EP2211322B1 - Procédé et système pour éviter une collision frontale dans un véhicule automobile - Google Patents

Procédé et système pour éviter une collision frontale dans un véhicule automobile Download PDF

Info

Publication number
EP2211322B1
EP2211322B1 EP09151294.7A EP09151294A EP2211322B1 EP 2211322 B1 EP2211322 B1 EP 2211322B1 EP 09151294 A EP09151294 A EP 09151294A EP 2211322 B1 EP2211322 B1 EP 2211322B1
Authority
EP
European Patent Office
Prior art keywords
pedestrian
host vehicle
risk zone
collision avoidance
predicted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09151294.7A
Other languages
German (de)
English (en)
Other versions
EP2211322A1 (fr
Inventor
Martin Andreasson
Carina Björnsson
Andreas Eidehall
Anders Agnvall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volvo Car Corp
Original Assignee
Volvo Car Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volvo Car Corp filed Critical Volvo Car Corp
Priority to EP09151294.7A priority Critical patent/EP2211322B1/fr
Publication of EP2211322A1 publication Critical patent/EP2211322A1/fr
Application granted granted Critical
Publication of EP2211322B1 publication Critical patent/EP2211322B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication

Definitions

  • the present invention relates to an automotive vehicle forward collision avoidance system in accordance with the preamble of claim 1.
  • the present invention also relates to a method in an automotive vehicle forward collision avoidance system in accordance with the preamble of claim 9.
  • FCAS Forward Collision Avoidance System
  • An FCAS uses sensors based on technologies such as RADAR (RAdio Detection And Ranging), LIDAR (Light Detection And Ranging), LASER (Light Amplification by Stimulated Emission of Radiation) and cameras to monitor the region in front of the host vehicle.
  • RADAR RAdio Detection And Ranging
  • LIDAR Light Detection And Ranging
  • LASER Light Amplification by Stimulated Emission of Radiation
  • a tracking algorithm is used to estimate the state of the objects ahead and a decision algorithm uses the estimated states to determine any action, e.g. warning the driver or autonomous braking.
  • Automotive manufacturers are today studying collision avoidance systems providing warning and auto-braking functionality for an imminent collision with a pedestrian.
  • warning and auto-braking functionality is normally based on the use of sensors, such as mentioned above, in order to detect the position and motion of pedestrians.
  • a threat assessor estimates if the collision avoidance system equipped vehicle and the pedestrian is on a collision course by predicting the positions a short time in the future, usually one to three seconds.
  • FCW Forward Collision Warning
  • CMB Collision Mitigation by Braking
  • the decision of warning and auto-braking is based on predictions of the paths of the host vehicle and the target object.
  • the position and motion of the target object is, as mentioned above, measured with a sensor such as a camera, radar or laser equipment, or a combination thereof.
  • observation based prediction i.e. prediction based on an appropriate motion model and what may be observed and measured without assuming any change in behaviour, is sufficient for decision-making in FCW systems and CMbB systems.
  • An automotive vehicle forward collision avoidance system according to the preamble of claim 1 is known from EP 2001003 A1 .
  • One object of the invention is to provide an improved automotive vehicle forward collision avoidance system.
  • means for establishing the presence of a target object in front of a vehicle hosting said system comprising: means for estimating the position, velocity and acceleration of the target object; and means for establishing a risk zone in front of the host vehicle; and means for predicting the future path of the target object and the host vehicle in order to predict the lateral position of the target object at a moment when the host vehicle reaches the target object in a longitudinal direction; and means for executing a collision avoidance task arranged such that: - if the target object, based on its current position, velocity and acceleration, is predicted as being able to stop before entering the risk zone through applying a certain predetermined maximum acceleration in a direction opposite to its velocity, it is predicted to stop at a position just before entering the risk zone and no collision avoidance task is executed; and - if the target object, based on its current position, velocity and acceleration, is predicted as not being able to stop before entering the risk zone, then the future position of the target object is predicted using the assumption that the target object will continue to move according to an
