EP2225037B1 - Microfluid storage device - Google Patents

Microfluid storage device Download PDF

Info

Publication number
EP2225037B1
EP2225037B1 EP08857884.4A EP08857884A EP2225037B1 EP 2225037 B1 EP2225037 B1 EP 2225037B1 EP 08857884 A EP08857884 A EP 08857884A EP 2225037 B1 EP2225037 B1 EP 2225037B1
Authority
EP
European Patent Office
Prior art keywords
storage chamber
transport
storage
storage apparatus
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08857884.4A
Other languages
German (de)
French (fr)
Other versions
EP2225037A1 (en
Inventor
Lutz Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thinxxs Microtechnology GmbH
Original Assignee
Thinxxs Microtechnology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thinxxs Microtechnology GmbH filed Critical Thinxxs Microtechnology GmbH
Publication of EP2225037A1 publication Critical patent/EP2225037A1/en
Application granted granted Critical
Publication of EP2225037B1 publication Critical patent/EP2225037B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0605Metering of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/123Flexible; Elastomeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0481Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure squeezing of channels or chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0677Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers
    • B01L2400/0683Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers mechanically breaking a wall or membrane within a channel or chamber

Definitions

  • the invention relates to a microfluidic storage device with at least one hermetically sealed storage chamber for a fluid formed by a bulge in a film or membrane, a predetermined breaking point formed by a welding or adhesive area to form an opening in the storage chamber and with a transport path leading from the storage chamber to an opening in the storage device for transporting fluid from the storage device when the storage chamber is compressed, wherein the internal volume of the transport path is zero when the storage chamber is hermetically sealed, the transport path can be opened up to form a transport channel by a fluid flow emerging from the storage chamber when the storage chamber is compressed, and wherein the transport path has channel walls which lie against one another and are each formed by a film or a film and a rigid plate when the storage chamber is hermetically sealed, and at least one channel wall can be deformed by the fluid flow while opening up the transport channel.
  • a storage device In addition to storage, a storage device is used for the transport and/or targeted release of fluids. In conjunction with a processing device, it can be used, for example, for the analysis of fluids (gases and liquids) in medical diagnostics and analytics as well as environmental analysis.
  • a memory device with features of the preamble of claim 1 is known from WO/002007002480A2
  • the predetermined breaking point breaks open under the pressure of the fluid and the fluid can flow through a channel forming the transport path to the opening mentioned.
  • the predetermined breaking point suddenly breaks open, This leads to a strong pressure fluctuation and thus to the fluids escaping intermittently. Controlled dosing is impossible.
  • air bubbles will form when the fluid is escaping intermittently into the transport section, because the air in the transport channel cannot be completely displaced.
  • the uncontrolled transport of air bubbles significantly impairs the function of the fluid during further processing in the fluid processing device. Further such microfluidic flow cells are being developed from the DE 103 36 850 A1 , the US2006/0057030 A1 and the EP 0 583 833 A out.
  • the US 4,952,068 A describes a storage container with two storage chambers, each containing a liquid component. Predetermined breaking points separate the storage chamber from a mixing chamber, which includes a discharge area. By squeezing the storage chambers, the liquid components reach the mixing chamber with the discharge area. The mixture of components can be discharged by squeezing the mixing chamber through an opening to be formed in the discharge area.
  • a microfluidic flow cell with all the features mentioned above is based on the US 2006/01311890 A1
  • This known storage device comprises a storage chamber, which is followed by a transport path.
  • the transport path comprises adjacent channel walls that are connected to one another by welding or gluing.
  • the transport path also forms a predetermined breaking point.
  • the channel walls are continuously torn apart to form a transport channel until the end of the transport path.
  • the invention is based on the object of creating a new microfluidic storage device of the type mentioned at the beginning, which enables a more precise dosing of the fluid quantities that can be extracted therefrom and in particular avoids the formation of air bubbles. Furthermore, further possible uses of the transport path are to be developed.
  • the storage device which achieves this object is characterized in that the welding or adhesive region forming the predetermined breaking point separates the interior of the storage chamber from the transport path and that the films or the film and the rigid plate lie against one another without connection in the region of the transport path before opening into the transport channel.
  • the transport path itself has practically no volume.
  • the expansion into a channel occurs through the pressurized fluid itself only when the fluid is removed from the storage container.
  • the predetermined breaking point is located directly at the storage chamber and the transport route leads from the predetermined breaking point to the opening, e.g. at an interface.
  • the transport path has at least one wall on adjacent channel walls through which the fluid can be deformed to form the transport channel.
  • the wall can be stretched by the fluid to form the transport channel.
  • the channel walls are each formed by a flexible film or membrane or by a flexible film and a rigid plate.
  • the said films or the film and the plate are not connected to one another in the region of the transport path.
  • the storage device according to the invention can be integrated into said microfluidic processing device.
  • the transport route can comprise several sections, between which, for example, a container is arranged.
  • This may be a measuring container or a container containing a reagent, in particular a dry reagent.
  • the transport paths of several storage containers have a common section, e.g. leading from a mixing chamber to the said opening at the interface.
  • the transport path can have several sections connected in parallel or in series, which lead, for example, from a distribution chamber to several openings at the interface.
  • the storage device shown for storing a fluid 1 is connected to a flow cell 2 which processes the fluid 1, e.g. as a reagent, and which has a base plate 3 and a lower cover film 4.
  • the storage device comprises a storage chamber 5 for the fluid 1, which is formed by a deep-drawn bulge 6 in a film 7 and a film 8 covering the bulge 6 and connected to the film 7.
  • the films 7 and 8 are connected to each other over their entire surface, e.g. welded or glued, except for the area of the storage chamber 5 and the area of a transport path 9.
  • the films 7 and 8 only adhere to one another.
  • a narrow welded or adhesive area, which forms a predetermined breaking point 10 separates the interior of the storage chamber 5 from the transport path 9.
  • the films 7 and 8 outside the storage chamber and the transport path do not need to be connected to one another over their entire surface.
  • a connecting area delimiting the storage chamber and the transport path, which can withstand the pressure more than the predetermined breaking point 10, is sufficient.
  • the transport path 9 leads to a through opening 11 in the film 8, which preferably coincides with a through opening 26 in the base plate 3. From the predetermined breaking point 10 onwards, the width of the transport path decreases continuously up to the through opening 11.
  • the storage device is glued to the base plate 3 via the film 8.
  • the through opening 26 in the base plate 3 leads to a channel 13 in the flow cell 2, which ends, for example, at a reaction chamber (not shown) receiving the fluid 1.
  • the previously hermetically sealed storage chamber 5 is opened according to arrow 14 ( Fig.4 ) is compressed, whereby the predetermined breaking point 10 breaks open under the pressure of the fluid 1.
  • the pressurized fluid 1 opens up a transport channel 15 by deforming the film 7 in the area of the transport path 9 under stretching, as shown in Fig.5
  • the fluid 1 finally passes through the through-openings 11 and 26 into the channel 13 in the flow cell 2, which is covered by the film 4.
  • the initial volume of the transport path 9 is zero when the storage chamber 5 is hermetically sealed and the fluid 1 emerging from the storage chamber under pressure first forms the internal volume of the transport path 9 and opens up a transport channel 15, no air bubbles can form in the fluid flow passing into the flow cell 2, which could impair the processing and/or function of the fluid 1 in the flow cell 2.
  • the storage device described above also advantageously allows very precise dosing of individual partial quantities of the fluid 1 stored therein, expressed from the storage chamber 5. If the pressure is reduced according to arrow 14, the transport path closes as a result of the elastic restoring force of the film 7 and the fluid flow transferred into the flow cell comes to a standstill.
  • the fluid flow could be interrupted by a blocking element acting on the transport path 9 according to arrow 16, in the simplest case in the form of a stamp, and the transport path together with the blocking element pressing the films 7 and 8 against each other could be used as a valve that enables the removal of desired partial quantities of the stored fluid supply.
  • the blocking element acts as a proportional valve as shown in arrow 16.
  • the pressurized valve can form the cross-section of the transport path to different widths, which allows the flow rate of the fluid to be controlled.
  • the valve function can be independent of the strength and rigidity of the base plate, which otherwise has a Counter bearing can be made even more efficient with the help of a second locking element that can be pushed forward from the opposite direction.
  • the film 8 could be omitted and the film 7 could be connected directly to the base plate 3, so that the bulge 6 and the transport path 9 are directly delimited on one side by the base plate 3.
  • Fig.6 shows an embodiment of a transport path 9a, which is formed by a film 7a and a film 8a, wherein the films outside the transport paths 9a, as in the embodiment according to Fig. 1 to 5 , glued or welded together.
  • both films have space for deformation, in particular under stretching, so that they can form a transport channel 15a with walls curved on both sides.
  • a symmetrical or asymmetrical curvature can result.
  • a storage chamber 5b is formed by two films 7b and 8b, each with a bulge 6b or 6b'.
  • the bulges can vary in shape and dimensions, depending on the deep-drawing tools used in cold or hot deep-drawing.
  • the shape of the pantry can vary from that in the Fig. 1 to 5 shown chamber and may not be round but elongated, for example.
  • FIG.8 shown storage device with a storage chamber 5c and a transport path 9c, which is approximately the same as in Fig. 1 to 5 described storage device is integrated into a flow cell 2c.
  • the flow cell has a stepped base plate 3c and a cover plate 17.
  • the storage device is integrated between the cover plate 17 and a layer 18 made of an elastomer material resting on the base plate 3c.
  • an elastic membrane 19 forms a storage device.
  • the elastic membrane consists for example of a thermoplastic Elastomer and/or silicone material.
  • a transport path 9d is limited by the membrane 19 and a base plate 3d of the flow cell.
  • Fig.10 differs from the preceding embodiments in that no through-opening 26d is formed through the base plate, but rather a channel 13e is directly connected to a transport path 9e.
  • Fig. 11 shows a storage device with a storage chamber 5f and a transport path 9f in a top view.
  • the transport path is not straight but curved, so that an outlet opening is arranged at a desired location.
  • Fig. 12 shows a storage device with a storage chamber 5g and a transport path 9g.
  • the transport path branches into sections 20 and 21, with section 20 leading to an outlet opening 11g and section 21 leading to an outlet opening 11g'.
  • the transport path fulfills the function of a fluid distributor.
  • the storage device shown has two storage chambers 5h and 5h'.
  • Transport sections 9h and 9h' lead to a mixing chamber 22, from which a common transport section 23 leads to an outlet opening 11h.
  • the transport section 23 has a meander shape, which supports the mixing of the two fluids. The transport section therefore fulfills the function of a fluid mixer.
  • the transport path can be used for the precise measurement and further transport of a defined amount of fluid (metering).
  • a reagent or sample quantity is transferred into the transport channel until it has reached, for example, the through-opening 11h, which can be checked by visual observation in the case of a transparent flow cell, e.g. made of a transparent plastic.
  • the pressurization of the reagent is interrupted and the transport fluid in the chamber 5h' is subjected to pressurization. This leads to the further transport of the fluid located in the transport path section 23 and thus to the further transport a defined amount of reagent. With the help of locking elements, this process can be repeated until the storage chambers are completely empty.
  • the storage device shown with a storage chamber 5i and a transport path 9i has an intermediate container arranged in the transport path, which is coated on the inside with a dry reagent. If the fluid flows through the intermediate container 24, the interior of which, like that of the transport path as a whole, is only accessible through the fluid, the dry reagent is at least partially dissolved and transported along in the fluid.
  • the accessible interior of the intermediate container 24 can advantageously be set very flat in accordance with the effective liquid pressure, which can be adjusted by the pressurization 14 or by setting the blocking element 16, and the dissolution behavior of the dry reagent can be influenced in the desired manner.
  • the storage device shown with a storage chamber 5j contains in a transport path 9j various containers 25, which could be filled with various dry reagent materials, for example.
  • the Fig. 11 to 15 The embodiments of transport paths shown can be combined with one another.
  • the storage device thus takes on the functions of a flow cell.
  • a downstream processing device no longer has any flow cell functions at all, such as an electrical or electrochemical sensor connected downstream of the storage device.
  • FIG. 16 The storage device shown with a storage chamber 5k is connected to a flow cell 2k.
  • a base plate 3k of the flow cell 2k is arranged on a film 7k, through the bulge of which the storage chamber 5k is formed.
  • the film 7k covers a channel 13k formed in the base plate 3k, which is connected to a transport path 9k of the storage device via a through opening 11k.
  • a cover film corresponding to the film 4 could be attached to the side of the base plate facing away from the channel 13 and further channels could be formed there, which, as seen in the projection, can intersect with the channel 13. In this way, additional functions can be achieved with the same manufacturing effort for the flow cell.
  • the thickness of the base plate 3k is greater than the height of the storage chamber 5k, the chamber is protected against improper handling, particularly when the storage device is stored in a stack. Handling the storage device is therefore safer overall.
  • Fig. 17 shows different designs for predetermined breaking points that extend directly adjacent to a storage chamber over the entire width of a transport route and are designed as a welded or/and adhesive connection between two films.
  • the Fig. 17a The dimension of the welded joint indicated by arrows, which is preferably between 0.01 and 5 mm, in particular 0.1 and 2 mm, is decisive for the required opening pressure.
  • the shape of the predetermined breaking point can deviate from a rectangle and, for example, have the arrow shape shown there. In this way, weld seams of greater width can be formed, which are easier to manufacture, without the required opening pressure increasing proportionally with the width.
  • Fig. 18 shows a storage chamber 5l formed by foils 7l and 8l. in the emptied, in Fig. 18a
  • the films 7l and 8l are adjacent to each other and the volume enclosed by the films is zero.
  • the films 7l and 8l are stretched according to the degree of filling, like a filled bag. The filling quantity is enclosed by closing a final weld seam.
  • the storage chamber can be completely emptied and the force required to empty it does not increase with the degree of emptying, as in the previously described embodiments.
  • Suitable materials are primarily plastics, in particular plastic films, but also metals and metal foils and/or composite materials, such as circuit board material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

