comprises a storage chamber 5 for the fluid 1, which is formed by a deep-drawn bulge 6 in a film 7 and a film 8 covering the bulge 6 and connected to the film 7.
  • the films 7 and 8 are connected to each other over their entire surface, e.g. welded or glued, except for the area of the storage chamber 5 and the area of a transport path 9.
  • the films 7 and 8 only adhere to one another.
  • a narrow welded or adhesive area, which forms a predetermined breaking point 10 separates the interior of the storage chamber 5 from the transport path 9.
  • the films 7 and 8 outside the storage chamber and the transport path do not need to be connected to one another over their entire surface.
  • a connecting area delimiting the storage chamber and the transport path, which can withstand the pressure more than the predetermined breaking point 10, is sufficient.
  • the transport path 9 leads to a through opening 11 in the film 8, which preferably coincides with a through opening 26 in the base plate 3. From the predetermined breaking point 10 onwards, the width of the transport path decreases continuously up to the through opening 11.
  • the storage device is glued to the base plate 3 via the film 8.
  • the through opening 26 in the base plate 3 leads to a channel 13 in the flow cell 2, which ends, for example, at a reaction chamber (not shown) receiving the fluid 1.
  • the previously hermetically sealed storage chamber 5 is opened according to arrow 14 ( Fig.4 ) is compressed, whereby the predetermined breaking point 10 breaks open under the pressure of the fluid 1.
  • the pressurized fluid 1 opens up a transport channel 15 by deforming the film 7 in the area of the transport path 9 under stretching, as shown in Fig.5
  • the fluid 1 finally passes through the through-openings 11 and 26 into the channel 13 in the flow cell 2, which is covered by the film 4.
  • the initial volume of the transport path 9 is zero when the storage chamber 5 is hermetically sealed and the fluid 1 emerging from the storage chamber under pressure first forms the internal volume of the transport path 9 and opens up a transport channel 15, no air bubbles can form in the fluid flow passing into the flow cell 2, which could impair the processing and/or function of the fluid 1 in the flow cell 2.
  • the storage device described above also advantageously allows very precise dosing of individual partial quantities of the fluid 1 stored therein, expressed from the storage chamber 5. If the pressure is reduced according to arrow 14, the transport path closes as a result of the elastic restoring force of the film 7 and the fluid flow transferred into the flow cell comes to a standstill.
  • the fluid flow could be interrupted by a blocking element acting on the transport path 9 according to arrow 16, in the simplest case in the form of a stamp, and the transport path together with the blocking element pressing the films 7 and 8 against each other could be used as a valve that enables the removal of desired partial quantities of the stored fluid supply.
  • the blocking element acts as a proportional valve as shown in arrow 16.
  • the pressurized valve can form the cross-section of the transport path to different widths, which allows the flow rate of the fluid to be controlled.
  • the valve function can be independent of the strength and rigidity of the base plate, which otherwise has a Counter bearing can be made even more efficient with the help of a second locking element that can be pushed forward from the opposite direction.
  • the film 8 could be omitted and the film 7 could be connected directly to the base plate 3, so that the bulge 6 and the transport path 9 are directly delimited on one side by the base plate 3.
  • Fig.6 shows an embodiment of a transport path 9a, which is formed by a film 7a and a film 8a, wherein the films outside the transport paths 9a, as in the embodiment according to Fig. 1 to 5 , glued or welded together.
  • both films have space for deformation, in particular under stretching, so that they can form a transport channel 15a with walls curved on both sides.
  • a symmetrical or asymmetrical curvature can result.
  • a storage chamber 5b is formed by two films 7b and 8b, each with a bulge 6b or 6b'.
  • the bulges can vary in shape and dimensions, depending on the deep-drawing tools used in cold or hot deep-drawing.
  • the shape of the pantry can vary from that in the Fig. 1 to 5 shown chamber and may not be round but elongated, for example.
  • FIG.8 shown storage device with a storage chamber 5c and a transport path 9c, which is approximately the same as in Fig. 1 to 5 described storage device is integrated into a flow cell 2c.
  • the flow cell has a stepped base plate 3c and a cover plate 17.
  • the storage device is integrated between the cover plate 17 and a layer 18 made of an elastomer material resting on the base plate 3c.
  • an elastic membrane 19 forms a storage device.
  • the elastic membrane consists for example of a thermoplastic Elastomer and/or silicone material.
  • a transport path 9d is limited by the membrane 19 and a base plate 3d of the flow cell.
  • Fig.10 differs from the preceding embodiments in that no through-opening 26d is formed through the base plate, but rather a channel 13e is directly connected to a transport path 9e.