  • a further object of the invention is to provide an improved method in an automotive vehicle forward collision avoidance system.
  • a collision avoidance task arranged such that: - if the target object, based on its current position, velocity and acceleration, is predicted as being able to stop before entering the risk zone, it is predicted to stop at a position just before entering the risk zone and no collision avoidance task is executed; and - if the target object, based on its current position, velocity and acceleration, is predicted as not being able to stop before entering the risk zone, then the future position of the target object is predicted using the assumption that the target object will continue to move according to an observation based motion model and a collision avoidance task is executed, a method is provided which renders fewer false alarms
  • FIG 1 illustrates schematically a Forward Collision Avoidance System (FCAS) 1, arranged in a host vehicle 2 in accordance with the present invention.
  • the host vehicle 2 has a breaking system 4 such as an Antilock Brake System (ABS system), e.g. with brake discs 6 and appertaining calipers 7 associated with each of the front wheels 8 and rear wheels 9 of the host vehicle 2.
  • the host vehicle 2 further usually has a power steering system 5, which is arranged to control the steering angle of the front wheels 8.
  • a sensor 3, such as a radar, a lidar, a laser or a camera based sensor is mounted at the front end of the host vehicle 2 and arranged to monitor the region in front of the host vehicle 2.
  • the FCAS is operatively connected with the braking system 4 of the host vehicle 2.
  • the FCAS is arranged to establish the presence of target objects in front of the host vehicle 2 and to estimate the position, velocity and acceleration of any target objects established to be present. These estimations are then used by the FCAS to determine how to avoid or mitigate collision with any target objects, e.g. by performing collision avoidance tasks such as providing warnings, e.g. using an acoustic and/or visual alarm actuated through an alarm actuator 12, or performing autonomous braking.
  • the present invention especially relates to prediction of future paths of pedestrians 10. It is also applicable to any other type of target object 10 that typically moves across a road rather than along it.
  • the solution makes use of the fact that pedestrians 10 are usually aware of the danger of entering the road and thus are not assumed to continue over the road according to an observation based motion model, such as with constant velocity, just because they temporarily have a motion towards it.
  • Pedestrians 10 are usually not users of the same road as the host vehicle 2 other than while crossing it. In case a pedestrian 10 moves towards the road as if it would cross it, it is likely to stop before crossing it if there is an upcoming vehicle. Since most pedestrians 10 are aware of the danger of entering a road, they are normally not likely to enter the road just because they temporarily have a motion towards it. Thus, using observation based motion prediction of the path of a pedestrian 10 yields an unacceptably large number of false alarms and interventions, especially in city environments where pedestrians 10 close to the road move in random directions, usually without entering the road.
  • the solution in accordance with the present invention is based on the use of two hypotheses. Firstly(illustrated at A in figure 3 ), that the pedestrian 10 will continue walking in the same direction and with the same acceleration as it currently is. Secondly (illustrated at B in figure 3 ), that the pedestrian 10 will stop before entering a risk zone in front of the host vehicle 2.
  • the pedestrian 10 is assumed to apply a certain acceleration in opposite direction to its velocity.
  • the assumed acceleration may be tuned differently depending on the area of application. For collision warning, the assumed acceleration may reflect the behavior of stopping in an ordinary way, whereas that of CMbB may rather reflect the acceleration of stopping abruptly.
  • the risk zone is an area representing the predicted coverage of the host vehicle 2, i.e. the area between the predicted path of the leftmost and rightmost parts of the host vehicle 2, i.e. as defined by the host vehicle width w, as illustrated in figure 3 .
