EP2219931B1 - Device for measuring the movement of a self-guiding vehicle - Google Patents

Device for measuring the movement of a self-guiding vehicle Download PDF

Info

Publication number
EP2219931B1
EP2219931B1 EP07871826A EP07871826A EP2219931B1 EP 2219931 B1 EP2219931 B1 EP 2219931B1 EP 07871826 A EP07871826 A EP 07871826A EP 07871826 A EP07871826 A EP 07871826A EP 2219931 B1 EP2219931 B1 EP 2219931B1
Authority
EP
European Patent Office
Prior art keywords
vehicle
measurement
axis
self
computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07871826A
Other languages
German (de)
French (fr)
Other versions
EP2219931A1 (en
Inventor
Alain Maire
Said El Fassi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens SAS
Original Assignee
Siemens SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens SAS filed Critical Siemens SAS
Priority to PL07871826T priority Critical patent/PL2219931T3/en
Publication of EP2219931A1 publication Critical patent/EP2219931A1/en
Application granted granted Critical
Publication of EP2219931B1 publication Critical patent/EP2219931B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/021Measuring and recording of train speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/026Relative localisation, e.g. using odometer

Definitions

  • the present invention relates to a device for measuring the displacement of a self-guided vehicle according to the preamble of claim 1.
  • US 2002/0088904 A1 discloses a location system having accelerometers in three dimensions with right angles therebetween.
  • An object of the present invention is to propose a device for measuring the displacement of a self-guided vehicle having an increased measuring robustness, in particular during a loss of adhesion and whatever the profile of the path of the vehicle in terms of slope, curve and slope.
  • a device for measuring the displacement of a self-guided vehicle comprising on board two accelerometers, each having two measuring axes and whose measurement signals are coupled to a displacement calculator is proposed according to claim 1.
  • At least one tachometer can be mounted on one of the axles of the vehicle and also be coupled with the computer data processing issues and all sensors (accelerometers and tachometer).
  • the measurement signals delivered by the tachometer can be used to improve the accuracy of the device.
  • the device according to the invention delivers, from the accelerations measured on the measurement axes, velocity data and longitudinal displacement of the vehicle (for example along a railway track). It can be associated with any type of onboard device that may need a precise and continuous measurement of the speed and the movement of the vehicle, regardless of the rail / wheel adhesion conditions and whatever the profile of the journey in term slope, curve and slope.
  • the accelerometers and their measurement axes are arranged in such a way that they make it possible, from the measurements made on the various measurement axes, to calculate a longitudinal acceleration, a lateral acceleration and a slope acceleration of the vehicle, and then to determine by integration in time on acceleration values, speed and longitudinal displacement of the vehicle.
  • the device according to the invention also advantageously makes it possible to detect in a safe manner an immobilization of the vehicle on its path and produces for this purpose zero velocity information from the information supplied by the sensors.
  • the device comprises self-calibration and self-test means which makes it possible, when the vehicle is stationary, to check the correct operation of the sensors and consequently to guarantee with great confidence the data made available by other embedded systems.
  • a suitable use of the device according to the invention covers the field of guided vehicles whatever their type of guidance (mechanical or intangible that is to say without mechanical link between the ground and the vehicle), including trains, subways, tramway or bus, and whatever the type of bearing (axles, bogies) with wheels iron or tire. It should be noted that for this category of vehicle with geometry / elongated chassis, the effects of curvature and slope are not negligible depending on the position (or offset) accelerometers on board the vehicle. The invention then makes it possible to overcome these effects advantageously in order to determine the movement of the vehicle more precisely.
  • the device according to the invention thus makes it possible to calculate the movement of a guided vehicle, having no axles free of any braking and traction force, traveling on any profile track, maintaining a precision equivalent to that of a free axle system, while avoiding adhesion losses (slippage and clutch induced by traction / braking forces) and errors induced by lateral (curvature) and vertical (slope) acceleration.
  • a set of subclaims also has advantages of the invention.
  • Figure 1 represents a VEH vehicle equipped with a self-guided vehicle displacement measuring device according to the invention and possibly associated with the figure 2 clarifying how plans related to the moving vehicle are defined in accordance with the accelerations experienced by the vehicle and measured by two accelerometers 101, 102.
  • the Figures 3 and 4 show the arrangement of Acc1, Acc2, Acc3, Acc4 measurement axes of the accelerometers according to the planes chosen according to the type of acceleration Gx, Glat, Gpes (longitudinal displacement, curvature effect and / or slope) undergone by the vehicle in an orthonormal reference [X, Y, Z] centered on the accelerometers and the X axis of which indicates the direction of longitudinal trajectory of the vehicle.
  • the device according to the invention therefore uses two accelerometers 101, 102 bi-axes fixed on the vehicle body and intended to measure a longitudinal acceleration and a lateral acceleration of the vehicle.
  • the vehicle is subjected to three forces producing a longitudinal acceleration Gx (displacement of the vehicle subjected to the traction / braking forces), a lateral acceleration Glat (the curvature of the trajectory induces a centrifugal acceleration) and a vertical acceleration Gpes due to the gravity which is exercised in the presence of a slope (the slope of the trajectory).
  • the first accelerometer 101 whose two axes Acc1, Acc2 are located in the vertical plane Py and the second accelerometer 102 whose two axes Acc3, Acc4 are located in the horizontal plane Pz, will make it possible to measure a resultant of the accelerations (longitudinal, lateral, gravity) projected on each of the four measurement axes.
  • the angles between the different axes of measurement of the accelerometers are known and fixed after adjustment.
  • the computer 103 solves a system composed of four equations in order to determine four unknowns at the vehicle position Dx, namely an angle of slope Ave of trajectory, a lateral acceleration angle Ay (resulting from the centripetal force due to the speed of the vehicle.
  • the computer 103 determines the longitudinal speed Vx and the longitudinal displacement Dx of the vehicle VEH on its path for any slope and curve curve.
  • the device according to the invention is completed by a tachometer 108 to improve the previous measurement accuracy of the speed Vx and the distance traveled Dx.
  • the tachometer 108 is fixed on one of the axles R1a, R2a, R1b, R2b of the vehicle VEH and its output signal (s) STb are transmitted to the computer 103.
  • the computer 103 evaluates a displacement DxT and a speed VxT from the signal (s). tachometer measurement.
  • the computer makes a comparison between the measurement results of displacement from the tachometer and those from the accelerometers. When for these measured values, a measurement deviation is less than a threshold, the measured values are reset to those resulting from the tachometer. In the opposite case (value greater than a threshold), there is no correction of the results coming from measurement of the accelerometers.
  • a zero speed information Op can also be securely delivered by the calculator 103 from information Im from an apparatus of the vehicle (immobilization signal, zero speed indicator, etc ...) or be determined by the device according to the invention itself.
  • the computer 103 processes the information from the tachometer and accelerometers.
  • the device determines a zero speed and, thanks to the particularities of the proposed assembly of accelerometers, the device also has the advantageous ability to implement a self-test function.
  • This self-test function makes it possible to evaluate the necessary corrections to be made to the accelerometer measurements (after auto-calibration) and to identify operating faults of the accelerometers.
  • the multiplicity of measurement axes provides a very advantageous redundancy of several measurements (due to the two bi-axis accelerometers) and allows periodic verification of the reliability of the accelerometers (for example at each station stop) to guarantee test measurements (and therefore of subsequent displacement) with a very low probability of error, making them compatible with the safety requirements of a safe system as required in the railway field.
  • the resolution of the system formed by the four equations (1) to (4) is based on mathematical techniques which are not described here and whose purpose is to calculate the four variables Gx, Glat, Ax and Ay according to the measurements of values of acceleration Gacc1, Gacc2, Gacc3, Gacc4 available to the computer 103.
  • the resolution of the system is advantageously simplified in certain particular hypotheses of arrangement of the accelerometers 101, 102.
  • the device according to the invention can provide that at least one of the relative angles A1 + A2, A3 + A4 is orthogonal.
  • each relative angle A1 + A2, A3 + A4 is in fact subdivided (or subdivided) into a first and a second angle A1, A2 and respectively A3, A4 corresponding to angles of projection between the four measurement axes Acc1, Acc2, Acc3, Acc4 of the first and second accelerometer 101, 102 and the first axis X (longitudinal axis following a principal displacement supposed straight of the vehicle).
  • the device according to the invention thus allows the computer 103 to deliver a slope angle value Ax, of an angle Ay of lateral acceleration (that is to say representing the rotation of the lateral acceleration at the point of mounting the accelerometer assembly relative to what it would be in the center of the vehicle for the radius of curvature R) at each point of the path including slope and curve.
  • the computer 103 delivers a speed Vx and a position Dx at each point of the path including slope and curve by successively integrating the longitudinal acceleration value Gx of the vehicle.
  • This ability to reshape exhibits an increase in speed and displacement measurement accuracy based on a simple additional measure of speed and displacement proportional to the radius of the wheel.
  • the device according to the invention may also comprise a zero speed detection means 107 of the vehicle being included or coupled to the computer 103 and to the tachometer 104.
  • This comprises at least one correlator of the speed and position values Vx, Dx delivered by the computer 103 and corresponding tachometric values VxT, DxT.
  • a so-called self-test function can then advantageously use the so-called zero speed information.
  • this information is validly provided, it means that the vehicle is stationary and therefore the longitudinal and lateral accelerations are then zero.
  • a second chosen threshold higher than the first threshold can also be defined to declare the device according to the invention out of operation.
  • the self-calibration means 105 has a first control mode for verifying the equality of the measurement values Gacc3, Gacc4 on the second accelerometer 102 and a means for re-calculating the slope angle ⁇ x from which the values measurement Gacc1, Gacc2 of the first accelerometer 101 are verified by means of a second control mode.
  • the verification is made very reliable and even more so if the slope angle can be evaluated and confirmed in redundancy by known information external to the device.
  • correction factors from the self-calibration means 105 are then re-transmitted to the calculation unit 104 (more generally, to the displacement calculator 103).
  • an on-board measurement failure indicator is activated.
  • a simplified model for evaluating a probability of failure of the so-called self-test function can thus be achieved by considering that at the vehicle stop, measurements made on the measurement axes acc1, acc2, acc3, acc4 accelerometers 101, 102 are obtained in redundancy.
  • the device makes it possible to guarantee a level of confidence in the measured data which is required for the safety required in the railway field.
  • the device according to the invention can then comprise a probability of failure evaluation means activatable between two stops of the vehicle and employing a redundancy measurement on the axes measurements of accelerometers.
  • This evaluation means can be integrated in the self-calibration means 105 previously described.
  • the device according to the invention may also optionally comprise a vehicle adhesion loss detector (in case of slipping or skidding) coupled to at least one of the first and second accelerometers 101, 102 bi-axes for which the Displacement measurements can be associated with external values (slope, curvature of a databank, or data of a path marker system, etc.).
  • a risk of loss of adhesion of the vehicle can be detected and by extension complement the information provided by the zero speed detection system (locked wheel, but moving vehicle).
  • the vehicle adhesion loss detector may also, where appropriate, be coupled to at least one vehicle axle tachometer 108 in addition to one of the first and second accelerometers 101, 102 so as to compare their measurement data. angular movement and respectively longitudinal displacement. In this way, the zero speed detection function can then be made even safer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Navigation (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering Controls (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A device for measuring the movement of a self-guiding vehicle, that has an enhanced measuring reliability, in particular during an adhesion loss and independently from the travel profile of the vehicle in terms of slope, turn and slant. To this end, the device for measuring the movement of a self-guiding vehicle includes on board thereof two accelerometers coupled to a movement calculator, wherein each accelerometer includes two measurement axes on which are measured projections of a vehicle acceleration resultant. The four measurement axes of the accelerometers are adjusted so that the calculator provides, from the four projection measures, at least one very accurate longitudinal acceleration value of the vehicle at each point of a route including both slopes and turns.