  • Fig. 11 shows a storage device with a storage chamber 5f and a transport path 9f in a top view.
  • the transport path is not straight but curved, so that an outlet opening is arranged at a desired location.
  • Fig. 12 shows a storage device with a storage chamber 5g and a transport path 9g.
  • the transport path branches into sections 20 and 21, with section 20 leading to an outlet opening 11g and section 21 leading to an outlet opening 11g'.
  • the transport path fulfills the function of a fluid distributor.
  • the storage device shown has two storage chambers 5h and 5h'.
  • Transport sections 9h and 9h' lead to a mixing chamber 22, from which a common transport section 23 leads to an outlet opening 11h.
  • the transport section 23 has a meander shape, which supports the mixing of the two fluids. The transport section therefore fulfills the function of a fluid mixer.
  • the transport path can be used for the precise measurement and further transport of a defined amount of fluid (metering).
  • a reagent or sample quantity is transferred into the transport channel until it has reached, for example, the through-opening 11h, which can be checked by visual observation in the case of a transparent flow cell, e.g. made of a transparent plastic.
  • the pressurization of the reagent is interrupted and the transport fluid in the chamber 5h' is subjected to pressurization. This leads to the further transport of the fluid located in the transport path section 23 and thus to the further transport a defined amount of reagent. With the help of locking elements, this process can be repeated until the storage chambers are completely empty.
  • the storage device shown with a storage chamber 5i and a transport path 9i has an intermediate container arranged in the transport path, which is coated on the inside with a dry reagent. If the fluid flows through the intermediate container 24, the interior of which, like that of the transport path as a whole, is only accessible through the fluid, the dry reagent is at least partially dissolved and transported along in the fluid.
  • the accessible interior of the intermediate container 24 can advantageously be set very flat in accordance with the effective liquid pressure, which can be adjusted by the pressurization 14 or by setting the blocking element 16, and the dissolution behavior of the dry reagent can be influenced in the desired manner.
  • the storage device shown with a storage chamber 5j contains in a transport path 9j various containers 25, which could be filled with various dry reagent materials, for example.
  • the Fig. 11 to 15 The embodiments of transport paths shown can be combined with one another.
  • the storage device thus takes on the functions of a flow cell.
  • a downstream processing device no longer has any flow cell functions at all, such as an electrical or electrochemical sensor connected downstream of the storage device.
  • FIG. 16 The storage device shown with a storage chamber 5k is connected to a flow cell 2k.
  • a base plate 3k of the flow cell 2k is arranged on a film 7k, through the bulge of which the storage chamber 5k is formed.
  • the film 7k covers a channel 13k formed in the base plate 3k, which is connected to a transport path 9k of the storage device via a through opening 11k.
  • a cover film corresponding to the film 4 could be attached to the side of the base plate facing away from the channel 13 and further channels could be formed there, which, as seen in the projection, can intersect with the channel 13. In this way, additional functions can be achieved with the same manufacturing effort for the flow cell.
  • the thickness of the base plate 3k is greater than the height of the storage chamber 5k, the chamber is protected against improper handling, particularly when the storage device is stored in a stack. Handling the storage device is therefore safer overall.
  • Fig. 17 shows different designs for predetermined breaking points that extend directly adjacent to a storage chamber over the entire width of a transport route and are designed as a welded or/and adhesive connection between two films.
  • the Fig. 17a The dimension of the welded joint indicated by arrows, which is preferably between 0.01 and 5 mm, in particular 0.1 and 2 mm, is decisive for the required opening pressure.
  • the shape of the predetermined breaking point can deviate from a rectangle and, for example, have the arrow shape shown there. In this way, weld seams of greater width can be formed, which are easier to manufacture, without the required opening pressure increasing proportionally with the width.
  • Fig. 18 shows a storage chamber 5l formed by foils 7l and 8l. in the emptied, in Fig. 18a
  • the films 7l and 8l are adjacent to each other and the volume enclosed by the films is zero.
  • the films 7l and 8l are stretched according to the degree of filling, like a filled bag. The filling quantity is enclosed by closing a final weld seam.
  • the storage chamber can be completely emptied and the force required to empty it does not increase with the degree of emptying, as in the previously described embodiments.
  • Suitable materials are primarily plastics, in particular plastic films, but also metals and metal foils and/or composite materials, such as circuit board material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Claims (7)