  • the prediction with respect to the risk zone takes curvature into account by using the current yaw rate of the host vehicle 2 (the host vehicle's angular velocity around its vertical axis), i.e. if the host vehicle 2 is inside a curve, the risk zone will be curved accordingly.
  • an extra width d of the risk zone may be applied on each side of the host vehicle 2. The additional width d may depend on velocity and other factors in order to better reflect the perceived risk of the situation.
  • the area between the left hand side and right hand side lane markers 11 may be used to define the risk zone, rather than the host vehicle 2 width w and additional width d.
  • these lane markers 11 may be used for defining that side of the risk zone whilst using the host vehicle 2 width w and additional width d at the other side of the host vehicle 2.
  • lane marker sensors provide a good detection also of the boundary between the road and a sidewalk, i.e. the curb (not shown), which in such case may be used instead of the line markers for defining the risk zone in accordance with the present invention. This could be quite useful in urban areas, where line markers 11 are frequently replaced with curbs.
  • the risk zone may be defined to be wider than the host vehicle 2, e.g. the host vehicle 2 width w and additional width d or the width as defined by the lane markers 11.
  • the risk zone may be defined as having the width w of the host vehicle 2.
  • risk zone may be defined in a number of different ways in order to suit different applications and requirements.
  • the future path of the pedestrian 10 is predicted in order to find its lateral position y at the moment when the host vehicle 2 reaches the pedestrian 10 in a longitudinal direction x.
  • the second hypothesis (illustrated at B in figure 3 ), i.e. that the pedestrian 10 will stop before entering a risk zone in front of the host vehicle 2, results in a predicted position outside the risk zone it is assumed that the pedestrian 10 intends to stop before entering the risk zone.
  • the second hypothesis is then used when calculating the future path of the pedestrian 10.
  • the second hypothesis i.e. that the pedestrian 10 will stop before entering a risk zone in front of the host vehicle 2
  • yields a predicted position inside the risk zone it is assumed that the pedestrian 10 does not intend to stop (based on the fact that it is too late to stop in a reasonable manner) before entering the risk zone.
  • the first hypothesis i.e. that the pedestrian 10 will continue walking in the same direction and with the same acceleration as it currently is, is then used when calculating the future path of the pedestrian 10.
  • a third hypothesis may be used.
  • the pedestrian 10 accelerates in the other direction, i.e. that the pedestrian 10 will accelerate to escape the risk zone, rather than stop before entering it.
  • the proposed solution lies in using an improved motion model for pedestrians 10.
  • This improved motion model takes into account that a pedestrian 10 is likely to stop before entering a host vehicle 2 future path.
  • a predetermined maximum acceleration for pedestrians 10 is assumed.
  • a crossing vehicle not shown
  • this crossing vehicle is predicted to stop at a position just before entering the host vehicle 2 path.
  • a pedestrian 10, or a crossing vehicle is estimated as not being able to stop before entering the host vehicle 2 path, then the future position of this pedestrian 10, or crossing vehicle, is predicted using conventional motion models.
  • Conventional motion models typically means that it is assumed that the pedestrian 10, or crossing vehicle, will continue moving according to an observation based motion model, e.g. with a constant velocity in the current direction.
  • An advantage with the proposed solution compared to conventional methods, is that it will lead to fewer false alarms in pedestrian and intersection warning/intervention safety systems. In the end, it could be the difference between being able to reach an acceptable level of false alarms or not. Furthermore, when it is predicted that a pedestrian 10, or crossing vehicle, does not have the possibility to stop before entering the host vehicle 2 path, the confidence that there is a real threat is higher. Thus, the positive performance may also be increased, which in this case means earlier interventions and higher safety benefits by the system 1.
  • an automotive vehicle forward collision avoidance system 1 having means, such as a radar, a lidar, a laser or a camera based sensor 3 for establishing the presence of a target object 10 in front of a vehicle 2 hosting the system 1.