Description

La présente invention concerne un dispositif de mesure de déplacement d'un véhicule autoguidé selon le préambule de la revendication 1.The present invention relates to a device for measuring the displacement of a self-guided vehicle according to the preamble of claim 1.

Plusieurs méthodes ou dispositifs de mesure de déplacement, vitesse ou accélération d'un véhicule sont aujourd'hui connus, en particulier pour des véhicules destinés au transport en commun tels qu'une unité wagon d'un train, d'un métro, un trolleybus, un tramway, un bus ou tel que tout autre véhicule entrainé en traction par au moins une piste de roulement ou un rail tel un rail de guidage. En particulier dans le cas d'un véhicule autoguidé par un système de trafic (signaux ferroviaires, autopilote à bord ou/et à distance du véhicule, etc.), des précautions pour assurer un autoguidage sûr (contre une panne) et sécurisé (pour des passagers ou des marchandises) est indispensable quel que soit les propriétés de parcours du véhicule. En ce sens, il est primordial de bien connaître en temps réel la position, la vitesse (et l'accélération) du véhicule, en particulier pour des situations où le véhicule est amené à encourir des pertes d'adhérence inévitables telles que lors d'un patinage (lors d'une accélération du véhicule) ou d'un enrayage (lors d'un freinage du véhicule) d'essieu de mesure libre ou moteur.Several methods or devices for measuring the displacement, speed or acceleration of a vehicle are nowadays known, in particular for vehicles intended for public transport such as a wagon unit of a train, a subway, a trolleybus , a tramway, a bus or such as any other vehicle driven in traction by at least one running track or a rail such as a guide rail. Particularly in the case of a vehicle self-guided by a traffic system (railway signals, autopilot on board and / or remote from the vehicle, etc.), precautions to ensure safe (against a breakdown) and secure homing (for passengers or goods) is essential regardless of the vehicle's driving properties. In this sense, it is essential to know in real time the position, speed (and acceleration) of the vehicle, especially for situations where the vehicle is likely to incur inevitable loss of adhesion such as when slippage (during acceleration of the vehicle) or jamming (during braking of the vehicle) of free measuring axle or engine.

Lorsque le véhicule guidé dispose d'un essieu libre de tout effort de traction ou de freinage, le mouvement du véhicule est directement donné par la rotation de l'essieu (ou d'une des roues associée à cet essieu).When the guided vehicle has an axle free of any traction or braking force, the movement of the vehicle is directly given by the rotation of the axle (or one of the wheels associated with this axle).

Toutefois, cette solution réduit la puissance de traction ou de freinage donc les performances du véhicule, c'est pourquoi la plupart des systèmes n'offrent pas d'essieux libres.However, this solution reduces the power of traction or braking thus the performance of the vehicle, which is why most systems do not offer free axles.

En absence d'essieu libre et pour s'affranchir des conséquences liées au patinage/enrayage en perte d'adhérence d'une de ses roues, plusieurs dispositifs existent et utilisent :

  • soit des moyens de mesure totalement indépendants des roues permettant une mesure de vitesse par voie optique ou encore au moyen d'un radar à effet Doppler. Ces dispositifs à caractère coûteux utilisent cependant le plus souvent un tachymètre supplémentaire pour le fonctionnement à basse vitesse et à l'arrêt du véhicule, ce dernier permettant d'extraire la vitesse angulaire d'une roue ou le nombre de tours de roue par unité de temps ;
  • soit des centrales inertielles combinant accéléromètres, gyromètres et systèmes de localisation terrestre tels qu'un GPS. Ceux-ci restent toutefois fort coûteux en raison de leur technologie de haut niveau, le plus souvent pour des applications à des systèmes aéronautiques ;
  • soit, tel que dans EP 0 716 001 B1 , un seul tachymètre disposé sur un essieu et un moyen de prise en compte d'une marge de sécurité aux valeurs mesurées sur une ou les roues afin de tenter de compenser des effets d'un éventuel patinage/enrayage, ce qui dégrade les performances de mesure de déplacement car reste encore trop approximatif. Il s'en suit aussi un anti-enrayage de compensation qui peut être brutal pour un véhicule et ses passagers ou marchandises ;
  • soit, tel que dans US 2005/0137761 A1 , un accéléromètre embarqué dans le véhicule et un tachymètre sur un essieu dont des signaux de mesure sont reliés à un calculateur central adapté, même si non explicitement décrit, à prendre en compte des erreurs introduites en présence de perte d'adhérence et délivrant la vitesse et la position du véhicule sur son parcours. En particulier, l'accéléromètre comprend deux axes de mesures afin respectivement de déterminer une accélération suivant une direction de trajectoire du véhicule ainsi que afin de déterminer et donc prendre en compte dans le calcul de déplacement une pente du véhicule par rapport à un plan horizontal. Des valeurs des signaux de mesure de l'accéléromètre et du tachymètre sont aussi comparées à des valeurs seuils de vitesse qui, si dépassement d'un seuil, permettent d'indiquer une présence de perte d'adhérence (patinage/enrayage) du véhicule. Bien que prenant en compte les effets de pente subit par le véhicule, d'autres effets liés à la trajectoire du véhicule en dépendance de l'emplacement de l'accéléromètre (et du positionnement de ses deux axes de mesure) dans le véhicule sont inévitables, car une unité de transport ferroviaire a le plus souvent une géométrie à caractère longiligne le long de laquelle un seul accéléromètre et un tachymètre placé en amont du véhicule ne peuvent assurer un moyen de mesure révélateur des effets agissant sur l'ensemble complet du véhicule, tels que par exemple des effets de courbure ou d'accélération latérale.
In the absence of free axle and to overcome the consequences related to skidding / clutch loss of adhesion of one of its wheels, several devices exist and use:
  • either measuring means totally independent of the wheels for an optical speed measurement or by means of a Doppler radar. These expensive devices, however, most often use an additional tachometer for low speed operation and stopping the vehicle, the latter to extract the angular speed of a wheel or the number of wheel turns per unit of time ;
  • either inertial units combining accelerometers, gyrometers and terrestrial positioning systems such as GPS. These, however, remain very expensive because of their high-level technology, most often for applications to aeronautical systems;
  • either, as in EP 0 716 001 B1 , a single tachometer arranged on an axle and a means of taking into account a margin of safety to the values measured on one or the wheels in order to attempt to compensate for the effects of a possible skidding / jamming, which degrades the performance of measurement of displacement because remains too approximate. It also follows a compensation anti-clutch that can be brutal for a vehicle and its passengers or goods;
  • either, as in US 2005/0137761 A1 , an accelerometer embedded in the vehicle and a tachometer on an axle whose measurement signals are connected to a central computer adapted, even if not explicitly described, to take into account errors introduced in the presence of loss of adhesion and delivering the speed and the position of the vehicle on its course. In particular, the accelerometer comprises two measurement axes for respectively determining an acceleration along a vehicle trajectory direction as well as for determining and therefore taking into account in the displacement calculation a slope of the vehicle relative to to a horizontal plane. Values of the measurement signals of the accelerometer and the tachometer are also compared with threshold values of speed which, if a threshold is exceeded, make it possible to indicate a presence of loss of adhesion (skidding / jamming) of the vehicle. Although taking into account the effects of slope experienced by the vehicle, other effects related to the trajectory of the vehicle depending on the location of the accelerometer (and the positioning of its two axes of measurement) in the vehicle are inevitable because a rail transport unit most often has an elongated geometry along which a single accelerometer and a tachometer placed upstream of the vehicle can not provide a measuring means revealing the effects acting on the complete whole of the vehicle, such as, for example, curvature or lateral acceleration effects.

Le document US 2002/0088904 A1 divulgue un système de localisation ayant des accéléromètres dans les trois dimensions avec des angles droits entre celles-ci.The document US 2002/0088904 A1 discloses a location system having accelerometers in three dimensions with right angles therebetween.

Tous ces dispositifs permettent ainsi de calculer le mouvement d'un véhicule guidé, ne disposant pas d'essieux libres de tout effort de freinage et de traction, circulant sur une voie de profil quelconque, cependant avec une précision bien inférieure à celle d'un système « idéal » à essieu libre, car ils ne peuvent s'affranchir complètement des pertes d'adhérence (patinage et enrayage induits par les efforts de traction/freinage) ainsi que d'erreurs induites par des accélérations latérales (courbe, dévers) voire aussi verticales (pente).All these devices thus make it possible to calculate the movement of a guided vehicle, having no axles free of any braking and traction force, traveling on any profile track, however with a precision well below that of a "ideal" free axle system, because they can not completely overcome adhesion losses (skidding and jamming induced by traction / braking efforts) and errors induced by lateral accelerations (curve, cant) or also vertical (slope).

Un but de la présente invention est de proposer un dispositif de mesure de déplacement d'un véhicule autoguidé présentant une robustesse de mesure accrue, en particulier lors d'une perte d'adhérence et quel que soit le profil du trajet du véhicule en terme de pente, de courbe et de dévers.An object of the present invention is to propose a device for measuring the displacement of a self-guided vehicle having an increased measuring robustness, in particular during a loss of adhesion and whatever the profile of the path of the vehicle in terms of slope, curve and slope.

A cet effet, un dispositif de mesure de déplacement d'un véhicule autoguidé comprenant à son bord deux accéléromètres, chacun munis de deux axes de mesure et dont les signaux de mesure sont couplés à un calculateur de déplacement est proposé selon la revendication 1.For this purpose, a device for measuring the displacement of a self-guided vehicle comprising on board two accelerometers, each having two measuring axes and whose measurement signals are coupled to a displacement calculator is proposed according to claim 1.