  1. Dispositif de stockage microfluidique
    présentant au moins un réservoir (5), formé par un renflement d'une feuille (7, 8) ou d'une membrane (19), hermétiquement fermé, pour un fluide (1),
    un point destiné à la rupture (10) formé par une zone de soudure ou de collage, destiné à former une ouverture du réservoir (5) et présentant
    une voie de transport (9) allant du réservoir (5) vers une ouverture (11) du dispositif de stockage, destinée au transport de fluide (1) hors du dispositif de stockage lors de l'écrasement du réservoir (5),
    le volume interne de la voie de transport (9) valant zéro lorsque le réservoir (5) est hermétiquement fermé,
    la voie de transport (9) pouvant être ouverte par un flux fluidique, sortant du réservoir (5) lors de l'écrasement du réservoir (5), en un canal de transport (15) et la voie de transport (9), lorsque le réservoir (5) est hermétiquement fermé, présentant des parois de canal jointives, formées à chaque fois par une feuille (7, 8) ou par une feuille (7) et une plaque rigide (3) et au moins une paroi de canal étant déformable, avec ouverture du canal de transport (5), par le flux fluidique, caractérisé en ce que la zone de soudage ou de collage formant le point destiné à la rupture sépare l'espace interne du réservoir (5) de la voie de transport (9) et en ce que les feuilles (7, 8) ou, selon le cas, la feuille (7) et la plaque rigide (3) sont placées l'une contre l'autre sans être reliées dans la zone de la voie de transport avant l'ouverture du canal de transport (15).
  2. Dispositif de stockage selon la revendication 1,
    caractérisé en ce que la voie de transport (9) va vers une ouverture (11) au niveau d'une interface entre le dispositif de stockage et un dispositif de traitement (2) microfluidique.
  3. Dispositif de stockage selon la revendication 2, caractérisé en ce que le dispositif de stockage est intégré dans le dispositif de traitement (2).
  4. Dispositif de stockage selon l'une des revendications 1 à 3, caractérisé en ce que la voie de transport (9) comprend plusieurs sections entre lesquelles est par exemple agencé un réservoir intermédiaire (22, 24, 25).
  5. Dispositif de stockage selon l'une des revendications 1 à 4, caractérisé en ce que les voies de transport de plusieurs réservoirs (5h, 5h') présentent une section (23) commune, allant par exemple d'une chambre de mélange (22) vers l'ouverture (11h) au niveau de l'interface.
  6. Dispositif de stockage selon l'une des revendications 1 à 5, caractérisé en ce que la voie de transport (9g) comprend plusieurs sections montées en parallèle l'une par rapport à l'autre, allant par exemple d'une chambre de distribution vers une ouverture (11g, 11g') au niveau de l'interface.
  7. Dispositif de stockage selon l'une des revendications 1 à 6, caractérisé en ce que le volume interne du réservoir (5l) dans l'état vidé vaut zéro.
EP08857884.4A 2007-12-06 2008-12-05 Dispositif de stockage microfluidique Active EP2225037B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007059533A DE102007059533A1 (de) 2007-12-06 2007-12-06 Mikrofluidische Speichervorrichtung
PCT/DE2008/002061 WO2009071078A1 (fr) 2007-12-06 2008-12-05 Dispositif de stockage microfluidique