  • Means are provided for estimating the position, velocity and acceleration of the target object 10. Further means are provided for establishing a risk zone in front of the host vehicle 2. Also provided are means for predicting the future path of the target object 10 and the host vehicle 2 in order to predict the lateral position y of the target object 10 at a moment when the host vehicle 2 reaches the target object 10 in a longitudinal direction x.
  • Means are also provided for executing a collision avoidance task, which means are arranged such that: - if the target object 10, based on its current position, velocity and acceleration, is predicted as being able to stop before entering the risk zone through applying a certain predetermined maximum acceleration in a direction opposite to its velocity, it is predicted to stop at a position just before entering the risk zone, as illustrated at (B) in figure 3 , and no collision avoidance task is executed; and - if the target object 10, based on its current position, velocity and acceleration, is predicted as not being able to stop before entering the risk zone, then the future position of the target object 10 is predicted using the assumption that the target object 10 will continue to move according to an observation based motion model, as illustrated at (A) in figure 3 , and a collision avoidance task is executed.
  • the means for executing a collision avoidance task are arranged to provide at least one of a warning to a driver of the host vehicle 2 and autonomous braking of the host vehicle 2.
  • the means for establishing a risk zone in front of the host vehicle 2 are arranged to establish the risk zone as an area representing the predicted coverage of the host vehicle 2 based on the host vehicle 2 width w.
  • the means for establishing a risk zone in front of the host vehicle 2 are further arranged to establish the risk zone taking curvature into account by using the current yaw rate of the host vehicle 2 and curving the risk zone accordingly.
  • the means for establishing a risk zone in front of the host vehicle 2 are further arranged to establish the risk zone through, in addition to the host vehicle 2 width w, applying an extra width d on each side of the host vehicle 2, as illustrated in figure 3 .
  • the host vehicle 2 is equipped with a lane marker sensor (not shown) for detection of lane markers 11 and that either the area between the detected left hand side and right hand side lane markers 11 is used to define the risk zone or, in the case that only lane markers 11 at one side of the host vehicle 2 are detected, these detected lane markers 11 at one side of the host vehicle 2 are used for defining that side of the risk zone whilst the host vehicle 2 width w and an additional width d are used for defining the other side of the risk zone, as illustrated in figure 3 .
  • the means for executing a collision avoidance task are further arranged such that if the target object 10, based on its current position, velocity and acceleration, is predicted as being able to accelerate, through applying a certain predetermined maximum acceleration in the direction of its velocity, and thereby escape the risk zone before the host vehicle 2 reaches the target object in a longitudinal direction x no collision avoidance task is executed.
  • the means for estimating the position, velocity and acceleration of the target object 10 are further arranged such that if the estimated acceleration of the target object 10 lies within a first range, when attempting to stop before entering the risk zone through applying a certain predetermined maximum acceleration in a direction opposite to its velocity and a collision avoidance task is executed, the collision avoidance task of providing a warning to a driver of the host vehicle 2 is executed, and if the estimated acceleration of the target object 10 lies within a second range, when attempting to stop before entering the risk zone through applying a certain predetermined maximum acceleration in a direction opposite to its velocity and a collision avoidance task is executed, the collision avoidance task of performing autonomous braking of the host vehicle 2 is executed.
  • the present invention also relates to a method in an automotive vehicle forward collision avoidance system 1 suitable to be utilized in an automotive vehicle forward collision avoidance system 1 as described above.
  • the present invention also relates to an automotive vehicle 2 comprising an automotive vehicle forward collision avoidance system 1 as described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Claims (7)