Die Erfindung betrifft eine mikrofluidische Speichervorrichtung mit wenigstens einer durch Ausbuchtung einer Folie oder Membran gebildeten, hermetisch geschlossenen Vorratskammer für ein Fluid, einer durch einen Schweiß- oder Klebebereich gebildeten Sollbruchstelle zur Bildung einer Öffnung der Vorratskammer und mit einer von der Vorratskammer zu einer Öffnung der Speichervorrichtung führenden Transportstrecke zum Transport von Fluid aus der Speichervorrichtung bei Zusammendrücken der Vorratskammer, wobei das Innenvolumen der Transportstrecke bei hermetisch geschlossener Vorratskammer bei null liegt, die Transportstrecke durch eine beim Zusammendrücken der Vorratskammer aus der Vorratskammer austretenden Fluidstrom zu einem Transportkanal aufschließbar ist und wobei die Transportstrecke bei hermetisch geschlossener Vorratskammer aneinander anliegende, jeweils durch eine Folie oder eine Folie und eine steife Platte gebildete Kanalwände aufweist und wenigstens eine Kanalwand unter Aufschließung des Transportkanals durch den Fluidstrom verformbar ist.The invention relates to a microfluidic storage device with at least one hermetically sealed storage chamber for a fluid formed by a bulge in a film or membrane, a predetermined breaking point formed by a welding or adhesive area to form an opening in the storage chamber and with a transport path leading from the storage chamber to an opening in the storage device for transporting fluid from the storage device when the storage chamber is compressed, wherein the internal volume of the transport path is zero when the storage chamber is hermetically sealed, the transport path can be opened up to form a transport channel by a fluid flow emerging from the storage chamber when the storage chamber is compressed, and wherein the transport path has channel walls which lie against one another and are each formed by a film or a film and a rigid plate when the storage chamber is hermetically sealed, and at least one channel wall can be deformed by the fluid flow while opening up the transport channel.

Eine Speichervorrichtung dient neben der Speicherung dem Transport und/oder der zielgerichteten Freigabe von Fluiden. In Verbindung mit einer Verarbeitungseinrichtung kann sie z.B. für die Analyse von Fluiden (Gasen und Flüssigkeiten) in der medizinischen Diagnostik und Analytik sowie der Umweltanalytik verwendet werden.In addition to storage, a storage device is used for the transport and/or targeted release of fluids. In conjunction with a processing device, it can be used, for example, for the analysis of fluids (gases and liquids) in medical diagnostics and analytics as well as environmental analysis.

Eine Speichervorrichtung mit Merkmalen des Oberbegriffs von Anspruch 1 ist aus der WO/002007002480A2 bekannt. Durch Ausübung von Druck auf eine flexible Wand der Vorratskammer bricht unter dem Druck des Fluids die Sollbruchstelle auf und das Fluid kann durch einen die Transportstrecke bildenden Kanal zu der genannten Öffnung fließen. Beim plötzlichen Aufbrechen der Sollbruchstelle kommt es zu einer starken Druckschwankung und dadurch zum stoßweisen Austreten der Fluids. Eine gesteuerte Dosierung ist unmöglich. Ferner besteht die Gefahr, dass sich beim stoßweisen Austreten des Fluids in die Transportstrecke Luftblasen bilden, weil die im Transportkanal vorhandene Luft nicht vollständig verdrängt werden kann. Die unkontrollierte Mitführung der Luftblasen beeinträchtigt erheblich die Funktion des Fluids bei der Weiterverarbeitung in der fluidischen Verarbeitungseinrichtung. Weitere solche mikrofluidische Flusszellen gehen aus der DE 103 36 850 A1 , der US 2006/0057030 A1 und der EP 0 583 833 A hervor.A memory device with features of the preamble of claim 1 is known from WO/002007002480A2 By exerting pressure on a flexible wall of the storage chamber, the predetermined breaking point breaks open under the pressure of the fluid and the fluid can flow through a channel forming the transport path to the opening mentioned. When the predetermined breaking point suddenly breaks open, This leads to a strong pressure fluctuation and thus to the fluids escaping intermittently. Controlled dosing is impossible. There is also the risk that air bubbles will form when the fluid is escaping intermittently into the transport section, because the air in the transport channel cannot be completely displaced. The uncontrolled transport of air bubbles significantly impairs the function of the fluid during further processing in the fluid processing device. Further such microfluidic flow cells are being developed from the DE 103 36 850 A1 , the US2006/0057030 A1 and the EP 0 583 833 A out.