Publications (2)

Publication Number Publication Date
EP2225037A1 EP2225037A1 (fr) 2010-09-08
EP2225037B1 true EP2225037B1 (fr) 2024-06-05

Family

ID=40456960

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08857884.4A Active EP2225037B1 (fr) 2007-12-06 2008-12-05 Dispositif de stockage microfluidique

Country Status (4)

Country Link
US (1) US9211538B2 (fr)
EP (1) EP2225037B1 (fr)
DE (1) DE102007059533A1 (fr)
WO (1) WO2009071078A1 (fr)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5401542B2 (ja) * 2008-06-19 2014-01-29 ベーリンガー インゲルハイム マイクロパーツ ゲゼルシャフト ミット ベシュレンクテル ハフツング 流体計量容器
DE102009009728A1 (de) * 2009-02-19 2010-09-02 Thinxxs Microtechnology Ag Flusszelle mit integriertem Fluidspeicher
US9447461B2 (en) 2009-03-24 2016-09-20 California Institute Of Technology Analysis devices, kits, and related methods for digital quantification of nucleic acids and other analytes
EP2412020B1 (fr) 2009-03-24 2020-09-30 University Of Chicago Dispositif et procédés de puce coulissante
US9464319B2 (en) 2009-03-24 2016-10-11 California Institute Of Technology Multivolume devices, kits and related methods for quantification of nucleic acids and other analytes
US10196700B2 (en) 2009-03-24 2019-02-05 University Of Chicago Multivolume devices, kits and related methods for quantification and detection of nucleic acids and other analytes
DE102010042740A1 (de) * 2010-10-21 2012-04-26 Ing. Erich Pfeiffer Gmbh Austragvorrichtung für Medien
JP6040940B2 (ja) * 2010-12-16 2016-12-07 ベーリンガー インゲルハイム マイクロパーツ ゲゼルシャフト ミット ベシュレンクテル ハフツングBoehringer Ingelheim microParts GmbH キャビティ、特にブリスタ包装材のブリスタに液体を充填する方法及びかかる方法で用いられる半完成品
EP2591748A1 (fr) * 2011-11-11 2013-05-15 3M Innovative Properties Company Dispositif de distribution d'un matériau dentaire et un procédé de distribution
EP2679307B1 (fr) 2012-06-28 2015-08-12 Thinxxs Microtechnology Ag Micro-enregistreur, notamment pour l'intégration dans une cellule d'écoulement microfluidique
JP1628115S (fr) 2012-10-24 2019-04-01
US20140322706A1 (en) 2012-10-24 2014-10-30 Jon Faiz Kayyem Integrated multipelx target analysis
DE102012221848A1 (de) * 2012-11-29 2014-06-05 Robert Bosch Gmbh Abgabe- und Dosiersystem, insbesondere von Substanzen in mikrofluidischen Systemen, sowie Verfahren und Kartusche mit dem Abgabe- und Dosiersystem
DE102012222719A1 (de) * 2012-12-11 2014-06-12 Robert Bosch Gmbh Folienbeutel zum Bevorraten eines Fluids und Vorrichtung zum Bereitstellen eines Fluids
US9222623B2 (en) 2013-03-15 2015-12-29 Genmark Diagnostics, Inc. Devices and methods for manipulating deformable fluid vessels
GB2512141A (en) * 2013-03-22 2014-09-24 Graham Scott Gutsell Encapsulation System
GB2516669B (en) 2013-07-29 2015-09-09 Atlas Genetics Ltd A method for processing a liquid sample in a fluidic cartridge