  1. Système d'évitement de collision frontale de véhicule automobile (1) comprenant:
    des moyens pour établir la présence d'un piéton (10) devant un véhicule (2) hébergeant ledit système (1) ;
    des moyens pour estimer la position, la vélocité et l'accélération du piéton (10);
    des moyens pour établir une zone de risque devant le véhicule hôte (2) arrangés pour établir la zone de risque comme une aire représentant la couverture prédite du véhicule hôte (2) basée sur la largeur (w) du véhicule hôte (2) et une largeur supplémentaire (d) sur chaque côté du véhicule hôte (2) le long d'un trajet prédit du véhicule hôte (2) ;
    des moyens pour prédire le trajet futur du piéton (10) et du véhicule hôte (2) pour prédire la position latérale (y) du piéton (10) à un moment lorsque le véhicule hôte (2) atteint le piéton dans une direction longitudinale (x) ;
    des moyens pour exécuter une tâche d'évitement de collision arrangés de sorte que :
    - si le piéton (10), sur la base de la position, la vélocité et l'accélération actuelles du piéton (10), est prédit comme étant capable de s'arrêter avant d'entrer dans la zone de risque par application d'une certaine accélération maximale prédéterminée pour des piétons dans une direction opposée à la vélocité du piéton (10), il est prédit que le piéton (10) s'arrêtera à une position juste avant d'entrer dans la zone de risque et aucune tâche d'évitement de collision n'est exécutée ; et
    - si le piéton (10), sur la base de la position, la vélocité et l'accélération actuelles du piéton (10), est prédit comme n'étant pas capable de s'arrêter avant d'entrer dans la zone de risque, alors la position future du piéton (10) est prédite en utilisant l'hypothèse que le piéton (10) continuera de se déplacer selon une observation basée sur un modèle de mouvement et une tâche d'évitement de collision est exécutée, caractérisé en ce que
    le véhicule hôte (2) est équipé d'un capteur de marqueur de voie pour la détection des marqueurs de voie et que soit l'aire entre les marqueurs de voie (11) détectés côté main gauche et côté main droite est utilisé pour définir la zone de risque soit, dans le cas où seulement des marqueurs de voie (11) d'un côté du véhicule hôte (2) sont détectés, ces marqueurs de voie détectés (11) d'un coté du véhicule hôte (2) sont utilisés pour définir ce côté de la zone de risque tandis que la largeur (w) du véhicule hôte (2) et ladite largeur supplémentaire (d) sont utilisées pour définir l'autre côté de la zone de risque.
  2. Système (1) selon la revendication 1,
    caractérisé en ce que les moyens pour exécuter une tâche d'évitement de collision sont arrangés pour fournir au moins un d'un avertissement à un conducteur du véhicule hôte (2) et d'un freinage autonome du véhicule hôte (2).
  3. Système (1) selon la revendication 1,
    caractérisé en ce que les moyens pour établir une zone de risque devant le véhicule hôte (2) sont arrangés en outre pour établir la zone de risque en tenant compte d'une courbure en utilisant le taux de lacet actuel du véhicule hôte (2) et en courbant la zone de risque en conséquence.
  4. Système (1) selon la revendication 1,
    caractérisé en que les moyens pour exécuter une tâche d'évitement de collision sont en outre arrangés de sorte que si le piéton (10), sur la base de la position, la vélocité et l'accélération actuelle du piéton (10), est prédit comme étant capable d'accélérer, par application d'une certaine accélération maximale prédéterminée pour des piétions dans la direction de la vélocité du piéton (10), et ainsi échapper à la zone de risque avant que le véhicule (2) n'atteigne le piéton (10) dans une direction longitudinale (x) aucune tâche d'évitement de collision n'est exécutée.
  5. Système (1) selon la revendication 1,