Die US 4,952,068 A beschreibt einen Speicherbehälter mit zwei, jeweils eine Flüssigkeitskomponente enthaltenden Vorratskammern. Sollbruchstellen trennen die Vorratskammer von einer Mischkammer, die einen Austragsbereich umfasst. Durch Ausquetschen der Vorratskammern gelangen die Flüssigkeitskomponenten in die Mischkammer mit dem Austragsbereich. Die Mischung der Komponenten lässt sich durch Ausquetschen der Mischkammer durch aus einer am Austragsbereich zu bildenden Öffnung hindurch austragen.The US 4,952,068 A describes a storage container with two storage chambers, each containing a liquid component. Predetermined breaking points separate the storage chamber from a mixing chamber, which includes a discharge area. By squeezing the storage chambers, the liquid components reach the mixing chamber with the discharge area. The mixture of components can be discharged by squeezing the mixing chamber through an opening to be formed in the discharge area.

Eine mikrofluidische Flusszelle mit sämtlichen eingangs erwähnten Mekrmalen geht aus der US 2006/01311890 A1 hervor. Diese bekannte Speichervorrichtung umfasst eine Vorratskammer, an die sich eine Transportstrecke anschließt. Die Transportstrecke umfasst aneinander anliegende, durch Schweißen oder Kleben miteinander verbundene Kanalwände. Die Transportstrecke bildet auch eine Sollbruchstelle. Beim Zusammendrücken der Vorratskammer werden die Kanalwände unter Bildung eines Transportkanals fortlaufend bis zum Ende der Transportstrecke auseinandergerissen.A microfluidic flow cell with all the features mentioned above is based on the US 2006/01311890 A1 This known storage device comprises a storage chamber, which is followed by a transport path. The transport path comprises adjacent channel walls that are connected to one another by welding or gluing. The transport path also forms a predetermined breaking point. When the storage chamber is compressed, the channel walls are continuously torn apart to form a transport channel until the end of the transport path.

Der Erfindung liegt die Aufgabe zugrunde, eine neue mikrofluidische Speichereinrichtung der eingangs erwähnten Art zu schaffen, die eine genauere Dosierung daraus entnehmbarer Fluidmengen ermöglicht und insbesondere die Bildung von Luftblasen vermeidet. Ferner sollen weitere Nutzungsmöglichkeiten der Transportstrecke erschlossen werden.The invention is based on the object of creating a new microfluidic storage device of the type mentioned at the beginning, which enables a more precise dosing of the fluid quantities that can be extracted therefrom and in particular avoids the formation of air bubbles. Furthermore, further possible uses of the transport path are to be developed.

Die diese Aufgabe lösende Speichervorrichtung nach der Erfindung ist dadurch gekennzeichnet, dass der die Sollbruchstelle bildende Schweiß- oder Klebebereich den Innenraum der Vorratskammer von der Transportstrecke trennt und dass die Folien bzw. die Folie und die steife Platte vor dem Aufschließen zu dem Transportkanal im Bereich der Transportstrecke ohne Verbindung aneinander anliegen.The storage device according to the invention which achieves this object is characterized in that the welding or adhesive region forming the predetermined breaking point separates the interior of the storage chamber from the transport path and that the films or the film and the rigid plate lie against one another without connection in the region of the transport path before opening into the transport channel.

Bei geschlossener Vorratskammer weist die Transportstrecke selbst praktisch kein Volumen auf. Die Aufweitung zu einem Kanal erfolgt, durch das unter Druck stehende Fluid selbst erst mit der Entnahme des Fluids aus dem Vorratsbehälter. So lässt sich das Fluid, z.B. eine in einer Flusszelle zu verarbeitende Reagenzflüssigkeit, dosiert und blasenfrei aus der Speichereinrichtung entnehmen und die Transportstrecke darüber hinaus z.B. als Ventil nutzen.When the storage chamber is closed, the transport path itself has practically no volume. The expansion into a channel occurs through the pressurized fluid itself only when the fluid is removed from the storage container. This allows the fluid, e.g. a reagent liquid to be processed in a flow cell, to be removed from the storage device in a dosed manner and without bubbles, and the transport path can also be used as a valve, for example.

Die Sollbruchstelle ist unmittelbar an der Vorratskammer angeordnet und die Transportstrecke führt von der Sollbruchstelle zu der Öffnung z.B. an einer Schnittstelle.The predetermined breaking point is located directly at the storage chamber and the transport route leads from the predetermined breaking point to the opening, e.g. at an interface.

Die Transportstrecke weist an einander anliegenden Kanalwänden wenigstens eine Wand durch das Fluid unter Bildung des Transportkanals verformbar ist.The transport path has at least one wall on adjacent channel walls through which the fluid can be deformed to form the transport channel.

Die Wand ist durch das Fluid zur Bildung des Transportkanals dehnbar.The wall can be stretched by the fluid to form the transport channel.

Die Kanalwände sind jeweils durch eine flexible Folie bzw. Membran oder durch eine flexible Folie und eine steife Platte gebildet.The channel walls are each formed by a flexible film or membrane or by a flexible film and a rigid plate.

Die genannten Folien oder die Folie und die Platte sind erfindungsgemäß im Bereich der Transportstrecke nicht miteinander verbunden.According to the invention, the said films or the film and the plate are not connected to one another in the region of the transport path.

Die Speichervorrichtung nach der Erfindung kann in die genannte mikrofluidische Verarbeitungseinrichtung integriert sein.The storage device according to the invention can be integrated into said microfluidic processing device.

Die Transportstrecke kann mehrere Abschnitte, zwischen denen z.B. ein Behälter angeordnet ist, umfassen.The transport route can comprise several sections, between which, for example, a container is arranged.

Hierbei kann es sich um einen Messbehälter oder einen eine Reagenz, insbesondere eine Trockenreagenz, enthaltenden Behälter handeln.This may be a measuring container or a container containing a reagent, in particular a dry reagent.

In weiterer Ausgestaltung der Erfindung weisen die Transportstrecken mehrerer Vorratsbehälter einen gemeinsamen, z.B. von einer Mischkammer zu der genannten Öffnung an der Schnittstelle führenden Abschnitt auf.In a further embodiment of the invention, the transport paths of several storage containers have a common section, e.g. leading from a mixing chamber to the said opening at the interface.

Ferner kann die Transportstrecke mehrere, zueinander parallel oder in Reihe geschaltete Abschnitte aufweisen, die z.B. von einer Verteilerkammer zu mehreren Öffnungen an der Schnittstelle führen.Furthermore, the transport path can have several sections connected in parallel or in series, which lead, for example, from a distribution chamber to several openings at the interface.

Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen und der beiliegenden, sich auf diese Ausführungsbeispiele beziehenden Zeichnungen näher erläutert. Es zeigen:

Fig. 1
ein erstes Ausführungsbeispiel für eine erfindungsgemäße Speichervorrichtung in einer geschnittenen Seitenansicht,
Fig. 2
die Speichervorrichtung von Fig. 1 in einer Draufsicht,
Fig. 3
eine Detailansicht der Speichervorrichtung von Fig. 1 und 2,
Fig. 4
die Speichervorrichtung von Fig. 1 während der Entnahme eines gespeicherten Fluids,
Fig. 5
eine Detailansicht der in Fig. 4 gezeigten Speichervorrichtung,
Fig. 6
ein Ausführungsbeispiel für eine Transportstrecke einer Speichervorrichtung nach der Erfindung in einem Querschnitt,
Fig. 7
ein Ausführungsbeispiel für eine Vorratskammer einer Speichervorrichtung nach der Erfindung in einer Schnittdarstellung,
Fig. 8 - 10
verschiedene Speichervorrichtungen nach der Erfindung, die in eine Flusszelle integriert sind, in einer geschnittenen Seitenansicht,
Fig. 11 - 14
weitere Ausführungsbeispiele für Speichervorrichtungen nach der Erfindung in einer Draufsicht,
Fig. 15
eine Speichervorrichtung nach der Erfindung mit einer Transportstrecke, die mehrere Zwischenbehälter aufweist, in einer Seitenansicht,
Fig. 16
ein weiteres Ausführungsbeispiel für eine Speichervorrichtung nach der Erfindung,
Fig. 17
Ausführungsbeispiele für Sollbruchstellen, und
Fig. 18
ein Ausführungsbeispiel für eine Vorratskammer einer erfindungsgemäßen Speichervorrichtung.
The invention is explained in more detail below using embodiments and the accompanying drawings relating to these embodiments. They show:
Fig.1
a first embodiment of a storage device according to the invention in a sectional side view,
Fig.2
the storage device of Fig.1 in a top view,
Fig.3
a detailed view of the storage device of Fig. 1 and 2 ,
Fig.4
the storage device of Fig.1 during the extraction of a stored fluid,
Fig.5
a detailed view of the Fig.4 shown storage device,
Fig.6
an embodiment of a transport path of a storage device according to the invention in a cross section,
Fig.7
an embodiment of a storage chamber of a storage device according to the invention in a sectional view,
Fig. 8 - 10
various storage devices according to the invention, which are integrated into a flow cell, in a sectional side view,
Figs. 11 - 14
further embodiments of storage devices according to the invention in a plan view,
Fig. 15
a storage device according to the invention with a transport path having several intermediate containers, in a side view,
Fig. 16
another embodiment of a storage device according to the invention,
Fig. 17
Examples of predetermined breaking points, and
Fig. 18
an embodiment of a storage chamber of a storage device according to the invention.