En option, au moins un tachymètre peut être monté sur un des essieux du véhicule et aussi être couplé avec le calculateur de traitement des données issues ainsi de tous les capteurs (accéléromètres et tachymètre). Les signaux de mesure délivrés par le tachymètre peuvent être utilisés pour améliorer la précision du dispositif.Optionally, at least one tachometer can be mounted on one of the axles of the vehicle and also be coupled with the computer data processing issues and all sensors (accelerometers and tachometer). The measurement signals delivered by the tachometer can be used to improve the accuracy of the device.

Le dispositif selon l'invention délivre, à partir des accélérations mesurées sur les axes de mesures, des données de vitesse et de déplacement longitudinal du véhicule (par exemple le long d'une voie ferroviaire). Il peut être associé à tout type de dispositif embarqué susceptible d'avoir besoin d'une mesure précise et continue de la vitesse et du déplacement du véhicule, indépendamment des conditions d'adhérence rail/roue et quel que soit le profil du trajet en terme de pente, de courbe et de dévers.The device according to the invention delivers, from the accelerations measured on the measurement axes, velocity data and longitudinal displacement of the vehicle (for example along a railway track). It can be associated with any type of onboard device that may need a precise and continuous measurement of the speed and the movement of the vehicle, regardless of the rail / wheel adhesion conditions and whatever the profile of the journey in term slope, curve and slope.

Les accéléromètres et leurs axes de mesures sont disposés de telle sorte qu'ils permettent, à partir des mesures réalisées sur les différents axes de mesure, de calculer une accélération longitudinale, une accélération latérale et une accélération de pente du véhicule, pour ensuite déterminer par intégration en temps sur les valeurs d'accélération, la vitesse et le déplacement longitudinal du véhicule.The accelerometers and their measurement axes are arranged in such a way that they make it possible, from the measurements made on the various measurement axes, to calculate a longitudinal acceleration, a lateral acceleration and a slope acceleration of the vehicle, and then to determine by integration in time on acceleration values, speed and longitudinal displacement of the vehicle.

Le dispositif selon l'invention permet aussi avantageusement de détecter de façon sécuritaire une immobilisation du véhicule sur son trajet et produit à cet effet une information de vitesse nulle à partir des informations délivrées par les capteurs.The device according to the invention also advantageously makes it possible to detect in a safe manner an immobilization of the vehicle on its path and produces for this purpose zero velocity information from the information supplied by the sensors.

Le dispositif comporte un moyen d'auto-calibration et d'autotest qui permet, lorsque le véhicule est immobile, de vérifier le bon fonctionnement des capteurs et par conséquent de garantir avec une grande assurance des données mises à disposition par d'autres systèmes embarqués.The device comprises self-calibration and self-test means which makes it possible, when the vehicle is stationary, to check the correct operation of the sensors and consequently to guarantee with great confidence the data made available by other embedded systems.

Une utilisation adaptée du dispositif selon l'invention couvre le domaine des véhicules guidés quel que soit leur type de guidage (mécanique ou immatériel c'est-à-dire sans lien mécanique entre le sol et le véhicule), notamment les trains, métros, tramway ou bus, et quel que soit le type de roulement (essieux, bogies) avec roues fer ou pneu. Il est ici à noter que pour cette catégorie de véhicule à géométrie/châssis longiligne, les effets de courbure et de pente ne sont pas négligeables suivant la position (ou le déport) des accéléromètres à bord du véhicule. L'invention permet alors de s'affranchir avantageusement de ces effets afin de déterminer le déplacement du véhicule plus précisément.A suitable use of the device according to the invention covers the field of guided vehicles whatever their type of guidance (mechanical or intangible that is to say without mechanical link between the ground and the vehicle), including trains, subways, tramway or bus, and whatever the type of bearing (axles, bogies) with wheels iron or tire. It should be noted that for this category of vehicle with geometry / elongated chassis, the effects of curvature and slope are not negligible depending on the position (or offset) accelerometers on board the vehicle. The invention then makes it possible to overcome these effects advantageously in order to determine the movement of the vehicle more precisely.

Le dispositif selon l'invention permet ainsi de calculer le mouvement d'un véhicule guidé, ne disposant pas d'essieux libres de tout effort de freinage et de traction, circulant sur une voie de profil quelconque, en conservant une précision équivalente à celle d'un système à essieu libre, tout en s'affranchissant des pertes d'adhérence (patinage et enrayage induits par des efforts de traction/freinage) et des erreurs induites par les accélérations latérale (courbure) et verticale (pente).The device according to the invention thus makes it possible to calculate the movement of a guided vehicle, having no axles free of any braking and traction force, traveling on any profile track, maintaining a precision equivalent to that of a free axle system, while avoiding adhesion losses (slippage and clutch induced by traction / braking forces) and errors induced by lateral (curvature) and vertical (slope) acceleration.

Un ensemble de sous-revendications présente également des avantages de l'invention.A set of subclaims also has advantages of the invention.

Des exemples de réalisation et d'application sont fournis à l'aide de figures décrites :

Figure 1
un véhicule muni d'un dispositif de mesure de déplacement du véhicule autoguidé selon l'invention,
Figure 2
un schéma de définition des plans liés au vé- hicule en déplacement,
Figure 3
un schéma de prise en compte de l'effet de pente sur le dispositif,
Figure 4
un schéma de prise en compte de l'effet de courbure sur le dispositif.
Examples of implementation and application are provided using the figures described:
Figure 1
a vehicle provided with a device for measuring the movement of the self-guided vehicle according to the invention,
Figure 2
a scheme for defining the plans related to the vehicle on the move,
Figure 3
a diagram of taking into account the effect of slope on the device,
Figure 4
a diagram for taking into account the curvature effect on the device.

Figure 1 représente un véhicule VEH muni d'un dispositif de mesure de déplacement du véhicule autoguidé selon l'invention et peut-être associée à la figure 2 venant clarifier comment des plans liés au véhicule en déplacement sont définis en accord avec les accélérations subies par le véhicule et mesurées par deux accéléromètres 101, 102. Les figures 3 et 4 montrent la disposition d'axes de mesure Acc1, Acc2, Acc3, Acc4 des accéléromètres suivant les plans choisis en fonction du type d'accélération Gx, Glat, Gpes (déplacement longitudinale, effet de courbure ou/et de pente) subi par le véhicule dans un repère orthonormé [X, Y, Z] centré sur les accéléromètres et dont l'axe X indique la direction de trajectoire longitudinale du véhicule. Figure 1 represents a VEH vehicle equipped with a self-guided vehicle displacement measuring device according to the invention and possibly associated with the figure 2 clarifying how plans related to the moving vehicle are defined in accordance with the accelerations experienced by the vehicle and measured by two accelerometers 101, 102. The Figures 3 and 4 show the arrangement of Acc1, Acc2, Acc3, Acc4 measurement axes of the accelerometers according to the planes chosen according to the type of acceleration Gx, Glat, Gpes (longitudinal displacement, curvature effect and / or slope) undergone by the vehicle in an orthonormal reference [X, Y, Z] centered on the accelerometers and the X axis of which indicates the direction of longitudinal trajectory of the vehicle.

Le dispositif de mesure de déplacement (position instantanée Dx) du véhicule autoguidé VEH comprend à son bord :

  • un accéléromètre 101 muni de deux axes de mesure Acc1, Acc2 dans un plan longitudinal Py défini par un premier axe X longitudinal suivant un principal déplacement VEx supposé rectiligne du véhicule et d'un second axe Z perpendiculaire au plancher du véhicule,
  • un calculateur 103 connecté à un signal de sortie S1, S2 associé à chaque axe de mesure Acc1, Acc2, où chaque signal de sortie S1, S2 comprend une mesure en projection orthogonale Gacc1, Gacc2 d'une résultante d'accélération globale du véhicule sur l'axe de mesure associé Acc1, Acc2,
  • un second accéléromètre 102 étant muni d'au moins deux axes de mesure Acc3, Acc4 dans un plan horizontal Pz défini par le premier axe X et un troisième axe Y perpendiculaire au premier et au second axe X, Z,
  • le calculateur 103 est connecté à un signal de sortie S3, S4 associé à chaque axe de mesure Acc3, Acc4, où chaque signal de sortie S3, S4 comprend une mesure en projection Gacc3, Gacc4 de la résultante d'accélération globale du véhicule sur l'axe de mesure associé Acc3, Acc4,
  • l'ensemble des axes de mesure Acc1, Acc2 ; Acc3, Acc4 du premier et du second accéléromètre 101, 102 présentent dans leur plan respectif Py, Pz un angle relatif A1+A2, A3+A4 étant ajustable donc ajusté, de façon à ce que le calculateur 103 délivre à partir des quatre mesures de projection Gacc1, Gacc2, Gacc3, Gacc4 au moins une valeur instantanée d'accélération longitudinale Gx du véhicule à chaque point d'un trajet comprenant pente et courbe. En d'autre terme, la valeur d'accélération longitudinale Gx est une valeur exacte d'accélération prenant en compte les effets de pente et de courbure. De même, une perte d'adhérence menant à fausser une mesure d'accélération qui serait déduite de la rotation des essieux, peut être ici idéalement compensée.
The displacement measuring device (instantaneous position Dx) of the self-guided vehicle VEH comprises on board:
  • an accelerometer 101 provided with two measurement axes Acc1, Acc2 in a longitudinal plane Py defined by a first longitudinal axis X along a main displacement VEx supposed rectilinear of the vehicle and a second axis Z perpendicular to the floor of the vehicle,
  • a computer 103 connected to an output signal S1, S2 associated with each measurement axis Acc1, Acc2, where each output signal S1, S2 comprises an orthogonal projection measurement Gacc1, Gacc2 of a resultant global acceleration of the vehicle on the associated measurement axis Acc1, Acc2,
  • a second accelerometer 102 being provided with at least two measurement axes Acc3, Acc4 in a horizontal plane Pz defined by the first axis X and a third axis Y perpendicular to the first and second axis X, Z,
  • the computer 103 is connected to an output signal S3, S4 associated with each measurement axis Acc3, Acc4, where each output signal S3, S4 comprises a projection measurement Gacc3, Gacc4 of the resultant of the overall acceleration of the vehicle on the associated measurement axis Acc3, Acc4,
  • the set of measurement axes Acc1, Acc2; Acc3, Acc4 of the first and second accelerometer 101, 102 have in their respective plane Py, Pz a relative angle A1 + A2, A3 + A4 being adjustable so adjusted, so that the computer 103 delivers from the four measurements of projection Gacc1, Gacc2, Gacc3, Gacc4 at least one instantaneous value of longitudinal acceleration Gx of the vehicle at each point of a path comprising slope and curve. In other words, the longitudinal acceleration value Gx is an exact value of acceleration taking into account the effects of slope and curvature. Similarly, a loss of adhesion leading to distorting an acceleration measurement that would be deduced from the rotation of the axles, can here be ideally compensated.