    caractérisé en ce que les moyens pour estimer la position, la vélocité et l'accélération du piéton (10) sont en outre arrangés de sorte que si l'accélération estimée du piéton (10) se situe dans une première plage lors de la tentative d'arrêt avant d'entrer dans la zone de risque par application d'une certaine accélération maximale prédéterminée pour des piétons dans une direction opposée à la vélocité du piéton (10) et une tâche d'évitement de collision est exécutée, la tâche d'évitement de collision de fourniture d'un avertissement à un conducteur du véhicule hôte (2) est exécutée, et si l'accélération estimée du piéton (10) se situe dans une deuxième plage lors de la tentative d'arrêt avant d'entrer dans la zone de risque par application d'une certaine accélération maximale prédéterminée pour des piétons dans une direction opposée à la vélocité du piéton (10) et une tâche d'évitement de collision est exécutée, la tâche d'évitement de collision d'effectuer un freinage autonome du véhicule hôte (2) est exécutée.
  6. Procédé dans un système d'évitement de collision frontale de véhicule automobile, comprenant les étapes de :
    établir la présence d'un piéton (10) devant un véhicule (2) hébergeant ledit système ;
    estimer la position, la vélocité et l'accélération du piéton (10);
    établir une zone de risque devant le véhicule hôte (2) comme une aire représentant la couverture prédite du véhicule hôte (2) basée sur la largeur (w) du véhicule hôte (2) et une largeur supplémentaire (d) sur chaque côté du véhicule hôte (2) le long d'un trajet prédit du véhicule hôte (2) ;
    prédire le trajet futur du piéton (10) et du véhicule hôte (2) pour trouver la position latérale du piéton (10) à un moment lorsque le véhicule hôte (2) atteint le piéton (10) dans une direction longitudinale ;
    exécuter une tâche d'évitement de collision de sorte que ;
    - si le piéton (10), sur la base de sa position, de sa vélocité et de son accélération actuelles, est prédit comme étant capable de s'arrêter avant d'entrer dans la zone de risque par application d'une certaine accélération maximale prédéterminée pour des piétons dans une direction opposée à sa vélocité, il est prédit que le piéton (10) s'arrêtera à une position juste avant d'entrer dans la zone de risque et aucune tâche d'évitement de collision n'est exécutée ;
    - si le piéton (10), sur la base de sa position, de sa vélocité et de son accélération actuelles, est prédit comme n'étant pas capable de s'arrêter avant d'entrer dans la zone de risque, alors la position future du piéton (10) est prédite en utilisant l'hypothèse que le piéton (10) continuera de déplacer selon une observation basée sur un modèle de mouvement et une tâche d'évitement de collision est exécutée ; caractérisé en ce qu'il comprend en outre
    détecter des marqueurs de voie et utiliser soit l'aire entre des marqueurs de voie (11) détectés côté main gauche et côté main droite pour définir la zone de risque soit, dans le cas où seulement des marqueurs de voie (11) d'un côté du véhicule hôte (2) sont détectés, utiliser ces marqueurs de voie (11) détectés d'un côté du véhicule hôte (2) pour définir ce côté de la zone de risque tandis que la largeur (w) du véhicule hôte (2) et ladite largeur supplémentaire (d) sont utilisées pour définir l'autre côté de la zone de risque.
  7. Véhicule automobile (2), caractérisé en ce qu'il comprend un système d'évitement de collision frontale de véhicule automobile (1) selon l'une quelconque des revendications 1 à 5.
EP09151294.7A 2009-01-26 2009-01-26 Procédé et système pour éviter une collision frontale dans un véhicule automobile Active EP2211322B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09151294.7A EP2211322B1 (fr) 2009-01-26 2009-01-26 Procédé et système pour éviter une collision frontale dans un véhicule automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09151294.7A EP2211322B1 (fr) 2009-01-26 2009-01-26 Procédé et système pour éviter une collision frontale dans un véhicule automobile