Eine in Fig. 1 gezeigte Speichervorrichtung für die Speicherung eines Fluids 1 ist mit einer das Fluid 1 z.B. als Reagenz verarbeitenden Flusszelle 2, die eine Grundplatte 3 und eine untere Abdeckfolie 4 aufweist, verbunden.One in Fig.1 The storage device shown for storing a fluid 1 is connected to a flow cell 2 which processes the fluid 1, e.g. as a reagent, and which has a base plate 3 and a lower cover film 4.

Die Speichervorrichtung umfasst eine Vorratskammer 5 für das Fluid 1, welche durch eine tiefgezogene Ausbuchtung 6 in einer Folie 7 und eine die Ausbuchtung 6 abdeckende, mit der Folie 7 verbundene Folie 8 gebildet ist.The storage device comprises a storage chamber 5 for the fluid 1, which is formed by a deep-drawn bulge 6 in a film 7 and a film 8 covering the bulge 6 and connected to the film 7.

Die Folien 7 und 8 sind bis auf den Bereich der Vorratskammer 5 sowie den Bereich einer Transportstrecke 9 über ihre gesamte Fläche miteinander verbunden, z.B. verschweißt oder verklebt. Im Bereich der Transportstrecke 9 liegen, wie insbesondere aus Fig. 3 hervorgeht, die Folien 7 und 8 nur aneinander an. Ein schmaler Schweiß- oder Klebebereich, der eine Sollbruchstelle 10 bildet, trennt den Innenraum der Vorratskammer 5 von der Transportstrecke 9. Abweichend von dem hier beschriebenen Ausführungsbeispiel brauchen die Folien 7 und 8 außerhalb der Vorratskammer und der Transportstrecke nicht über ihre gesamte Fläche miteinander verbunden sein. Es genügt ein die Vorratskammer und die Transportstrecke begrenzender Verbindungsbereich, welcher der Druckbeaufschlagung mehr als die Sollbruchstelle 10 standhält.The films 7 and 8 are connected to each other over their entire surface, e.g. welded or glued, except for the area of the storage chamber 5 and the area of a transport path 9. In the area of the transport path 9, as can be seen in particular from Fig.3 As can be seen, the films 7 and 8 only adhere to one another. A narrow welded or adhesive area, which forms a predetermined breaking point 10, separates the interior of the storage chamber 5 from the transport path 9. In contrast to the embodiment described here, the films 7 and 8 outside the storage chamber and the transport path do not need to be connected to one another over their entire surface. A connecting area delimiting the storage chamber and the transport path, which can withstand the pressure more than the predetermined breaking point 10, is sufficient.

Die Transportstrecke 9 führt zu einer Durchgangsöffnung 11 in der Folie 8, die zu einer Durchgangsöffnung 26 in der Grundplatte 3 vorzugsweise deckungsgleich ist. Von der Sollbruchstelle 10 an nimmt die Breite der Transportstrecke bis zu der Durchgangsöffnung 11 stetig ab. Die Speichervorrichtung ist mit der Grundplatte 3 über die Folie 8 verklebt.The transport path 9 leads to a through opening 11 in the film 8, which preferably coincides with a through opening 26 in the base plate 3. From the predetermined breaking point 10 onwards, the width of the transport path decreases continuously up to the through opening 11. The storage device is glued to the base plate 3 via the film 8.

Die Durchgangsöffnung 26 in der Grundplatte 3 führt zu einem Kanal 13 in der Flusszelle 2, welcher z.B. an einer das Fluid 1 aufnehmenden Reaktionskammer (nicht gezeigt) endet.The through opening 26 in the base plate 3 leads to a channel 13 in the flow cell 2, which ends, for example, at a reaction chamber (not shown) receiving the fluid 1.

Zum Einbringen des gespeicherten Fluids 1 in die das Fluid verarbeitende Flusszelle 2 wird die bis dahin hermetisch verschlossene Vorratskammer 5 gemäß Pfeil 14 (Fig. 4) zusammengedrückt, wobei unter dem Druck des Fluids 1 die Sollbruchstelle 10 aufbricht. Das unter Druck stehende Fluid 1 erschließt sich einen Transportkanal 15, indem es im Bereich der Transportstrecke 9 die Folie 7 unter Dehnung verformt, wie dies in Fig. 5 dargestellt ist. Das Fluid 1 gelangt schließlich durch die Durchgangsöffnungen 11 und 26 hindurch in den durch die Folie 4 abgedeckten Kanal 13 in der Flusszelle 2.To introduce the stored fluid 1 into the flow cell 2 processing the fluid, the previously hermetically sealed storage chamber 5 is opened according to arrow 14 ( Fig.4 ) is compressed, whereby the predetermined breaking point 10 breaks open under the pressure of the fluid 1. The pressurized fluid 1 opens up a transport channel 15 by deforming the film 7 in the area of the transport path 9 under stretching, as shown in Fig.5 The fluid 1 finally passes through the through-openings 11 and 26 into the channel 13 in the flow cell 2, which is covered by the film 4.

Indem das Ausgangsvolumen der Transportstrecke 9 bei hermetisch abgeschlossener Vorratskammer 5 bei null liegt und das aus der Vorratskammer unter Druck austretende Fluid 1 selbst erst das Innenvolumen der Transportstrecke 9 bildet und sich einen Transportkanal 15 erschließt, können sich in dem in die Flusszelle 2 übertretenden Fluidstrom keine Luftblasen bilden, welche die Verarbeitung oder/und Funktion des Fluids 1 in der Flusszelle 2 beeinträchtigen.Since the initial volume of the transport path 9 is zero when the storage chamber 5 is hermetically sealed and the fluid 1 emerging from the storage chamber under pressure first forms the internal volume of the transport path 9 and opens up a transport channel 15, no air bubbles can form in the fluid flow passing into the flow cell 2, which could impair the processing and/or function of the fluid 1 in the flow cell 2.

Vorteilhaft erlaubt die vorangehend beschriebene Speichervorrichtung ferner eine sehr genaue Dosierung einzelner, aus der Vorratskammer 5 ausgedrückter Teilmengen des darin gespeicherten Fluids 1. Wird der Druck gemäß Pfeil 14 zurückgenommen, so schließt sich infolge elastischer Rückstellkraft der Folie 7 die Transportstrecke und der in die Flusszelle überführte Fluidstrom kommt zum Erliegen. Alternativ könnte der Fluidstrom durch ein auf die Transportstrecke 9 gemäß Pfeil 16 einwirkendes Sperrelement, im einfachsten Fall in der Form eines Stempels, unterbrochen und die Transportstrecke zusammen mit dem die Folien 7 und 8 gegeneinander drückenden Sperrelement als Ventil genutzt werden, das die Entnahme gewünschter Teilmengen des gespeicherten Fluidvorrats ermöglicht.The storage device described above also advantageously allows very precise dosing of individual partial quantities of the fluid 1 stored therein, expressed from the storage chamber 5. If the pressure is reduced according to arrow 14, the transport path closes as a result of the elastic restoring force of the film 7 and the fluid flow transferred into the flow cell comes to a standstill. Alternatively, the fluid flow could be interrupted by a blocking element acting on the transport path 9 according to arrow 16, in the simplest case in the form of a stamp, and the transport path together with the blocking element pressing the films 7 and 8 against each other could be used as a valve that enables the removal of desired partial quantities of the stored fluid supply.