Principalement, le dispositif selon l'invention utilise donc deux accéléromètres 101, 102 bi-axes fixés sur la caisse du véhicule et destinés à mesurer une accélération longitudinale et une accélération latérale du véhicule. Le véhicule est soumis à trois forces produisant une accélération longitudinale Gx (déplacement du véhicule soumis aux efforts de traction/freinage), une accélération latérale Glat (la courbure de la trajectoire induit une accélération centrifuge) et une accélération verticale Gpes due à la pesanteur qui s'exerce en présence d'une pente (la pente de la trajectoire). Le premier accéléromètre 101 dont les deux axes Acc1, Acc2 sont situés dans le plan vertical Py et le deuxième accéléromètre 102 dont les deux axes Acc3, Acc4 sont situés dans le plan horizontal Pz, vont permettre de mesurer une résultante des accélérations (longitudinales, latérales, pesanteur) projetée sur chacun des quatre axes de mesure. Les angles entre les différents axes de mesure des accéléromètres sont connus et fixés après ajustage. Le calculateur 103 résout un système composé de quatre équations afin de déterminer quatre inconnues à la position Dx du véhicule, à savoir un angle de pente Ax de trajectoire, un angle d'accélération latérale Ay (résultant de la force centripète due à la vitesse du véhicule et dépendant du rayon de courbure R de la trajectoire ainsi que du déport de l'accéléromètre par rapport au centre du véhicule), une valeur de l'accélération latérale Glat et la valeur de l'accélération longitudinale Gx. Par intégrations successives sur la durée du trajet, le calculateur 103 détermine la vitesse longitudinale Vx et le déplacement longitudinal Dx du véhicule VEH sur son trajet pour n'importe quelle pente et courbe COURB.Mainly, the device according to the invention therefore uses two accelerometers 101, 102 bi-axes fixed on the vehicle body and intended to measure a longitudinal acceleration and a lateral acceleration of the vehicle. The vehicle is subjected to three forces producing a longitudinal acceleration Gx (displacement of the vehicle subjected to the traction / braking forces), a lateral acceleration Glat (the curvature of the trajectory induces a centrifugal acceleration) and a vertical acceleration Gpes due to the gravity which is exercised in the presence of a slope (the slope of the trajectory). The first accelerometer 101 whose two axes Acc1, Acc2 are located in the vertical plane Py and the second accelerometer 102 whose two axes Acc3, Acc4 are located in the horizontal plane Pz, will make it possible to measure a resultant of the accelerations (longitudinal, lateral, gravity) projected on each of the four measurement axes. The angles between the different axes of measurement of the accelerometers are known and fixed after adjustment. The computer 103 solves a system composed of four equations in order to determine four unknowns at the vehicle position Dx, namely an angle of slope Ave of trajectory, a lateral acceleration angle Ay (resulting from the centripetal force due to the speed of the vehicle. vehicle and depending on the radius of curvature R of the trajectory as well as the offset of the accelerometer relative to the center of the vehicle), a value of the lateral acceleration Glat and the value of the longitudinal acceleration Gx. By successive integrations over the duration of the journey, the computer 103 determines the longitudinal speed Vx and the longitudinal displacement Dx of the vehicle VEH on its path for any slope and curve curve.

Si nécessaire, le dispositif selon l'invention est complété par un tachymètre 108 pour améliorer la précision de mesure précédente de la vitesse Vx et de la distance parcourue Dx. Le tachymètre 108 est fixé sur un des essieux R1a, R2a, R1b, R2b du véhicule VEH et son/ses signaux de sortie STb sont transmis au calculateur 103. Le calculateur 103 évalue un déplacement DxT et une vitesse VxT à partir du/des signaux de mesure du tachymètre. Le calculateur effectue une comparaison entre les résultats de mesure de déplacement issus du tachymètre et ceux issus des accéléromètres. Lorsque pour ces valeurs mesurées, un écart de mesure est inférieur à un seuil, les valeurs de mesure sont recalées sur celles issues du tachymètre. Dans le cas contraire (valeur supérieure à un seuil), il n'y a pas de correction des résultats provenant de mesure des accéléromètres.If necessary, the device according to the invention is completed by a tachometer 108 to improve the previous measurement accuracy of the speed Vx and the distance traveled Dx. The tachometer 108 is fixed on one of the axles R1a, R2a, R1b, R2b of the vehicle VEH and its output signal (s) STb are transmitted to the computer 103. The computer 103 evaluates a displacement DxT and a speed VxT from the signal (s). tachometer measurement. The computer makes a comparison between the measurement results of displacement from the tachometer and those from the accelerometers. When for these measured values, a measurement deviation is less than a threshold, the measured values are reset to those resulting from the tachometer. In the opposite case (value greater than a threshold), there is no correction of the results coming from measurement of the accelerometers.

Tel que représenté à la figure 1, une information de vitesse nulle Op peut aussi être sécuritairement délivrée par le calculateur 103 à partir d'informations Im provenant d'un appareillage du véhicule (signal d'immobilisation, indicateur de vitesse nulle, etc...) ou être déterminée par le dispositif selon l'invention lui-même. Pour cette détermination, le calculateur 103 traite les informations provenant du tachymètre et des accéléromètres.As shown in figure 1 , a zero speed information Op can also be securely delivered by the calculator 103 from information Im from an apparatus of the vehicle (immobilization signal, zero speed indicator, etc ...) or be determined by the device according to the invention itself. For this determination, the computer 103 processes the information from the tachometer and accelerometers.

Lorsque le dispositif détermine une vitesse nulle et, grâce aux particularités du montage proposé des accéléromètres, le dispositif a également la capacité avantageuse de mettre en oeuvre une fonction d'autotest. Cette fonction d'autotest permet d'évaluer des corrections nécessaires à apporter aux mesures des accéléromètres (après auto-calibration) et d'identifier des défauts de fonctionnement des accéléromètres. La multiplicité des axes de mesure apporte une redondance très avantageuse de plusieurs mesures (dues aux deux accéléromètres bi-axes) et permet par une vérification périodique de fiabilité des accéléromètres (par exemple à chaque arrêt en station) de garantir des mesures de test (et donc de déplacement ultérieur) avec une très faible probabilité d'erreur, les rendant compatibles avec les exigences de sécurité d'un système sûr tel que requis dans le domaine ferroviaire.When the device determines a zero speed and, thanks to the particularities of the proposed assembly of accelerometers, the device also has the advantageous ability to implement a self-test function. This self-test function makes it possible to evaluate the necessary corrections to be made to the accelerometer measurements (after auto-calibration) and to identify operating faults of the accelerometers. The multiplicity of measurement axes provides a very advantageous redundancy of several measurements (due to the two bi-axis accelerometers) and allows periodic verification of the reliability of the accelerometers (for example at each station stop) to guarantee test measurements (and therefore of subsequent displacement) with a very low probability of error, making them compatible with the safety requirements of a safe system as required in the railway field.

Dans la suite de cette description, il est fait référence aux deux figures 3 et 4.In the remainder of this description, reference is made to both Figures 3 and 4 .

Considérant les axes de mesure Acc1, Acc2 du premier accéléromètre 101 (voir figure 3 où par souci de clarté, l'accélération latérale Glat a volontairement été omise), les composantes des mesures de projection Gacc1, Gacc2 par addition des projections des accélérations Gx, Glat, Gpes sur chacun des axes Acc1, Acc2 de l'accéléromètre 101 sont :

  • Sur l'axe Acc1 Gacc 1 = projection Gx - projection Gpes - projection Glat
    Figure imgb0001
    Gacc 1 = Gx cos Ay cos A 1 + Gpes sin A 1 - Ax - Glat sin Ay cos A 1
    Figure imgb0002
  • Sur l'axe Acc2 Gacc 2 = projection Gx - projection Gpes - projection Glat
    Figure imgb0003
    Gacc 2 = Gx cos Ay cos A 2 - Gpes sin A 2 + Ax - Glat sin Ay cos A 2
    Figure imgb0004
Considering the measurement axes Acc1, Acc2 of the first accelerometer 101 (see figure 3 where for the sake of clarity, the lateral acceleration Glat has deliberately been omitted), the components of the projection measurements Gacc1, Gacc2 by adding the projections of the accelerations Gx, Glat, Gpes on each of the axes Acc1, Acc2 of the accelerometer 101 are :
  • On the Acc1 axis Gacc 1 = projection Gx - projection Gpes - projection glat
    Figure imgb0001
    Gacc 1 = Gx cos Ay cos AT 1 + Gpes sin AT 1 - ax - Glat sin Ay cos AT 1
    Figure imgb0002
  • On the Acc2 axis Gacc 2 = projection Gx - projection Gpes - projection glat
    Figure imgb0003
    Gacc 2 = Gx cos Ay cos AT 2 - Gpes sin AT 2 + ax - Glat sin Ay cos AT 2
    Figure imgb0004

De même, considérant les axes de mesure Acc3, Acc4 du deuxième accéléromètre 102 (voir figure 4 où par soucis de clarté, l'accélération de pente Gpes a volontairement été omise), les composantes des mesures de projection Gacc3, Gacc4 par addition des projections des accélérations Gx, Glat, Gpes sur chacun des axes Acc3, Acc4 de l'accéléromètre 102 sont :

  • Sur l'axe Acc3 Gacc 3 = projection Gx - projection Glat - projection Gpes
    Figure imgb0005
    Gacc 3 = Gx cos A 3 + Ay - Glat sin A 3 + Ay - Gpes sin Ax cos A 3
    Figure imgb0006
  • Sur l'axe Acc4 Gacc 4 = projection Gx - projection Glat - projection Gpes
    Figure imgb0007
    Gacc 4 = Gx cos A 4 - Ay + Glat sin A 4 - Ay - Gpes sin Ax cos A 4
    Figure imgb0008
Similarly, considering the measurement axes Acc3, Acc4 of the second accelerometer 102 (see figure 4 where for the sake of clarity, the Gpes slope acceleration has been intentionally omitted), the components of the projection measurements Gacc3, Gacc4 by adding the projections of the accelerations Gx, Glat, Gpes on each of the axes Acc3, Acc4 of the accelerometer 102 are :
  • On the Acc3 axis Gacc 3 = projection Gx - projection glat - projection Gpes
    Figure imgb0005
    Gacc 3 = Gx cos AT 3 + Ay - Glat sin AT 3 + Ay - Gpes sin ax cos AT 3
    Figure imgb0006
  • On the Acc4 axis Gacc 4 = projection Gx - projection glat - projection Gpes
    Figure imgb0007
    Gacc 4 = Gx cos AT 4 - Ay + Glat sin AT 4 - Ay - Gpes sin ax cos AT 4
    Figure imgb0008

Avec pour les équations (1) à (4) :

  • l'angle A1 dans le plan Py entre l'axe X et l'axe Acc1
  • l'angle A2 dans le plan Py entre l'axe X et l'axe Acc2
  • l'angle A3 dans le plan Pz entre l'axe X et l'axe Acc3
  • l'angle A4 dans le plan Pz entre l'axe X et l'axe Acc4
  • l'angle Ax de trajectoire du véhicule dans le plan Py (c'est-à-dire angle entre l'horizontale et l'axe X)
  • la distance de déport Dx entre le centre du véhicule et le point de fixation des accéléromètres 101, 102 embarqués sur le véhicule
  • l'angle Ay lié au rayon de courbure R dans le plan Py. L'angle Ay est calculé par Arctg (Lx/R), donc en première approximation Lx/R vu que la valeur du rayon de courbure R est usuellement plus élevée que la distance de déport Lx.
With equations (1) to (4):
  • the angle A1 in the plane Py between the axis X and the axis Acc1
  • the angle A2 in the plane Py between the axis X and the axis Acc2
  • the angle A3 in the plane Pz between the axis X and the axis Acc3
  • the angle A4 in the plane Pz between the axis X and the axis Acc4
  • the vehicle trajectory angle Ax in the plane Py (ie angle between the horizontal and the X axis)
  • the offset distance Dx between the center of the vehicle and the point of attachment of the accelerometers 101, 102 embedded on the vehicle
  • the angle Ay related to the radius of curvature R in the plane Py. The angle Ay is calculated by Arctg (Lx / R), so in first approximation Lx / R since the value of the radius of curvature R is usually higher than the offset distance Lx.