GB2516672B (en) 2013-07-29 2015-05-20 Atlas Genetics Ltd A system and method for expelling liquid from a fluidic cartridge
GB2516666B (en) 2013-07-29 2015-09-09 Atlas Genetics Ltd Fluidic cartridge for nucleic acid amplification and detection
GB2516675A (en) 2013-07-29 2015-02-04 Atlas Genetics Ltd A valve which depressurises, and a valve system
GB2516667A (en) 2013-07-29 2015-02-04 Atlas Genetics Ltd An improved cartridge, cartridge reader and method for preventing reuse
EP2851121B1 (fr) * 2013-09-20 2022-11-02 thinXXS Microtechnology GmbH Dispositifs et procédés permettant de former des microcanaux ou réservoirs de microfluide
US9498778B2 (en) 2014-11-11 2016-11-22 Genmark Diagnostics, Inc. Instrument for processing cartridge for performing assays in a closed sample preparation and reaction system
USD881409S1 (en) 2013-10-24 2020-04-14 Genmark Diagnostics, Inc. Biochip cartridge
RU2016114466A (ru) * 2013-11-06 2017-12-07 Дзе Проктер Энд Гэмбл Компани Эластичные контейнеры с эластичными клапанами
CN105705429B (zh) 2013-11-06 2019-05-14 宝洁公司 带有通气孔***的柔性容器
US9610579B2 (en) 2014-01-07 2017-04-04 Daktari Diagnostics, Inc. Fluid delivery devices, systems, and methods
EP2962758B1 (fr) 2014-07-01 2017-07-19 ThinXXS Microtechnology AG Cellule d'écoulement dotée d'une zone de stockage et d'un canal de transport pouvant s'ouvrir à un point de rupture
US9598722B2 (en) 2014-11-11 2017-03-21 Genmark Diagnostics, Inc. Cartridge for performing assays in a closed sample preparation and reaction system
US10005080B2 (en) 2014-11-11 2018-06-26 Genmark Diagnostics, Inc. Instrument and cartridge for performing assays in a closed sample preparation and reaction system employing electrowetting fluid manipulation
US9988190B2 (en) 2015-04-10 2018-06-05 The Procter & Gamble Company Flexible containers with biased dispensing
JP6491355B2 (ja) 2015-04-10 2019-03-27 ザ プロクター アンド ギャンブル カンパニー 製品分配可視性を有する可撓性容器
DE102015225837A1 (de) * 2015-12-18 2017-06-22 Robert Bosch Gmbh Folienbeutel für ein mikrofluidisches Analysesystem, mikrofluidisches Analysesystem, Verfahren zum Herstellen und Verfahren zum Betreiben eines mikrofluidischen Analysesystems
EP3199616A1 (fr) * 2016-01-29 2017-08-02 Eppendorf Ag Dispositif de connexion a une voie
GB201615452D0 (en) * 2016-09-12 2016-10-26 Fluidic Analytics Ltd Improvements in or relating to valves for microfluidics devices
US10046322B1 (en) 2018-03-22 2018-08-14 Talis Biomedical Corporation Reaction well for assay device
US11008627B2 (en) 2019-08-15 2021-05-18 Talis Biomedical Corporation Diagnostic system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952068A (en) * 1989-03-21 1990-08-28 Flint Theodore R Static mixing device and container
US20060131189A1 (en) * 2004-12-22 2006-06-22 Robert Lee Devices for storing and dispensing compositions