Bleibt der Druck auf die Vorratskammer gemäß Pfeil 14 bestehen, so wirkt das Sperrelement gemäß Pfeil 16 als Proportionalventil. Je nach der Position des Sperrelements kann das unter Druck stehende Ventil den Querschnitt der Transportstrecke unterschiedlich weit ausbilden, wodurch sich die Fließgeschwindigkeit des Fluids steuern lässt.If the pressure on the storage chamber remains as shown in arrow 14, the blocking element acts as a proportional valve as shown in arrow 16. Depending on the position of the blocking element, the pressurized valve can form the cross-section of the transport path to different widths, which allows the flow rate of the fluid to be controlled.

Wenn die Grundplatte 3 mit der Abdeckfolie 4 im Bereich des Sperrelements 16 einen Durchbruch aufweist, so kann die Ventilfunktion unabhängig von der Festigkeit und Steifigkeit der Grundplatte, die ansonsten zu dem Sperrelement ein Gegenlager bildet, mit Hilfe eines zweiten, aus entgegengesetzter Richtung vorschiebbaren Sperrelements noch effizienter ausgeführt werden.If the base plate 3 with the cover foil 4 has a breakthrough in the area of the locking element 16, the valve function can be independent of the strength and rigidity of the base plate, which otherwise has a Counter bearing can be made even more efficient with the help of a second locking element that can be pushed forward from the opposite direction.

Abweichend von dem anhand von Fig. 1 bis 5 beschriebenen Ausführungsbeispiel könnte die Folie 8 entfallen und die Folie 7 direkt mit der Grundplatte 3 verbunden werden, so dass die Ausbuchtung 6 und die Transportstrecke 9 auf einer Seite direkt durch die Grundplatte 3 begrenzt sind.Deviating from the Fig. 1 to 5 In the embodiment described, the film 8 could be omitted and the film 7 could be connected directly to the base plate 3, so that the bulge 6 and the transport path 9 are directly delimited on one side by the base plate 3.

In den weiteren Figuren sind gleiche oder gleichwirkende Teile mit derselben Bezugszahl bezeichnet, wobei der betreffenden Bezugszahl der Buchstabe a, b usw. beigefügt ist.In the other figures, identical or equivalent parts are designated by the same reference number, with the relevant reference number being followed by the letter a, b, etc.

Fig. 6 zeigt ein Ausführungsbeispiel für eine Transportstrecke 9a, die durch eine Folie 7a und eine Folie 8a gebildet ist, wobei die Folien außerhalb der Transportstrecken 9a, wie bei dem Ausführungsbeispiel gemäß Fig. 1 bis 5, miteinander verklebt bzw. verschweißt sind. Abweichend von diesem Ausführungsbeispiel haben beide Folien Platz zur Verformung, insbesondere unter Dehnung, so dass sie einen Transportkanal 15a mit beidseitig gewölbten Wänden bilden können. Entsprechend der Steifigkeit der Folien 7a und 8a kann sich eine symmetrische oder asymmetrische Wölbung ergeben. Fig.6 shows an embodiment of a transport path 9a, which is formed by a film 7a and a film 8a, wherein the films outside the transport paths 9a, as in the embodiment according to Fig. 1 to 5 , glued or welded together. Deviating from this embodiment, both films have space for deformation, in particular under stretching, so that they can form a transport channel 15a with walls curved on both sides. Depending on the rigidity of the films 7a and 8a, a symmetrical or asymmetrical curvature can result.

Ebenso könnte gemäß Fig. 7 eine Vorratskammer 5b durch zwei Folien 7b und 8b mit je einer Ausbuchtung 6b bzw. 6b' gebildet sein. Die Ausbuchtungen können in Form und Abmessungen unterschiedlich sein, je nach den beim kalten oder warmen Tiefziehen verwendeten Tiefziehwerkzeugen.Likewise, according to Fig.7 a storage chamber 5b is formed by two films 7b and 8b, each with a bulge 6b or 6b'. The bulges can vary in shape and dimensions, depending on the deep-drawing tools used in cold or hot deep-drawing.

Die Form der Vorratskammer kann von der in den Fig. 1 bis 5 gezeigten Kammer abweichen und nicht rund sondern z.B. länglich sein.The shape of the pantry can vary from that in the Fig. 1 to 5 shown chamber and may not be round but elongated, for example.

Eine in Fig. 8 gezeigte Speichervorrichtung mit einer Vorratskammer 5c und einer Transportstrecke 9c, die etwa der in Fig. 1 bis 5 beschriebenen Speichervorrichtung entspricht, ist in eine Flusszelle 2c integriert. Die Flusszelle weist eine gestufte Grundplatte 3c sowie eine Deckplatte 17 auf. Die Speichervorrichtung ist zwischen der Deckplatte 17 und einer auf der Grundplatte 3c aufliegenden Schicht 18 aus einem Elastomermaterial eingebunden.One in Fig.8 shown storage device with a storage chamber 5c and a transport path 9c, which is approximately the same as in Fig. 1 to 5 described storage device is integrated into a flow cell 2c. The flow cell has a stepped base plate 3c and a cover plate 17. The storage device is integrated between the cover plate 17 and a layer 18 made of an elastomer material resting on the base plate 3c.

Bei dem Ausführungsbeispiel von Fig. 9 bildet eine elastische Membran 19 eine Speichervorrichtung. Die elastische Membran besteht z.B. aus einem thermoplastischen Elastomer oder/und aus Silikonmaterial. Eine Transportstrecke 9d, ist durch die Membran 19 und eine Grundplatte 3d der Flusszelle begrenzt.In the embodiment of Fig.9 an elastic membrane 19 forms a storage device. The elastic membrane consists for example of a thermoplastic Elastomer and/or silicone material. A transport path 9d is limited by the membrane 19 and a base plate 3d of the flow cell.

Das Ausführungsbeispiel von Fig. 10 unterscheidet sich von den vorangehenden Ausführungsbeispielen dadurch, dass keine durch die Grundplatte durchgehende Durchgangsöffnung 26d gebildet ist, sondern sich ein Kanal 13e unmittelbar an eine Transportstrecke 9e anschließt.The embodiment of Fig.10 differs from the preceding embodiments in that no through-opening 26d is formed through the base plate, but rather a channel 13e is directly connected to a transport path 9e.

Fig. 11 zeigt eine Speichervorrichtung mit einer Vorratskammer 5f und einer Transportstreck 9f in einer Draufsicht. Abweichend von den vorangehenden Ausführungsbeispielen ist die Transportstrecke nicht geradlinig sondern gekrümmt ausgebildet, so dass eine Austrittsöffnung an einer gewünschten Stelle angeordnet ist. Fig. 11 shows a storage device with a storage chamber 5f and a transport path 9f in a top view. In contrast to the previous embodiments, the transport path is not straight but curved, so that an outlet opening is arranged at a desired location.

Fig. 12 zeigt eine Speichervorrichtung mit einer Vorratskammer 5g und einer Transportstrecke 9g. Die Transportstrecke verzweigt sich in Abschnitte 20 und 21, wobei der Abschnitt 20 zu einer Austrittsöffnung 11g und der Abschnitt 21 zu einer Austrittsöffnung 11g' führt. Die Transportstrecke erfüllt in diesem Fall die Funktion eines Fluidverteilers. Fig. 12 shows a storage device with a storage chamber 5g and a transport path 9g. The transport path branches into sections 20 and 21, with section 20 leading to an outlet opening 11g and section 21 leading to an outlet opening 11g'. In this case, the transport path fulfills the function of a fluid distributor.

Eine in Fig. 13 gezeigte Speichereinrichtung weist zwei Vorratskammern 5h und 5h' auf. Transportstrecken 9h und 9h' führen zu einer Mischkammer 22, von der ein gemeinsamer Transportstreckenabschnitt 23 zu einer Austrittsöffnung 11h führt. Der Transportstreckenabschnitt 23 weist eine Mäanderform auf, welche die Durchmischung der beiden Fluide unterstützt. Die Transportstrecke erfüllt daher die Funktion eines Fluidmischers.One in Fig. 13 The storage device shown has two storage chambers 5h and 5h'. Transport sections 9h and 9h' lead to a mixing chamber 22, from which a common transport section 23 leads to an outlet opening 11h. The transport section 23 has a meander shape, which supports the mixing of the two fluids. The transport section therefore fulfills the function of a fluid mixer.