Publications (2)

Publication Number Publication Date
EP2211322A1 EP2211322A1 (fr) 2010-07-28
EP2211322B1 true EP2211322B1 (fr) 2016-11-16

Family

ID=40565284

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09151294.7A Active EP2211322B1 (fr) 2009-01-26 2009-01-26 Procédé et système pour éviter une collision frontale dans un véhicule automobile

Country Status (1)

Country Link
EP (1) EP2211322B1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009047066A1 (de) * 2009-11-24 2011-05-26 Robert Bosch Gmbh Verfahren zur Warnung vor einem Objekt in der Umgebung eines Fahrzeugs sowie Fahrassistentensystem
WO2014002187A1 (fr) * 2012-06-26 2014-01-03 トヨタ自動車 株式会社 Dispositif d'alarme de véhicule
JP5900293B2 (ja) * 2012-11-06 2016-04-06 トヨタ自動車株式会社 衝突回避支援装置及び衝突回避支援方法
JP6582936B2 (ja) * 2015-12-01 2019-10-02 株式会社デンソー 経路生成装置、自動走行制御システム
JP6911739B2 (ja) * 2017-12-13 2021-07-28 トヨタ自動車株式会社 運転支援装置
KR102599356B1 (ko) * 2018-11-09 2023-11-07 삼성전자주식회사 주행 시스템, 이에 포함되는 자동 주행 장치 및 교차점 충돌 방지 방법
CN113386738A (zh) * 2020-03-13 2021-09-14 奥迪股份公司 风险预警***、方法和存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4762610B2 (ja) * 2005-06-14 2011-08-31 本田技研工業株式会社 車両の走行安全装置
DE102007015032A1 (de) * 2007-03-29 2008-01-10 Daimlerchrysler Ag Verfahren zur Bewertung der Kritikalität einer Verkehrssituation und Vorrichtung zur Kollisionsvermeidung oder Kollisionsfolgenminderung
EP2001003B1 (fr) * 2007-05-25 2013-04-10 Ford Global Technologies, LLC Procédé et système dans une véhicule pour d'évitement de collision.
US20080306666A1 (en) * 2007-06-05 2008-12-11 Gm Global Technology Operations, Inc. Method and apparatus for rear cross traffic collision avoidance

Also Published As

Publication number Publication date
EP2211322A1 (fr) 2010-07-28

Similar Documents

Publication Publication Date Title
EP2302412B1 (fr) Système et procédé d'évaluation d'une menace de collision avant d'un véhicule automobile
CN106043297B (zh) 在反向操作期间基于前轮跑偏的避撞
EP3357777B1 (fr) Système de changement de voie de circulation
US8755998B2 (en) Method for reducing the risk of a collision between a vehicle and a first external object
CN106985780B (zh) 车辆安全辅助***
JP4967840B2 (ja) 衝突軽減装置
JP6404634B2 (ja) 予測的な先進運転支援システムの一貫性のある挙動生成
CN106233159B (zh) 使用位置数据的误警告减少
EP3354525B1 (fr) Agencement et procédé pour atténuer une collision frontale entre des véhicules routiers
EP2211322B1 (fr) Procédé et système pour éviter une collision frontale dans un véhicule automobile
EP3000104B1 (fr) Systemes d'attenuation de collision ayant une largeur de declencheur reglable
CN106470884B (zh) 车辆状态的确定和在驾驶车辆时的驾驶员辅助
KR20160023193A (ko) 긴급 제동 시스템에서 전방위 확장 적용을 위한 충돌 위험 판단 방법 및 장치
EP2208654B1 (fr) Procédé et système pour éviter les collisions d'un véhicule avec une cible
KR20110132437A (ko) 차량의 주행 거동을 자동으로 인식하기 위한 방법 및 이러한 방법을 구현한 운전자 지원 시스템
US11465616B2 (en) Cross traffic alert with flashing indicator recognition
WO2019034514A1 (fr) Procédé et système d'évitement de collision d'un véhicule
RU2526144C2 (ru) Способ предупреждения столкновения транспортного средства с динамическим препятствием
US20210122369A1 (en) Extensiview and adaptive lka for adas and autonomous driving
EP2595135A1 (fr) Procédé et agencement d'évitement de collision
KR20170070580A (ko) Ecu, 상기 ecu를 포함하는 무인 자율 주행 차량, 및 이의 차선 변경 제어 방법
CN112714730A (zh) 用于运行至少部分自动化运行的第一车辆的方法和设备
JP2020100362A (ja) 運転支援装置
EP2686702B1 (fr) Dispositif et procédé pour estimer des paramètres relatifs à des véhicules situés devant
JP6365141B2 (ja) 車両制御装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20110128

17Q First examination report despatched

Effective date: 20110214

AKX Designation fees paid

Designated state(s): DE GB SE

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOLVO CAR CORPORATION

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160608

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009042382

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009042382

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009042382

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170817

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20201211

Year of fee payment: 13

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220127

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231219

Year of fee payment: 16