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2707581A (en) * 1954-12-07 1955-05-03 Kaplan Yale Dispensing containers for liquids
US3173580A (en) * 1962-09-21 1965-03-16 Polaroid Corp Fluid containers
US3750907A (en) * 1970-04-08 1973-08-07 Eastman Kodak Co Fluid containers having both relatively strong and relatively weak seals
US3635376A (en) * 1970-06-05 1972-01-18 Hellstrom Harold R Quick-open flexible package
DE3019636C2 (de) * 1979-06-08 1983-03-31 Panpack AG, 9490 Vaduz Einweg-Packung zum Speichern und Abgeben kleiner Mengen fließfähiger Materialien
US4303751A (en) * 1980-06-16 1981-12-01 Polaroid Corporation Rupturable photographic processing alkaline fluid container
US4592493A (en) * 1984-10-15 1986-06-03 Unette Corporation Reclosable dispenser
US5050736A (en) * 1988-07-12 1991-09-24 Oscar Mayer Foods Corporation Reclosable package
US5009894A (en) * 1988-03-07 1991-04-23 Baker Cummins Pharmaceuticals, Inc. Arrangement for and method of administering a pharmaceutical preparation
US4890744A (en) * 1988-10-28 1990-01-02 W. A. Lane, Inc. Easy open product pouch
DE3900702C1 (fr) * 1989-01-12 1990-04-19 Karl H. Sengewald Gmbh & Co Kg, 4802 Halle, De
US5215221A (en) * 1992-05-07 1993-06-01 The Procter & Gamble Company Disposable unit dose dispenser for powdered medicants
US5290518A (en) * 1992-08-17 1994-03-01 Eastman Kodak Company Flexible extraction device with burstable sidewall
US6685013B2 (en) * 1994-07-13 2004-02-03 Centrix, Inc. Single patient dose medicament dispenser with applicator
KR100391751B1 (ko) * 1995-03-10 2003-11-01 일리노이즈 툴 워크스 인코포레이티드 세척장치및방법
DE29714246U1 (de) * 1997-08-08 1998-12-10 THERA Patent GmbH & Co. KG Gesellschaft für industrielle Schutzrechte, 82229 Seefeld Vorrichtung zum Lagern und Auftragen einer fließfähigen Substanz
US5839609A (en) * 1997-08-27 1998-11-24 Colgate-Palmolive Company Thermoformed pack with ridge valve
JP2000007027A (ja) * 1998-06-24 2000-01-11 Nissho Corp 液状物質収容容器
DE19962436B4 (de) * 1999-12-22 2005-05-25 3M Espe Ag Verfahren zum Ausbringen einer fließfähigen Substanz aus einer Verpackung
DE10009623B4 (de) * 2000-03-01 2005-08-11 3M Espe Ag Vorrichtung zum Lagern und Ausbringen einer fließfähigen Substanz und Verwendung dieser Vorrichtung
US6357631B1 (en) * 2000-04-06 2002-03-19 Colgate-Palmolive Company Container with formed memory valve
US6644944B2 (en) * 2000-11-06 2003-11-11 Nanostream, Inc. Uni-directional flow microfluidic components
DE10056212B4 (de) * 2000-11-13 2005-08-18 3M Espe Ag Vorrichtung zum Lagern und Ausbringen von fließfähigen Zusammensetzungen, Verfahren zur Herstellung und Verwendung der Vorrichtung
US6935492B1 (en) * 2002-01-26 2005-08-30 Barry Alan Loeb Flexible mixing pouch with aseptic burstable internal chambers
US7004354B2 (en) * 2003-06-24 2006-02-28 William Anthony Harper Hand sanitizing packet and methods
DE10336850B4 (de) 2003-08-11 2006-10-26 Thinxxs Gmbh Mikrospeicher
EP1526092A1 (fr) * 2003-10-24 2005-04-27 3M Espe AG Dispositif pour stocker et débiter des substances aptes à l'écoulement
DE202004000591U1 (de) * 2004-01-16 2004-03-18 Klocke Verpackungs-Service Gmbh Wiederverschließbare Verpackung für flüssige und pastöse Medien
EP1621178A1 (fr) * 2004-07-29 2006-02-01 Fresenius Kabi Deutschland GmbH Poche souple à plusieurs compartiments pour le mélange de solutions médicales
KR100618320B1 (ko) * 2004-09-14 2006-08-31 삼성전자주식회사 유체이동장치 및 이를 구비한 일회용칩
AU2006261953B2 (en) 2005-06-24 2012-02-23 Board Of Regents, The University Of Texas System Systems and methods including self-contained cartridges with detection systems and fluid delivery systems
DE202005015085U1 (de) * 2005-09-28 2005-12-01 Klocke Verpackungs-Service Gmbh Verpackung
US20070119862A1 (en) * 2005-11-29 2007-05-31 Backes Larry P Unit dose flexible container
US20080083348A1 (en) * 2006-01-31 2008-04-10 Align Technology, Inc. Dual-chamber package for preparing alginate impression paste
US7644821B2 (en) * 2006-04-10 2010-01-12 Poppack, Llc Sealed product delivery unit with rupturing pump
US7909165B2 (en) * 2006-04-10 2011-03-22 Poppack, Llc System for delivering sequential components
US7757893B2 (en) * 2006-06-26 2010-07-20 Poppack Llc Dispersing bubble with compressible transport fluid and method
CN105776119B (zh) * 2007-05-16 2019-04-23 神秘制药公司 组成物单位剂量分配容器
AU2008269201B2 (en) * 2007-06-21 2011-08-18 Gen-Probe Incorporated Instrument and receptacles for use in performing processes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952068A (en) * 1989-03-21 1990-08-28 Flint Theodore R Static mixing device and container
US20060131189A1 (en) * 2004-12-22 2006-06-22 Robert Lee Devices for storing and dispensing compositions