Wird z.B. die Vorratskammer 5h mit einem Fluid in Form einer Reagenz oder Probe in die Vorratskammer 5h' mit einem dem Transport dienenden Fluid, z.B. Luft oder Gas, gefüllt, so kann die Transportstrecke zum genauen Abmessen und Weitertransportieren einer definierten Fluidmenge dienen (Metering). In diesem Fall wird im ersten Schritt eine Reagenz oder Probemenge in den Transportkanal überführt, bis sie z.B. die Durchgangsöffnung 11h erreicht hat, was im Falle einer transparenten, z.B. aus einem transparenten Kunststoff bestehenden Flusszelle durch visuelle Beobachtung kontrolliert werden kann. Dann wird die Druckbeaufschlagung der Reagenz unterbrochen und das Transportfluid in der Kammer 5h' einer Druckbeaufschlagung unterworfen. Dies führt zum Weitertransport des sich im Transportstreckenabschnitt 23 befindenden Fluids und damit zum Weitertransport einer definierten Reagenzmenge. Mit Hilfe von Sperrelementen lässt sich dieser Vorgang so oft wiederholen, bis die Vorratskammern vollständig entleert sind.If, for example, the storage chamber 5h is filled with a fluid in the form of a reagent or sample, and the storage chamber 5h' is filled with a fluid used for transport, e.g. air or gas, the transport path can be used for the precise measurement and further transport of a defined amount of fluid (metering). In this case, in the first step, a reagent or sample quantity is transferred into the transport channel until it has reached, for example, the through-opening 11h, which can be checked by visual observation in the case of a transparent flow cell, e.g. made of a transparent plastic. Then the pressurization of the reagent is interrupted and the transport fluid in the chamber 5h' is subjected to pressurization. This leads to the further transport of the fluid located in the transport path section 23 and thus to the further transport a defined amount of reagent. With the help of locking elements, this process can be repeated until the storage chambers are completely empty.

Eine in Fig. 14 gezeigte Speichervorrichtung mit einer Vorratskammer 5i und einer Transportstrecke 9i weist einen in der Transportstrecke angeordneten Zwischenbehälter auf, der innenseitig mit einer Trockenreagenz beschichtet ist. Durchströmt das Fluid den Zwischenbehälter 24, dessen Innenraum sich ebenso wie derjenige der Transportstrecke insgesamt erst durch das Fluid erschließt, so wird die Trockenreagenz wenigstens teilweise aufgelöst und in dem Fluid mittransportiert. Vorteilhaft lässt sich der erschließbare Innenraum des Zwischenbehälters 24 entsprechend des wirkenden und durch die Druckbeaufschlagung 14 bzw. Einstellung durch das Sperrelement 16 einstellbaren Flüssigkeitsdrucks sehr flach einstellen, und das Auflöseverhalten der Trockenreagenz in gewünschter Weise beeinflussen.One in Fig. 14 The storage device shown with a storage chamber 5i and a transport path 9i has an intermediate container arranged in the transport path, which is coated on the inside with a dry reagent. If the fluid flows through the intermediate container 24, the interior of which, like that of the transport path as a whole, is only accessible through the fluid, the dry reagent is at least partially dissolved and transported along in the fluid. The accessible interior of the intermediate container 24 can advantageously be set very flat in accordance with the effective liquid pressure, which can be adjusted by the pressurization 14 or by setting the blocking element 16, and the dissolution behavior of the dry reagent can be influenced in the desired manner.

Eine in Fig. 15 gezeigte Speichervorrichtung mit einer Vorratskammer 5j enthält in einer Transportstrecke 9j verschiedene Behälter 25, die z.B. mit verschiedenen Trockenreagenzmaterialien gefüllt sein könnten.One in Fig. 15 The storage device shown with a storage chamber 5j contains in a transport path 9j various containers 25, which could be filled with various dry reagent materials, for example.

Die in den Fig. 11 bis 15 gezeigten Ausführungsformen von Transportstrecken lassen sich miteinander kombinieren. Die Speichervorrichtung übernimmt damit die Funktionen einer Flusszelle. Im Extremfall weist eine nachgeschaltete Verarbeitungseinrichtung gar keine Flusszellenfunktionen mehr auf, wie z.B. ein der Speichervorrichtung nachgeschalteter elektrischer oder elektrochemischer Sensor.The Fig. 11 to 15 The embodiments of transport paths shown can be combined with one another. The storage device thus takes on the functions of a flow cell. In extreme cases, a downstream processing device no longer has any flow cell functions at all, such as an electrical or electrochemical sensor connected downstream of the storage device.

Eine in Fig. 16 gezeigte Speichervorrichtung mit einer Vorratskammer 5k ist mit einer Flusszelle 2k verbunden. Eine Grundplatte 3k der Flusszelle 2k ist auf einer Folie 7k angeordnet, durch deren Ausbuchtung die Vorratskammer 5k gebildet ist. Die Folie 7k deckt einen in der Grundplatte 3k gebildeten Kanal 13k ab, der über eine Durchgangsöffnung 11k in Verbindung mit einer Transportstrecke 9k der Speichervorrichtung steht.One in Fig. 16 The storage device shown with a storage chamber 5k is connected to a flow cell 2k. A base plate 3k of the flow cell 2k is arranged on a film 7k, through the bulge of which the storage chamber 5k is formed. The film 7k covers a channel 13k formed in the base plate 3k, which is connected to a transport path 9k of the storage device via a through opening 11k.

Eine der Folie 4 entsprechende Abdeckfolie könnte auf der dem Kanal 13 abgewandten Seite der Grundplatte angebracht und dort könnten weitere Kanäle gebildet sein, die sich in der Projektion gesehen, mit dem Kanal 13 kreuzen können. Somit lassen sich bei gleichem Fertigungsaufwand der Flusszelle zusätzliche Funktionen erreichen.A cover film corresponding to the film 4 could be attached to the side of the base plate facing away from the channel 13 and further channels could be formed there, which, as seen in the projection, can intersect with the channel 13. In this way, additional functions can be achieved with the same manufacturing effort for the flow cell.

Indem, wie im vorliegenden Fall, die Dicke der Grundplatte 3k größer als die Höhe der Vorratskammer 5k ist, ist die Kammer gegen unsachgemäße Handhabung, insbesondere bei Stapellagerung der Speichervorrichtung geschützt. Die Handhabung der Speichervorrichtung ist damit insgesamt sicherer.As in the present case, the thickness of the base plate 3k is greater than the height of the storage chamber 5k, the chamber is protected against improper handling, particularly when the storage device is stored in a stack. Handling the storage device is therefore safer overall.

Fig. 17 zeigt unterschiedliche Ausführungen für Sollbruchstellen, die sich unmittelbar angrenzend an eine Vorratskammer über die gesamte Breite einer Transportstrecke ausdehnen und als Schweiß- oder/und Klebeverbindung zwischen zwei Folien ausgebildet sind. Die in Fig. 17a durch Pfeile angedeutete Abmessung der Schweißverbindung, die vorzugsweise zwischen 0,01 und 5mm, insbesondere 0,1 und 2mm liegt, ist maßgebend für den erforderlichen Öffnungsdruck. Fig. 17 shows different designs for predetermined breaking points that extend directly adjacent to a storage chamber over the entire width of a transport route and are designed as a welded or/and adhesive connection between two films. The Fig. 17a The dimension of the welded joint indicated by arrows, which is preferably between 0.01 and 5 mm, in particular 0.1 and 2 mm, is decisive for the required opening pressure.

Wie aus Fig. 17b hervorgeht, kann die Form der Sollbruchstelle von einem Rechteck abweichen und z.B. die dort gezeigte Pfeilform aufweisen. Auf diese Weise lassen sich fertigungstechnisch leichter herstellbare Schweißnähte größerer Breite bilden, ohne dass der erforderliche Öffnungsdruck mit der Breite proportional ansteigt.As from Fig. 17b As can be seen, the shape of the predetermined breaking point can deviate from a rectangle and, for example, have the arrow shape shown there. In this way, weld seams of greater width can be formed, which are easier to manufacture, without the required opening pressure increasing proportionally with the width.

Fig. 18 zeigt eine durch Folien 7l und 8l gebildete Vorratskammer 5l. im entleerten, in Fig. 18a gezeigten Zustand liegen die Folien 7l und 8l aneinander an und das durch die Folien eingeschlossene Volumen liegt bei null. Im gefüllten Zustand gemäß Fig. 18b sind die Folien 7l und 8l entsprechend dem Füllungsgrad wie bei einem gefüllten Beutel gedehnt. Der Einschluss der Füllmenge erfolgt durch Verschließen einer letzten Schweißnaht. Vorteilhaft lässt sich die Vorratskammer vollständig entleeren und die Kraft zum Entleeren steigt nicht, wie bei den vorangehend beschriebenen Ausführungsbeispielen, mit der Grad der Entleerung an. Fig. 18 shows a storage chamber 5l formed by foils 7l and 8l. in the emptied, in Fig. 18a In the state shown, the films 7l and 8l are adjacent to each other and the volume enclosed by the films is zero. In the filled state according to Fig. 18b the films 7l and 8l are stretched according to the degree of filling, like a filled bag. The filling quantity is enclosed by closing a final weld seam. Advantageously, the storage chamber can be completely emptied and the force required to empty it does not increase with the degree of emptying, as in the previously described embodiments.