La résolution du système formé par les quatre équations (1) à (4) relève de techniques mathématiques qui ne sont pas décrites ici et dont le but est de calculer les quatre variables Gx, Glat, Ax et Ay en fonction des mesures de valeurs d'accélération Gacc1, Gacc2, Gacc3, Gacc4 dont dispose le calculateur 103.The resolution of the system formed by the four equations (1) to (4) is based on mathematical techniques which are not described here and whose purpose is to calculate the four variables Gx, Glat, Ax and Ay according to the measurements of values of acceleration Gacc1, Gacc2, Gacc3, Gacc4 available to the computer 103.

Toutefois la résolution du système est avantageusement simplifiée dans certaines hypothèses particulières de disposition des accéléromètres 101, 102.However, the resolution of the system is advantageously simplified in certain particular hypotheses of arrangement of the accelerometers 101, 102.

Parmi ces hypothèses, on peut choisir des angles relatifs A1+A2, A3+A4 chacun définissant un angle orthogonal, c'est-à-dire : A1+A2 = 90° et A3+A4 = 90°. Ainsi, le dispositif selon l'invention peut prévoir qu'au moins un des angles relatifs A1+A2, A3+A4 est orthogonal.Among these assumptions, one can choose relative angles A1 + A2, A3 + A4 each defining an orthogonal angle, that is to say: A1 + A2 = 90 ° and A3 + A4 = 90 °. Thus, the device according to the invention can provide that at least one of the relative angles A1 + A2, A3 + A4 is orthogonal.

Le dispositif selon l'invention est réalisé de telle façon que chaque angle relatif A1+A2, A3+A4 est en fait subdivisé (ou subdivisable) en un premier et un deuxième angle A1, A2 et respectivement A3, A4 correspondant à des angles de projection entre les quatre axes de mesures Acc1, Acc2, Acc3, Acc4 du premier et du second accéléromètre 101, 102 et le premier axe X (axe longitudinal suivant un principal déplacement supposé rectiligne du véhicule).The device according to the invention is designed in such a way that each relative angle A1 + A2, A3 + A4 is in fact subdivided (or subdivided) into a first and a second angle A1, A2 and respectively A3, A4 corresponding to angles of projection between the four measurement axes Acc1, Acc2, Acc3, Acc4 of the first and second accelerometer 101, 102 and the first axis X (longitudinal axis following a principal displacement supposed straight of the vehicle).

Sous cet aspect, il est aussi fort avantageux de choisir les angles A1, A2, A3, A4 tels que A1=A2 et A3=A4, et en particulier tels que A1=A2=A3=A4 = 45°.In this aspect, it is also very advantageous to choose the angles A1, A2, A3, A4 such that A1 = A2 and A3 = A4, and in particular such that A1 = A2 = A3 = A4 = 45 °.

Concernant le choix des angles A1, A3, il est également possible de leur attribuer des valeurs ajustables permettant d'estimer au mieux les effets de pente ou de courbure sans nuire à la précision de la mesure d'accélération longitudinale.Regarding the choice of the angles A1, A3, it is also possible to assign them adjustable values to best estimate the effects of slope or curvature without affecting the accuracy of the longitudinal acceleration measurement.

A titre d'exemple, s'il est choisi l'option, pour laquelle les angles de projection A1, A2 ; A3, A4 de chaque accéléromètre sont égaux, c'est-à-dire A1=A2 et A3=A4, le système d'équations précédent devient : Gacc 1 = Gx cos Ay cos A 1 + Gpes sin A 1 - Ax - Glat sin Ay cos A 1

Figure imgb0009
Gacc 2 = Gx cos Ay cos A 1 - Gpes sin A 1 + Ax - Glat sin Ay cos A 1
Figure imgb0010
Gacc 3 = Gx cos A 3 + Ay - Glat sin A 3 + Ay - Gpes sin Ax cos A 3
Figure imgb0011
Gacc 4 = Gx cos A 3 - Ay + Glat sin A 3 - Ay - Gpes sin Ax cos A 3
Figure imgb0012
For example, if the option is selected, for which the projection angles A1, A2; A3, A4 of each accelerometer are equal, that is to say A1 = A2 and A3 = A4, the system of previous equations becomes: Gacc 1 = Gx cos Ay cos AT 1 + Gpes sin AT 1 - ax - Glat sin Ay cos AT 1
Figure imgb0009
Gacc 2 = Gx cos Ay cos AT 1 - Gpes sin AT 1 + ax - Glat sin Ay cos AT 1
Figure imgb0010
Gacc 3 = Gx cos AT 3 + Ay - Glat sin AT 3 + Ay - Gpes sin ax cos AT 3
Figure imgb0011
Gacc 4 = Gx cos AT 3 - Ay + Glat sin AT 3 - Ay - Gpes sin ax cos AT 3
Figure imgb0012

La résolution de ce système permet de déterminer facilement les quatre inconnues recherchées et définies par les variables Gx, Glat, Ax, Ay, puis par intégration sur une durée de déplacement d'en déduire la vitesse longitudinale Vx et la position Dx associée sur le trajet du véhicule : Vx = Gx dt

Figure imgb0013
Dx = Vx dt
Figure imgb0014
The resolution of this system makes it possible to easily determine the four unknowns sought and defined by the variables Gx, Glat, Ax, Ay, then by integration over a duration of displacement to deduce the longitudinal velocity Vx and the associated position Dx on the path of the vehicle : Vx = Gx dt
Figure imgb0013
dx = Vx dt
Figure imgb0014

Le dispositif selon l'invention permet donc que le calculateur 103 délivre une valeur d'angle de pente Ax, d'un angle Ay d'accélération latérale (c'est-à-dire représentant la rotation de l'accélération latérale au point de fixation du montage d'accéléromètre par rapport à ce qu'elle serait au centre du véhicule pour le rayon de courbure R) à chaque point du trajet comprenant pente et courbe.The device according to the invention thus allows the computer 103 to deliver a slope angle value Ax, of an angle Ay of lateral acceleration (that is to say representing the rotation of the lateral acceleration at the point of mounting the accelerometer assembly relative to what it would be in the center of the vehicle for the radius of curvature R) at each point of the path including slope and curve.

Par extension, le calculateur 103 délivre une vitesse Vx et une position Dx à chaque point du trajet comprenant pente et courbe en intégrant successivement la valeur d'accélération longitudinale Gx du véhicule.By extension, the computer 103 delivers a speed Vx and a position Dx at each point of the path including slope and curve by successively integrating the longitudinal acceleration value Gx of the vehicle.

Tel que décrit précédemment, le dispositif peut aussi comprendre:

  • un tachymètre 104 disposé sur au moins un essieu du véhicule et délivrant une valeur tachymétrique de vitesse VxT et position DxT du véhicule,
  • les valeurs tachymétriques VxT, DxT et les valeurs de vitesse et de position Vx, Dx obtenues et respectivement délivrées par le calculateur 103 sont fournies à un comparateur 106 compris dans le calculateur 103,
  • le comparateur 106 détermine des écarts entre catégories de valeurs de vitesse et position, et si celles-ci sont en-dessous d'un seuil prédéfini, un recalage des valeurs de vitesse et de position Vx, Dx délivrées par le calculateur 103 à chaque point du trajet comprenant pente et courbe est effectué sur les valeurs tachymétriques VxT, DxT. Si les écarts sont en-dessous du seuil, le recalage est inhibé.
As described above, the device may also include:
  • a tachometer 104 disposed on at least one axle of the vehicle and delivering a speed tachometer value VxT and position DxT of the vehicle,
  • the tachometric values VxT, DxT and the speed and position values Vx, Dx obtained and respectively delivered by the computer 103 are supplied to a comparator 106 included in the computer 103,
  • the comparator 106 determines the differences between categories of speed values and position, and if they are below a predefined threshold, a resetting of the speed and position values Vx, Dx delivered by the computer 103 to each point the path including slope and curve is performed on the tachometric values VxT, DxT. If the deviations are below the threshold, the registration is inhibited.

Cette possibilité de recalage présente une augmentation de la précision de mesure de vitesse et de déplacement fondé sur une simple mesure supplémentaire de vitesse et de déplacement proportionnelle au rayon de la roue.This ability to reshape exhibits an increase in speed and displacement measurement accuracy based on a simple additional measure of speed and displacement proportional to the radius of the wheel.

Le dispositif selon l'invention peut aussi comprendre un moyen de détection de vitesse nulle 107 du véhicule étant compris ou couplé au calculateur 103 et au tachymètre 104. Celui-ci comprend au moins un corrélateur des valeurs de vitesse et de position Vx, Dx délivrées par le calculateur 103 et des valeurs tachymétriques correspondantes VxT, DxT.The device according to the invention may also comprise a zero speed detection means 107 of the vehicle being included or coupled to the computer 103 and to the tachometer 104. This comprises at least one correlator of the speed and position values Vx, Dx delivered by the computer 103 and corresponding tachometric values VxT, DxT.

De ce fait, une fonction de détection de vitesse nulle très sécuritaire est réalisée soit :

  • en prenant en compte une information externe au dispositif mis à disposition par un des dispositifs du véhicule (par exemple au moyen d'un signal interne de véhicule immobilisé, ...)
  • en déterminant un arrêt du véhicule par filtrage des informations de vitesse et de déplacement Vx, Dx délivrées par le calculateur 103. Cette détermination peut ainsi être corrélée avec les données tachymétriques VxT, Dxt correspondantes.
  • suite à ces traitements, si le véhicule est réellement assuré d'être à l'arrêt, le dispositif met à disposition une information dite de vitesse nulle.
As a result, a very safe zero speed detection function is performed either:
  • by taking into account information external to the device made available by one of the vehicle devices (for example by means of an immobilized vehicle internal signal, etc.)
  • by determining a stop of the vehicle by filtering the speed and displacement information Vx, Dx delivered by the computer 103. This determination can thus be correlated with the corresponding tachometric data VxT, Dxt.
  • following these treatments, if the vehicle is really guaranteed to be stopped, the device provides information called zero speed.