Also Published As

Publication number Publication date
WO2009071078A1 (fr) 2009-06-11
US9211538B2 (en) 2015-12-15
EP2225037A1 (fr) 2010-09-08
DE102007059533A1 (de) 2009-06-10
US20100308051A1 (en) 2010-12-09

Similar Documents

Publication Publication Date Title
EP2225037B1 (fr) Dispositif de stockage microfluidique
EP2679307B1 (fr) Micro-enregistreur, notamment pour l'intégration dans une cellule d'écoulement microfluidique
EP2962758B1 (fr) Cellule d'écoulement dotée d'une zone de stockage et d'un canal de transport pouvant s'ouvrir à un point de rupture
WO2010094249A1 (fr) Cuve à circulation, à accumulateur de fluide intégré
DE102011003856B4 (de) Mikrosystem für fluidische Anwendungen sowie Herstellungsverfahren und Benutzungsverfahren für ein Mikrosystem für fluidische Anwendungen
EP2931428B1 (fr) Sachet en film pour le stockage en réserve d'un fluide et dispositif de fourniture d'un fluide et procédé de fabrication d'un sachet en film
EP2637933B1 (fr) Procede de remplissage d'un emballage a blister avec un liquide
WO2010139295A1 (fr) Dispositif pour transporter un fluide dans un canal d'élément microfluidique
DE102011004125A1 (de) Vorrichtung zur hermetisch abgeschlossenen Bevorratung von Flüssigkeiten für ein mikrofluidisches System
EP3541516B1 (fr) Dispositif de prélèvement, d'expulsion et de déplacement de liquides
WO2017108387A1 (fr) Dispositif microfluidique, et procédé de production ainsi que procédé de fonctionnement d'un dispositif microfluidique
EP3406340B1 (fr) Cellule d'écoulement comprenant un élément de boîtier
EP2905079A1 (fr) Dispositif de stockage préalable d'un fluide dans un système micro-fluidique, procédé de fonctionnement et procédé de fabrication d'un tel dispositif
WO2019219844A1 (fr) Système fluidique pour recevoir, délivrer et déplacer des fluides, procédé de traitement de fluides dans un système fluidique
EP3049186A1 (fr) Unité d'analyse pour effectuer une réaction en chaîne par polymérase, procédé pour faire fonctionner une telle unité d'analyse et procédé de fabrication d'une telle unité d'analyse
WO2018001647A1 (fr) Cuve à circulation dotée d'une zone de stockage de réactif
EP2754495A2 (fr) Système de canaux microfluidique doté d'un dispositif de collecte de bulles et procédé d'élimination de bulles de gaz
DE102014202342A1 (de) Vorrichtung zum Vorlagern eines Fluids in einem mikrofluidischen System, Verfahren zum Betreiben und Verfahren zum Herstellen einer solchen Vorrichtung
DE202014104510U1 (de) Vorrichtung zum Vorlagern eines Fluids in einem mikrofluidischen System
WO2015121034A1 (fr) Unité pour produire un fluide à destination d'un dispositif d'analyse biochimique et procédé et dispositif de production d'une telle unité
EP3182136A1 (fr) Sachet en film pour un système d'analyse microfluidique, système d'analyse microfluidique, procédé de fabrication et procédé de fonctionnement d'un système d'analyse microfluidique
WO2016026718A1 (fr) Préstockage de réactifs avec prélèvement défini
DE102011114969A1 (de) Verpackungsbehälter mit Entlüftungskanal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100705

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150515

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THINXXS MICROTECHNOLOGY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240104

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WEBER, LUTZ

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008017271

Country of ref document: DE