Vorteilhaft werden die Komponenten der vorangehend beschriebenen Vorrichtungen nach Massenfertigungsverfahren hergestellt, wobei die beschriebenen Folien mittels Tiefziehen geformt, Grundplatten durch Spritzgießen erzeugt und Kleben oder Schweißen als Verbindungstechnologien eingesetzt werden. Als Materialien eignen sich vor allem Kunststoffe, insbesondere Kunststofffolien aber auch Metalle und Metallfolien und/oder Verbundwerkstoffe, wie z.B. Leiterplattenmaterial.The components of the devices described above are advantageously manufactured using mass production processes, whereby the described films are formed by deep drawing, base plates are produced by injection molding, and gluing or welding are used as connection technologies. Suitable materials are primarily plastics, in particular plastic films, but also metals and metal foils and/or composite materials, such as circuit board material.

Claims (7)

  1. Microfluidic storage apparatus,
    having at least one hermetically closed storage chamber (5), formed by making a film (7, 8) or membrane (19) bulge, for a fluid (1),
    an intended breaking point (10), formed by a welded or adhesively bonded region, for forming an opening in the storage chamber (5) and having
    a transport section (9) which leads from the storage chamber (5) to an opening (11) in the storage apparatus and is intended for the transport of fluid (1) out of the storage apparatus when the storage chamber (5) is compressed,
    wherein the inner volume of the transport section (9) is zero when the storage chamber (5) is hermetically closed,
    the transport section (9) can be opened up to form a transport channel (15) by a fluid flow leaving the storage chamber (5) when the storage chamber (5) is compressed,
    and wherein, when the storage chamber (5) is hermetically closed, the transport section (9) has channel walls which lie against one another and are each formed by a film (7, 8) or a film (7) and a rigid plate (3),
    and at least one channel wall can be deformed by the fluid flow when the transport channel (5) is opened up,
    characterized in that
    the welded or adhesively bonded region forming the intended breaking point separates the inner space of the storage chamber (5) from the transport section (9) and in that the films (7, 8), or the film (7) and the rigid plate (3), lie against one another prior to the opening up of the transport channel (15) in the region of the transport section without a connection.
  2. Storage apparatus according to Claim 1,
    characterized in that
    the transport section (9) leads to an opening (11) at an interface between the storage apparatus and a microfluidic processing device (2).
  3. Storage apparatus according to Claim 2,
    characterized in that
    the storage apparatus is integrated in the processing device (2).
  4. Storage apparatus according to one of Claims 1 to 3,
    characterized in that
    the transport section (9) comprises multiple portions, between which, for example, an intermediate container (22, 24, 25) is arranged.
  5. Storage apparatus according to one of Claims 1 to 4,
    characterized in that
    the transport sections of multiple storage containers (5h, 5h') have a common portion (23) which leads, for example, from a mixing chamber (22) to the opening (11h) at the interface.
  6. Storage apparatus according to one of Claims 1 to 5,
    characterized in that
    the transport section (9g) comprises multiple portions (20, 21) which are connected in parallel with one another and lead, for example, from a distribution chamber to an opening (11g, 11g') at the interface.
  7. Storage apparatus according to one of Claims 1 to 6,
    characterized in that
    the inner volume of the storage chamber (51) is zero in the empty state.
EP08857884.4A 2007-12-06 2008-12-05 Microfluid storage device Active EP2225037B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007059533A DE102007059533A1 (en) 2007-12-06 2007-12-06 Microfluidic storage device
PCT/DE2008/002061 WO2009071078A1 (en) 2007-12-06 2008-12-05 Microfluid storage device

Publications (2)

Publication Number Publication Date
EP2225037A1 EP2225037A1 (en) 2010-09-08
EP2225037B1 true EP2225037B1 (en) 2024-06-05

Family

ID=40456960

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08857884.4A Active EP2225037B1 (en) 2007-12-06 2008-12-05 Microfluid storage device

Country Status (4)

Country Link
US (1) US9211538B2 (en)
EP (1) EP2225037B1 (en)
DE (1) DE102007059533A1 (en)
WO (1) WO2009071078A1 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8795607B2 (en) * 2008-06-19 2014-08-05 Boehringer Ingelheim Microparts Gmbh Fluid metering container
DE102009009728A1 (en) * 2009-02-19 2010-09-02 Thinxxs Microtechnology Ag Flow cell with integrated fluid storage
US10196700B2 (en) 2009-03-24 2019-02-05 University Of Chicago Multivolume devices, kits and related methods for quantification and detection of nucleic acids and other analytes
US9415392B2 (en) 2009-03-24 2016-08-16 The University Of Chicago Slip chip device and methods
US9464319B2 (en) 2009-03-24 2016-10-11 California Institute Of Technology Multivolume devices, kits and related methods for quantification of nucleic acids and other analytes
US9447461B2 (en) 2009-03-24 2016-09-20 California Institute Of Technology Analysis devices, kits, and related methods for digital quantification of nucleic acids and other analytes
DE102010042740A1 (en) * 2010-10-21 2012-04-26 Ing. Erich Pfeiffer Gmbh Discharge device for media
JP6040940B2 (en) * 2010-12-16 2016-12-07 ベーリンガー インゲルハイム マイクロパーツ ゲゼルシャフト ミット ベシュレンクテル ハフツングBoehringer Ingelheim microParts GmbH Method for filling cavities, especially blisters in blister packaging, with liquid and semi-finished product used in such a method
EP2591748A1 (en) * 2011-11-11 2013-05-15 3M Innovative Properties Company Device for dispensing a dental material and method of dispensing
EP2679307B1 (en) 2012-06-28 2015-08-12 Thinxxs Microtechnology Ag Microstorage device, in particular for integration into a microfluid flow cell
WO2014066704A1 (en) 2012-10-24 2014-05-01 Genmark Diagnostics, Inc. Integrated multiplex target analysis
US20140322706A1 (en) 2012-10-24 2014-10-30 Jon Faiz Kayyem Integrated multipelx target analysis
DE102012221848A1 (en) * 2012-11-29 2014-06-05 Robert Bosch Gmbh Dispensing and dosing system, in particular of substances in microfluidic systems, and method and cartridge with the dispensing and dosing system
DE102012222719A1 (en) * 2012-12-11 2014-06-12 Robert Bosch Gmbh Film bag for storing a fluid and device for providing a fluid
CN107866286A (en) 2013-03-15 2018-04-03 金马克诊断股份有限公司 For manipulating system, the method and apparatus of deformable fluid container
GB2512141A (en) * 2013-03-22 2014-09-24 Graham Scott Gutsell Encapsulation System
GB2516666B (en) 2013-07-29 2015-09-09 Atlas Genetics Ltd Fluidic cartridge for nucleic acid amplification and detection
GB2516667A (en) 2013-07-29 2015-02-04 Atlas Genetics Ltd An improved cartridge, cartridge reader and method for preventing reuse
GB2516672B (en) 2013-07-29 2015-05-20 Atlas Genetics Ltd A system and method for expelling liquid from a fluidic cartridge
GB2516675A (en) 2013-07-29 2015-02-04 Atlas Genetics Ltd A valve which depressurises, and a valve system
GB2516669B (en) 2013-07-29 2015-09-09 Atlas Genetics Ltd A method for processing a liquid sample in a fluidic cartridge
EP2851121B1 (en) * 2013-09-20 2022-11-02 thinXXS Microtechnology GmbH Devices for and methods of forming microchannels or microfluid reservoirs
USD881409S1 (en) 2013-10-24 2020-04-14 Genmark Diagnostics, Inc. Biochip cartridge
US9498778B2 (en) 2014-11-11 2016-11-22 Genmark Diagnostics, Inc. Instrument for processing cartridge for performing assays in a closed sample preparation and reaction system
WO2015069857A1 (en) 2013-11-06 2015-05-14 The Procter & Gamble Company Flexible containers with vent systems
JP6397037B2 (en) * 2013-11-06 2018-09-26 ザ プロクター アンド ギャンブル カンパニー Flexible container having a flexible valve
US9610579B2 (en) 2014-01-07 2017-04-04 Daktari Diagnostics, Inc. Fluid delivery devices, systems, and methods
EP2962758B1 (en) 2014-07-01 2017-07-19 ThinXXS Microtechnology AG Flow cell having a storage space and a transport channel that can be opened at a predetermined breaking point
US10005080B2 (en) 2014-11-11 2018-06-26 Genmark Diagnostics, Inc. Instrument and cartridge for performing assays in a closed sample preparation and reaction system employing electrowetting fluid manipulation
US9598722B2 (en) 2014-11-11 2017-03-21 Genmark Diagnostics, Inc. Cartridge for performing assays in a closed sample preparation and reaction system
KR101971817B1 (en) 2015-04-10 2019-04-23 더 프록터 앤드 갬블 캄파니 Flexible container with product dispensing visualization
WO2016164692A1 (en) 2015-04-10 2016-10-13 The Procter & Gamble Company Flexible containers with integral dispensing spout
DE102015225837A1 (en) 2015-12-18 2017-06-22 Robert Bosch Gmbh Film bag for a microfluidic analysis system, microfluidic analysis system, method for producing and method for operating a microfluidic analysis system
EP3199616B1 (en) * 2016-01-29 2024-08-21 Eppendorf SE Disposable connection device
GB201615452D0 (en) * 2016-09-12 2016-10-26 Fluidic Analytics Ltd Improvements in or relating to valves for microfluidics devices
US10046322B1 (en) 2018-03-22 2018-08-14 Talis Biomedical Corporation Reaction well for assay device
US10820847B1 (en) 2019-08-15 2020-11-03 Talis Biomedical Corporation Diagnostic system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952068A (en) * 1989-03-21 1990-08-28 Flint Theodore R Static mixing device and container
US20060131189A1 (en) * 2004-12-22 2006-06-22 Robert Lee Devices for storing and dispensing compositions