Une fonction dite d'autotest peut alors avantageusement utiliser l'information dite de vitesse nulle. Lorsque cette information est valablement fournie, elle signifie que le véhicule est immobile et par conséquent les accélérations longitudinale et latérale sont alors nulles.A so-called self-test function can then advantageously use the so-called zero speed information. When this information is validly provided, it means that the vehicle is stationary and therefore the longitudinal and lateral accelerations are then zero.

Le test associé consiste ainsi à vérifier que les valeurs de mesure délivrées par les accéléromètres 101, 102 vérifient le système d'équations (1), (2), (3), (4) précédemment donné qui se réduit alors à : Gacc 1 = Gpes sin A 1 - Ax

Figure imgb0015
Gacc 2 = - Gpes sin A 2 + Ax
Figure imgb0016
Gacc 3 = - Gpes sin Ax cos A 3
Figure imgb0017
Gacc 4 = - Gpes sin Ax cos A 4
Figure imgb0018
The associated test thus consists in verifying that the measurement values delivered by the accelerometers 101, 102 satisfy the previously given system of equations (1), (2), (3), (4) which then reduces to: Gacc 1 = Gpes sin AT 1 - ax
Figure imgb0015
Gacc 2 = - Gpes sin AT 2 + ax
Figure imgb0016
Gacc 3 = - Gpes sin ax cos AT 3
Figure imgb0017
Gacc 4 = - Gpes sin ax cos AT 4
Figure imgb0018

Un exemple de résolution de ce système est donné ici dans l'hypothèse particulière de disposition des accéléromètres, pour laquelle les angles de projection A1, A2 ; A3, A4, sont égaux par paire dans chacun des plans Py, Pz, c'est-à-dire que A1=A2 et A3=A4 :
Des deux dernières équations (3) et (4) les relations suivantes (5) et (6) peuvent être déduites: Gacc 3 = Gacc 4

Figure imgb0019
Sin Ax = - Gacc 3 / Gpes Cos A 3
Figure imgb0020
An example of resolution of this system is given here in the particular hypothesis of arrangement of accelerometers, for which the projection angles A1, A2; A3, A4, are equal in pairs in each of the planes Py, Pz, that is to say that A1 = A2 and A3 = A4:
From the last two equations (3) and (4) the following relations (5) and (6) can be deduced: Gacc 3 = Gacc 4
Figure imgb0019
Sin ax = - Gacc 3 / Gpes Cos AT 3
Figure imgb0020

Par report du terme Sin(Ax) dans les équations (1) et (2), il est alors possible de vérifier les valeurs mesurées des accélérations projetées Gacc1, Gacc2 du premier accéléromètre 101 avec les résultats de calcul ci-dessus.By deferring the term Sin (Ax) in the equations (1) and (2), it is then possible to check the measured values of the projected accelerations Gacc1, Gacc2 of the first accelerometer 101 with the calculation results above.

Les accélérations projetées Gacc3, Gacc4 du second accéléromètre 102, sont vérifiées par l'équation (5). En première approximation, il est légitime de considérer que le devers a peu d'influence sur la mesure, ce qui est généralement le cas, par exemple lors des stationnements en garage ou des arrêts en station.The projected accelerations Gacc3, Gacc4 of the second accelerometer 102, are verified by equation (5). As a first approximation, it is legitimate to consider that the devers has little influence on the measurement, which is generally the case, for example when parking in a garage or station stops.

Afin d'affiner la vérification des accélérations projetées Gacc3, Gacc4 du deuxième accéléromètre 102 il est toutefois aussi possible de lire une valeur du devers à partir d'une banque de donnée.In order to refine the verification of the projected accelerations Gacc3, Gacc4 of the second accelerometer 102 it is however also possible to read a value of the devers from a database.

Par ces vérifications et en sélectionnant un seuil de filtrage, on peut déterminer des facteurs de correction à apporter aux mesures issues des accéléromètres. Dans le cas du deuxième accéléromètre 102, il est possible de tirer avantageusement profit du processus lent de dérive des accéléromètres avant de modifier ses facteurs de correction. Ces facteurs de correction seront appliqués suite à une confirmation obtenue après plusieurs arrêts. Ce nombre d'arrêts est ajustable en fonction de la précision retenue. Ceci permet d'auto-calibrer le dispositif selon l'invention.By these verifications and by selecting a filtering threshold, it is possible to determine correction factors to be applied to the measurements resulting from the accelerometers. In the case of the second accelerometer 102, it is possible advantageously to take advantage of the slow process of drifting the accelerometers before modifying its correction factors. These correction factors will be applied following a confirmation obtained after several stops. This number of stops is adjustable depending on the precision chosen. This allows self-calibration of the device according to the invention.

Un deuxième seuil choisi plus élevé que le premier seuil peut aussi être défini pour déclarer le dispositif selon l'invention hors de fonctionnement.A second chosen threshold higher than the first threshold can also be defined to declare the device according to the invention out of operation.

Afin de réaliser la fonction d'autotest, le dispositif selon l'invention comprend :

  • un moyen d'auto-calibration 105 des accéléromètres 101, 102 activable si le moyen de détection de vitesse nulle confirme un arrêt du véhicule,
  • le moyen d'auto-calibration traitant des mesures issues des accéléromètres 101, 102 et données par une unité de calcul d'accélérations 104 (elle-même recevant les mesures issues des accéléromètres 101, 102 et étant comprise dans le calculateur 103),
  • le moyen d'auto-calibration calibre les mesures en correspondance avec des valeurs nulles de l'accélération longitudinale Gx et latérale Glat du véhicule.
In order to perform the self-test function, the device according to the invention comprises:
  • auto-calibration means 105 of the accelerometers 101, 102 activated if the zero speed detection means confirms a stopping of the vehicle,
  • the self-calibration means processing measurements from the accelerometers 101, 102 and given by an accelerations calculation unit 104 (itself receiving the measurements from the accelerometers 101, 102 and being included in the computer 103),
  • the self-calibration means calibrates the measurements in correspondence with zero values of the longitudinal acceleration Gx and lateral Glat of the vehicle.

Le moyen d'auto-calibration 105 a un premier mode de contrôle pour vérifier l'égalité des valeurs de mesure Gacc3, Gacc4 sur le deuxième accéléromètre 102 et un moyen de re-calcul de l'angle de pente Ax à partir duquel les valeurs de mesure Gacc1, Gacc2 du premier accéléromètre 101 sont vérifiées au moyen d'un deuxième mode de contrôle. Ainsi, la vérification est rendue très fiable et encore plus si l'angle de pente peut être évalué et confirmé en redondance par une information connue externe au dispositif.The self-calibration means 105 has a first control mode for verifying the equality of the measurement values Gacc3, Gacc4 on the second accelerometer 102 and a means for re-calculating the slope angle Δx from which the values measurement Gacc1, Gacc2 of the first accelerometer 101 are verified by means of a second control mode. Thus, the verification is made very reliable and even more so if the slope angle can be evaluated and confirmed in redundancy by known information external to the device.

Pour cette réalisation en rapport avec la fonction d'autotest décrite précédemment, au-delà d'un premier seuil d'erreur provenant de résultats du moyen d'auto-calibration 105, des facteurs de corrections issus du moyen d'auto-calibration 105 sont alors re-transmis à l'unité de calcul 104 (plus généralement, au calculateur 103 de déplacement).For this embodiment in relation to the self-test function described above, beyond a first error threshold derived from results of the self-calibration means 105, correction factors from the self-calibration means 105 are then re-transmitted to the calculation unit 104 (more generally, to the displacement calculator 103).

De même, au-delà d'un deuxième seuil d'erreur moins sécuritaire que le premier seuil provenant de résultats du moyen d'auto-calibration 105, un indicateur de défaillance de mesure à bord est activé.Likewise, beyond a second threshold of error that is less secure than the first threshold derived from results of the auto-calibration means 105, an on-board measurement failure indicator is activated.

Un modèle simplifié d'évaluation d'une probabilité de défaillance de la fonction dite d'autotest peut être ainsi réalisée en considérant qu'à l'arrêt du véhicule, des mesures effectuées sur les axes de mesure acc1, acc2, acc3, acc4 des accéléromètres 101, 102 sont obtenues en redondance.A simplified model for evaluating a probability of failure of the so-called self-test function can thus be achieved by considering that at the vehicle stop, measurements made on the measurement axes acc1, acc2, acc3, acc4 accelerometers 101, 102 are obtained in redundancy.

Supposons un intervalle de temps T entre deux arrêts du véhicule : la probabilité de défaillance Pr de la fonction d'autotest appliquée aux deux axes de mesure Acc1, Acc2 dans le plan Py est définie par : Pr = λacc 1 * λacc 2 * T

Figure imgb0021
Suppose a time interval T between two stops of the vehicle: the probability of failure Pr of the self-test function applied to the two measurement axes Acc1, Acc2 in the plane Py is defined by: Pr = λacc 1 * λacc 2 * T
Figure imgb0021

Où les taux de défaillance respectifs λacc1 et Àacc2 des axes de mesure Acc1 et Acc2 de l'accéléromètres bi-axes sont supposés chacun égal à une valeur communément admise de 10-5 dans l'exemple de calcul suivant :

  • Avec T = 60 secondes, Pr = 10-10*0,017 = 1,7 *10-12
  • Avec T = 10 minutes, Pr = 10-10*0,17 = 17*10-12
Where the respective λacc1 and Δacc2 failure rates of the Acc1 and Acc2 measurement axes of the bi-axis accelerometers are assumed to be equal to a commonly accepted value of 10 -5 in the following calculation example:
  • With T = 60 seconds, Pr = 10 -10 * 0.017 = 1.7 * 10 -12
  • With T = 10 minutes, Pr = 10 -10 * 0.17 = 17 * 10 -12

Il apparaît donc que si le véhicule s'arrête périodiquement et fréquemment, le dispositif permet de garantir un niveau de confiance des données mesurées qui est requis pour la sécurité exigée dans le domaine ferroviaire.It therefore appears that if the vehicle stops periodically and frequently, the device makes it possible to guarantee a level of confidence in the measured data which is required for the safety required in the railway field.

Conformément à cette évaluation d'une probabilité de défaillance de la fonction dite d'autotest, le dispositif selon l'invention peut alors comprendre un moyen d'évaluation de probabilité de défaillance activables entre deux arrêts du véhicule et employant une mesure en redondance sur les axes de mesures des accéléromètres. Ce moyen d'évaluation peut être intégré dans le moyen d'auto-calibration 105 précédemment décrit.In accordance with this evaluation of a probability of failure of the so-called self-test function, the device according to the invention can then comprise a probability of failure evaluation means activatable between two stops of the vehicle and employing a redundancy measurement on the axes measurements of accelerometers. This evaluation means can be integrated in the self-calibration means 105 previously described.

Enfin, le dispositif selon l'invention peut aussi optionnellement comprendre un détecteur de perte d'adhérence du véhicule (en cas de patinage ou d'enrayage) couplé à au moins un des premier et second accéléromètres 101, 102 bi-axes pour lesquels les mesures de déplacement peuvent être associées à des valeurs externes (pente, courbure d'une banque de donnée ou données d'un système de balisage de trajectoire, etc.). En cas de divergence de ces données, un risque de perte d'adhérence du véhicule peut être détecté et par extension complémenter l'information fournie par le système de détection de vitesse nulle (roue bloquée, mais véhicule en mouvement).Finally, the device according to the invention may also optionally comprise a vehicle adhesion loss detector (in case of slipping or skidding) coupled to at least one of the first and second accelerometers 101, 102 bi-axes for which the Displacement measurements can be associated with external values (slope, curvature of a databank, or data of a path marker system, etc.). In case of divergence of these data, a risk of loss of adhesion of the vehicle can be detected and by extension complement the information provided by the zero speed detection system (locked wheel, but moving vehicle).

Le détecteur de perte d'adhérence du véhicule peut aussi, le cas échéant, être couplé à au moins un tachymètre 108 d'essieu de véhicule en addition d'un des premier et second accéléromètres 101, 102 de façon à comparer leurs données de mesure de mouvement angulaire et respectivement de déplacement longitudinal. Par ce biais, la fonction de détection de vitesse nulle peut être alors rendue encore plus sécuritaire.The vehicle adhesion loss detector may also, where appropriate, be coupled to at least one vehicle axle tachometer 108 in addition to one of the first and second accelerometers 101, 102 so as to compare their measurement data. angular movement and respectively longitudinal displacement. In this way, the zero speed detection function can then be made even safer.

Abréviations principalesMain abbreviations

  • X : axe longitudinal (de déplacement) du véhiculeX: longitudinal axis (displacement) of the vehicle
  • Y : axe perpendiculaire à l'axe X et dans le plan du plancher du véhiculeY: axis perpendicular to the X axis and in the floor plan of the vehicle
  • Z : axe perpendiculaire au plancher du véhiculeZ: axis perpendicular to the floor of the vehicle
  • Px : plan orthogonal à l'axe X et déterminé par les axes Y, ZPx: plane orthogonal to the X axis and determined by the Y, Z axes
  • Py : plan orthogonal à l'axe Y et déterminé par les axes X, ZPy: plane orthogonal to the Y axis and determined by the X, Z axes
  • Pz : plan orthogonal à l'axe Z et déterminé par les axes X, YPz: plane orthogonal to the Z axis and determined by the X, Y axes
  • Gpes : accélération de la pesanteur = 9.81 m/s2Gpes: acceleration of gravity = 9.81 m / s2
  • Gx : accélération longitudinale du véhicule selon l'axe XGx: longitudinal acceleration of the vehicle along the X axis
  • Glat : accélération latérale du véhicule au point des accéléromètres dans le véhiculeGlat: lateral acceleration of the vehicle at the point of accelerometers in the vehicle
  • Vx : vitesse longitudinale selon l'axe XVx: longitudinal velocity along the X axis
  • Dx : position/déplacement longitudinal selon l'axe XDx: position / longitudinal displacement along the X axis
  • VxT : vitesse longitudinale donnée par le tachymètreVxT: longitudinal speed given by the tachometer
  • DxT : déplacement longitudinale donnée par le tachymètreDxT: longitudinal displacement given by the tachometer
  • Acc1 : premier axe de mesure de l'accéléromètre 101Acc1: first axis of measurement of the accelerometer 101
  • Acc2 : second axe de mesure de l'accéléromètre 101Acc2: second axis of measurement of the accelerometer 101
  • Acc3 : premier axe de mesure de l'accéléromètre 102Acc3: first axis of measurement of the accelerometer 102
  • Acc4 : second axe 2 de mesure de l'accéléromètre 102Acc4: second axis 2 for measuring the accelerometer 102
  • A1 : angle dans le plan Py entre l'axe X et l'axe Acc1A1: angle in the plane Py between the X axis and the axis Acc1
  • A2 : angle dans le plan Py entre l'axe X et l'axe Acc2A2: angle in plane Py between axis X and axis Acc2
  • A3 : angle dans le plan Pz entre l'axe X et l'axe Acc3A3: angle in the plane Pz between the X axis and the Acc3 axis
  • A4 : angle dans le plan Pz entre l'axe X et l'axe Acc4A4: angle in the plane Pz between the X axis and the Acc4 axis
  • Ax : angle de trajectoire du véhicule dans le plan Py (c'est-à-dire angle entre l'horizontale et l'axe X)Ax: angle of trajectory of the vehicle in the plane Py (ie angle between the horizontal and the X axis)
  • Lx : distance de déport entre le centre du véhicule et le point de fixation des accéléromètres 101, 102Lx: distance of offset between the center of the vehicle and the point of attachment of accelerometers 101, 102
  • Ay : angle lié au rayon de courbure dans le plan Py. Ay est claculé par Arctg (Lx/R), donc en première approximation Lx/RAy: angle related to the radius of curvature in the plane Py. Ay is cabled by Arctg (Lx / R), so in first approximation Lx / R
  • Vx : vitesse longitudinale du véhicule selon l'axe XVx: longitudinal speed of the vehicle along the X axis

Claims (15)

  1. Device for measuring movement of a self-guided vehicle (VEH), comprising, on-board said vehicle:
    - an accelerometer (101) having two measurement axes (Acc1, Acc2) in a longitudinal plane (Py) defined by a first longitudinal axis (X) corresponding to a principal movement, assumed to be rectilinear, of the vehicle, and having a second axis (Z) perpendicular to the floor of the vehicle,
    - a computer (103) connected to an output signal (S1, S2) associated with each measurement axis (Acc1, Acc2), wherein each output signal (S1, S2) comprises a projection measurement (Gacc1, Gacc2) of a total resultant acceleration of the vehicle on the associated measurement axis (Acc1, Acc2),
    characterised in that
    - a second accelerometer (102) has at least two measurement axes (Acc3, Acc4) in a horizontal plane (Pz) defined by the first axis (X) and a third axis (Y) perpendicular to the first and to the second axis (X, Z),
    - the computer (103) is connected to an output signal (S3, S4) associated with each measurement axis (Acc3, Acc4), wherein each output signal (S3, S4) comprises a projection measurement (Gacc3, Gacc4) of the total resultant acceleration of the vehicle on the associated measurement axis (Acc3, Acc4),
    - the measurement axes (Acc1, Acc2 ; Acc3, Acc4) of the first and second accelerometer (101, 102) have in their respective plane (Py, Pz) an adjustable relative angle (A1+A2, A3+A4) such that, based on the four projection measurements (Gacc1, Gacc2, Gacc3, Gacc4), the computer (103) provides at least one longitudinal acceleration value (Gx) of the vehicle at each point of a route including slopes and turns.
  2. Device according to one of the preceding claims, wherein at least one of the relative angles (A1+A2,A3+A4) is a right angle.
  3. Device according to one of the preceding claims, wherein each relative angle (A1+A2, A3+A4) is subdivided into a first angle and a second angle (A1, A2 ; A3, A4) corresponding to projection angles between the four axes of measurement (Acc1, Acc2, Acc3, Acc4) of the first and second accelerometer (101, 102) and the first axis (X).
  4. Device according to claim 3, wherein the projection angles (A1=A2 ; A3=A4) of each accelerometer are equal.
  5. Device according to one of the preceding claims, wherein
    the computer (103) provides at each point of the route including slopes and turns a lateral acceleration value (Glat), a slope angle value (Ax), a lateral acceleration angle (Ay) resulting from the centrifugal force due to the speed of the vehicle and dependent on a radius of curvature (R) of the trajectory and an offset of the accelerometer relative to the centre of the vehicle.
  6. Device according to one of the preceding claims, wherein
    the computer (103) provides a speed (Vx) and a position (Dx) at each point of the route including slopes and turns by successively integrating the longitudinal acceleration value (Gx) of the vehicle.
  7. Device according to one of the preceding claims, comprising:
    - a tachometer (104) disposed on at least one axle of the vehicle and providing a tachometric value for speed (VxT) and position (DxT) of the vehicle,
    - the tachometric values (VxT, DxT) obtained and the values of speed and position (Vx, Dx) provided by the computer (103) are supplied to a comparator (106),
    - the comparator (106) determines differences between the categories of speed and position values, and, if said values are below a predefined threshold, a resetting of the speed and position values (Vx, Dx) obtained by the computer (103) at each point of the route including slopes and turns is implemented on the tachometric values (VxT, DxT).
  8. Device according to claim 7, comprising a means for detecting a zero speed (107) of the vehicle coupled to the computer (103) and to the tachometer (104), said means comprising at least one correlator of the speed and position values (Vx, Dx) provided by the computer (103) and the tachometric values (VxT, DxT).
  9. The device according to claim 5 and 8, comprising:
    - a self-calibration means (105) of the accelerometers (101, 102) which can be activated if the zero speed detection means confirms the vehicle has stopped,
    - the self-calibration means processing the measurements originating from the accelerometers 101, 102 and provided by a unit for calculating accelerations 104 incorporated in said computer 103, and
    - said self-calibration means calibrates the measurements in accordance with the zero values of the longitudinal acceleration (Gx) and lateral acceleration (Glat) of the vehicle.
  10. Device according to claim 4 and 9, wherein the self-calibration means (105) has a first control mode for verifying the equality of the measurement values (Gacc3, Gacc4) on the second accelerometer (102) and a means for recalculating the slope angle (Ax) from which the measurement values (Gacc1, Gacc2) of said first accelerometer (101) are verified in a second control mode.
  11. Device according to one of claims 9 or 10, wherein, upon exceeding a first error threshold arising from results of said self-calibration means, correction factors from the self-calibration means are transmitted to the computer (103).
  12. Device according to claim 11, wherein, upon exceeding a second error threshold which is less safe than the first threshold arising from results from the self-calibration means, an indicator of failure of on-board measurement is activated.
  13. Device according to one of claims 7 to 12, comprising a means for evaluating probability of failure that may be activated between two stops of the vehicle and using a redundancy measurement on the measurement axes of the accelerometers.
  14. Device according to one of the preceding claims,
    comprising a detector of loss of adhesion of the vehicle coupled to at least one of said first and second accelerometers.
  15. Device according to claim 14, wherein the detector of loss of adhesion of the vehicle is coupled to the at least one tachometer in addition to one of the first and second accelerometers.
EP07871826A 2007-12-10 2007-12-10 Device for measuring the movement of a self-guiding vehicle Active EP2219931B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL07871826T PL2219931T3 (en) 2007-12-10 2007-12-10 Device for measuring the movement of a self-guiding vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2007/002031 WO2009074725A1 (en) 2007-12-10 2007-12-10 Device for measuring the movement of a self-guiding vehicle

Publications (2)

Publication Number Publication Date
EP2219931A1 EP2219931A1 (en) 2010-08-25
EP2219931B1 true EP2219931B1 (en) 2011-05-25

Family

ID=39765210

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07871826A Active EP2219931B1 (en) 2007-12-10 2007-12-10 Device for measuring the movement of a self-guiding vehicle

Country Status (12)

Country Link
US (1) US8571741B2 (en)
EP (1) EP2219931B1 (en)
KR (1) KR101157756B1 (en)
CN (1) CN101939203B (en)
AT (1) ATE510747T1 (en)
BR (1) BRPI0722245B1 (en)
CA (1) CA2708580A1 (en)
DK (1) DK2219931T3 (en)
ES (1) ES2366148T3 (en)
PL (1) PL2219931T3 (en)
TW (1) TW200931308A (en)
WO (1) WO2009074725A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE510747T1 (en) * 2007-12-10 2011-06-15 Siemens Sas DEVICE FOR MEASURING THE MOTION OF A SELF-DRIVEN VEHICLE
KR20130035483A (en) * 2011-09-30 2013-04-09 삼성전자주식회사 Apparatus and method for perceiving heading change in mobile terminal
TWI585561B (en) * 2013-06-03 2017-06-01 新智控私人有限公司 Method and apparatus for offboard navigation of a robotic device
EP2944537B1 (en) * 2014-05-12 2018-04-04 Bombardier Transportation GmbH A monitoring device and a method for monitoring the operability of at least one sensing means of a rail vehicle
US9651458B2 (en) 2014-09-19 2017-05-16 Swisslog Logistics Inc. Method and system for auto safety verification of AGV sensors
US9168950B1 (en) * 2014-09-19 2015-10-27 Robert Bosch Gmbh Banked curve detection using vertical and lateral acceleration
US20170299388A9 (en) * 2015-05-22 2017-10-19 InvenSense, Incorporated Systems and methods for synthetic sensor signal generation
KR20190076239A (en) * 2017-12-22 2019-07-02 현대자동차주식회사 Apparatus and method for controlling rotation of vehicle considering slip
CN108844744B (en) * 2018-03-29 2021-03-19 中国汽车技术研究中心有限公司 Intelligent guiding and monitoring platform and method for automobile test driving
CN112441079B (en) * 2019-08-29 2022-05-13 比亚迪股份有限公司 Rail train, vehicle-mounted controller and rail train speed measuring method and device
CN110871827A (en) * 2019-11-25 2020-03-10 通号城市轨道交通技术有限公司 Speed and distance measuring method for rail train

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4075538A (en) * 1976-05-19 1978-02-21 General Electric Company Adaptive acceleration responsive system
JP3059826B2 (en) * 1992-06-24 2000-07-04 本田技研工業株式会社 Road surface friction coefficient calculator
FR2727662B1 (en) 1994-12-05 1997-01-10 Gec Alsthom Transport Sa METHOD FOR PROTECTING AGAINST SKIDDING WHEN MEASURING THE MOVEMENT OF A VEHICLE
DE19513244A1 (en) * 1995-04-07 1996-10-10 Honeywell Ag Fault-tolerant train platform
US6532419B1 (en) * 1998-09-23 2003-03-11 Magellan Dis, Inc. Calibration of multi-axis accelerometer in vehicle navigation system
AU2002246949A1 (en) * 2001-01-10 2002-08-06 Lockheed Martin Corporation Train location system and method
US20030135327A1 (en) * 2002-01-11 2003-07-17 Seymour Levine Low cost inertial navigator
US20050137761A1 (en) * 2003-12-22 2005-06-23 Alcatel Two-axis accelerometer used for train speed measurement and system using the same
US7529609B2 (en) * 2004-10-05 2009-05-05 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
DE102005001403B4 (en) * 2005-01-12 2009-05-20 Kes Keschwari Electronic Systems Gmbh & Co. Kg Method and device for determining the actual travel speed of a rail vehicle
CA2601569C (en) * 2005-03-18 2015-08-18 Gatekeeper Systems, Inc. Navigation systems and methods for wheeled objects
CN1869630A (en) * 2006-04-19 2006-11-29 吉林大学 Testing system for integral vehicle running station
CN200979501Y (en) * 2006-04-19 2007-11-21 吉林大学 A complete auto moving state detecting system
US8139109B2 (en) * 2006-06-19 2012-03-20 Oshkosh Corporation Vision system for an autonomous vehicle
ATE510747T1 (en) * 2007-12-10 2011-06-15 Siemens Sas DEVICE FOR MEASURING THE MOTION OF A SELF-DRIVEN VEHICLE
US20090259424A1 (en) * 2008-03-06 2009-10-15 Texas Instruments Incorporated Parameter estimation for accelerometers, processes, circuits, devices and systems
US8577595B2 (en) * 2008-07-17 2013-11-05 Memsic, Inc. Location and path-map generation data acquisition and analysis systems
US8296065B2 (en) * 2009-06-08 2012-10-23 Ansaldo Sts Usa, Inc. System and method for vitally determining position and position uncertainty of a railroad vehicle employing diverse sensors including a global positioning system sensor

Also Published As

Publication number Publication date
US20110029180A1 (en) 2011-02-03
BRPI0722245A2 (en) 2014-07-01
KR20100103572A (en) 2010-09-27
WO2009074725A1 (en) 2009-06-18
CA2708580A1 (en) 2009-06-18
CN101939203A (en) 2011-01-05
ATE510747T1 (en) 2011-06-15
PL2219931T3 (en) 2011-10-31
BRPI0722245B1 (en) 2018-11-27
TW200931308A (en) 2009-07-16
ES2366148T3 (en) 2011-10-17
CN101939203B (en) 2013-06-26
DK2219931T3 (en) 2011-09-12
US8571741B2 (en) 2013-10-29
EP2219931A1 (en) 2010-08-25
KR101157756B1 (en) 2012-06-25

Similar Documents

Publication Publication Date Title
EP2219931B1 (en) Device for measuring the movement of a self-guiding vehicle
EP2219930B1 (en) Device for measuring the movement of a self-guided vehicle
US8275509B2 (en) Speed detection for a tachograph system
EP3083360B1 (en) Estimating adhesion potential by assessing rolling radius
EP2749471B1 (en) Method for assessing the speed of a railway vehicle
EP1832493B1 (en) System and method of verifying the integrity of a train
EP3518067A1 (en) Electronic device and method for controlling the speed of an autonomous vehicle, associated computer program, autonomous vehicle and monitoring platform
CA2913997A1 (en) Method for recognising the presence of a rail vehicle on a block, calculation method for a safety interval and associated device
WO2021047916A1 (en) Method for detecting faults related to wheels of a motor vehicle in a driving situation
FR3026710A1 (en) RAILWAY VEHICLE, UPSTREAM AND UPSTREAM RAILWAY VEHICLES, METHOD OF CONTROLLING DISTANCE BETWEEN A DOWNSTREAM RAILWAY VEHICLE AND A UPSTREAM RAILWAY VEHICLE
EP1597133B1 (en) Method and system for estimating the angular position of a steering wheel on a motor vehicle
EP0919814A1 (en) Method for estimating the velocity of a vehicle or an assembly of vehicles
KR20170004489A (en) A system for taxi meter and the management method using the same
WO2010004178A1 (en) Device for evaluating the transverse acceleration of a motor vehicle and corresponding method
EP1938111A1 (en) Method for validating the measurement supplied by an accelerometer in a motor vehicle and use for estimating slope
FR2994258A1 (en) METHOD FOR COMPENSATING A SENSOR SIGNAL OF A VEHICLE AND INFORMATION SYSTEM APPLYING SUCH A METHOD
EP3080565B1 (en) Device and method for estimating the total mass of a motor vehicle with onboard calibration of suspension displacement sensors
WO2023218857A1 (en) Train control device, train control system, and train control method
FR3141911A1 (en) Method and system for managing the longitudinal speed of a vehicle
EP2923904B1 (en) Braking system for a self-propelled railway car
WO2023052692A1 (en) Method and device for detecting merging of a vehicle into a traffic lane
WO2016181058A1 (en) Identification of pitch and yaw inertia of a motor vehicle
FR2981035A1 (en) DEVICE AND METHOD FOR INCREASING THE OPERATING SAFETY OF A PARKING MANEUVER SYSTEM

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100611

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS SAS

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007014922

Country of ref document: DE

Effective date: 20110707

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20110401635

Country of ref document: GR

Effective date: 20110829

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2366148

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20111017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110926

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110525

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110525

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110525

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110525

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110925

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110525

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E011833

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110525

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110525

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110525

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007014922

Country of ref document: DE

Effective date: 20120228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20121219

Year of fee payment: 6

Ref country code: CZ

Payment date: 20121203

Year of fee payment: 6

Ref country code: BG

Payment date: 20121212

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20121205

Year of fee payment: 6

Ref country code: PL

Payment date: 20121126

Year of fee payment: 6

Ref country code: GB

Payment date: 20121212

Year of fee payment: 6

Ref country code: IT

Payment date: 20121220

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20121114

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130218

Year of fee payment: 6

Ref country code: CH

Payment date: 20130312

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20121204

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20131231

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007014922

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20131231

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 510747

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131210

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131210

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20110401635

Country of ref document: GR

Effective date: 20140702

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007014922

Country of ref document: DE

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140702

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131210

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131210

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131210

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: SIEMENS MOBILITY SAS; FR

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CESSION; FORMER OWNER NAME: SIEMENS SAS

Effective date: 20200303

REG Reference to a national code

Ref country code: HU

Ref legal event code: FH1C

Free format text: FORMER REPRESENTATIVE(S): DR. KOETELES ZOLTAN, SBGK SZABADALMI UEGYVIVOEI IRODA, HU

Representative=s name: SBGK SZABADALMI UEGYVIVOEI IRODA, HU

Ref country code: HU

Ref legal event code: GB9C

Owner name: SIEMENS MOBILITY SAS, FR

Free format text: FORMER OWNER(S): SIEMENS SAS, FR

REG Reference to a national code

Ref country code: FI

Ref legal event code: PCE

Owner name: SIEMENS MOBILITY SAS

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SIEMENS MOBILITY S.A.S.

Effective date: 20210423

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231214

Year of fee payment: 17

Ref country code: FI

Payment date: 20231220

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231220

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240325

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20240222

Year of fee payment: 17