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2707581A (en) * 1954-12-07 1955-05-03 Kaplan Yale Dispensing containers for liquids
US3173580A (en) * 1962-09-21 1965-03-16 Polaroid Corp Fluid containers
US3750907A (en) * 1970-04-08 1973-08-07 Eastman Kodak Co Fluid containers having both relatively strong and relatively weak seals
US3635376A (en) * 1970-06-05 1972-01-18 Hellstrom Harold R Quick-open flexible package
DE3019636C2 (en) * 1979-06-08 1983-03-31 Panpack AG, 9490 Vaduz Disposable packaging for storing and dispensing small amounts of flowable materials
US4303751A (en) * 1980-06-16 1981-12-01 Polaroid Corporation Rupturable photographic processing alkaline fluid container
US4592493A (en) * 1984-10-15 1986-06-03 Unette Corporation Reclosable dispenser
US5050736A (en) * 1988-07-12 1991-09-24 Oscar Mayer Foods Corporation Reclosable package
US5009894A (en) * 1988-03-07 1991-04-23 Baker Cummins Pharmaceuticals, Inc. Arrangement for and method of administering a pharmaceutical preparation
US4890744A (en) * 1988-10-28 1990-01-02 W. A. Lane, Inc. Easy open product pouch
DE3900702C1 (en) * 1989-01-12 1990-04-19 Karl H. Sengewald Gmbh & Co Kg, 4802 Halle, De
US5215221A (en) * 1992-05-07 1993-06-01 The Procter & Gamble Company Disposable unit dose dispenser for powdered medicants
US5290518A (en) 1992-08-17 1994-03-01 Eastman Kodak Company Flexible extraction device with burstable sidewall
US6685013B2 (en) * 1994-07-13 2004-02-03 Centrix, Inc. Single patient dose medicament dispenser with applicator
CN1183062A (en) * 1995-03-10 1998-05-27 特克斯怀普有限公司 Cleaning device and method
DE29714246U1 (en) * 1997-08-08 1998-12-10 THERA Patent GmbH & Co. KG Gesellschaft für industrielle Schutzrechte, 82229 Seefeld Device for storing and applying a flowable substance
US5839609A (en) * 1997-08-27 1998-11-24 Colgate-Palmolive Company Thermoformed pack with ridge valve
JP2000007027A (en) * 1998-06-24 2000-01-11 Nissho Corp Liquid substance storage container
DE19962436B4 (en) * 1999-12-22 2005-05-25 3M Espe Ag Method for dispensing a flowable substance from a packaging
DE10009623B4 (en) * 2000-03-01 2005-08-11 3M Espe Ag Device for storing and dispensing a flowable substance and use of this device
US6357631B1 (en) * 2000-04-06 2002-03-19 Colgate-Palmolive Company Container with formed memory valve
WO2002068823A1 (en) 2000-11-06 2002-09-06 Nanostream Inc. Uni-directional flow microfluidic components
DE10056212B4 (en) * 2000-11-13 2005-08-18 3M Espe Ag Apparatus for storing and dispensing flowable compositions, process for making and using the apparatus
US6935492B1 (en) * 2002-01-26 2005-08-30 Barry Alan Loeb Flexible mixing pouch with aseptic burstable internal chambers
US7004354B2 (en) * 2003-06-24 2006-02-28 William Anthony Harper Hand sanitizing packet and methods
DE10336850B4 (en) 2003-08-11 2006-10-26 Thinxxs Gmbh micro storage
EP1526092A1 (en) * 2003-10-24 2005-04-27 3M Espe AG Device for storing and dispensing a flowable substance
DE202004000591U1 (en) * 2004-01-16 2004-03-18 Klocke Verpackungs-Service Gmbh Packing has adhesive label fitted at least on one part of packing and by which removal section containing withdrawal opening is connected to one side of packing through bending over by about 180 degrees
EP1621178A1 (en) * 2004-07-29 2006-02-01 Fresenius Kabi Deutschland GmbH Flexible multi-chamber container for the preparation of medical mixed solutions
KR100618320B1 (en) * 2004-09-14 2006-08-31 삼성전자주식회사 An apparatus for making a fluid flow, and a disposable chip having the same
AU2006261953B2 (en) 2005-06-24 2012-02-23 Board Of Regents, The University Of Texas System Systems and methods including self-contained cartridges with detection systems and fluid delivery systems
DE202005015085U1 (en) * 2005-09-28 2005-12-01 Klocke Verpackungs-Service Gmbh Packing has rigid insert between second film and applicator extending beyond intended break point opposite it by such degree that with breaking open of packing the medium applicator is extracted from chamber
US20070119862A1 (en) * 2005-11-29 2007-05-31 Backes Larry P Unit dose flexible container
US20080083348A1 (en) * 2006-01-31 2008-04-10 Align Technology, Inc. Dual-chamber package for preparing alginate impression paste
US7909165B2 (en) * 2006-04-10 2011-03-22 Poppack, Llc System for delivering sequential components
US7644821B2 (en) * 2006-04-10 2010-01-12 Poppack, Llc Sealed product delivery unit with rupturing pump
US7757893B2 (en) * 2006-06-26 2010-07-20 Poppack Llc Dispersing bubble with compressible transport fluid and method
EP2164799B1 (en) * 2007-05-16 2018-12-26 Mystic Pharmaceuticals, Inc. Combination unit dose dispensing containers
CN103157400B (en) * 2007-06-21 2014-12-24 简·探针公司 Instrument and method for exposing container to multiple areas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952068A (en) * 1989-03-21 1990-08-28 Flint Theodore R Static mixing device and container
US20060131189A1 (en) * 2004-12-22 2006-06-22 Robert Lee Devices for storing and dispensing compositions

Also Published As

Publication number Publication date
WO2009071078A1 (en) 2009-06-11
US20100308051A1 (en) 2010-12-09
EP2225037A1 (en) 2010-09-08
US9211538B2 (en) 2015-12-15
DE102007059533A1 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
EP2225037B1 (en) Microfluid storage device
EP2679307B1 (en) Microstorage device, in particular for integration into a microfluid flow cell
EP2962758B1 (en) Flow cell having a storage space and a transport channel that can be opened at a predetermined breaking point
EP2398589A1 (en) Flow cell having integrated fluid reservoir
DE102011003856B4 (en) Microsystem for fluidic applications as well as manufacturing and use methods for a microsystem for fluidic applications
EP2931428B1 (en) Film bag for storing a fluid and device for providing a fluid and method of making a film bag
EP2637933B1 (en) Method for filling a blister packaging with liquid
WO2010139295A1 (en) Apparatus for transporting a fluid within a channel leg of a microfluidic element
DE102011004125A1 (en) Device for the hermetically sealed storage of liquids for a microfluidic system
EP3541516B1 (en) Device for receiving, dispensing, and moving liquids
WO2017108387A1 (en) Microfluidic device, production method, and method for operating a microfluidic device
DE102009032744A1 (en) fluid reservoir
EP2905079A1 (en) Device for storing a fluid in a microfluidic system, method for operating and method for producing such a device
EP3793736A1 (en) Fluidic system for taking in, dispensing and moving liquids, method for processing fluids in a fluidic system
EP3049186A1 (en) Analysis unit for performing a polymerase chain reaction, method for operating such an analysis unit, and method for producing such an analysis unit
EP3406340A1 (en) Flow cell with housing component
WO2018001647A1 (en) Flow cell having a reagent reservoir
EP2754495A2 (en) Microfluidic channel system with bubble capture device and method for the removal of gas bubbles
DE102014202342A1 (en) Device for pre-storing a fluid in a microfluidic system, method for operating and method for producing such a device
DE202014104510U1 (en) Device for pre-storing a fluid in a microfluidic system
EP3182136A1 (en) Foil bag for a microfluidic analytical system, microfluidic analytical system, method for production and method for operating of a microfluidic analysis system
WO2016026718A1 (en) Reagent pre-storage having defined extraction
DE102011114969A1 (en) Packaging container e.g. side-folding sack, for bulk materials e.g. food, has ventilation area comprising outer opening that is attached to shield element for directed deflection of partial flow of air flow passing through ventilation area

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100705

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150515

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THINXXS MICROTECHNOLOGY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240104

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WEBER, LUTZ

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008017271

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN